1
|
Wu Y, Jia Q, Tang Q, Chen L, Deng H, He Y, Tang F. A specific super-enhancer actuated by berberine regulates EGFR-mediated RAS-RAF1-MEK1/2-ERK1/2 pathway to induce nasopharyngeal carcinoma autophagy. Cell Mol Biol Lett 2024; 29:92. [PMID: 38943090 PMCID: PMC11214260 DOI: 10.1186/s11658-024-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC), primarily found in the southern region of China, is a malignant tumor known for its highly metastatic characteristics. The high mortality rates caused by the distant metastasis and disease recurrence remain unsolved clinical problems. In clinic, the berberine (BBR) compound has widely been in NPC therapy to decrease metastasis and disease recurrence, and BBR was documented as a main component with multiple anti-NPC effects. However, the mechanism by which BBR inhibits the growth and metastasis of nasopharyngeal carcinoma remains elusive. Herein, we show that BBR effectively inhibits the growth, metastasis, and invasion of NPC via inducing a specific super enhancer (SE). From a mechanistic perspective, the RNA sequencing (RNA-seq) results suggest that the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway, activated by the epidermal growth factor receptor (EGFR), plays a significant role in BBR-induced autophagy in NPC. Blockading of autophagy markedly attenuated the effect of BBR-mediated NPC cell growth and metastasis inhibition. Notably, BBR increased the expression of EGFR by transcription, and knockout of EGFR significantly inhibited BBR-induced microtubule associated protein 1 light chain 3 (LC3)-II increase and p62 inhibition, proposing that EGFR plays a pivotal role in BBR-induced autophagy in NPC. Chromatin immunoprecipitation sequencing (ChIP-seq) results found that a specific SE existed only in NPC cells treated with BBR. This SE knockdown markedly repressed the expression of EGFR and phosphorylated EGFR (EGFR-p) and reversed the inhibition of BBR on NPC proliferation, metastasis, and invasion. Furthermore, BBR-specific SE may trigger autophagy by enhancing EGFR gene transcription, thereby upregulating the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway. In addition, in vivo BBR effectively inhibited NPC cells growth and metastasis, following an increase LC3 and EGFR and a decrease p62. Collectively, this study identifies a novel BBR-special SE and established a new epigenetic paradigm, by which BBR regulates autophagy, inhibits proliferation, metastasis, and invasion. It provides a rationale for BBR application as the treatment regime in NPC therapy in future.
Collapse
Affiliation(s)
- Yao Wu
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Qunying Jia
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
| | - Qi Tang
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Lin Chen
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Hongyu Deng
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
| | - Yingchun He
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China.
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China.
| |
Collapse
|
2
|
Wang H, Du X, Liu W, Zhang C, Li Y, Hou J, Yu Y, Li G, Wang Q. Combination of betulinic acid and EGFR-TKIs exerts synergistic anti-tumor effects against wild-type EGFR NSCLC by inducing autophagy-related cell death via EGFR signaling pathway. Respir Res 2024; 25:215. [PMID: 38764025 PMCID: PMC11103851 DOI: 10.1186/s12931-024-02844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.
Collapse
Affiliation(s)
- Han Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Guangzhou women and children's medical center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaohui Du
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Congcong Zhang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ying Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jingwen Hou
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yi Yu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Guiru Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Qi Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
3
|
Damare R, Engle K, Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res 2024; 38:2406-2447. [PMID: 38433568 DOI: 10.1002/ptr.8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that maintains normal tissues and cell signaling pathways. EGFR is overactivated and overexpressed in many malignancies, including breast, lung, pancreatic, and kidney. Further, the EGFR gene mutations and protein overexpression activate downstream signaling pathways in cancerous cells, stimulating the growth, survival, resistance to apoptosis, and progression of tumors. Anti-EGFR therapy is the potential approach for treating malignancies and has demonstrated clinical success in treating specific cancers. The recent report suggests most of the clinically used EGFR tyrosine kinase inhibitors developed resistance to the cancer cells. This perspective provides a brief overview of EGFR and its implications in cancer. We have summarized natural products-derived anticancer compounds with the mechanistic basis of tumor inhibition via the EGFR pathway. We propose that developing natural lead molecules into new anticancer agents has a bright future after clinical investigation.
Collapse
Affiliation(s)
- Rutuja Damare
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| |
Collapse
|
4
|
Pan Q, Xie Y, Zhang Y, Guo X, Wang J, Liu M, Zhang XL. EGFR core fucosylation, induced by hepatitis C virus, promotes TRIM40-mediated-RIG-I ubiquitination and suppresses interferon-I antiviral defenses. Nat Commun 2024; 15:652. [PMID: 38253527 PMCID: PMC10803816 DOI: 10.1038/s41467-024-44960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Aberrant N-glycosylation has been implicated in viral diseases. Alpha-(1,6)-fucosyltransferase (FUT8) is the sole enzyme responsible for core fucosylation of N-glycans during glycoprotein biosynthesis. Here we find that multiple viral envelope proteins, including Hepatitis C Virus (HCV)-E2, Vesicular stomatitis virus (VSV)-G, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-Spike and human immunodeficiency virus (HIV)-gp120, enhance FUT8 expression and core fucosylation. HCV-E2 manipulates host transcription factor SNAIL to induce FUT8 expression through EGFR-AKT-SNAIL activation. The aberrant increased-FUT8 expression promotes TRIM40-mediated RIG-I K48-ubiquitination and suppresses the antiviral interferon (IFN)-I response through core fucosylated-EGFR-JAK1-STAT3-RIG-I signaling. FUT8 inhibitor 2FF, N-glycosylation site-specific mutation (Q352AT) of EGFR, and tissue-targeted Fut8 silencing significantly increase antiviral IFN-I responses and suppress RNA viral replication, suggesting that core fucosylation mediated by FUT8 is critical for antiviral innate immunity. These findings reveal an immune evasion mechanism in which virus-induced FUT8 suppresses endogenous RIG-I-mediated antiviral defenses by enhancing core fucosylated EGFR-mediated activation.
Collapse
Grants
- This work was supported by grants from the National Natural Science Foundation of China (82230078, 22077097, 91740120, 82272978, 21572173 and 21721005), National Outstanding Youth Foundation of China (81025008), National Key R&D Program of China (2022YFA1303500, 2018YFA0507603), Medical Science Advancement Program (Basical Medical Sciences) of Wuhan University (TFJC 2018002.), Key R&D Program of Hubei Province (2020BCB020), the Hubei Province’s Outstanding Medical Academic Leader Program (523-276003), the Innovative Group Project of Hubei Health Committee (WJ2021C002), the Foundational Research Funds for the Central University of China (2042022dx0003, 2042023kf1011) and Natural Science Foundation Project of Hubei Province (2021CFB484), Natural Science Foundation Project of Hubei Province (2021CFB484 to M.L).
- This work was supported by grants from the Natural Science Foundation of Hubei Province (2021CFB484), National Natural Science Foundation of China 82272978
Collapse
Affiliation(s)
- Qiu Pan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Yan Xie
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Ying Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Xinqi Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Jing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Min Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
- Department of Allergy, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Tamura S, Tazawa H, Hori N, Li Y, Yamada M, Kikuchi S, Kuroda S, Urata Y, Kagawa S, Fujiwara T. p53-armed oncolytic adenovirus induces autophagy and apoptosis in KRAS and BRAF-mutant colorectal cancer cells. PLoS One 2023; 18:e0294491. [PMID: 37972012 PMCID: PMC10653454 DOI: 10.1371/journal.pone.0294491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Colorectal cancer (CRC) cells harboring KRAS or BRAF mutations show a more-malignant phenotype than cells with wild-type KRAS and BRAF. KRAS/BRAF-wild-type CRCs are sensitive to epidermal growth factor receptor (EGFR)-targeting agents, whereas KRAS/BRAF-mutant CRCs are resistant due to constitutive activation of the EGFR-downstream KRAS/BRAF signaling pathway. Novel therapeutic strategies to treat KRAS/BRAF mutant CRC cells are thus needed. We recently demonstrated that the telomerase-specific replication-competent oncolytic adenoviruses OBP-301 and p53-armed OBP-702 exhibit therapeutic potential against KRAS-mutant human pancreatic cancer cells. In this study, we evaluated the therapeutic potential of OBP-301 and OBP-702 against human CRC cells with differing KRAS/BRAF status. Human CRC cells with wild-type KRAS/BRAF (SW48, Colo320DM, CACO-2), mutant KRAS (DLD-1, SW620, HCT116), and mutant BRAF (RKO, HT29, COLO205) were used in this study. The antitumor effect of OBP-301 and OBP-702 against CRC cells was analyzed using the XTT assay. Virus-mediated modulation of apoptosis, autophagy, and the EGFR-MEK-ERK and AKT-mTOR signaling pathways was analyzed by Western blotting. Wild-type and KRAS-mutant CRC cells were sensitive to OBP-301 and OBP-702, whereas BRAF-mutant CRC cells were sensitive to OBP-702 but resistant to OBP-301. Western blot analysis demonstrated that OBP-301 induced autophagy and that OBP-702 induced autophagy and apoptosis in human CRC cells. In BRAF-mutant CRC cells, OBP-301 and OBP-702 suppressed the expression of EGFR, MEK, ERK, and AKT proteins, whereas mTOR expression was suppressed only by OBP-702. Our results suggest that p53-armed oncolytic virotherapy is a viable therapeutic option for treating KRAS/BRAF-mutant CRC cells via induction of autophagy and apoptosis.
Collapse
Affiliation(s)
- Shuta Tamura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Naoto Hori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuncheng Li
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Motohiko Yamada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
7
|
Wang C, Chen L, Tan R, Li Y, Zhao Y, Liao L, Ge Z, Ding C, Xing Z, Zhou P. Carbon dots and composite materials with excellent performances in cancer-targeted bioimaging and killing: a review. Nanomedicine (Lond) 2023. [PMID: 37965983 DOI: 10.2217/nnm-2023-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Carbon dots (CDs) are nanomaterials with excellent properties, including good biocompatibility, small size, ideal photoluminescence and surface modification, and are becoming one of the most attractive nanomaterials for the imaging, detection and treatment of tumors. Based on these advantages, CDs can be combined other materials to obtain composite particles with improved, even new, performance, mainly in photothermal and photodynamic therapies. This paper reviews the research progress of CDs and their composites in targeted tumor imaging, detection, diagnosis, drug delivery and tumor killing. It also discusses and proposes the challenges and perspectives of their future applications in these fields. This review provides ideas for future applications of novel CD-based materials in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Chenggang Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, PR China
| | - Lixin Chen
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rongshuang Tan
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuchen Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yiqing Zhao
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Lingzi Liao
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhangjie Ge
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Chuanyang Ding
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhankui Xing
- The Second Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
8
|
Wu PS, Lin MH, Hsiao JC, Lin PY, Pan SH, Chen YJ. EGFR-T790M Mutation-Derived Interactome Rerouted EGFR Translocation Contributing to Gefitinib Resistance in Non-Small Cell Lung Cancer. Mol Cell Proteomics 2023; 22:100624. [PMID: 37495186 PMCID: PMC10545940 DOI: 10.1016/j.mcpro.2023.100624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Secondary mutation, T790M, conferring tyrosine kinase inhibitors (TKIs) resistance beyond oncogenic epidermal growth factor receptor (EGFR) mutations presents a challenging unmet need. Although TKI-resistant mechanisms are intensively investigated, the underlying responses of cancer cells adapting drug perturbation are largely unknown. To illuminate the molecular basis linking acquired mutation to TKI resistance, affinity purification coupled mass spectrometry was adopted to dissect EGFR interactome in TKI-sensitive and TKI-resistant non-small cell lung cancer cells. The analysis revealed TKI-resistant EGFR-mutant interactome allocated in diverse subcellular distribution and enriched in endocytic trafficking, in which gefitinib intervention activated autophagy-mediated EGFR degradation and thus autophagy inhibition elevated gefitinib susceptibility. Alternatively, gefitinib prompted TKI-sensitive EGFR translocating toward cell periphery through Rab7 ubiquitination which may favor efficacy to TKIs suppression. This study revealed that T790M mutation rewired EGFR interactome that guided EGFR to autophagy-mediated degradation to escape treatment, suggesting that combination therapy with TKI and autophagy inhibitor may overcome acquired resistance in non-small cell lung cancer.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Hua Pan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Ju Chen
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Rodriguez SMB, Kamel A, Ciubotaru GV, Onose G, Sevastre AS, Sfredel V, Danoiu S, Dricu A, Tataranu LG. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Int J Mol Sci 2023; 24:11110. [PMID: 37446288 DOI: 10.3390/ijms241311110] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Despite all of the progress in understanding its molecular biology and pathogenesis, glioblastoma (GBM) is one of the most aggressive types of cancers, and without an efficient treatment modality at the moment, it remains largely incurable. Nowadays, one of the most frequently studied molecules with important implications in the pathogenesis of the classical subtype of GBM is the epidermal growth factor receptor (EGFR). Although many clinical trials aiming to study EGFR targeted therapies have been performed, none of them have reported promising clinical results when used in glioma patients. The resistance of GBM to these therapies was proven to be both acquired and innate, and it seems to be influenced by a cumulus of factors such as ineffective blood-brain barrier penetration, mutations, heterogeneity and compensatory signaling pathways. Recently, it was shown that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. It seems imperative to understand how the EGFR signaling pathways function and how they interconnect with other pathways. Furthermore, it is important to identify the mechanisms of drug resistance and to develop better tailored therapeutic agents.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gheorghe Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Suzana Danoiu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| |
Collapse
|
10
|
Knockdown of lncRNA EGFR-AS1 promotes autophagy-mediated ferroptosis in cervical cancer via regulating EGFR expression through miR-133b. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Li X, Liu J, Lu L, Huang T, Hou W, Wang F, Yu L, Wu F, Qi J, Chen X, Meng Z, Zhu M. Sirt7 associates with ELK1 to participate in hyperglycemia memory and diabetic nephropathy via modulation of DAPK3 expression and endothelial inflammation. Transl Res 2022; 247:99-116. [PMID: 35470010 DOI: 10.1016/j.trsl.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy (DN) is one of the most serious complications of advanced diabetes, and increases patient mortality. Recently, epigenetics-mediated hyperglycemic memory in pathological process of DN has received attention. The purpose of this study was to determine the underlying mechanism by which sirt7 modulates hyperglycemic memory in DN. In glomerular endothelial cells (GECs) cultured in high glucose and glomeruli of DN patients and rats, an increase in p65 phosphorylation and endothelial adhesion molecule levels persisted after glucose normalization but was reversed by glucose normalization associated with death-associated protein kinase-3 (DAPK3) knockout or DAPK3 inhibitor. High glucose-mediated decrease in sirt7, the deacetylase modulating H3K18-acetylation (H3K18ac), was sustained after normoglycemia. Sirt7 overexpression accompanied by glucose normalization suppressed DAPK3 expression and inflammation in GECs. Moreover, sh-sirt7-induced inflammation was inhibited by si-DAPK3. Furthermore, sirt7 and H3K18ac were located at the DAPK3 promoter region. ELK1 was found to combine with sirt7. si-ELK1 supplemented with normoglycemia inhibited high glucose-induced DAPK3 expression and inflammation in GECs. ELK1 overexpression-mediated inflammation was inhibited by si-DAPK3. In addition, ELK1 and sirt7 were located at the same promoter region of DAPK3. ELK1 overexpression enhanced DAPK3 promoter activity, which disappeared after specific binding site mutation. In vivo, sirt7 overexpression decreased inflammation and improved renal function during insulin treatment of DN rats, whereas insulin alone did not work. Our data demonstrated high glucose-mediated mutual inhibition between sirt7 and ELK1 induced DAPK3 transcription and inflammation despite normoglycemia in GECs, thus forming a vicious cycle and participating in the occurrence of hyperglycemic memory in DN.
Collapse
Affiliation(s)
- Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Department of Anaesthesiology, Huzhou Maternal & Child Health Care Hospital, Huzhou, Zhejiang, China
| | - Lihong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Huang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lang Yu
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Fengfeng Wu
- Department of Orthopedics and Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Jie Qi
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhipeng Meng
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China.
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Grb2 interacts with necrosome components and is involved in rasfonin-induced necroptosis. Cell Death Dis 2022; 8:319. [PMID: 35831301 PMCID: PMC9279413 DOI: 10.1038/s41420-022-01106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
The underlying mechanism by which growth factor receptor-bound protein 2 (Grb2) regulates necroptosis remains unexplored. In the present study, we found that rasfonin, a fungal natural product and an activator of necroptosis, enhanced Grb2 binding to receptor-interacting serine/threonine kinase 1 (RIP1), which plays a critical role in regulating programmed necrosis. Moreover, we observed that SQSTM/p62 (p62), a protein that can form necrosomes with RIP1, increased its interaction with Grb2 upon rasfonin challenge. Although it has been used as an activator of autophagy in our previous study, here we found that a high dose of rasfonin was able to inhibit autophagic process. Inhibition of RIP1 either chemically or genetically reversed the inhibition of rasfonin on autophagy, whereas knockdown of Grb2 markedly reduced rasfonin-induced necrosis. Additionally, we found that the compound failed to upregulate the expression of RIP1 in Grb2-deprived cells. In summary, our data revealed that Grb2 actively participated in rasfonin-induced necroptosis by interacting with the components of necrosome and mediating their expression.
Collapse
|
13
|
A Novel miRNA Located in the HER2 Gene Shows an Inhibitory Effect on Wnt Signaling and Cell Cycle Progression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7216758. [PMID: 35747498 PMCID: PMC9213177 DOI: 10.1155/2022/7216758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/15/2022] [Indexed: 12/30/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is involved in the development of the majority of cancers. Therefore, it can be a potential target for cancer therapy. It was hypothesized that some of the broad effects of HER2 could be mediated by miRNAs that are probably embedded inside this gene. Here, we predicted and then empirically substantiated the processing and expression of a novel miRNA named HER2-miR1, located in the HER2 gene; transfection of a DNA fragment corresponding to HER2-miR1 precursor sequence (preHER2-miR1) resulted in ~4000-fold elevation of HER2-miR1 mature form in HEK293t cells. Also, the detection of HER2-miR1 in 5637, NT2, and HeLa cell lines confirmed its endogenous production. Following the HER2-miR1 overexpression, TOP/FOP flash assay and RT-qPCR results showed that Wnt signaling pathway was downregulated. Consistently, flow cytometry results revealed that overexpression of HER2-miR1 in Wnt+ cell lines (SW480 and HCT116) was ended in G1 arrest, unlike in Wnt− cells (HEK293t). Taking everything into account, our results report the discovery of a novel miRNA that is located within the HER2 gene sequence and has a repressive impact on the Wnt signaling pathway.
Collapse
|
14
|
Lu C, Yu R, Zhang C, Lin C, Dou Y, Wu D, Pan Y, Peng T, Tang H, Han R, He Y. Protective autophagy decreases lorlatinib cytotoxicity through Foxo3a-dependent inhibition of apoptosis in NSCLC. Cell Death Dis 2022; 8:221. [PMID: 35459209 PMCID: PMC9033765 DOI: 10.1038/s41420-022-01027-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Lorlatinib is a promising third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) that has been approved for treating ALK-positive non-small-cell lung cancer (NSCLC) patients with previous ALK-TKI treatment failures. However, the inevitable emergence of acquired resistance limits its long-term efficacy. A more comprehensive understanding of the acquired resistance mechanisms to lorlatinib will enable the development of more efficacious therapeutic strategies. The efficacy of chloroquine (CQ) in combination with lorlatinib in ALK-positive NSCLC cells in vitro and in vivo was assessed using CCK-8, colony formation, immunofluorescence staining, flow cytometry analysis, western blot analysis, and xenograft implantation. Here, we show that lorlatinib induced apoptosis and protective autophagy in ALK-positive NSCLC cells. However, the protective autophagy can gradually lead to decreased cytotoxicity of loratinib in ALK-positive NSCLC cells. Meanwhile, we found that the combination of lorlatinib and CQ, an inhibitor of autophagy, inhibited autophagy and promoted apoptosis both in vitro and in vivo, which sensitized cells to lorlatinib through the dephosphorylation of Foxo3a and promoted nuclear translocation, then activation of Foxo3a/Bim axis. Taken together, our results suggest that inhibition of protective autophagy might be a therapeutic target for delaying the occurrence of acquired resistance to lorlatinib in ALK-positive NSCLC patients.
Collapse
Affiliation(s)
- Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Rui Yu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Chong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, 400042, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Yonghong Pan
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Tao Peng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Huan Tang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| |
Collapse
|
15
|
Li X, Lu L, Hou W, Wang F, Huang T, Meng Z, Zhu M. The SETD8/ELK1/bach1 complex regulates hyperglycaemia-mediated EndMT in diabetic nephropathy. J Transl Med 2022; 20:147. [PMID: 35351142 PMCID: PMC8961497 DOI: 10.1186/s12967-022-03352-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background Diabetic nephropathy (DN), the most common microvascular complication in patients with diabetes, induces kidney failure. Previous research showed that endothelial-to-mesenchymal transition (EndMT) of human glomerular endothelial cells (HGECs) is involved in the progression of DN. Moreover, SET domain-containing protein 8 (SETD8), ETS-domain containing protein (ELK1) and BTB and CNC homology 1 (bach1) all participate in endothelial injury. In this study, we hypothesize that the SETD8/ELK1/bach1 functional axis is involved in mediating EndMT in diabetic nephropathy. Methods Immunohistochemistry, Western blotting and qPCR were performed to determine the protein and mRNA levels of genes in HGECs and the kidney tissues of participants and rats. Immunofluorescence, Co-IP and GST pulldown assays were performed to verify the direct interaction between SETD8 and ELK1. ChIP and dual-luciferase assays were performed to determine the transcriptional regulation of bach1 and Snail. AVV-SETD8 injection in rat kidney was used to verify the potential protective effect of SETD8 on DN. Results Our current study showed that hyperglycaemia triggered EndMT by increasing Snail expression both in vitro and in vivo. Moreover, high glucose increased bach1 expression in HGECs, positively regulating Snail and EndMT. As a transcription factor, ELK1 was augmented and participated in hyperglycaemia-induced EndMT via modulation of bach1 expression. Moreover, ELK1 was found to associate with SETD8. Furthermore, SETD8 negatively regulated EndMT by cooperating with bach1 to regulate Snail transcription. Furthermore, histone H4-Lys-20 monomethylation (H4K20me1), which is downstream of SETD8, was accompanied by ELK1 localization at the same promoter region of bach1. ELK1 overexpression enhanced bach1 promoter activity, which disappeared after specific binding site deletion. Mutual inhibition between ELK1 and SETD8 was found in HGECs. In vivo, SETD8 overexpression decreased ELK1 and bach1 expression, as well as EndMT. Moreover, SETD8 overexpression improved the renal function of rats with DN. Conclusions SETD8 cooperates with ELK1 to regulate bach1 transcription, thus participating in the progression of DN. In addition, SETD8 interacts with bach1 to modulate Snail transcription, thus inducing EndMT in DN. SETD8 plays a core role in the SETD8/ELK1/bach1 functional axis, which participates in hyperglycaemia-mediated EndMT in DN, and SETD8 may be a potential therapeutic target for DN. Trial registration ChiCTR, ChiCTR2000029425. 2020/1/31, http://www.chictr.org.cn/showproj.aspx?proj=48548 Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03352-4.
Collapse
Affiliation(s)
- Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lihong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fei Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ting Huang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhipeng Meng
- Department of Anaesthesiology, Huzhou Hospital Affiliated to Zhejiang University, Affiliated Central Hospital of HuZhou University, Huzhou, 313000, Zhejiang, China.
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
16
|
Chen Y, Gibson SB. Tumor Suppressing Subtransferable Candidate 4 Expression Prevents Autophagy-Induced Cell Death Following Temozolomide Treatment in Glioblastoma Cells. Front Cell Dev Biol 2022; 10:823251. [PMID: 35309946 PMCID: PMC8926073 DOI: 10.3389/fcell.2022.823251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive type of brain cancer in adults, with temozolomide (TMZ) being widely used as the standard chemotherapy drug for its treatment. However, GBM frequently becomes resistant to TMZ treatment due to various mechanisms including amplification and mutations of the epidermal growth factor receptor (EGFR), where EGFR variant III (EGFRvIII) is the most common EGFR mutation. Autophagy (macroautophagy) is an intracellular “self-degradation” process involving the lysosome. It mainly plays a pro-cell survival role contributing to drug resistance in cancers including GBM, but, under some conditions, it can induce cell death called autophagy-induced cell death (AuICD). We recently published that TSSC4 (tumor suppressing subtransferable candidate 4) is a novel tumor suppressor and a novel autophagy inhibitor that inhibits cancer cell growth through its interacting with the autophagy protein LC3. In this brief research report, we demonstrate that cell death induced by TMZ in GBM cells is inhibited by overexpression of TSSC4. TSSC4 overexpression also prevents TMZ-induced autophagy but not when TSSC4 is mutated in its conserved LC3-interacting region. When EGFRvIII was expressed in GBM cells, TSSC4 protein was increased and TMZ-induced cell death was decreased. Knockout of TSSC4 in EGFRvIII-expressing GBM cells increased TMZ-induced autophagy and cell death. This cell death was decreased by autophagy inhibition, suggesting that TSSC4 downregulation promotes TMZ-induced AuICD. This indicates that TSSC4 is a novel target to sensitize GBM cells to TMZ treatment.
Collapse
Affiliation(s)
- Yongqiang Chen
- CancerCare Manitoba Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Spencer B Gibson
- Department of Biochemistry and Medical Genetics, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Ji X, Ma H, Du Y. Role and mechanism of action of LAPTM4B in EGFR‑mediated autophagy (Review). Oncol Lett 2022; 23:109. [PMID: 35242237 DOI: 10.3892/ol.2022.13229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/09/2022] Open
Affiliation(s)
- Xiaokun Ji
- Department of Cytology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hua Ma
- Department of Cytology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yun Du
- Department of Cytology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
18
|
Hou B, Li E, Liang J, Liu S, Yang H, Liu L, Jiang X. The unique Akt inhibitor SC66 suppressed AMPK activity and abolished autophagy through the EGFR-p62 pathway. Cell Biol Int 2021; 46:311-322. [PMID: 34854518 DOI: 10.1002/cbin.11732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022]
Abstract
Akt is usually considered to be a negative regulator of both autophagy and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling. In the present study, we found that SC66, a pyridine-based allosteric Akt inhibitor, suppressed basal and H2 O2 -induced autophagy concurrent with decreased phosphorylation and activity of AMPK. SC66 treatment led to the formation of a high molecular weight (HMW) form of SQSTM1/p62 (p62), which is an autophagic substrate and is essential for selective autophagy. Moreover, we observed that SC66 inhibited the binding of p62 and microtubule-associated protein light chain 3 (LC3). The immunoprecipitation results revealed the interaction between p62 and epidermal growth factor receptor (EGFR), and knockdown of EGFR reversed SC66-mediated autophagy inhibition without affecting the phosphorylation of acetyl-CoA carboxylase (ACC), a well-known substrate of AMPK. SC66 increased the interaction between EGFR and Beclin 1 and markedly decreased the association of EGFR with VPS34, a critical protein for autophagy induction. Collectively, the data presented here indicate that EGFR-p62 pathway plays a critical role in Akt-mediated positive regulation of autophagy.
Collapse
Affiliation(s)
- Bolin Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Institutional Center for Shared Technologies and Facilities, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingnan Liang
- Institutional Center for Shared Technologies and Facilities, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuchun Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaiyi Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Three dimensions of autophagy in regulating tumor growth: cell survival/death, cell proliferation, and tumor dormancy. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166265. [PMID: 34487813 DOI: 10.1016/j.bbadis.2021.166265] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is an intracellular lysosomal degradation process involved in multiple facets of cancer biology. Various dimensions of autophagy are associated with tumor growth and cancer progression, and here we focus on the dimensions involved in regulation of cell survival/cell death, cell proliferation and tumor dormancy. The first dimension of autophagy supports cell survival under stress within tumors and under certain contexts drives cell death, impacting tumor growth. The second dimension of autophagy promotes proliferation through directly regulating cell cycle or indirectly maintaining metabolism, increasing tumor growth. The third dimension of autophagy facilitates tumor cell dormancy, contributing to cancer treatment resistance and cancer recurrence. The intricate relationship between these three dimensions of autophagy influences the extent of tumor growth and cancer progression. In this review, we summarize the roles of the three dimensions of autophagy in tumor growth and cancer progression, and discuss unanswered questions in these fields.
Collapse
|
20
|
Si Y, Zhang H, Peng P, Zhu C, Shen J, Xiong Y, Liu X, Xiang Y, Li W, Ren Y, Wan F, Zhang L, Liu Y. G protein pathway suppressor 2 suppresses gastric cancer by destabilizing epidermal growth factor receptor. Cancer Sci 2021; 112:4867-4882. [PMID: 34609770 PMCID: PMC8645722 DOI: 10.1111/cas.15151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
G protein pathway suppressor 2 (GPS2) is expressed in most human tissues, including the stomach. However, the biological functions of GPS2 in cancer, as well as the underlying molecular mechanisms, remain poorly understood. Here, we report that GPS2 expression was aberrantly downregulated in gastric cancer (GC) tissues compared with control tissues. Clinicopathologic analysis showed that low GPS2 expression was significantly correlated with pathological grade, lymph node stage, and invasive depth. Kaplan‐Meier analysis indicated that patients with low GPS2 expression showed poorer overall survival rates than those with high GPS2 expression. Moreover, GPS2 overexpression decreased GC cell proliferation, colony formation, tumorigenesis, and invasion. Overexpression of GPS2 reduced the protein expression of epidermal growth factor receptor (EGFR) and inhibited its downstream signaling in GC cells. Interestingly, GPS2 decreased EGFR protein expression, which was reversed by a lysosome inhibitor. Furthermore, GPS2 reduced EGFR protein stability by enhancing the binding of EGFR and an E3 ligase, c‐Cbl, which promoted the ubiquitination of EGFR, ultimately leading to its degradation through the lysosomal pathway. Further analysis indicated that GPS2 activated autophagy and promoted the autophagic flux by destabilizing EGFR. Taken together, these results suggest that low GPS2 expression is associated with GC progression and provide insights into the applicability of the GPS2‐EGFR axis as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Haitao Zhang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Peng
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Chu Zhu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Shen
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yilian Xiong
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xuewen Liu
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Yuchen Xiang
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Wenjuan Li
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yuliang Ren
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Fang Wan
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Liang Zhang
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Ying Liu
- Laboratory of Molecular Targeted Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Laboratory of Molecular Targeted Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
21
|
Ma C, Li F, Luo H. Prognostic and immune implications of a novel ferroptosis-related ten-gene signature in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1058. [PMID: 34422970 PMCID: PMC8339871 DOI: 10.21037/atm-20-7936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/18/2021] [Indexed: 12/25/2022]
Abstract
Background Lung cancer has been the focus of attention for many researchers in recent years due to its leading contribution to cancer-related death worldwide, with lung adenocarcinoma (LUAD) being the most common histological type. Ferroptosis, a novel iron-dependent form of regulated cell death, can be induced by sorafenib. Emerging evidence shows that triggering ferroptosis has potential as a cancer therapy. This work aimed to build a ferroptosis-related gene signature for predicting the outcome of LUAD. Methods The TCGA-LUAD dataset was set as the training cohort, and the GSE72094 and GSE68465 datasets were set as the validation cohorts. Sixty-two ferroptosis-related genes were retrieved from the literature. A univariate Cox regression model was constructed for the training cohort to preliminarily screen for potential prognostic ferroptosis-related genes. A gene signature was generated from a LASSO Cox regression model and assessed with the training and validation cohorts through Kaplan-Meier, Cox, and ROC analyses. In addition, the correlation between the risk score and autophagy-related genes was determined by the Pearson test. Finally, GSEA and immune infiltrating analyses were performed to better study the functional annotation of the signature and the role of each kind of immune cell. Results A ten-gene signature was constructed from the training cohort and validated in three cohorts by Kaplan-Meier and Cox regression analyses, revealing its independent prognostic value in LUAD. Moreover, a ROC analysis conducted with all cohort data confirmed the predictive ability of the ten-gene signature for LUAD prognosis. A total of 62.85% (308/490) of autophagy-related genes were found to be significantly correlated with risk scores. GSEA detailed the exact pathways related to the gene signature, and immune-infiltrating analyses identified crucial roles for resting mast cells and resting dendritic cells in the prognosis of LUAD. Conclusions We identified a novel ferroptosis-related ten-gene signature (PHKG2, PGD, PEBP1, NCOA4, GLS2, CISD1, ATP5G3, ALOX15, ALOX12B, and ACSL3) that can accurately predict LUAD prognosis and is closely linked to resting mast cells and resting dendritic cells.
Collapse
Affiliation(s)
- Chao Ma
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Feng Li
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Surgery, Competence Center of Thoracic Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
22
|
Cui H, Weng Y, Ding N, Cheng C, Wang L, Zhou Y, Zhang L, Cui Y, Zhang W. Autophagy-Related Three-Gene Prognostic Signature for Predicting Survival in Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:650891. [PMID: 34336650 PMCID: PMC8321089 DOI: 10.3389/fonc.2021.650891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumors in China, and its prognosis remains poor. Autophagy is an evolutionarily conserved catabolic process involved in the occurrence and development of ESCC. In this study, we described the expression profile of autophagy-related genes (ARGs) in ESCC and developed a prognostic prediction model for ESCC patients based on the expression pattern of ARGs. We used four ESCC cohorts, GSE53624 (119 samples) set as the discovery cohort, The Cancer Genome Atlas (TCGA) ESCC set (95 samples) as the validation cohort, 155 ESCC cohort, and Oncomine cohort were used to screen and verify differentially expressed ARGs. We identified 34 differentially expressed genes out of 222 ARGs. In the discovery cohort, we divided ESCC patients into three groups that showed significant differences in prognosis. Then, we analyzed the prognosis of 34 differentially expressed ARGs. Three genes [poly (ADP-ribose) polymerase 1 (PARP1), integrin alpha-6 (ITGA6), and Fas-associated death domain (FADD)] were ultimately obtained through random forest feature selection and were constructed as an ARG-related prognostic model. This model was further validated in TCGA ESCC set. Cox regression analysis confirmed that the three-gene signature was an independent prognostic factor for ESCC patients. This signature effectively stratified patients in both discovery and validation cohorts by overall survival (P = 5.162E-8 and P = 0.052, respectively). We also constructed a clinical nomogram with a concordance index of 0.713 to predict the survival possibility of ESCC patients by integrating clinical characteristics and the ARG signature. The calibration curves substantiated fine concordance between nomogram prediction and actual observation. In conclusion, we constructed a new ARG-related prognostic model, which shows the potential to improve the ability of individualized prognosis prediction in ESCC.
Collapse
Affiliation(s)
- Heyang Cui
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yongjia Weng
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Ning Ding
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Chen Cheng
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Longlong Wang
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yong Zhou
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Ling Zhang
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yongping Cui
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Weimin Zhang
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
23
|
Sioud M, Juzenas P, Zhang Q, Kleinauskas A, Peng Q. Evaluation of In Vitro Phototoxicity of a Minibody-IR700 Conjugate Using Cell Monolayer and Multicellular Tumor Spheroid Models. Cancers (Basel) 2021; 13:cancers13133356. [PMID: 34283089 PMCID: PMC8269338 DOI: 10.3390/cancers13133356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment strategy that utilizes photosensitizers (PSs) and light of a specific wavelength to kill cancer cells. However, limited tumor specificity is still a drawback for the clinical application of PDT. To increase the therapeutic efficacy and specificity of PDT, a novel human minibody (MS5) that recognizes a cell surface receptor expressed on various cancer cells was labeled with the hydrophilic phthalocyanine PS IR700 to generate an MS5-IR700 conjugate that is activated by near-infrared (NIR) light. The phototoxicity of the conjugate was mainly tested against the PC3 prostate cancer cell line. The MS5-IR700 conjugate killed PC3 cells after NIR light irradiation as compared to untreated cells or cells treated with IR700 alone. Time-course analysis of cell viability revealed a high percentage of cell death during the first hour in PC3 cells exposed to the MS5-IR700 conjugate and NIR light irradiation. After irradiation, the MS5-IR700 conjugate-treated PC3 cells displayed cellular swelling, round shape, and rupture of the cell and nuclear membranes. In a co-culture model, the MS5-IR700 conjugate killed MS5-positive Ramos lymphoma cells specifically, while leaving MS5-negative cells unaffected. In line with the data obtained with the monolayer cultures, the MS5-IR700 conjugate also killed PC3 cancer cell spheroids. The treatment induced relocation of heat shock protein 70 and calreticulin to the cell surface, implying the induction of immunogenic cell death. Overall, the data suggest that the developed MS5-IR700 conjugate is a promising therapeutic agent that warrants further preclinical studies.
Collapse
Affiliation(s)
- Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway;
- Correspondence:
| | - Petras Juzenas
- Division of Laboratory Medicine, Department of Pathology, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway; (P.J.); (A.K.); (Q.P.)
| | - Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway;
| | - Andrius Kleinauskas
- Division of Laboratory Medicine, Department of Pathology, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway; (P.J.); (A.K.); (Q.P.)
| | - Qian Peng
- Division of Laboratory Medicine, Department of Pathology, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway; (P.J.); (A.K.); (Q.P.)
| |
Collapse
|
24
|
PFKFB3 Inhibition Impairs Erlotinib-Induced Autophagy in NSCLCs. Cells 2021; 10:cells10071679. [PMID: 34359849 PMCID: PMC8307619 DOI: 10.3390/cells10071679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting the kinase domain of the epidermal growth factor receptor (EGFR), such as erlotinib, have dramatically improved clinical outcomes of patients with EGFR-driven non-small cell lung carcinomas (NSCLCs). However, intrinsic or acquired resistance remains a clinical barrier to the success of FDA-approved EGFR TKIs. Multiple mechanisms of resistance have been identified, including the activation of prosurvival autophagy. We have previously shown that the expression and activity of PFKFB3—a known driver of glycolysis—is associated with resistance to erlotinib and that PFKFB3 inhibition improves the response of NSCLC cells to erlotinib. This study focuses on investigating the role of PFKFB3 in regulating erlotinib-driven autophagy to escape resistance to erlotinib. We evaluated the consequence of pharmacological inhibition of PFKFB3 on erlotinib-driven autophagy in NSCLC cells with different mutation statuses. Here, we identify PFKFB3 as a mediator of erlotinib-induced autophagy in NSCLCs. We demonstrate that PFKFB3 inhibition sensitizes NCSLCs to erlotinib via impairing autophagy flux. In summary, our studies uncovered a novel crosstalk between PFKFB3 and EGFR that regulates erlotinib-induced autophagy, thus contributing to erlotinib sensitivity in NSCLCs.
Collapse
|
25
|
Haj Hashemi F, Atashzadeh‐Shoorideh F, Oujian P, Mofid B, Bazargan M. Relationship between perceived social support and psychological hardiness with family communication patterns and quality of life of oncology patients. Nurs Open 2021; 8:1704-1711. [PMID: 33606919 PMCID: PMC8186685 DOI: 10.1002/nop2.808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/30/2020] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
AIM The purpose of this study was to determine the relationship between PSS, PH, FCP and QoL of oncology patients. METHODS In this descriptive-correlational study, 340 oncology patients were selected with convenience sampling method from the hospitals in Tehran 2018-2019. Data were collected using, "PSS," "PH," "FCP" and "European Organization for Research and Treatment of Cancer Quality of Life Questionnaire, EORTC QLQ-C30." Data were analysed using descriptive and inferential statistics using SPSS21 and Amos. RESULTS The direct effect and the total effect of PSS and FCP on QoL were significant (p < .001), but their indirect effect was not significant (p > .05) and the effect of PH on QoL was not significant (p = .96). The Root Mean Squares of Error Approximations (RMSEA), Non-Normed Fit Index (NNFI), Comparative Fit Index (CFI) and Goodness of Fit Index (GFI) were estimated 0.07, 0.97, 0.98 and 0.91, respectively.
Collapse
Affiliation(s)
- Fatemeh Haj Hashemi
- Student Research Committee, School of Nursing & MidwiferyShahid Beheshti University of Medical SciencesTehranIran
| | - Foroozan Atashzadeh‐Shoorideh
- Department of Psychiatric Nursing and ManagementSchool of Nursing & MidwiferyShahid Beheshti University of Medical SciencesTehranIran
| | - Parastoo Oujian
- Department of Pediatric NursingSchool of Nursing & MidwiferyShahid Beheshti University of Medical SciencesTehranIran
| | - Bahram Mofid
- Cancer Research CenterDepartment of Radiation OncologyShohada‐e‐Tajrish Medical CenterSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Bazargan
- College of Nursing and Health SciencesFlinders UniversityAdelaideSAAustralia
| |
Collapse
|
26
|
Usman RM, Razzaq F, Akbar A, Farooqui AA, Iftikhar A, Latif A, Hassan H, Zhao J, Carew JS, Nawrocki ST, Anwer F. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol 2021; 17:193-208. [PMID: 32970929 DOI: 10.1111/ajco.13449] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
Abstract
A hallmark feature of tumorigenesis is uncontrolled cell division. Autophagy is regulated by more than 30 genes and it is one of several mechanisms by which cells maintain homeostasis. Autophagy promotes cancer progression and drug resistance. Several genes play important roles in autophagy-induced tumorigenesis and drug resistance including Beclin-1, MIF, HMGB1, p53, PTEN, p62, RAC3, SRC3, NF-2, MEG3, LAPTM4B, mTOR, BRAF and c-MYC. These genes alter cell growth, cellular microenvironment and cell division. Mechanisms involved in tumorigenesis and drug resistance include microdeletions, genetic mutations, loss of heterozygosity, hypermethylation, microsatellite instability and translational modifications at a molecular level. Disrupted or altered autophagy has been reported in hematological malignancies like lymphoma, leukemia and myeloma as well as multiple solid organ tumors like colorectal, hepatocellular, gall bladder, pancreatic, gastric and cholangiocarcinoma among many other malignancies. In addition, defects in autophagy also play a role in drug resistance in cancers like osteosarcoma, ovarian and lung carcinomas following treatment with drugs such as doxorubicin, paclitaxel, cisplatin, gemcitabine and etoposide. Therapeutic approaches that modulate autophagy are a novel future direction for cancer drug development that may help to prevent issues with disease progression and overcome drug resistance.
Collapse
Affiliation(s)
- Rana Muhammad Usman
- Department of Medicine, The University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Faryal Razzaq
- Foundation University Medical College, Islamabad, Pakistan
| | - Arshia Akbar
- Department of Medical Intensive Care, Holy Family Hospital, Rawalpindi, Pakistan
| | | | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Azka Latif
- Department of Medicine, Crieghton University, Omaha, NE, USA
| | - Hamza Hassan
- Department of Hematology & Medical Oncology, Boston University Medical Center, Boston, MA, USA
| | - Jianjun Zhao
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer S Carew
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | | | - Faiz Anwer
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
27
|
Patel NH, Bloukh S, Alwohosh E, Alhesa A, Saleh T, Gewirtz DA. Autophagy and senescence in cancer therapy. Adv Cancer Res 2021; 150:1-74. [PMID: 33858594 DOI: 10.1016/bs.acr.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor cells can undergo diverse responses to cancer therapy. While apoptosis represents the most desirable outcome, tumor cells can alternatively undergo autophagy and senescence. Both autophagy and senescence have the potential to make complex contributions to tumor cell survival via both cell autonomous and cell non-autonomous pathways. The induction of autophagy and senescence in tumor cells, preclinically and clinically, either individually or concomitantly, has generated interest in the utilization of autophagy modulating and senolytic therapies to target autophagy and senescence, respectively. This chapter summarizes the current evidence for the promotion of autophagy and senescence as fundamental responses to cancer therapy and discusses the complexity of their functional contributions to cell survival and disease outcomes. We also highlight current modalities designed to exploit autophagy and senescence in efforts to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Nipa H Patel
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah Bloukh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Enas Alwohosh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ahmad Alhesa
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
28
|
Erb-b2 Receptor Tyrosine Kinase 2 (ERBB2) Promotes ATG12-Dependent Autophagy Contributing to Treatment Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13051038. [PMID: 33801244 PMCID: PMC7958130 DOI: 10.3390/cancers13051038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Expression of the tyrosine kinase receptor ERBB2 in cancer cells leads to drug resistance. Autophagy, a “self-eating” process inside the cell, is a mechanism for drug resistance in cancer cells. It has been shown that ERBB2 activation leads to increased autophagy in breast cancer cells, but the underlying mechanisms remains unclear. In this study, we demonstrated that ERBB2 promotes autophagy by increasing the protein levels of the autophagy gene ATG12 (autophagy-related 12), contributing to the resistance of breast cancer cells to chemotherapy drugs or ERBB2-targeted antibody treatments. We further showed that ATG12 expression in breast tumors containing ERBB2 correlated with a worse patient survival outcome. Finally, lapatinib is an inhibitor for both EGFR and ERBB2 tyrosine kinases in the EGFR protein family and promotes autophagy in cells containing only EGFR but inhibits autophagy in cells containing only ERBB2. Taken together, this suggests that ERBB2 promotes autophagy through upregulation of ATG12. Abstract The epidermal growth factor receptor (EGFR) family member erb-b2 receptor tyrosine kinase 2 (ERBB2) is overexpressed in many types of cancers leading to (radio- and chemotherapy) treatment resistance, whereas the underlying mechanisms are still unclear. Autophagy is known to contribute to cancer treatment resistance. In this study, we demonstrate that ERBB2 increases the expression of different autophagy genes including ATG12 (autophagy-related 12) and promotes ATG12-dependent autophagy. We clarify that lapatinib, a dual inhibitor for EGFR and ERBB2, promoted autophagy in cells expressing only EGFR but inhibited autophagy in cells expressing only ERBB2. Furthermore, breast cancer database analysis of 35 genes in the canonical autophagy pathway shows that the upregulation of ATG12 and MAP1LC3B is associated with a low relapse-free survival probability of patients with ERBB2-positive breast tumors following treatments. Downregulation of ERBB2 or ATG12 increased cell death induced by chemotherapy drugs in ERBB2-positive breast cancer cells, whereas upregulation of ERBB2 or ATG12 decreased the cell death in ERBB2-negative breast cancer cells. Finally, ERBB2 antibody treatment led to reduced expression of ATG12 and autophagy inhibition increasing drug or starvation-induced cell death in ERBB2-positive breast cancer cells. Taken together, this study provides a novel approach for the treatment of ERBB2-positive breast cancer by targeting ATG12-dependent autophagy.
Collapse
|
29
|
Chen X, Zhang W, Zhu H, Lin F. Development and Validation of a 5-Gene Autophagy-Based Prognostic Index in Endometrial Carcinoma. Med Sci Monit 2021; 27:e928949. [PMID: 33577492 PMCID: PMC7885295 DOI: 10.12659/msm.928949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometrial carcinoma (EC) is the most common gynecological malignancy worldwide, and 15-20% of patients with EC have a rapid relapse within 3 years. This study aims to develop an autophagy-related genes (ARGs) signature to predict the prognosis of EC. MATERIAL AND METHODS In our study, differentially expressed ARGs were identified by "edgeR" package in R and pathway enrichment analysis was performed to explore biological functions. Univariate and multivariate Cox regression analyses were employed to build autophagy signature. Gene set enrichment analysis (GSEA), Kaplan-Meier curve analysis, and ROC curve analysis were conducted to compare the differences between the high- and low-risk groups. RESULTS A total of 60 differentially expressed ARGs (DEARGs) including 34 upregulated and 26 downregulated DEARGs were identified from the TCGAUCEC dataset, with the adjusted P<0.05 and |Fold Change| >1.5. By using univariate and multivariate Cox regression analyses, ERBB2, PRKAB2, GRID2, NRG3, CDKN2A were identified to construct a prognostic signature with AUC 0.673, 0.719, and 0.791, at 1-, 3- and 5- years, respectively. Patients with EC were divided into low- or high-risk group by median risk score, and GSEA showed that low-risk group was enriched in adjacent cells communication pathways while high-risk group was involved in metabolism and immune pathways. The nomograms could also help to guide personal prognostic prediction and therapeutic strategies in EC. CONCLUSIONS Our study not only determine 5 ARGs signature that could predict the prognosis of EC but also provide novel insights into the underlying mechanisms of autophagy.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang New Hospital Zone, Wenzhou, Zhejiang, China (mainland)
| | - Wei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang New Hospital Zone, Wenzhou, Zhejiang, China (mainland)
| | - Haiping Zhu
- Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang New Hospital Zone, Wenzhou, Zhejiang, China (mainland)
| | - Feng Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang New Hospital Zone, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
30
|
Kumar M, Joshi G, Chatterjee J, Kumar R. Epidermal Growth Factor Receptor and its Trafficking Regulation by Acetylation: Implication in Resistance and Exploring the Newer Therapeutic Avenues in Cancer. Curr Top Med Chem 2021; 20:1105-1123. [PMID: 32031073 DOI: 10.2174/1568026620666200207100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The EGFR is overexpressed in numerous cancers. So, it becomes one of the most favorable drug targets. Single-acting EGFR inhibitors on prolong use induce resistance and side effects. Inhibition of EGFR and/or its interacting proteins by dual/combined/multitargeted therapies can deliver more efficacious drugs with less or no resistance. OBJECTIVE The review delves deeper to cover the aspects of EGFR mediated endocytosis, leading to its trafficking, internalization, and crosstalk(s) with HDACs. METHODS AND RESULTS This review is put forth to congregate relevant literature evidenced on EGFR, its impact on cancer prognosis, inhibitors, and its trafficking regulation by acetylation along with the current strategies involved in targeting these proteins (EGFR and HDACs) successfully by involving dual/hybrid/combination chemotherapy. CONCLUSION The current information on cross-talk of EGFR and HDACs would likely assist researchers in designing and developing dual or multitargeted inhibitors through combining the required pharmacophores.
Collapse
Affiliation(s)
- Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
31
|
Katona BW, Hojnacki T, Glynn RA, Paulosky KE, Szigety KM, Cao Y, Zhang X, Feng Z, He X, Ma J, Hua X. Menin-mediated Repression of Glycolysis in Combination with Autophagy Protects Colon Cancer Against Small-molecule EGFR Inhibitors. Mol Cancer Ther 2020; 19:2319-2329. [PMID: 32879052 PMCID: PMC7921201 DOI: 10.1158/1535-7163.mct-20-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022]
Abstract
Menin serves both tumor suppressor and promoter roles in a highly tumor-specific manner. In colorectal cancer, menin is overexpressed and plays a critical role in regulating transcription of SKP2, and combined treatment with a menin inhibitor and small-molecule EGFR inhibitor (EGFRi) leads to synergistic killing of colorectal cancer cells. However, the full spectrum of menin function in colorectal cancer remains uncertain. Herein, we demonstrate that menin inhibition increases glycolysis in colorectal cancer cells. This menin inhibitor-induced increase in glycolysis occurs in an mTOR-independent manner and enhances the sensitivity of colorectal cancer cells to EGFRis. In addition, we show that EGFRis induce autophagy in colorectal cancer cells, which is important for cell survival in the setting of combined treatment with an EGFRi and menin inhibitor. Inhibition of autophagy with chloroquine further sensitizes colorectal cancers to treatment with the combination of an EGFRi and menin inhibitor. Together, these findings uncover a novel role for menin in colorectal cancer as a repressor of glycolysis and demonstrate that menin inhibitor-induced increases in glycolysis sensitize colorectal cancer cells to EGFRis. In addition, these findings illustrate the importance of autophagy as a protective mechanism against EGFRis, especially in the presence of menin inhibition. Ultimately, these data open the possibility of using menin-mediated regulation of glycolysis to potentially improve treatment modalities for colorectal cancer.
Collapse
Affiliation(s)
- Bryson W Katona
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Taylor Hojnacki
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rebecca A Glynn
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kayla E Paulosky
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Katherine M Szigety
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yan Cao
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xuyao Zhang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
32
|
Sorrentino D, Frentzel J, Mitou G, Blasco RB, Torossian A, Hoareau-Aveilla C, Pighi C, Farcé M, Meggetto F, Manenti S, Espinos E, Chiarle R, Giuriato S. High Levels of miR-7-5p Potentiate Crizotinib-Induced Cytokilling and Autophagic Flux by Targeting RAF1 in NPM-ALK Positive Lymphoma Cells. Cancers (Basel) 2020; 12:cancers12102951. [PMID: 33066037 PMCID: PMC7650725 DOI: 10.3390/cancers12102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Anaplastic lymphoma kinase positive anaplastic large cell lymphomas are a pediatric disease, which still needs treatment improvement. Crizotinib was the first ALK-targeted inhibitor used in clinics, but relapses are now known to occur. Current research efforts indicate that combined therapies could represent a superior strategy to eradicate malignant cells and prevent tumor recurrence. Autophagy is a self-digestion cellular process, known to be induced upon diverse cancer therapies. Our present work demonstrates that the potentiation of the crizotinib-induced autophagy flux, through the serine/threonine kinase RAF1 downregulation, drives ALK+ ALCL cells to death. These results should encourage further investigations on the therapeutic modulation of autophagy in this particular cancer settings and other ALK-related malignancies. Abstract Anaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are an aggressive pediatric disease. The therapeutic options comprise chemotherapy, which is efficient in approximately 70% of patients, and targeted therapies, such as crizotinib (an ALK tyrosine kinase inhibitor (TKI)), used in refractory/relapsed cases. Research efforts have also converged toward the development of combined therapies to improve treatment. In this context, we studied whether autophagy could be modulated to improve crizotinib therapy. Autophagy is a vesicular recycling pathway, known to be associated with either cell survival or cell death depending on the cancer and therapy. We previously demonstrated that crizotinib induced cytoprotective autophagy in ALK+ lymphoma cells and that its further intensification was associated with cell death. In line with these results, we show here that combined ALK and Rapidly Accelerated Fibrosarcoma 1 (RAF1) inhibition, using pharmacological (vemurafenib) or molecular (small interfering RNA targeting RAF1 (siRAF1) or microRNA-7-5p (miR-7-5p) mimics) strategies, also triggered autophagy and potentiated the toxicity of TKI. Mechanistically, we found that this combined therapy resulted in the decrease of the inhibitory phosphorylation on Unc-51-like kinase-1 (ULK1) (a key protein in autophagy initiation), which may account for the enforced autophagy and cytokilling effect. Altogether, our results support the development of ALK and RAF1 combined inhibition as a new therapeutic approach in ALK+ ALCL.
Collapse
Affiliation(s)
- Domenico Sorrentino
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Julie Frentzel
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Merck Serono S.A., Department of Biotechnology Process Sciences, Route de Fenil 25, Z.I. B, 1804 Corsier-sur-Vevey, Switzerland
| | - Géraldine Mitou
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Rafael B. Blasco
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
| | - Avédis Torossian
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Coralie Hoareau-Aveilla
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Chiara Pighi
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Manon Farcé
- Pôle Technologique du CRCT—Plateau de Cytométrie et Tri cellulaire—INSERM U1037, F-31037 Toulouse, France;
| | - Fabienne Meggetto
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Stéphane Manenti
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
| | - Estelle Espinos
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Roberto Chiarle
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sylvie Giuriato
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +33-(5)-82-74-16-35
| |
Collapse
|
33
|
Ganoderma lucidum Prevents Cisplatin-Induced Nephrotoxicity through Inhibition of Epidermal Growth Factor Receptor Signaling and Autophagy-Mediated Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4932587. [PMID: 32695255 PMCID: PMC7362286 DOI: 10.1155/2020/4932587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 01/07/2023]
Abstract
Background Cisplatin (cis-diaminedichloroplatinum, CDDP) is a broad-spectrum antineoplastic agent. However, CDDP has been blamed for its nephrotoxicity, which is the main dose-limiting adverse effect. Ganoderma lucidum (GL), a medicinal mushroom, has antioxidant and inflammatory activities. Therefore, this study is aimed at finding out the potential nephroprotection of GL against CDDP-induced nephrotoxicity in rats and the possible molecular mechanisms including the EGFR downstream signaling, apoptosis, and autophagy. Methods Rats were given GL (500 mg/kg) for 10 days and a single injection of CDDP (12 mg/kg, i.p). Results Nephrotoxicity was evidenced by a significant increase in renal indices and oxidative stress markers. Additionally, CDDP showed a plethora of inflammatory and apoptotic responses as evidenced by a profound increase of HMGB-1, NF-κB, and caspase-3 expressions, whereas administration of GL significantly improved all these indices as well as the histopathological insults. Renal expression of EGFR showed a similar trend after GL administration. Furthermore, activation of autophagy protein, LC3 II, was found to be involved in GL-mediated nephroprotection correlated with the downregulation of apoptotic signaling, caspase-3 and terminal deoxynucleotidyl transferase (TDT) renal expressions. Conclusion These results suggest that GL might have improved CDDP-induced nephrotoxicity through antioxidant, anti-inflammatory, and autophagy-mediated apoptosis mechanisms and that inhibition of EGFR signaling might be involved in nephroprotection.
Collapse
|
34
|
Chen FM, Huang LJ, Ou-Yang F, Kan JY, Kao LC, Hou MF. Activation of mitochondrial unfolded protein response is associated with Her2-overexpression breast cancer. Breast Cancer Res Treat 2020; 183:61-70. [PMID: 32601970 DOI: 10.1007/s10549-020-05729-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Mitochondrial unfolding protein are abundant in breast cancer cells, but the mechanism by which breast cancer cells resist apoptosis is still not fully elucidated. In this study, we explored the role of mitochondrial unfolded protein response (mtUPR)-related proteins in four types of breast cancer tissues. METHODS Mitochondrial fractions were taken from four breast cancer tissues (luminal A, luminal B, Her2 -overexpression, and TNBC) and the expression of mitochondrial polyubiquitinated proteins was observed by western blot and ELISA. In addition, the expression of hsp10, hsp60, and clpp in mitochondria was observed by western blot in breast cancer tissues and adjacent tissues, and confirmed by ELISA. The expression levels of hsp10 and hsp60 were correlated with clinicopathological parameters in 114 breast cancer patients. RESULTS We found an increase in the performance of mitochondrial polyubiquitinated proteins in breast cancer tissues of luminal A, luminal B, Her2-overexpression, and TNBC. The mitochondrial hsp10, hsp60, and clpp are abundantly expressed in breast cancer tissues rather than adjacent noncancerous tissues. The expression levels of mitochondrial hsp10 and hsp60 were highest in histological grade 3 breast cancer tissues. Additionally, mitochondria with high hsp60 expression were more present in Her2-positive tumors. CONCLUSIONS We observed that mtUPR was specifically activated in breast cancer tissues but inactivated in normal mammary tissue. MtUPR had also exhibited a particular increase in Her2-overexpression tumors but not in ER- or PR-positive tumors. Taken together, we suggested that mtUPR may act as a potential candidate for developing novel Her2-overexpression breast cancer therapy.
Collapse
Affiliation(s)
- Fang-Ming Chen
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan, ROC.,Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung, 801, Taiwan, ROC.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan, ROC.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan, ROC
| | - Li-Ju Huang
- Center of Teaching and Research, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Fu Ou-Yang
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan, ROC.,Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung, 801, Taiwan, ROC
| | - Jung-Yu Kan
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan, ROC.,Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung, 801, Taiwan, ROC
| | - Li-Chun Kao
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan, ROC.,Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung, 801, Taiwan, ROC
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan, ROC. .,Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung, 801, Taiwan, ROC. .,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan, ROC. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan, ROC.
| |
Collapse
|
35
|
Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of Autophagy in Oxidative Stress. Int J Mol Sci 2020; 21:ijms21093289. [PMID: 32384691 PMCID: PMC7246723 DOI: 10.3390/ijms21093289] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a catabolic process for unnecessary or dysfunctional cytoplasmic contents by lysosomal degradation pathways. Autophagy is implicated in various biological processes such as programmed cell death, stress responses, elimination of damaged organelles and development. The role of autophagy as a crucial mediator has been clarified and expanded in the pathological response to redox signalling. Autophagy is a major sensor of the redox signalling. Reactive oxygen species (ROS) are highly reactive molecules that are generated as by-products of cellular metabolism, principally by mitochondria. Mitochondrial ROS (mROS) are beneficial or detrimental to cells depending on their concentration and location. mROS function as redox messengers in intracellular signalling at physiologically low level, whereas excessive production of mROS causes oxidative damage to cellular constituents and thus incurs cell death. Hence, the balance of autophagy-related stress adaptation and cell death is important to comprehend redox signalling-related pathogenesis. In this review, we attempt to provide an overview the basic mechanism and function of autophagy in the context of response to oxidative stress and redox signalling in pathology.
Collapse
Affiliation(s)
- Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.R.Y.); (Y.S.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jieun Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.R.Y.); (Y.S.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.R.Y.); (Y.S.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.S.K.); (T.G.C.); Tel.: +82-2-961-0524 (S.S.K.); +82-2-961-0287 (T.G.C.)
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.S.K.); (T.G.C.); Tel.: +82-2-961-0524 (S.S.K.); +82-2-961-0287 (T.G.C.)
| |
Collapse
|
36
|
Comparison of autophagy inducibility in various tyrosine kinase inhibitors and their enhanced cytotoxicity via inhibition of autophagy in cancer cells in combined treatment with azithromycin. Biochem Biophys Rep 2020; 22:100750. [PMID: 32195376 PMCID: PMC7078496 DOI: 10.1016/j.bbrep.2020.100750] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/27/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) induce autophagy in many types of cancer cells. We previously reported that gefitinib (GEF) and imatinib (IMA) induce autophagy in epidermal growth factor receptor (EGFR) knock-out A549 and non-BCR-ABL-expressing leukemia cell lines, respectively. This evidence suggests that TKI-induced autophagy is independent of the original target molecules. The present study compared the autophagy-inducing abilities of various TKIs, regardless of their targets, by quantitative autophagy flux assay. We established stable clones expressing the GFP-LC3-mCherry-LC3ΔG plasmid in A549, PC-9, and CAL 27 cell lines and assessed autophagy inducibility by monitoring the fluorescent ratios of GFP-LC3 to mCherry-LC3ΔG using an IncuCyte live cell imaging system during exposure to TKIs viz; GEF, osimertinib (OSI), lapatinib (LAP), lenvatinib (LEN), sorafenib (SOR), IMA, dasatinib (DAS), and tivantinib (TIV). Among these TKIs, DAS, GEF, and SOR exhibited prominent autophagy induction in A549 and PC-9 cells. In CAL 27 cells, IMA, SOR, and LEN, but not GEF, TIV, or OSI, exhibited autophagy induction. In the presence of azithromycin (AZM), which showed an inhibitory effect on autophagy flux, TKIs with prominent autophagy inducibility exhibited enhanced cytotoxicity via non-apoptotic cell death relative to effects of TKI alone. Therefore, autophagy inducibility of TKIs differed in the context of cancer cells. However, once induced, they appeared to have cytoprotective functions. Thus, blocking TKI-induced autophagy with AZM may improve the therapeutic effect of TKIs in cancer cells. Tyrosine kinase inhibitors (TKIs) induce autophagy regardless of their main target. This autophagy inducibility is partially determined in the context of cancer cells. Azithromycin (AZM) has an inhibitory effect on autophagy. Blocking TKI-induced autophagy with AZM enhances their cytotoxicity in cancer cells. This enhanced cytotoxicity is mediated through non-apoptotic cell death.
Collapse
Key Words
- Autophagy
- Cancer
- Macrolide antibiotics
- Tyrosine kinase inhibitor
- azithromycin, AZM
- bafilomycin A1, BAF
- dasatinib, DAS
- gefitinib, GEF
- imatinib, IMA
- lapatinib, LAP
- lenvatinib, LEN
- osimertinib, OSI
- receptor tyrosine kinase, RTK
- sorafenib, SOR
- tivantinib, TIV
- tyrosine kinase inhibitors, TKIs
Collapse
|
37
|
Zhang Y, Li S, Ma XT, He XW, Li WY, Zhang YK. Carbon dots-embedded epitope imprinted polymer for targeted fluorescence imaging of cervical cancer via recognition of epidermal growth factor receptor. Mikrochim Acta 2020; 187:228. [PMID: 32170469 DOI: 10.1007/s00604-020-4198-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
Abstract
A carbon dots-embedded epitope imprinted polymer (C-MIP) was fabricated for targeted fluorescence imaging of cervical cancer by specifically recognizing the epidermal growth factor receptor (EGFR). The core-shell C-MIP was prepared by a reverse microemulsion polymerization method. This method used silica nanoparticles embedded with carbon dots as carriers, acrylamide as the main functional monomer, and N-terminal nonapeptides of EGFR modified by palmitic acid as templates. A series of characterizations (transmission electron microscope, dynamic light scattering, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, zeta potential, and energy dispersive X-ray spectroscopy) prove the successful synthesis of C-MIP. The fluorescence of C-MIP is quenched by the epitopes of EGFR due to the specific recognition of epitopes of EGFR through their imprinted cavities (analytical excitation/emission wavelengths, 540 nm/610 nm). The linear range of fluorescence quenching is 2.0 to 15.0 μg mL-1 and the determination limit is 0.73 μg mL-1. The targeted imaging capabilities of C-MIP are demonstrated through in vitro and in vivo experiments. The laser confocal imaging results indicate that HeLa cells (over-expression EGFR) incubated with C-MIP show stronger fluorescence than that of MCF-7 cells (low-expression EGFR), revealing that C-MIP can target tumor cells overexpressing EGFR. The results of imaging experiments in tumor-bearing mice exhibit that C-MIP has a better imaging effect than C-NIP, which further proves the targeted imaging ability of C-MIP in vivo. Graphical abstract An oriented epitope imprinted polymer embedded with carbon dots was prepared for the determination of the epitopes of epidermal growth factor receptor and targeted fluorescence imaging of cervical cancer.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Si Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Xiao-Tong Ma
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
38
|
Si Z, Hu K. Identification of osteosarcoma driver genes using a network method. Oncol Lett 2020; 19:1215-1222. [PMID: 31966051 PMCID: PMC6956419 DOI: 10.3892/ol.2019.11212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is a severe disease that is generally caused by genetic alterations. Systematic identification of driver genes may be used to increase the understanding of the mechanisms underlying the disease. The present study identified a framework to predict driver genes, with the hypothesis that driver genes operate through a number of connected functional genes. OS-related genes were extracted from the Catalogue Of Somatic Mutations In Cancer and subsequently ranked by virtue of their effect on a set of functional genes using a network-based algorithm. This revealed the driver genes associated with dysregulated networks. In addition, compared with the Mutations For Functional Impact on Network Neighbors algorithm, the results obtained using the aforementioned network-based algorithm revealed that the proposed method is effective. Gene functional analysis demonstrated that the potential OS driver genes were involved in OS-associated pathways. Through the validation of the 15 candidate OS driver genes, the classifier constructed in the present study revealed that the identified driver genes were able to distinguish 184 cancer samples from controls. Therefore, the present study provided insights into the identification of driver genes from a vast amount of sequencing data.
Collapse
Affiliation(s)
- Zebing Si
- Department of Orthopedics, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Wujiang, Shaoguan 512026, P.R. China
| | - Konghe Hu
- Department of Orthopedics, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Wujiang, Shaoguan 512026, P.R. China
- Correspondence to: Dr Konghe Hu, Department of Orthopedics, The Affiliated Yuebei People's Hospital of Shantou University Medical College, 133 Shaoguan Huimin South Avenue, Wujiang, Shaoguan 512026, P.R. China, E-mail:
| |
Collapse
|
39
|
Zhou W, Yang F, Xu Z, Luo M, Wang P, Guo Y, Nie H, Yao L, Jiang Q. Comprehensive Analysis of Copy Number Variations in Kidney Cancer by Single-Cell Exome Sequencing. Front Genet 2020; 10:1379. [PMID: 32038722 PMCID: PMC6989475 DOI: 10.3389/fgene.2019.01379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common and lethal subtype of kidney cancer. VHL and PBRM1 are the top two significantly mutated genes in ccRCC specimens, while the genetic mechanism of the VHL/PBRM1-negative ccRCC remains to be elucidated. Here we carried out a comprehensive analysis of single-cell genomic copy number variations (CNVs) in VHL/PBRM1-negative ccRCC. Genomic CNVs were identified at the single-cell level, and the tumor cells showed widespread amplification and deletion across the whole genome. Functional enrichment analysis indicated that the amplified genes are significantly enriched in cancer-related signaling transduction pathways. Besides, receptor protein tyrosine kinase (RTK) genes also showed widespread copy number variations in cancer cells. Our studies indicated that the genomic CNVs in RTK genes and downstream signaling transduction pathways may be involved in VHL/PBRM1-negative ccRCC pathogenesis and progression, and highlighted the role of the comprehensive investigation of genomic CNVs at the single-cell level in both clarifying pathogenic mechanism and identifying potential therapeutic targets in cancers.
Collapse
Affiliation(s)
- Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fan Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
40
|
Al-wajeeh AS, Salhimi SM, Al-Mansoub MA, Khalid IA, Harvey TM, Latiff A, Ismail MN. Comparative proteomic analysis of different stages of breast cancer tissues using ultra high performance liquid chromatography tandem mass spectrometer. PLoS One 2020; 15:e0227404. [PMID: 31945087 PMCID: PMC6964830 DOI: 10.1371/journal.pone.0227404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/18/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Breast cancer is the fifth most prevalent cause of death among women worldwide. It is also one of the most common types of cancer among Malaysian women. This study aimed to characterize and differentiate the proteomics profiles of different stages of breast cancer and its matched adjacent normal tissues in Malaysian breast cancer patients. Also, this study aimed to construct a pertinent protein pathway involved in each stage of cancer. METHODS In total, 80 samples of tumor and matched adjacent normal tissues were collected from breast cancer patients at Seberang Jaya Hospital (SJH) and Kepala Batas Hospital (KBH), both in Penang, Malaysia. The protein expression profiles of breast cancer and normal tissues were mapped by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Gel-Eluted Liquid Fractionation Entrapment Electrophoresis (GELFREE) Technology System was used for the separation and fractionation of extracted proteins, which also were analyzed to maximize protein detection. The protein fractions were then analyzed by tandem mass spectrometry (LC-MS/MS) analysis using LC/MS LTQ-Orbitrap Fusion and Elite. This study identified the proteins contained within the tissue samples using de novo sequencing and database matching via PEAKS software. We performed two different pathway analyses, DAVID and STRING, in the sets of proteins from stage 2 and stage 3 breast cancer samples. The lists of molecules were generated by the REACTOME-FI plugin, part of the CYTOSCAPE tool, and linker nodes were added in order to generate a connected network. Then, pathway enrichment was obtained, and a graphical model was created to depict the participation of the input proteins as well as the linker nodes. RESULTS This study identified 12 proteins that were detected in stage 2 tumor tissues, and 17 proteins that were detected in stage 3 tumor tissues, related to their normal counterparts. It also identified some proteins that were present in stage 2 but not stage 3 and vice versa. Based on these results, this study clarified unique proteins pathways involved in carcinogenesis within stage 2 and stage 3 breast cancers. CONCLUSIONS This study provided some useful insights about the proteins associated with breast cancer carcinogenesis and could establish an important foundation for future cancer-related discoveries using differential proteomics profiling. Beyond protein identification, this study considered the interaction, function, network, signaling pathway, and protein pathway involved in each profile. These results suggest that knowledge of protein expression, especially in stage 2 and stage 3 breast cancer, can provide important clues that may enable the discovery of novel biomarkers in carcinogenesis.
Collapse
Affiliation(s)
- Abdullah Saleh Al-wajeeh
- Anti-Doping Lab Qatar, Doha, Qatar
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, USM, Penang, Malaysia
| | | | | | | | | | | | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, USM, Penang, Malaysia
| |
Collapse
|
41
|
Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer. Aging (Albany NY) 2019; 11:11440-11462. [PMID: 31811814 PMCID: PMC6932887 DOI: 10.18632/aging.102544] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Autophagy, a highly conserved cellular proteolysis process, has been involved in non-small cell lung cancer (NSCLC). We tried to develop a prognostic prediction model for NSCLC patients based on the expression profiles of autophagy-associated genes. Univariate Cox regression analysis was used to determine autophagy-associated genes significantly correlated with overall survival (OS) of the TCGA lung cancer cohort. LASSO regression was performed to build multiple-gene prognostic signatures. We found that the 22-gene and 11-gene signatures could dichotomize patients with significantly different OS and independently predict the OS in TCGA lung adenocarcinoma (HR=2.801, 95% CI=2.252-3.486, P<0.001) and squamous cell carcinoma (HR=1.105, 95% CI=1.067-1.145, P<0.001), respectively. The prognostic performance of the 22-gene signature was validated in four GEO lung cancer cohorts. Moreover, GO, KEGG, and GSEA analyses unveiled several fundamental signaling pathways and cellular processes associated with the 22-gene signature in lung adenocarcinoma. We also constructed a clinical nomogram with a concordance index of 0.71 to predict the survival possibility of NSCLC patients by integrating clinical characteristics and the autophagy gene signature. The calibration curves substantiated fine concordance between nomogram prediction and actual observation. Overall, we constructed and verified a novel autophagy-associated gene signature that could improve the individualized outcome prediction in NSCLC.
Collapse
|
42
|
Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis 2019; 23:93-112. [PMID: 29322476 DOI: 10.1007/s10495-018-1440-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer is a primary cause of human fatality and conventional cancer therapies, e.g., chemotherapy, are often associated with adverse side-effects, tumor drug-resistance, and recurrence. Molecularly targeted therapy, composed of small-molecule inhibitors and immunotherapy (e.g., monoclonal antibody and cancer vaccines), is a less harmful alternative being more effective against cancer cells whilst preserving healthy tissues. Drug-resistance, however, caused by negative regulation of cell death signaling pathways, is still a challenge. Circumvention of negative regulators of cell death pathways or development of predictive and response biomarkers is, therefore, quintessential. This review critically discusses the current state of knowledge on targeting negative regulators of cell death signaling pathways including apoptosis, ferroptosis, necroptosis, autophagy, and anoikis and evaluates the recent advances in clinical and preclinical research on biomarkers of negative regulators. It aims to provide a comprehensive platform for designing efficacious polytherapies including novel agents for restoring cell death signaling pathways or targeting alternative resistance pathways to improve the chances for antitumor responses. Overall, it is concluded that nonapoptotic cell death pathways are a potential research arena for drug discovery, development of novel biomarkers and targeted therapies.
Collapse
|
43
|
Mo H, He J, Yuan Z, Wu Z, Liu B, Lin X, Guan J. PLK1 contributes to autophagy by regulating MYC stabilization in osteosarcoma cells. Onco Targets Ther 2019; 12:7527-7536. [PMID: 31571905 PMCID: PMC6750617 DOI: 10.2147/ott.s210575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background PLK1, a typical PLK protein, is the main driver of cancer cell growth and proliferation. It is an inhibitor of the protein kinases that is currently being investigated in clinical studies. It is often used as a tumor marker, as high PLK1 expression correlates with poor prognosis in cancer. Overexpression of MYC is a hallmark of many human cancers. MYC modulates the transcription of thousands of genes that required to coordinate a series of cellular processes, including those essential for growth, proliferation, differentiation, self-renewal and apoptosis. To date, functions of PLK1 and MYC on tumor are mostly studied in separate researches, and studies on their mutual crosstalk are lacking. Purpose To investigate the mechanism of PLK1 and MYC in regulating progress of osteosarcoma. Methods Protein level was examined using Western blot. Animal experiments were performed with female FOX CHASE severe combined immunodeficient mice. Mice were randomly divided into experimental or control groups. Results PLK1 or MYC promoted the proliferation of osteosarcoma cells through the autophagy pathway. PLK1 contributed to MYC protein stabilization. PLK1 inhibition enhanced MYC degradation in osteosarcoma cells. PLK1 inhibition led to a marked decline in MYC protein abundance. The representative MYC target genes were deregulated by PLK1 inhibitors. BI2536 treatment caused a significant delay in xenograft tumor growth in mice injected with U-2 OS cells subcutaneously, with lower mean tumor weight compared to the control group. Conclusion PLK1 is crucial for MYC stabilization. It promotes cell proliferation by autophagy pathway in osteosarcoma cells. Data validate PLK1 as a potential therapeutic target in osteosarcoma caused by MYC-amplified.
Collapse
Affiliation(s)
- Hao Mo
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Juliang He
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhenchao Yuan
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhenjie Wu
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Bin Liu
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiang Lin
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jian Guan
- Department of Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
44
|
Thomas R, Weihua Z. Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Front Oncol 2019; 9:800. [PMID: 31508364 PMCID: PMC6716122 DOI: 10.3389/fonc.2019.00800] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of most potent oncogenes that are commonly altered in cancers. As a receptor tyrosine kinase, EGFR's kinase activity has been serving as the primary target for developing cancer therapeutics, namely the EGFR inhibitors including small molecules targeting its ATP binding pocket and monoclonal antibodies targeting its ligand binding domains. EGFR inhibitors have produced impressive therapeutic benefits to responsive types of cancers. However, acquired and innate resistances have precluded current anti-EGFR agents from offering sustainable benefits to initially responsive cancers and benefits to EGFR-positive cancers that are innately resistant. Recent years have witnessed a realization that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. This new knowledge has offered a different angle of understanding of EGFR in cancer and opened a new avenue of targeting EGFR for cancer therapy. There are already many excellent reviews on the role of EGFR with a focus on its kinase-dependent functions and mechanisms of resistance to EGFR targeted therapies. The present opinion aims to initiate a fresh discussion about the function of EGFR in cancer cells by laying out some unanswered questions pertaining to EGFR in cancer cells, by rethinking the unmet therapeutic challenges from a view of EGFR's KID function, and by proposing novel approaches to target the KID functions of EGFR for cancer treatment.
Collapse
Affiliation(s)
- Rintu Thomas
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Zhang Weihua
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
45
|
Chu C, Niu X, Ou X, Hu C. LAPTM4B knockdown increases the radiosensitivity of EGFR-overexpressing radioresistant nasopharyngeal cancer cells by inhibiting autophagy. Onco Targets Ther 2019; 12:5661-5677. [PMID: 31410015 PMCID: PMC6645602 DOI: 10.2147/ott.s207810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Nasopharyngeal carcinoma (NPC) is a malignant tumor that commonly occurs in southern China and Southeast Asia. Radiation therapy is the main treatment for patients with NPC, and the radioresistance of NPC is an unresolved clinical problem. This study focuses on the mechanism of NPC radioresistance and explores therapeutic targets and research directions for increasing the radiosensitivity of radioresistant cells. Methods We used a gradient dose model to establish radioresistant strains of 6-10B and CNE-2 human NPC cells. Plate colony formation assays were used to verify the radioresistance of the cells. We evaluated the expression of epidermal growth factor receptor (EGFR), lysosome-associated transmembrane protein 4β (LAPTM4B), Beclin1 and the autophagy-related proteins p62, LC3I, and LC3II by Western blot and observed GFP-LC3 puncta by confocal microscopy. The interaction between proteins was verified by immunofluorescence and coimmunoprecipitation analyses. Flow cytometry was performed to detect differences related to the apoptosis of radioresistant strains. Results The EGFR and LAPTM4B expression levels and autophagic flux were higher in radioresistant cells than in nonradioresistant cells, suggesting that EGFR and LAPTM4B are associated with autophagy levels. We observed that EGFR and LAPTM4B interact and stabilize each other in endosomes by confocal microscopy. LAPTM4B knockdown decreased the survival fraction of radioresistant cells and increased apoptosis after exposure to radiation. Coimmunoprecipitation experiments demonstrated that LAPTM4B interacts with Beclin1, which in turn promotes the initiation of autophagy. Conclusion This study illustrates a relationship among EGFR, LAPTM4B and autophagy in radioresistant NPC cell lines. LAPTM4B interacts with EGFR and Beclin 1, which promotes autophagy. LAPTM4B knockdown decreases radioresistance by inhibiting autophagy. This study proposes a possible mechanism for NPC radioresistance and provides a new research direction and theoretical basis for addressing the radioresistance of NPC.
Collapse
Affiliation(s)
- Chu Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Xiaoshuang Niu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Xiaomin Ou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| |
Collapse
|
46
|
Santoni-Rugiu E, Melchior LC, Urbanska EM, Jakobsen JN, Stricker KD, Grauslund M, Sørensen JB. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance. Cancers (Basel) 2019; 11:E923. [PMID: 31266248 PMCID: PMC6678669 DOI: 10.3390/cancers11070923] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Activating mutations in the epidermal growth factor receptor gene occur as early cancer-driving clonal events in a subset of patients with non-small cell lung cancer (NSCLC) and result in increased sensitivity to EGFR-tyrosine-kinase-inhibitors (EGFR-TKIs). Despite very frequent and often prolonged clinical response to EGFR-TKIs, virtually all advanced EGFR-mutated (EGFRM+) NSCLCs inevitably acquire resistance mechanisms and progress at some point during treatment. Additionally, 20-30% of patients do not respond or respond for a very short time (<3 months) because of intrinsic resistance. While several mechanisms of acquired EGFR-TKI-resistance have been determined by analyzing tumor specimens obtained at disease progression, the factors causing intrinsic TKI-resistance are less understood. However, recent comprehensive molecular-pathological profiling of advanced EGFRM+ NSCLC at baseline has illustrated the co-existence of multiple genetic, phenotypic, and functional mechanisms that may contribute to tumor progression and cause intrinsic TKI-resistance. Several of these mechanisms have been further corroborated by preclinical experiments. Intrinsic resistance can be caused by mechanisms inherent in EGFR or by EGFR-independent processes, including genetic, phenotypic or functional tumor changes. This comprehensive review describes the identified mechanisms connected with intrinsic EGFR-TKI-resistance and differences and similarities with acquired resistance and among clinically implemented EGFR-TKIs of different generations. Additionally, the review highlights the need for extensive pre-treatment molecular profiling of advanced NSCLC for identifying inherently TKI-resistant cases and designing potential combinatorial targeted strategies to treat them.
Collapse
Affiliation(s)
- Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Linea C Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Edyta M Urbanska
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Jan N Jakobsen
- Department of Oncology and Palliative Units, Zealand University Hospital, DK-4700 Næstved, Denmark
| | - Karin de Stricker
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Morten Grauslund
- Department of Clinical Genetics and Pathology, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Jens B Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| |
Collapse
|
47
|
Chang MM, Pan BS, Wang CY, Huang BM. Cordycepin-induced unfolded protein response-dependent cell death, and AKT/MAPK-mediated drug resistance in mouse testicular tumor cells. Cancer Med 2019; 8:3949-3964. [PMID: 31145545 PMCID: PMC6639181 DOI: 10.1002/cam4.2285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Testicular cancer is the most commonly diagnosed cancer in men at 15-44 years of age, and radical orchidectomy combined with chemotherapy is currently considered as the standard treatment. However, drugs resistance and side effects that impact the quality of life for patients with testicular cancer have not been markedly improved in recent decades. In this study, we characterized the pharmacological exacerbation of the unfolded protein response (UPR), which is an effective approach to kill testicular cancer cells, by carrying out a clustering analysis of mRNA expression profiles and the immunobloting examination of cordycepin-treated MA-10 cells. The UPR is executed in response to endoplasmic reticulum stress to complement by an apoptotic response if the defect cannot be resolved. Results showed that cordycepin significantly modulated FoxO/P15/P27, PERK-eIF2α (apoptotic), and the IRE1-XBP1 (adaptive) UPR pathways. Interestingly, a fraction of MA-10 cells survived after cordycepin treatment, the AKT, LC3 I/II, and MAPK signaling pathways were highly induced in attached cells as compared to the suspended cells, illustrating the drug resistance to cordycepin via activating AKT and MAPK pathways in MA-10 cells. In summary, PERK-eIF2α signaling pathway is required for pro-apoptotic UPR in MA-10 cell death following cordycepin treatment, suggesting a potential therapeutic application in treating testicular cancer. However, activation of AKT and MAPK pathways could possibly result in drug resistance to cordycepin in MA-10 cells.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Bo-Syong Pan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
48
|
Wang X, Li W, Zhang N, Zheng X, Jing Z. Opportunities and challenges of co-targeting epidermal growth factor receptor and autophagy signaling in non-small cell lung cancer. Oncol Lett 2019; 18:499-506. [PMID: 31289521 DOI: 10.3892/ol.2019.10372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are a standard therapy for patients with non-small cell lung cancer (NSCLC) with sensitive mutations. However, acquired resistance emerges following a median of 6-12 months. Several studies demonstrated that EGFR-TKI-induced tumor microenvironment stresses and autophagy are important causes of resistance. The current review summarizes the molecular mechanisms involved in EGFR-mediated regulation of autophagy. The role of autophagy in EGFR-TKI treatment, which may serve a role in protection or cell death, was discussed. Furthermore, co-inhibiting EGFR and autophagy signaling as a rational therapeutic strategy in the treatment of patients with NSCLC was explored.
Collapse
Affiliation(s)
- Xiaoju Wang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Wenxin Li
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Ni Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Xiaoli Zheng
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Zhao Jing
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| |
Collapse
|
49
|
Li L, Wang Y, Jiao L, Lin C, Lu C, Zhang K, Hu C, Ye J, Zhang D, Wu H, Feng M, He Y. Protective autophagy decreases osimertinib cytotoxicity through regulation of stem cell-like properties in lung cancer. Cancer Lett 2019; 452:191-202. [PMID: 30910592 DOI: 10.1016/j.canlet.2019.03.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 01/01/2023]
Abstract
Osimertinib, a third-generation epidermal growth factor receptor - tyrosine kinase inhibitor (EGFR-TKI), shows great efficacy in EGFR-mutant non-small cell lung cancer (NSCLC); however, the resistance is inevitable. Osimertinib induces autophagy in NSCLC cells, but the role of autophagy in osimertinib resistance is not clear. We discovered that enhanced autophagy is associated with osimertinib resistance in vitro and in vivo. Inhibition of autophagy enhanced osimertinib cytotoxicity in both osimertinib-resistant and sensitive cells. Moreover, osimertinib-resistant cells exhibited stem cell-like properties, whereas autophagy inhibition decreased the stemness by downregulating the expression of SOX2 and ALDH1A1. Further, we found that knockdown of Beclin-1 inhibited the stem cell-like properties and restored osimertinib cytotoxicity. Osimertinib combined with chloroquine inhibited tumor growth more effectively than alone in xenograft mice. These results reveal that autophagy plays an adverse role in osimertinib cytotoxicity through inducing stem cell-like properties. Combination therapy of EGFR-TKI and autophagy inhibitor could provide a promising strategy to improve osimertinib cytotoxicity.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lin Jiao
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kejun Zhang
- Department of Clinical Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Dadong Zhang
- The Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai, 201114, China
| | - Haiyan Wu
- OrigiMed Co. Ltd, Shanghai, 201114, China
| | - Mingxia Feng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
50
|
Sheu SJ, Chen JL, Bee YS, Lin SH, Shu CW. ERBB2-modulated ATG4B and autophagic cell death in human ARPE19 during oxidative stress. PLoS One 2019; 14:e0213932. [PMID: 30870514 PMCID: PMC6417729 DOI: 10.1371/journal.pone.0213932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ocular disease with retinal degeneration. Retinal pigment epithelium (RPE) degeneration is mainly caused by long-term oxidative stress. Kinase activity could be either protective or detrimental to cells during oxidative stress; however, few reports have described the role of kinases in oxidative stress. In this study, high-throughput screening of kinome siRNA library revealed that erb-b2 receptor tyrosine-protein kinase 2 (ERBB2) knockdown reduced reactive oxygen species (ROS) production in ARPE-19 cells during oxidative stress. Silencing ERBB2 caused an elevation in microtubule associated protein light chain C3-II (MAP1LC3B-II/I) conversion and sequesterone (SQSTM)1 protein level. ERBB2 deprivation largely caused an increase in autophagy-regulating protease (ATG4B) expression, a protease that negatively recycles MAP1LC3-II at the fusion step between the autophagosome and lysosome, suggesting ERBB2 might modulate ATG4B for autophagy induction in oxidative stress-stimulated ARPE-19 cells. ERBB2 knockdown also caused an accumulation of nuclear factor erythroid 2-related factor 2 (NRF2) and enhanced its transcriptional activity. In addition, ERBB2 ablation or treatment with autophagy inhibitors reduced oxidative-induced cytotoxic effects in ARPE-19 cells. Furthermore, ERBB2 silencing had little or no additive effects in ATG5/7-deficient cells. Taken together, our results suggest that ERBB2 may play an important role in modulating autophagic RPE cell death during oxidative stress, and ERBB2 may be a potential target in AMD prevention.
Collapse
Affiliation(s)
- Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiunn-Liang Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Shi-Han Lin
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|