1
|
Yang H, Wu X, Sun C, Wang L. Unraveling the metabolic potential of biocontrol fungi through omics data: a key to enhancing large-scaleapplication strategies. Acta Biochim Biophys Sin (Shanghai) 2024; 56:825-832. [PMID: 38686460 PMCID: PMC11214957 DOI: 10.3724/abbs.2024056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
Biological control of pests and pathogens has attracted much attention due to its green, safe and effective characteristics. However, it faces the dilemma of insignificant effects in large-scale applications. Therefore, an in-depth exploration of the metabolic potential of biocontrol fungi based on big omics data is crucial for a comprehensive and systematic understanding of the specific modes of action operated by various biocontrol fungi. This article analyzes the preferences for extracellular carbon and nitrogen source degradation, secondary metabolites (nonribosomal peptides, polyketide synthases) and their product characteristics and the conversion relationship between extracellular primary metabolism and intracellular secondary metabolism for eight different filamentous fungi with characteristics appropriate for the biological control of bacterial pathogens and phytopathogenic nematodes. Further clarification is provided that Paecilomyces lilacinus, encoding a large number of hydrolase enzymes capable of degrading pathogen protection barrier, can be directly applied in the field as a predatory biocontrol fungus, whereas Trichoderma, as an antibiosis-active biocontrol control fungus, can form dominant strains on preferred substrates and produce a large number of secondary metabolites to achieve antibacterial effects. By clarifying the levels of biological control achievable by different biocontrol fungi, we provide a theoretical foundation for their application to cropping habitats.
Collapse
Affiliation(s)
- Haolin Yang
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Xiuyun Wu
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Caiyun Sun
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Lushan Wang
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| |
Collapse
|
2
|
Jeilu O, Alexandersson E, Johansson E, Simachew A, Gessesse A. A novel GH3-β-glucosidase from soda lake metagenomic libraries with desirable properties for biomass degradation. Sci Rep 2024; 14:10012. [PMID: 38693138 PMCID: PMC11063200 DOI: 10.1038/s41598-024-60645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Beta-glucosidases catalyze the hydrolysis of the glycosidic bonds of cellobiose, producing glucose, which is a rate-limiting step in cellulose biomass degradation. In industrial processes, β-glucosidases that are tolerant to glucose and stable under harsh industrial reaction conditions are required for efficient cellulose hydrolysis. In this study, we report the molecular cloning, Escherichia coli expression, and functional characterization of a β-glucosidase from the gene, CelGH3_f17, identified from metagenomics libraries of an Ethiopian soda lake. The CelGH3_f17 gene sequence contains a glycoside hydrolase family 3 catalytic domain (GH3). The heterologous expressed and purified enzyme exhibited optimal activity at 50 °C and pH 8.5. In addition, supplementation of 1 M salt and 300 mM glucose enhanced the β-glucosidase activity. Most of the metal ions and organic solvents tested did not affect the β-glucosidase activity. However, Cu2+ and Mn2+ ions, Mercaptoethanol and Triton X-100 reduce the activity of the enzyme. The studied β-glucosidase enzyme has multiple industrially desirable properties including thermostability, and alkaline, salt, and glucose tolerance.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Institute of Biotechnology, Addis Ababa University, P O Box 1176, Addis Ababa, Ethiopia.
| | - Erik Alexandersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, P O Box 1176, Addis Ababa, Ethiopia
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, P O Box 1176, Addis Ababa, Ethiopia
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
3
|
Ma JX, Wang H, Jin C, Ye YF, Tang LX, Si J, Song J. Whole genome sequencing and annotation of Daedaleopsis sinensis, a wood-decaying fungus significantly degrading lignocellulose. Front Bioeng Biotechnol 2024; 11:1325088. [PMID: 38292304 PMCID: PMC10826855 DOI: 10.3389/fbioe.2023.1325088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024] Open
Abstract
Daedaleopsis sinensis is a fungus that grows on wood and secretes a series of enzymes to degrade cellulose, hemicellulose, and lignin and cause wood rot decay. Wood-decaying fungi have ecological, economic, edible, and medicinal functions. Furthermore, the use of microorganisms to biodegrade lignocellulose has high application value. Genome sequencing has allowed microorganisms to be analyzed from the aspects of genome characteristics, genome function annotation, metabolic pathways, and comparative genomics. Subsequently, the relevant information regarding lignocellulosic degradation has been mined by bioinformatics. Here, we sequenced and analyzed the genome of D. sinensis for the first time. A 51.67-Mb genome sequence was assembled to 24 contigs, which led to the prediction of 12,153 protein-coding genes. Kyoto Encyclopedia of Genes and Genomes database analysis of the D. sinensis data revealed that 3,831 genes are involved in almost 120 metabolic pathways. According to the Carbohydrate-Active Enzyme database, 481 enzymes are found in D. sinensis, of which glycoside hydrolases are the most abundant. The genome sequence of D. sinensis provides insights into its lignocellulosic degradation and subsequent applications.
Collapse
Affiliation(s)
- Jin-Xin Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Hao Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Can Jin
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yi-Fan Ye
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lu-Xin Tang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jie Song
- Department of Horticulture and Food, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| |
Collapse
|
4
|
Jiang Y, Ding N, Shao Q, Stull SL, Cheng Z, Yang ZJ. Substrate Positioning Dynamics Involves a Non-Electrostatic Component to Mediate Catalysis. J Phys Chem Lett 2023; 14:11480-11489. [PMID: 38085952 PMCID: PMC11211065 DOI: 10.1021/acs.jpclett.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Substrate positioning dynamics (SPD) orients the substrate in the active site, thereby influencing catalytic efficiency. However, it remains unknown whether SPD effects originate primarily from electrostatic perturbation inside the enzyme or can independently mediate catalysis with a significant non-electrostatic component. In this work, we investigated how the non-electrostatic component of SPD affects transition state (TS) stabilization. Using high-throughput enzyme modeling, we selected Kemp eliminase variants with similar electrostatics inside the enzyme but significantly different SPD. The kinetic parameters of these mutants were experimentally characterized. We observed a valley-shaped, two-segment linear correlation between the TS stabilization free energy (converted from kinetic parameters) and substrate positioning index (a metric to quantify SPD). The energy varies by approximately 2 kcal/mol. Favorable SPD was observed for the distal mutant R154W, increasing the proportion of reactive conformations and leading to the lowest activation free energy. These results indicate the substantial contribution of the non-electrostatic component of SPD to enzyme catalytic efficiency.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sebastian L. Stull
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zihao Cheng
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J. Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Wang J, Shirvani H, Zhao H, Kibria MG, Hu J. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol Adv 2023; 66:108157. [PMID: 37084800 DOI: 10.1016/j.biotechadv.2023.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Hamed Shirvani
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
7
|
Wang L, Xie Y, Chang J, Wang J, Liu H, Shi M, Zhong Y. A novel sucrose-inducible expression system and its application for production of biomass-degrading enzymes in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:23. [PMID: 36782304 PMCID: PMC9926565 DOI: 10.1186/s13068-023-02274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Filamentous fungi are extensively exploited as important enzyme producers due to the superior secretory capability. However, the complexity of their secretomes greatly impairs the titer and purity of heterologous enzymes. Meanwhile, high-efficient evaluation and production of bulk enzymes, such as biomass-degrading enzymes, necessitate constructing powerful expression systems for bio-refinery applications. RESULTS A novel sucrose-inducible expression system based on the host strain Aspergillus niger ATCC 20611 and the β-fructofuranosidase promoter (PfopA) was constructed. A. niger ATCC 20611 preferentially utilized sucrose for rapid growth and β-fructofuranosidase production. Its secretory background was relatively clean because β-fructofuranosidase, the key enzyme responsible for sucrose utilization, was essentially not secreted into the medium and the extracellular protease activity was low. Furthermore, the PfopA promoter showed a sucrose concentration-dependent induction pattern and was not subject to glucose repression. Moreover, the strength of PfopA was 7.68-fold higher than that of the commonly used glyceraldehyde-3-phosphate dehydrogenase promoter (PgpdA) with enhanced green fluorescence protein (EGFP) as a reporter. Thus, A. niger ATCC 20611 coupled with the PfopA promoter was used as an expression system to express a β-glucosidase gene (bgla) from A. niger C112, allowing the production of β-glucosidase at a titer of 17.84 U/mL. The crude β-glucosidase preparation could remarkably improve glucose yield in the saccharification of pretreated corncob residues when added to the cellulase mixture of Trichoderma reesei QM9414. The efficacy of this expression system was further demonstrated by co-expressing the T. reesei-derived chitinase Chi46 and β-N-acetylglucosaminidase Nag1 to obtain an efficient chitin-degrading enzyme cocktail, which could achieve the production of N-acetyl-D-glucosamine from colloidal chitin with a conversion ratio of 91.83%. Besides, the purity of the above-secreted biomass-degrading enzymes in the crude culture supernatant was over 86%. CONCLUSIONS This PfopA-driven expression system expands the genetic toolbox of A. niger and broadens the application field of the traditional fructo-oligosaccharides-producing strain A. niger ATCC 20611, advancing it to become a high-performing enzyme-producing cell factory. In particular, the sucrose-inducible expression system possessed the capacity to produce biomass-degrading enzymes at a high level and evade endogenous protein interference, providing a potential purification-free enzyme production platform for bio-refinery applications.
Collapse
Affiliation(s)
- Lu Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yijia Xie
- Qingdao Academy, Qingdao, 266111 People’s Republic of China
| | - Jingjing Chang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Juan Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Hong Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
8
|
Chaudhari YB, Várnai A, Sørlie M, Horn SJ, Eijsink VGH. Engineering cellulases for conversion of lignocellulosic biomass. Protein Eng Des Sel 2023; 36:gzad002. [PMID: 36892404 PMCID: PMC10394125 DOI: 10.1093/protein/gzad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Lignocellulosic biomass is a renewable source of energy, chemicals and materials. Many applications of this resource require the depolymerization of one or more of its polymeric constituents. Efficient enzymatic depolymerization of cellulose to glucose by cellulases and accessory enzymes such as lytic polysaccharide monooxygenases is a prerequisite for economically viable exploitation of this biomass. Microbes produce a remarkably diverse range of cellulases, which consist of glycoside hydrolase (GH) catalytic domains and, although not in all cases, substrate-binding carbohydrate-binding modules (CBMs). As enzymes are a considerable cost factor, there is great interest in finding or engineering improved and robust cellulases, with higher activity and stability, easy expression, and minimal product inhibition. This review addresses relevant engineering targets for cellulases, discusses a few notable cellulase engineering studies of the past decades and provides an overview of recent work in the field.
Collapse
Affiliation(s)
- Yogesh B Chaudhari
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, NMBU-Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
9
|
Guo H, Zhao Y, Chang JS, Lee DJ. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. BIORESOURCE TECHNOLOGY 2023; 367:128252. [PMID: 36334864 DOI: 10.1016/j.biortech.2022.128252] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic hydrolysis is the key step limiting the efficiency of the biorefinery of lignocellulosic biomass. Enzymes involved in enzymatic hydrolysis and their interactions with biomass should be comprehended to form the basis for looking for strategies to improve process efficiency. This article updates the contemporary research on the properties of key enzymes in the lignocellulose biorefinery and their interactions with biomass, adsorption, and hydrolysis. The advanced analytical techniques to track the interactions for exploiting mechanisms are discussed. The challenges and prospects for future research are outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
10
|
Jeilu O, Simachew A, Alexandersson E, Johansson E, Gessesse A. Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics. Front Microbiol 2022; 13:1059061. [PMID: 36569080 PMCID: PMC9768486 DOI: 10.3389/fmicb.2022.1059061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extremophiles provide a one-of-a-kind source of enzymes with properties that allow them to endure the rigorous industrial conversion of lignocellulose biomass into fermentable sugars. However, the fact that most of these organisms fail to grow under typical culture conditions limits the accessibility to these enzymes. In this study, we employed a functional metagenomics approach to identify carbohydrate-degrading enzymes from Ethiopian soda lakes, which are extreme environments harboring a high microbial diversity. Out of 21,000 clones screened for the five carbohydrate hydrolyzing enzymes, 408 clones were found positive. Cellulase and amylase, gave high hit ratio of 1:75 and 1:280, respectively. A total of 378 genes involved in the degradation of complex carbohydrates were identified by combining high-throughput sequencing of 22 selected clones and bioinformatics analysis using a customized workflow. Around 41% of the annotated genes belonged to the Glycoside Hydrolases (GH). Multiple GHs were identified, indicating the potential to discover novel CAZymes useful for the enzymatic degradation of lignocellulose biomass from the Ethiopian soda Lakes. More than 73% of the annotated GH genes were linked to bacterial origins, with Halomonas as the most likely source. Biochemical characterization of the three enzymes from the selected clones (amylase, cellulase, and pectinase) showed that they are active in elevated temperatures, high pH, and high salt concentrations. These properties strongly indicate that the evaluated enzymes have the potential to be used for applications in various industrial processes, particularly in biorefinery for lignocellulose biomass conversion.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden,*Correspondence: Oliyad Jeilu,
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
11
|
Jiang Y, Stull SL, Shao Q, Yang ZJ. Convergence in determining enzyme functional descriptors across Kemp eliminase variants. ELECTRONIC STRUCTURE (BRISTOL, ENGLAND) 2022; 4:044007. [PMID: 37425623 PMCID: PMC10327861 DOI: 10.1088/2516-1075/acad51] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Molecular simulations have been extensively employed to accelerate biocatalytic discoveries. Enzyme functional descriptors derived from molecular simulations have been leveraged to guide the search for beneficial enzyme mutants. However, the ideal active-site region size for computing the descriptors over multiple enzyme variants remains untested. Here, we conducted convergence tests for dynamics-derived and electrostatic descriptors on 18 Kemp eliminase variants across six active-site regions with various boundary distances to the substrate. The tested descriptors include the root-mean-square deviation of the active-site region, the solvent accessible surface area ratio between the substrate and active site, and the projection of the electric field (EF) on the breaking C-H bond. All descriptors were evaluated using molecular mechanics methods. To understand the effects of electronic structure, the EF was also evaluated using quantum mechanics/molecular mechanics methods. The descriptor values were computed for 18 Kemp eliminase variants. Spearman correlation matrices were used to determine the region size condition under which further expansion of the region boundary does not substantially change the ranking of descriptor values. We observed that protein dynamics-derived descriptors, including RMSDactive_site and SASAratio, converge at a distance cutoff of 5 Å from the substrate. The electrostatic descriptor, EFC-H, converges at 6 Å using molecular mechanics methods with truncated enzyme models and 4 Å using quantum mechanics/molecular mechanics methods with whole enzyme model. This study serves as a future reference to determine descriptors for predictive modeling of enzyme engineering.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
| | - Sebastian L Stull
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States of America
- Data Science Institute, Vanderbilt University, Nashville, TN 37235, United States of America
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, United States of America
| |
Collapse
|
12
|
Guerra V, Tiago I, Aires A, Coelho C, Nunes J, Martins LO, Veríssimo A. The gastrointestinal microbiome of browsing goats (Capra hircus). PLoS One 2022; 17:e0276262. [PMID: 36251671 PMCID: PMC9576075 DOI: 10.1371/journal.pone.0276262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the growing interest in the ruminants' gastrointestinal tract (GIT) microbiomes' ability to degrade plant materials by animal husbandry and industrial sectors, only a few studies addressed browsing ruminants. The present work describes the taxonomic and functional profile of the bacterial and archaeal communities from five different gastrointestinal sections (rumen, omasum-abomasum, jejunum, cecum and colon) of browsing Capra hircus, by metabarcoding using 16S rRNA genes hypervariable regions. The bacterial communities across the GITs are mainly composed of Bacillota and Bacteroidota. Prevotella was the leading bacterial group found in the stomachs, Romboutsia in the jejuna, and Rikenellaceae_RC9_gut_group, Bacteroides, UCG-010_ge, UCG-005, and Alistipes in large intestines. The archaeal communities in the stomachs and jejuna revealed to be mainly composed of Methanobrevibacter, while in the large intestines its dominance is shared with Methanocorpusculum. Across the GITs, the main metabolic functions were related to carbohydrate, amino acid, and energy metabolisms. Significant differences in the composition and potential biological functions of the bacterial communities were observed among stomachs, jejuna and large intestines. In contrast, significant differences were observed among stomachs and jejuna verse large intestines for archaeal communities. Overall different regions of the GIT are occupied by different microbial communities performing distinct biological functions. A high variety of glycoside hydrolases (GHs) indispensable for degrading plant cell wall materials were predicted to be present in all the GIT sections.
Collapse
Affiliation(s)
- Vera Guerra
- Department of Life Sciences, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre Bio R&D Unit, Association BLC3—Technology and Innovation Campus, Lagares da Beira, Oliveira do Hospital, Portugal
| | - Igor Tiago
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Aitana Aires
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
- FitoLab, Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Catarina Coelho
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
| | - João Nunes
- Centre Bio R&D Unit, Association BLC3—Technology and Innovation Campus, Lagares da Beira, Oliveira do Hospital, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia e Química Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Veríssimo
- Department of Life Sciences, Centre for Functional Ecology–Science for People and the Planet, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
13
|
Li P, Shi M, Wang X, Xu D. QM/MM investigation of the catalytic mechanism of processive endoglucanase Cel9G from Clostridium cellulovorans. Phys Chem Chem Phys 2022; 24:11919-11930. [PMID: 35514276 DOI: 10.1039/d2cp00593j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbohydrate degradation catalyzed by glucoside hydrolases (GHs) is a major mechanism in biomass conversion. GH family 9 endoglucanase (Cel9G) from Clostridium cellulovorans, a typical multimodular enzyme, contains a catalytic domain closely linked to a family 3c carbohydrate-binding module (CBM3c). Unlike the conventional behavior proposed for other carbohydrate-binding modules, CBM3c has a direct impact on catalytic activity. In this work, extensive molecular dynamics (MD) simulations were employed to clarify the functional role of CBM3c. Furthermore, the detailed catalytic mechanism of Cel9G was investigated at the atomistic level using the combined quantum mechanical and molecular mechanical (QM/MM) method. Based on these simulations, owing to the rigidity of the peptide linker, CBM3c may affect the enzymatic activity via direct interactions with alpha helix 4 of GH9, especially with the K123 and H125 residues. In addition, using cellohexaose as a substrate, the QM/MM MD simulations confirmed that this enzyme can cleave the β-1,4-glycosidic linkage via an inverting mechanism. An oxocarbenium ion-like transition state was located with a barrier height of 19.6 kcal mol-1. Furthermore, the G(-1) pyranose unit preferentially adopted a distorted 1S5/4H5 conformer in the enzyme-substrate complex. For the cleavage of the glycosidic bond, we were able to identify a plausible route (1S5/4H5 → [4H5/4E]# → 4C1) from the reactant to the product at the G(-1) site.
Collapse
Affiliation(s)
- Penghui Li
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Mingsong Shi
- State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| |
Collapse
|
14
|
Gomes M, Rondelez Y, Leibler L. Lessons from Biomass Valorization for Improving Plastic-Recycling Enzymes. Annu Rev Chem Biomol Eng 2022; 13:457-479. [PMID: 35378043 DOI: 10.1146/annurev-chembioeng-092120-091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synthetic polymers such as plastics exhibit numerous advantageous properties that have made them essential components of our daily lives, with plastic production doubling every 15 years. The relatively low cost of petroleum-based polymers encourages their single use and overconsumption. Synthetic plastics are recalcitrant to biodegradation, and mismanagement of plastic waste leads to their accumulation in the ecosystem, resulting in a disastrous environmental footprint. Enzymes capable of depolymerizing plastics have been reported recently that may provide a starting point for eco-friendly plastic recycling routes. However, some questions remain about the mechanisms by which enzymes can digest insoluble solid substrates. We review the characterization and engineering of plastic-eating enzymes and provide some comparisons with the field of lignocellulosic biomass valorization. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Margarida Gomes
- Laboratoire Gulliver (UMR 7083), CNRS, ESPCI Paris, PSL Research University, Paris, France; ;
| | - Yannick Rondelez
- Laboratoire Gulliver (UMR 7083), CNRS, ESPCI Paris, PSL Research University, Paris, France; ;
| | - Ludwik Leibler
- Laboratoire Gulliver (UMR 7083), CNRS, ESPCI Paris, PSL Research University, Paris, France; ;
| |
Collapse
|
15
|
Jiang Y, Yan B, Chen Y, Juarez RJ, Yang ZJ. Molecular Dynamics-Derived Descriptor Informs the Impact of Mutation on the Catalytic Turnover Number in Lactonase Across Substrates. J Phys Chem B 2022; 126:2486-2495. [PMID: 35324218 DOI: 10.1021/acs.jpcb.2c00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations have been extensively employed to reveal the roles of protein dynamics in mediating enzyme catalysis. However, simulation-derived predictive descriptors that inform the impacts of mutations on catalytic turnover numbers remain largely unexplored. In this work, we report the identification of molecular modeling-derived descriptors to predict mutation effect on the turnover number of lactonase SsoPox with both native and non-native substrates. The study consists of 10 enzyme-substrate complexes resulting from a combination of five enzyme variants with two substrates. For each complex, we derived 15 descriptors from molecular dynamics simulations and applied principal component analysis to rank the predictive capability of the descriptors. A top-ranked descriptor was identified, which is the solvent-accessible surface area (SASA) ratio of the substrate to the active site pocket. A uniform volcano-shaped plot was observed in the distribution of experimental activation free energy against the SASA ratio. To achieve efficient lactonase hydrolysis, a non-native substrate-bound enzyme variant needs to involve a similar range of the SASA ratio to the native substrate-bound wild-type enzyme. The descriptor reflects how well the enzyme active site pocket accommodates a substrate for reaction, which has the potential of guiding optimization of enzyme reaction turnover for non-native chemical transformations.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yu Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Reecan J Juarez
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
16
|
Brar KK, Raheja Y, Chadha BS, Magdouli S, Brar SK, Yang YH, Bhatia SK, Koubaa A. A paradigm shift towards production of sustainable bioenergy and advanced products from Cannabis/hemp biomass in Canada. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-22. [PMID: 35342682 PMCID: PMC8934023 DOI: 10.1007/s13399-022-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 05/22/2023]
Abstract
The global cannabis (Cannabis sativa) market was 17.7 billion in 2019 and is expected to reach up to 40.6 billion by 2024. Canada is the 2nd nation to legalize cannabis with a massive sale of $246.9 million in the year 2021. Waste cannabis biomass is managed using disposal strategies (i.e., incineration, aerobic/anaerobic digestion, composting, and shredding) that are not good enough for long-term environmental sustainability. On the other hand, greenhouse gas emissions and the rising demand for petroleum-based fuels pose a severe threat to the environment and the circular economy. Cannabis biomass can be used as a feedstock to produce various biofuels and biochemicals. Various research groups have reported production of ethanol 9.2-20.2 g/L, hydrogen 13.5 mmol/L, lipids 53.3%, biogas 12%, and biochar 34.6% from cannabis biomass. This review summarizes its legal and market status (production and consumption), the recent advancements in the lignocellulosic biomass (LCB) pre-treatment (deep eutectic solvents (DES), and ionic liquids (ILs) known as "green solvents") followed by enzymatic hydrolysis using glycosyl hydrolases (GHs) for the efficient conversion efficiency of pre-treated biomass. Recent advances in the bioconversion of hemp into oleochemicals, their challenges, and future perspectives are outlined. A comprehensive insight is provided on the trends and developments of metabolic engineering strategies to improve product yield. The thermochemical processing of disposed-off hemp lignin into bio-oil, bio-char, synthesis gas, and phenol is also discussed. Despite some progress, barricades still need to be met to commercialize advanced biofuels and compete with traditional fuels.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 India
| | | | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Ahmed Koubaa
- Institut de Recherche Sur Les Forêts, Université du Québec en Abitibi-Témiscamingue, Université, Rouyn-Noranda, 445 Boulevard de l’ Université, Rouyn-Noranda, QC J9X5E4 Canada
| |
Collapse
|
17
|
De Novo Metagenomic Analysis of Microbial Community Contributing in Lignocellulose Degradation in Humus Samples Harvested from Cuc Phuong Tropical Forest in Vietnam. DIVERSITY 2022. [DOI: 10.3390/d14030220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We aimed to investigate the microbial diversity, mine lignocellulose-degrading enzymes/proteins, and analyze the domain structures of the mined enzymes/proteins in humus samples collected from the Cuc Phuong National Park, Vietnam. Using a high-throughput Illumina sequencer, 52 Gbs of microbial DNA were assembled in 2,611,883 contigs, from which 4,104,872 open reading frames (ORFs) were identified. Among the total microbiome analyzed, bacteria occupied 99.69%; the five ubiquitous bacterial phyla included Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Acidobacteria, which accounted for 92.59%. Proteobacteria (75.68%), the most dominant, was 5.77 folds higher than the second abundant phylum Bacteroidetes (13.11%). Considering the enzymes/proteins involved in lignocellulose degradation, 22,226 ORFs were obtained from the annotation analysis using a KEGG database. The estimated ratio of Proteobacteria/Bacteroidetes was approximately 1:1 for pretreatment and hemicellulases groups and 2.4:1 for cellulases. Furthermore, analysis of domain structures revealed their diversity in lignocellulose-degrading enzymes. CE and PL were two main families in pretreatment; GH1 and GH3-FN3 were the highest domains in the cellulase group, whereas GH2 and GH43 represented the hemicellulase group. These results validate that natural tropical forest soil could be considered as an important source to explore bacteria and novel enzymes/proteins for the degradation of lignocellulose.
Collapse
|
18
|
Sagarika MS, Parameswaran C, Senapati A, Barala J, Mitra D, Prabhukarthikeyan SR, Kumar A, Nayak AK, Panneerselvam P. Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150451. [PMID: 34607097 DOI: 10.1016/j.scitotenv.2021.150451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.
Collapse
Affiliation(s)
- Mahapatra Smruthi Sagarika
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India; Indira Gandhi Agricultural University, Raipur, Chhattisgarh 492012, India
| | | | - Ansuman Senapati
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Jatiprasad Barala
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Debasis Mitra
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | | |
Collapse
|
19
|
Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation. Molecules 2021; 26:molecules26226770. [PMID: 34833862 PMCID: PMC8618192 DOI: 10.3390/molecules26226770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is important to understand which GH family combinations are compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable sugars. We evaluated GH10 (Xyn10D and XT6) and GH11 (XynA and Xyn2A) β-xylanase performance alone and in combination with various GH family α-l-arabinofuranosidases (GH43 AXH-d and GH51 Abf51A) and α-d-glucuronidases (GH4 Agu4B and GH67 AguA) during xylan depolymerization. No synergistic enhancement in reducing sugar, xylose and glucuronic acid released from beechwood xylan was observed when xylanases were supplemented with either one of the glucuronidases, except between Xyn2A and AguA (1.1-fold reducing sugar increase). However, overall sugar release was significantly improved (≥1.1-fold reducing sugar increase) when xylanases were supplemented with either one of the arabinofuranosidases during wheat arabinoxylan degradation. Synergism appeared to result from the xylanases liberating xylo-oligomers, which are the preferred substrates of the terminal arabinofuranosyl-substituent debranching enzyme, Abf51A, allowing the exolytic β-xylosidase, SXA, to have access to the generated unbranched xylo-oligomers. Here, it was shown that arabinofuranosidases are key enzymes in the efficient saccharification of hetero-xylan into xylose. This study demonstrated that consideration of GH family affiliations of the carbohydrate-active enzymes (CAZymes) used to formulate synergistic enzyme cocktails is crucial for achieving efficient biomass saccharification.
Collapse
|
20
|
Metagenome-assembled genome of a Chitinophaga sp. and its potential in plant biomass degradation, as well of affiliated Pandoraea and Labrys species. World J Microbiol Biotechnol 2021; 37:162. [PMID: 34448059 DOI: 10.1007/s11274-021-03128-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
The prospection of new degrading enzymes of the plant cell wall has been the subject of many studies and is fundamental for industries, due to the great biotechnological importance of achieving a more efficient depolymerization conversion from plant polysaccharides to fermentable sugars, which are useful not only for biofuel production but also for various bioproducts. Thus, we explored the shotgun metagenome data of a bacterial community (CB10) isolated from sugarcane bagasse and recovered three metagenome-assembled genomes (MAGs). The genomic distance analyses, along with phylogenetic analysis, revealed the presence of a putative novel Chitinophaga species, a Pandoraea nosoerga, and Labrys sp. isolate. The isolation process for each one of these bacterial lineages from the community was carried out in order to relate them with the MAGs. The recovered draft genomes have reasonable completeness (72.67-100%) and contamination (0.26-2.66%) considering the respective marker lineage for Chitinophaga (Bacteroidetes), Pandoraea (Burkholderiales), and Labrys (Rhizobiales). The in-vitro assay detected cellulolytic activity (endoglucanases) only for the isolate Chitinophaga, and its genome analysis revealed 319 CAZymes, of which 115 are classified as plant cell wall degrading enzymes, which can act in fractions of hemicellulose and pectin. Our study highlights the potential of this Chitinophaga isolate provides several plant-polysaccharide-degrading enzymes.
Collapse
|
21
|
|
22
|
Zafar A, Aftab MN, Saleem MA. Pilot scale production of recombinant hemicellulases and their saccharification potential. Prep Biochem Biotechnol 2021; 50:1063-1075. [PMID: 32594842 DOI: 10.1080/10826068.2020.1783679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Synergistic saccharification ability of hemicellulases (endo-xylanase and β-xylosidase) was evaluated in this study for the bioethanol production from plant biomass. Endo-xylanase and β-xylosidase genes from Bacillus licheniformis were cloned and expressed in Escherichia coli BL21 (DE3). Maximum endo-xylanase production was obtained at 200 rpm agitation speed, air supply rate 2.0 vvm, 70% volume of the medium, 20% dissolved oxygen level and with 3% inoculum size. The optimal conditions for maximum production of recombinant β-xylosidase enzyme at pilot scale were 200 rpm agitation speed, 25% dissolved oxygen level, 2.5 vvm aeration rate, 70% volume of the medium with 2% inoculum size. Furthermore, the saccharification potential of these recombinant enzymes was checked for the production of xylose sugar by bioconversion of plant biomass by optimizing individually as well as synergistically by optimizing various parameters. Maximum saccharification (93%) of plant biomass was observed when both enzymes were used at a time with 8% sugarcane bagasse as a substrate and 200 units of each enzyme after incubation of 6 hr at 50 °C and 120 rpm. The results obtained in this study suggested these recombinant hemicellulases as potential candidates for the conversion of complex agricultural residues into simple sugars for ultimate use in the biofuel industry.
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
23
|
Sukumaran RK, Christopher M, Kooloth-Valappil P, Sreeja-Raju A, Mathew RM, Sankar M, Puthiyamadam A, Adarsh VP, Aswathi A, Rebinro V, Abraham A, Pandey A. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. BIORESOURCE TECHNOLOGY 2021; 329:124746. [PMID: 33610429 DOI: 10.1016/j.biortech.2021.124746] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic materials are the favoured feedstock for biorefineries due to their abundant availability and non-completion with food. Biobased technologies for refining these materials are limited mainly by the cost of biomass hydrolyzing enzymes, typically sourced from filamentous fungi. Therefore, considerable efforts have been directed at improving the quantity and quality of secreted lignocellulose degrading enzymes from fungi in order to attain overall economic viability. Process improvements and media engineering probably have reached their thresholds and further production enhancements require modifying the fungal metabolism to improve production and secretion of these enzymes. This review focusses on the types and mechanisms of action of known fungal biomass degrading enzymes, our current understanding of the genetic control exerted on their expression, and possible routes for intervention, especially on modulating catabolite repression, transcriptional regulators, signal transduction, secretion pathways etc., in order to improve enzyme productivity, activity and stability.
Collapse
Affiliation(s)
- Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Meera Christopher
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prajeesh Kooloth-Valappil
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - AthiraRaj Sreeja-Raju
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Reshma M Mathew
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anoop Puthiyamadam
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Velayudhanpillai-Prasannakumari Adarsh
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Aswathi Aswathi
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Valan Rebinro
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
24
|
The synergistic actions of hydrolytic genes reveal the mechanism of Trichoderma harzianum for cellulose degradation. J Biotechnol 2021; 334:1-10. [PMID: 33992696 DOI: 10.1016/j.jbiotec.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022]
Abstract
Bioprospecting genes and proteins related to plant biomass degradation is an attractive approach for the identification of target genes for biotechnological purposes, especially those with potential applications in the biorefinery industry that can enhance second-generation ethanol production technology. Trichoderma harzianum is a potential candidate for cellulolytic enzyme prospection and production. Herein, the enzymatic activities, transcriptome, exoproteome, and coexpression networks of the T. harzianum strain CBMAI-0179 were examined under biomass degradation conditions. We identified differentially expressed genes (DEGs) and carbohydrate-active enzyme (CAZyme) genes related to plant biomass degradation and compared them with those of strains from congeneric species (T. harzianum IOC-3844 and T. atroviride CBMAI-0020). T. harzianum CBMAI-0179 harbors strain- and treatment-specific CAZyme genes and transcription factors. We detected important proteins related to biomass degradation, including β-glucosidases, endoglucanases, cellobiohydrolases, lytic polysaccharide monooxygenases, endo-1,4-β-xylanases and β-mannanases. Based on coexpression networks, an enriched cluster with degradative enzymes was described, and the subnetwork of CAZymes revealed strong correlations among important secreted proteins and differentially expressed CAZyme genes. Our results provide valuable information for future studies on the genetic regulation of plant cell wall-degrading enzymes. This knowledge can be exploited for the improvement of enzymatic reactions in biomass degradation for bioethanol production.
Collapse
|
25
|
Weiss B, Souza ACO, Constancio MTL, Alvarenga DO, Pylro VS, Alves LMC, Varani AM. Unraveling a Lignocellulose-Decomposing Bacterial Consortium from Soil Associated with Dry Sugarcane Straw by Genomic-Centered Metagenomics. Microorganisms 2021; 9:microorganisms9050995. [PMID: 34063014 PMCID: PMC8170896 DOI: 10.3390/microorganisms9050995] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Second-generation biofuel production is in high demand, but lignocellulosic biomass’ complexity impairs its use due to the vast diversity of enzymes necessary to execute the complete saccharification. In nature, lignocellulose can be rapidly deconstructed due to the division of biochemical labor effectuated in bacterial communities. Here, we analyzed the lignocellulolytic potential of a bacterial consortium obtained from soil and dry straw leftover from a sugarcane milling plant. This consortium was cultivated for 20 weeks in aerobic conditions using sugarcane bagasse as a sole carbon source. Scanning electron microscopy and chemical analyses registered modification of the sugarcane fiber’s appearance and biochemical composition, indicating that this consortium can deconstruct cellulose and hemicellulose but no lignin. A total of 52 metagenome-assembled genomes from eight bacterial classes (Actinobacteria, Alphaproteobacteria, Bacilli, Bacteroidia, Cytophagia, Gammaproteobacteria, Oligoflexia, and Thermoleophilia) were recovered from the consortium, in which ~46% of species showed no relevant modification in their abundance during the 20 weeks of cultivation, suggesting a mostly stable consortium. Their CAZymes repertoire indicated that many of the most abundant species are known to deconstruct lignin (e.g., Chryseobacterium) and carry sequences related to hemicellulose and cellulose deconstruction (e.g., Chitinophaga, Niastella, Niabella, and Siphonobacter). Taken together, our results unraveled the bacterial diversity, enzymatic potential, and effectiveness of this lignocellulose-decomposing bacterial consortium.
Collapse
Affiliation(s)
- Bruno Weiss
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Anna Carolina Oliveira Souza
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Milena Tavares Lima Constancio
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Danillo Oliveira Alvarenga
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
| | - Victor S. Pylro
- Microbial Ecology and Bioinformatics Laboratory, Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil;
| | - Lucia M. Carareto Alves
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Correspondence: (L.M.C.A.); (A.M.V.)
| | - Alessandro M. Varani
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Correspondence: (L.M.C.A.); (A.M.V.)
| |
Collapse
|
26
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2021; 324:124623. [PMID: 33434871 DOI: 10.1016/j.biortech.2020.124623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/26/2023]
Abstract
The term hemicellulose groups different polysaccharides with heterogeneous structures, mannans, xyloglucans, mixed-linkage β-glucans and xylans, which differ in their backbone and branches, and in the type and distribution of glycosidic linkages. The enzymatic degradation of these complex polymers requires the concerted action of multiple hemicellulases and auxiliary enzymes. Most commercial enzymes are produced by Trichoderma and Aspergillus species, but recent studies have disclosed Penicillium and Talaromyces as promising sources of hemicellulases. In this review, we summarize the current knowledge on the hemicellulolytic system of these genera, and the role of hemicellulases in the disruption and synthesis of glycosidic bonds. In both cases, the enzymes from Penicillium and Talaromyces represent an interesting alternative for valorization of lignocellulosic biomass in the current framework of circular economy.
Collapse
Affiliation(s)
- Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
27
|
Abstract
Bioethanol obtained from agro-food wastes could contribute to decrease the dependency on fossil resources, reduce the impact of fossil fuels on the environment, and mitigate the food versus fuel debate. This study is aimed to investigate the availability of residual inexpensive agro-food biomasses that could feed a second-generation bioethanol plant located in a specific area of North Eastern Italy. After the identification of all crops in the area, more than 40 agro-food residues were analyzed for their availability and compositions in terms of water, polysaccharides, and sugars potentially convertible into bioethanol. 574,166 Mg of residual wet lignocellulosic biomass corresponding to 297,325 Mg of dry material were found available for bioethanol conversion. The most promising substrates were wheat straw and vine shoots. Based on the chemical composition of residues, the potential attainable ethanol was determined. Theoretical potential ethanol production was estimated at nearly 72,000 Mg per year. This quantity extensively exceeds the minimum yearly capacity of a sustainable bioethanol plant previously identified as around 50,000 Mg of ethanol. Taken together, these results demonstrate that, in the analyzed area, agro-food residues are available in an amount that could sustain bioethanol production in a specific and restricted district. Techno-economical evaluations are in progress to assess the actual feasibility of installing a second generation bioethanol production plant in the area of interest.
Collapse
|
28
|
Lyu Q, Chen X, Zhang Y, Yu H, Han L, Xiao W. One-pot fractionation of corn stover with peracetic acid and maleic acid. BIORESOURCE TECHNOLOGY 2021; 320:124306. [PMID: 33157440 DOI: 10.1016/j.biortech.2020.124306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulose fractionation is a primary treatment to enhance cellulose accessibility and multi-component use. Herein, the development of a one-step fractionation is reported for cellulose enrichment from corn stover using a low concentration of peracetic acid combined with maleic acid (PAM). The effects of pretreatment parameters on the contents of cellulose, hemicellulose, and lignin were investigated. After cooking for 1 h at 130 °C with 1.5 wt% peracetic acid and 3 wt% maleic acid, 86.83% of corn stover cellulose remained in the solid residue while 88.21% of hemicellulose and 87.77% of lignin dissolved into the aqueous liquid. Hemicellulose was primarily hydrolyzed into xylose with 84.58% recovered during the PAM process. The cellulose-rich residue was enzymatically hydrolyzed with a glucose yield of 89.65%, which was two to three times that of untreated substrate. Generally, the proposed process offers a promising approach for efficient fractionation of lignocellulose under mild and environmental-friendly conditions.
Collapse
Affiliation(s)
- Qian Lyu
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Xueli Chen
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Yuxuan Zhang
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Haitao Yu
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Lujia Han
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Weihua Xiao
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| |
Collapse
|
29
|
A novel high performance in-silico screened metagenome-derived alkali-thermostable endo-β-1,4-glucanase for lignocellulosic biomass hydrolysis in the harsh conditions. BMC Biotechnol 2020; 20:56. [PMID: 33076889 PMCID: PMC7574624 DOI: 10.1186/s12896-020-00647-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Background Lignocellulosic biomass, is a great resource for the production of bio-energy and bio-based material since it is largely abundant, inexpensive and renewable. The requirement of new energy sources has led to a wide search for novel effective enzymes to improve the exploitation of lignocellulose, among which the importance of thermostable and halotolerant cellulase enzymes with high pH performance is significant. Results The primary aim of this study was to discover a novel alkali-thermostable endo-β-1,4-glucanase from the sheep rumen metagenome. At first, the multi-step in-silico screening approach was utilized to find primary candidate enzymes with superior properties. Among the computationally selected candidates, PersiCel4 was found and subjected to cloning, expression, and purification followed by functional and structural characterization. The enzymes’ kinetic parameters, including Vmax, Km, and specific activity, were calculated. The PersiCel4 demonstrated its optimum activity at pH 8.5 and a temperature of 85 °C and was able to retain more than 70% of its activity after 150 h of storage at 85 °C. Furthermore, this enzyme was able to maintain its catalytic activity in the presence of different concentrations of NaCl and several metal ions contains Mg2+, Mn2+, Cu2+, Fe2+ and Ca2+. Our results showed that treatment with MnCl2 could enhance the enzyme’s activity by 78%. PersiCel4 was ultimately used for enzymatic hydrolysis of autoclave pretreated rice straw, the most abundant agricultural waste with rich cellulose content. In autoclave treated rice straw, enzymatic hydrolysis with the PersiCel4 increased the release of reducing sugar up to 260% after 72 h in the harsh condition (T = 85 °C, pH = 8.5). Conclusion Considering the urgent demand for stable cellulases that are operational on extreme temperature and pH conditions and due to several proposed distinctive characteristics of PersiCel4, it can be used in the harsh condition for bioconversion of lignocellulosic biomass.
Collapse
|
30
|
Cubas-Cano E, González-Fernández C, Ballesteros I, Tomás-Pejó E. Efficient utilization of hydrolysates from steam-exploded gardening residues for lactic acid production by optimization of enzyme addition and pH control. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 107:235-243. [PMID: 32325410 DOI: 10.1016/j.wasman.2020.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 05/12/2023]
Abstract
The expansion of urban green areas has boosted the accumulation of gardening lignocellulosic residues that could be potentially used to produce platform chemicals like lactic acid. However, when using lignocelluloses, pretreatment step, such as steam explosion, is often needed to favour sugar release. Considering that the conversion of glucose from cellulose has been widely addressed, this work is focused on the valorisation of the steam-exploded gardening liquid fraction rich in hemicellulosic sugars. Since oligomeric sugars are usually solubilized during steam explosion, an enzymatic hydrolysis step was required in some cases to increase the monosaccharides content. Although the presence of inhibitors released during pretreatment (e.g. formic acid) hindered hydrolysis yields, the addition of hemicellulases and the enzyme dosage optimization resulted in 85%, 89% and 95% of glucose, xylose and arabinose release from soluble oligomers, respectively. Lactobacillus pentosus CECT4023T was used for lactic acid fermentation of C6 and C5 sugars from the hydrolysate with the highest sugars concentration, that did not require enzymatic hydrolysis. Xylose consumption was hampered due to the inhibitory effect of acids that produced pH drop. Different pH control systems were applied and automatic NaOH addition in bioreactor resulted in 21 g L-1 of lactic acid (95% of the maximum theoretical yield) that implied 44% increase in lactic acid production when compared with flask fermentation. These results provide new insights for the valorisation of emerging lignocellulosic materials like gardening residues into high added-value products.
Collapse
Affiliation(s)
- Enrique Cubas-Cano
- IMDEA Energy Institute, Biotechnological Processes Unit, 28935 Móstoles, Spain
| | | | | | - Elia Tomás-Pejó
- IMDEA Energy Institute, Biotechnological Processes Unit, 28935 Móstoles, Spain.
| |
Collapse
|
31
|
Bhatia S, Singh A, Batra N, Singh J. Microbial production and biotechnological applications of α-galactosidase. Int J Biol Macromol 2019; 150:1294-1313. [PMID: 31747573 DOI: 10.1016/j.ijbiomac.2019.10.140] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
α-Galactosidase, (E.C. 3.2.1.22) is an exoglycosidase that target galactooligosaccharides such as raffinose, melibiose, stachyose and branched polysaccharides like galactomannans and galacto-glucomannans by catalysing the hydrolysis of α-1,6 linked terminal galactose residues. The enzyme has been isolated and characterized from microbial, plant and animal sources. This ubiquitous enzyme possesses physiological significance and immense industrial potential. Optimization of the growth conditions and efficient purification strategies can lead to a significant increase in the enzyme production. To boost commercial productivity, cloning of novel α-galactosidase genes and their heterologous expression in suitable host has gained popularity. Enzyme immobilization leads to its greater reutilization, superior thermostability, pH tolerance and increased activity. The enzyme is well explored in food industry in the removal of raffinose family oligosaccharides (RFOs) in soymilk and sugar crystallization process. It also improves animal feed quality and biomass processing. Applications of the enzyme is in the area of biomedicine includes therapeutic advances in treatment of Fabry disease, blood group conversion and removal of α-gal type immunogenic epitopes in xenotransplantation. With considerable biotechnological applications, this enzyme has been vastly commercialized and holds greater future prospects.
Collapse
Affiliation(s)
- Sonu Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Abhinashi Singh
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| |
Collapse
|
32
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
33
|
Crystallographic structure and molecular dynamics simulations of the major endoglucanase from Xanthomonas campestris pv. campestris shed light on its oligosaccharide products release pattern. Int J Biol Macromol 2019; 136:493-502. [PMID: 31216447 DOI: 10.1016/j.ijbiomac.2019.06.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/09/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022]
Abstract
Cellulases are essential enzymatic components for the transformation of plant biomass into fuels, renewable materials and green chemicals. Here, we determined the crystal structure, pattern of hydrolysis products release, and conducted molecular dynamics simulations of the major endoglucanase from the Xanthomonas campestris pv. campestris (XccCel5A). XccCel5A has a TIM barrel fold with the catalytic site centrally placed in a binding groove surrounded by aromatic side chains. Molecular dynamics simulations show that productive position of the substrate is secured by a network of hydrogen bonds in the four main subsites, which differ in details from homologous structures. Capillary zone electrophoresis and computational studies reveal XccCel5A can act both as endoglucanase and licheninase, but there are preferable arrangements of substrate regarding β-1,3 and β-1,4 bonds within the binding cleft which are related to the enzymatic efficiency.
Collapse
|
34
|
Muthuramalingam S, Maheshwaran D, Velusamy M, Mayilmurugan R. Regioselective oxidative carbon-oxygen bond cleavage catalysed by copper(II) complexes: A relevant model study for lytic polysaccharides monooxygenases activity. J Catal 2019. [DOI: 10.1016/j.jcat.2019.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Binod P, Gnansounou E, Sindhu R, Pandey A. Enzymes for second generation biofuels: Recent developments and future perspectives. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Multiple thermostable enzyme hydrolases on magnetic nanoparticles: An immobilized enzyme-mediated approach to saccharification through simultaneous xylanase, cellulase and amylolytic glucanotransferase action. Int J Biol Macromol 2018; 120:1650-1658. [DOI: 10.1016/j.ijbiomac.2018.09.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022]
|
37
|
Meng QS, Liu CG, Zhao XQ, Bai FW. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. J Biotechnol 2018; 285:56-63. [DOI: 10.1016/j.jbiotec.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023]
|
38
|
Aarti C, Khusro A, Agastian P. Carboxymethyl cellulase production optimization from Glutamicibacter arilaitensis strain ALA4 and its application in lignocellulosic waste biomass saccharification. Prep Biochem Biotechnol 2018; 48:853-866. [PMID: 30303451 DOI: 10.1080/10826068.2018.1514513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this context, carboxymethyl cellulase (CMCase) production from Glutamicibacter arilaitensis strain ALA4 was initially optimized by one factor at a time (OFAT) method using goat dung as proficient feedstock. Two-level full factorial design (25 factorial matrix) using first-order polynomial model revealed the significant (p < 0.05) influence of pH, moisture, and peptone on CMCase activity. Central composite design at N = 20 was further taken into account using a second-order polynomial equation, and thereby liberated maximum CMCase activity of 4925.56 ± 31.61 U/g in the goat dung medium of pH 8.0 and 100% moisture containing 1% (w/w) peptone, which was approximately two fold increment with respect to OFAT method. Furthermore, the partially purified CMCase exhibited stability not only at high pH and temperature but also in the presence of varied metal ions, organic solvents, surfactants, and inhibitors with pronounced residual activities. The enzymatic hydrolysis using partially purified CMCase depicted the maximum liberation of fermentable sugars from alkali pretreated lignocellulosic wastes biomass in the order of paddy straw (13.8 ± 0.15 mg/g) > pomegranate peel (9.1 ± 0.18 mg/g) > sweet lime peel (8.37 ± 0.16 mg/g), with saccharification efficiency of 62.1 ± 0.8, 40.95 ± 0.4, and 37.66 ± 0.4%, respectively after 72 hr of treatment.
Collapse
Affiliation(s)
- Chirom Aarti
- a Research Department of Plant Biology and Biotechnology , Loyola College , Chennai , India
| | - Ameer Khusro
- a Research Department of Plant Biology and Biotechnology , Loyola College , Chennai , India
| | - Paul Agastian
- a Research Department of Plant Biology and Biotechnology , Loyola College , Chennai , India
| |
Collapse
|
39
|
Lebre PH, Aliyu H, De Maayer P, Cowan DA. In silico characterization of the global Geobacillus and Parageobacillus secretome. Microb Cell Fact 2018; 17:156. [PMID: 30285747 PMCID: PMC6171300 DOI: 10.1186/s12934-018-1005-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background Geobacillus and Parageobacillus are two ecologically diverse thermophilic genera within the phylum Firmicutes. These taxa have long been of biotechnological interest due to their ability to secrete thermostable enzymes and other biomolecules that have direct applications in various industrial and clinical fields. Despite the commercial and industrial interest in these microorganisms, the full scope of the secreted protein, i.e. the secretome, of Geobacillus and Parageobacillus species remains largely unexplored, with most studies focusing on single enzymes. A genome-wide exploration of the global secretome can provide a platform for understanding the extracellular functional “protein cloud” and the roles that secreted proteins play in the survival and adaptation of these biotechnologically relevant organisms. Results In the present study, the global secretion profile of 64 Geobacillus and Parageobacillus strains, comprising 772 distinct proteins, was predicted using comparative genomic approaches. Thirty-one of these proteins are shared across all strains used in this study and function in cell-wall/membrane biogenesis as well as transport and metabolism of carbohydrates, amino acids and inorganic ions. An analysis of the clustering patterns of the secretomes of the 64 strains according to shared functional orthology revealed a correlation between the secreted profiles of different strains and their phylogeny, with Geobacillus and Parageobacillus species forming two distinct functional clades. Conclusions The in silico characterization of the global secretome revealed a metabolically diverse set of secreted proteins, which include proteases, glycoside hydrolases, nutrient binding proteins and toxins. Electronic supplementary material The online version of this article (10.1186/s12934-018-1005-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Habibu Aliyu
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Pieter De Maayer
- School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
40
|
Tamayo‐Ordóñez MC, Ayil‐Gutiérrez BA, Tamayo‐Ordóñez YJ, Rodríguez‐Zapata LC, Monforte‐González M, De la Cruz‐Arguijo EA, García‐Castillo MJ, Sánchez‐Teyer LF. Review and in silico analysis of fermentation, bioenergy, fiber, and biopolymer genes of biotechnological interest in
Agave
L. for genetic improvement and biocatalysis. Biotechnol Prog 2018; 34:1314-1334. [DOI: 10.1002/btpr.2689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- M. C. Tamayo‐Ordóñez
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - B. A. Ayil‐Gutiérrez
- CONACYT‐ Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro, s/n, Esq. Elías Piña Reynosa 88710 Mexico
| | - Y. J. Tamayo‐Ordóñez
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - L. C. Rodríguez‐Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - M. Monforte‐González
- Unidad de Bioquímica Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - E. A. De la Cruz‐Arguijo
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro, s/n, Esq. Elías Piña Reynosa 88710 Mexico
| | - M. J. García‐Castillo
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| | - L. F. Sánchez‐Teyer
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, CP. 97200, Mérida Yucatán Mexico
| |
Collapse
|
41
|
Alazi E, Ram AFJ. Modulating Transcriptional Regulation of Plant Biomass Degrading Enzyme Networks for Rational Design of Industrial Fungal Strains. Front Bioeng Biotechnol 2018; 6:133. [PMID: 30320082 PMCID: PMC6167437 DOI: 10.3389/fbioe.2018.00133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023] Open
Abstract
Filamentous fungi are the most important microorganisms for the industrial production of plant polysaccharide degrading enzymes due to their unique ability to secrete these proteins efficiently. These carbohydrate active enzymes (CAZymes) are utilized industrially for the hydrolysis of plant biomass for the subsequent production of biofuels and high-value biochemicals. The expression of the genes encoding plant biomass degrading enzymes is tightly controlled. Naturally, large amounts of CAZymes are produced and secreted only in the presence of the plant polysaccharide they specifically act on. The signal to produce is conveyed via so-called inducer molecules which are di- or mono-saccharides (or derivatives thereof) released from the specific plant polysaccharides. The presence of the inducer results in the activation of a substrate-specific transcription factor (TF), which is required not only for the controlled expression of the genes encoding the CAZymes, but often also for the regulation of the expression of the genes encoding sugar transporters and catabolic pathway enzymes needed to utilize the released monosaccharide. Over the years, several substrate-specific TFs involved in the degradation of cellulose, hemicellulose, pectin, starch and inulin have been identified in several fungal species and systems biology approaches have made it possible to uncover the enzyme networks controlled by these TFs. The requirement for specific inducers for TF activation and subsequently the expression of particular enzyme networks determines the choice of feedstock to produce enzyme cocktails for industrial use. It also results in batch-to-batch variation in the composition and amounts of enzymes due to variations in sugar composition and polysaccharide decorations of the feedstock which hampers the use of cheap feedstocks for constant quality of enzyme cocktails. It is therefore of industrial interest to produce specific enzyme cocktails constitutively and independently of inducers. In this review, we focus on the methods to modulate TF activities for inducer-independent production of CAZymes and highlight various approaches that are used to construct strains displaying constitutive expression of plant biomass degrading enzyme networks. These approaches and combinations thereof are also used to construct strains displaying increased expression of CAZymes under inducing conditions, and make it possible to design strains in which different enzyme mixtures are simultaneously produced independently of the carbon source.
Collapse
Affiliation(s)
| | - Arthur F. J. Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
42
|
Lepcha K, Ghosh S. Glycoside hydrolases from a thermophilic microbial consortium and their implication in the saccharification of agroresidues. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
Kötzler MP, Robinson K, Chen HM, Okon M, McIntosh LP, Withers SG. Modulating the Nucleophile of a Glycoside Hydrolase through Site-Specific Incorporation of Fluoroglutamic Acids. J Am Chem Soc 2018; 140:8268-8276. [DOI: 10.1021/jacs.8b04235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Yang Y, Yang J, Liu J, Wang R, Liu L, Wang F, Yuan H. The composition of accessory enzymes of Penicillium chrysogenum P33 revealed by secretome and synergistic effects with commercial cellulase on lignocellulose hydrolysis. BIORESOURCE TECHNOLOGY 2018; 257:54-61. [PMID: 29482166 DOI: 10.1016/j.biortech.2018.02.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 05/25/2023]
Abstract
Herein, we report the secretome of Penicillium chrysogenum P33 under induction of lignocellulose for the first time. A total of 356 proteins were identified, including complete cellulases and numerous hemicellulases. Supplementing a commercial cellulase with increasing dosage of P33 enzyme cocktail from 1 to 5 mg/g substrate increased the release of reducing sugars from delignified corn stover by 21.4% to 106.8%. When 50% cellulase was replaced by P33 enzyme cocktail, release of reducing sugars was 78.6% higher than with cellulase alone. Meanwhile, glucan and xylan conversion was increased by 37% and 106%, respectively. P33 enzyme cocktail also enhanced commercial cellulase hydrolysis against four different delignified lignocellulosic biomass. These findings demonstrate that mixing appropriate amount of P33 cocktail with cellulase improves polysaccharide hydrolysis, suggesting P33 enzymes have great potential for industrial applications.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiawen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruonan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengqin Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
45
|
Do TH, Le NG, Dao TK, Nguyen TMP, Le TL, Luu HL, Nguyen KHV, Nguyen VL, Le LA, Phung TN, van Straalen NM, Roelofs D, Truong NH. Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo sequencing of the microbiome in Vietnamese native goats' rumen. J GEN APPL MICROBIOL 2018. [PMID: 29526926 DOI: 10.2323/jgam.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The scarcity of enzymes having an optimal activity in lignocellulose deconstruction is an obstacle for industrial-scale conversion of cellulosic biomass into biofuels. With the aim of mining novel lignocellulolytic enzymes, a ~9 Gb metagenome of bacteria in Vietnamese native goats' rumen was sequenced by Illumina platform. From the data, 821 ORFs encoding carbohydrate esterases (CEs) and polysaccharide lyases (PLs) serving for lignocellulose pre-treatment, 816 ORFs encoding 11 glycoside hydrolase families (GHs) of cellulases, and 2252 ORFs encoding 22 GHs of hemicellulases, were mined. The carbohydrate binding module (CBM) was also abundant with 763 ORFs, of which 480 ORFs are located with lignocellulolytic enzymes. The enzyme modularity analysis showed that CBMs are usually present in endoglucanase, endo 1,3-beta-D-glucosidase, and endoxylanase, whereas fibronectin 3-like module (FN3) mainly represents in GH3 and immunoglobulin-like domain (Ig) was located in GH9 only. Every domain located in each ORF was analyzed in detail to contribute enzymes' modularity which is valuable for modelling, to study the structure, and for recombinant production. With the aim of confirming the annotated results, a mined ORF encoding CBM63 was highly expressed in E. coli in soluble form. The purified recombinant CBM63 exhibited no cellulase activity, but enhanced a commercial cellulase activity in the destruction of a paper filter.
Collapse
Affiliation(s)
- Thi Huyen Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| | - Ngoc Giang Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology.,Department of Ecological Science, Vrije Universiteit Amsterdam
| | - Trong Khoa Dao
- Institute of Biotechnology, Vietnam Academy of Science and Technology.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| | | | - Tung Lam Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology
| | - Han Ly Luu
- Institute of Biotechnology, Vietnam Academy of Science and Technology
| | - Khanh Hoang Viet Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology.,Institute of New Technology/Academy of Military Science and Technology
| | - Van Lam Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| | - Lan Anh Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology
| | - Thu Nguyet Phung
- Institute of Biotechnology, Vietnam Academy of Science and Technology
| | | | - Dick Roelofs
- Department of Ecological Science, Vrije Universiteit Amsterdam
| | - Nam Hai Truong
- Institute of Biotechnology, Vietnam Academy of Science and Technology.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| |
Collapse
|
46
|
Schückel J, Kračun SK. Two-Dimensional High-Throughput Endo-Enzyme Screening Assays Based on Chromogenic Polysaccharide Hydrogel and Complex Biomass Substrates. Methods Mol Biol 2018; 1796:201-217. [PMID: 29856056 DOI: 10.1007/978-1-4939-7877-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this chapter, we present a two-dimensional approach for high-throughput screening of endo-cellulases as well as other endo-acting enzymes. The method is based on chromogenic substrates, produced either from purified or complex material, providing valuable information about enzyme activity toward its target as well as that same target in a context of complex natural material normally encountered in bioindustrial settings. The enzymes that can be tested using this assay can be from virtually any source: in purified form, directly from microbial cultures or even from raw materials, enabling study of the interplay between enzyme mixtures such as synergistic or inhibitory effects. By using the method of analysis described in this chapter, enzymes can be screened and evaluated quickly and information pertinent to both the inherent properties of the enzyme itself as well as predictions about its performance on complex biomass samples can be obtained.
Collapse
|
47
|
Michelin M, Ruiz HA, Polizeli MDLTM, Teixeira JA. Multi-step approach to add value to corncob: Production of biomass-degrading enzymes, lignin and fermentable sugars. BIORESOURCE TECHNOLOGY 2018; 247:582-590. [PMID: 28982088 DOI: 10.1016/j.biortech.2017.09.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
This work presents an integrated and multi-step approach for the recovery and/or application of the lignocellulosic fractions from corncob in the production of high value added compounds as xylo-oligosaccharides, enzymes, fermentable sugars, and lignin in terms of biorefinery concept. For that, liquid hot water followed by enzymatic hydrolysis were used. Liquid hot water was performed using different residence times (10-50min) and holding temperature (180-200°C), corresponding to severities (log(R0)) of 3.36-4.64. The most severe conditions showed higher xylo-oligosaccharides extraction (maximum of 93%) into the hydrolysates and higher recovery of cellulose on pretreated solids (maximum of 65%). Subsequently, hydrolysates and solids were used in the production of xylanases and cellulases, respectively, as well as, pretreated solids were also subjected to enzymatic hydrolysis for the recovery of lignin and fermentable sugars from cellulose. Maximum glucose yield (100%) was achieved for solids pretreated at log(R0) of 4.42 and 5% solid loading.
Collapse
Affiliation(s)
- Michele Michelin
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico; Cluster of Bioalcohols, Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Mexico
| | - Maria de Lourdes T M Polizeli
- Department of Biology, School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
48
|
Ionic Liquid-Mediated Homogeneous Esterification of Cinnamic Anhydride to Xylans. Int J Mol Sci 2017; 18:ijms18122502. [PMID: 29168768 PMCID: PMC5751105 DOI: 10.3390/ijms18122502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022] Open
Abstract
A new functional biopolymer was synthesized through an ionic liquid-mediated homogeneous grafting of cinnamic anhydride to xylans. The ionic liquid used was 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid. Xylans with degrees of substitution (DS) between 0.11 and 0.57 were accessible in a completely homogeneous system by changing catalysts (NaOH, KOH and LiOH), time, reaction temperature, and cinnamic anhydride/xylan molar ratio. The chemical structure and the thermal stability of the derivatives were characterized by Fourier transform infrared spectroscopy (FT-IR), 13C-NMR spectroscopy, and thermogravimetry. The thermal stability of the derivatives was reduced compared with the original xylan. Possible applications of the cinnamic anhydride-acylated xylan derivatives include wet-end papermaking, organic–inorganic composite films, and hydrogels.
Collapse
|
49
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
50
|
Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction. PLoS One 2017; 12:e0186355. [PMID: 29023528 PMCID: PMC5638507 DOI: 10.1371/journal.pone.0186355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/01/2017] [Indexed: 12/04/2022] Open
Abstract
The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.
Collapse
|