1
|
Qin Y, Jiang B, Yuan C, Cui L, Lu M, Zheng X, Yu M. Light-emitting diode irradiation at 590 nm combined with active substances modulates ultraviolet B radiation-induced keratinocyte inflammation. Lasers Med Sci 2024; 39:231. [PMID: 39223344 DOI: 10.1007/s10103-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
To evaluate the efficacy of yellow light-emitting diode (LED) irradiation at 590 nm, alone or in combination with anti-inflammatory active substances against ultraviolet (UV)-induced inflammation in keratinocytes. HaCaT keratinocytes were pretreated with LED yellow light (590 nm) alone or in combination with an antiinflammatory active substance such as glycerophosphoinositol choline (GC), extract of grains of paradise (Aframomum melegueta Schum, AM), or a bisabolol and ginger root extract mixture (Bb-GE) before UVB irradiation. Following each treatment, we measured the levels of inflammatory mediators secreted by keratinocytes. HaCaT keratinocytes treated with UVB (300 mJ cm-²) and then cultured for 24 h exhibited significantly upregulated expression of proinflammatory factors, including interleukin (IL)-1α, prostaglandin E2 (PGE2), and IL-8. After pretreatment with 590 nm LED, UVB-induced inflammatory responses were significantly inhibited. Co-pretreatment with 590 nm LED irradiation and GC further inhibited the expression of IL-1α and IL-8. IL-8 expression was inhibited by co-pretreatment with 590 nm LED irradiation and AM, whereas PGE2 expression was inhibited by co-pretreatment with 590 nm LED irradiation and Bb-GE. Co-treatment with 590 nm LED irradiation and various active substances modulated UVB-induced inflammation in keratinocytes, suggesting the potential application of this approach to prevent damage caused by voluntary sun exposure in daily life.
Collapse
Affiliation(s)
- Yumei Qin
- Flossom Research Laboratories, 2601 Yingfeng Center, 3378 Binhai Avenue, Yuehai Street, Shenzhen, Guangdong, China
| | - Boyang Jiang
- Flossom Research Laboratories, 2601 Yingfeng Center, 3378 Binhai Avenue, Yuehai Street, Shenzhen, Guangdong, China.
- Shenzhen Rawskin Dermatology, Shenzhen, China.
| | - Chunfen Yuan
- Flossom Research Laboratories, 2601 Yingfeng Center, 3378 Binhai Avenue, Yuehai Street, Shenzhen, Guangdong, China
| | - Lei Cui
- , 22/F, Yingfeng Business Center, No.8 Yixing Road, Junlan Community, Beijiao Town, Shunde District, Foshan City, Guangdong, China
| | - Ming Lu
- , 702, Building B, Hongqiao International Business Plaza, 2679 Hechuan Road, Minhang District, Shanghai, China
| | - Xia Zheng
- , 702, Building B, Hongqiao International Business Plaza, 2679 Hechuan Road, Minhang District, Shanghai, China
| | - Minmin Yu
- , 702, Building B, Hongqiao International Business Plaza, 2679 Hechuan Road, Minhang District, Shanghai, China
| |
Collapse
|
2
|
Boos D, Chuang TD, Abbasi A, Luzzi A, Khorram O. The immune landscape of uterine fibroids as determined by mass cytometry. F&S SCIENCE 2024; 5:272-282. [PMID: 38925276 PMCID: PMC11404535 DOI: 10.1016/j.xfss.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To study the differences in immune cell profiles in uterine fibroids (Fibs) and matched myometrium (Myo). DESIGN Observational study. SETTING Laboratory study. PATIENT(S) The study included tissue that was collected from 10 pairs of Fib and matched Myo from women, not on hormonal medications, undergoing hysterectomy and myomectomy. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Differences in immune cell and cytokine composition between Fib and matched Myo. RESULT(S) The mass cytometry analysis indicated that Fibs had a significantly higher number of natural killer (NK) cells, total macrophages, M2 macrophages, and conventional dendritic cells when compared with matched Myo from the same patient. In contrast, Fibs had significantly fewer CD3 and CD4 T cells when compared with Myo. The mass cytometry analysis results did not show any significant difference in the number of resting mast cells. Immunoflurorescent and immunohistochemical imaging confirmed the cytometry by time of flight results, showing a significantly higher number of NK cells, tryptase-positive mast cells indicative of mast cell activation, total macrophages, and M2 cells in Fibs and a significantly lower number of CD3 and CD4 T cells. The cytokine assay revealed significantly increased levels of human interferon α2, interleukin (IL)-1α, and platelet-derived growth factor AA and significantly lower levels of macrophage colony-stimulating factor and IL-1 receptor antagonist in Fib. CONCLUSION(S) Our results show significant differences in immune cell populations and cytokine levels between Fib and Myo. These differences could account for the increased inflammation in fib and a potential mechanism by which these tumors evade the immune system. These findings provide a foundation for further studies exploring the role of immune cells in Fib development.
Collapse
Affiliation(s)
- Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Asghar Abbasi
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Anna Luzzi
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Omid Khorram
- The Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, California.
| |
Collapse
|
3
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
4
|
Koushki M, Amiri-Dashatan N, Rezaei-Tavirani M, Robati RM, Fateminasab F, Rahimi S, Razzaghi Z, Farahani M. Screening the critical protein subnetwork to delineate potential mechanisms and protective agents associated with arsenic-induced cutaneous squamous cell carcinoma: A toxicogenomic study. Food Chem Toxicol 2024; 185:114451. [PMID: 38219847 DOI: 10.1016/j.fct.2024.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Recent studies show that complex mechanisms are involved in arsenic-induced malignant transformation of cells. This study aimed to decipher molecular mechanisms associated with arsenic-induced cutaneous squamous cell carcinoma (cSCC) and suggest potential protective factors. RNA-seq-based differentially expressed genes between arsenic-exposed human keratinocytes (HaCaT) and controls were used to construct a protein-protein interaction (PPI) network and discover critical subnetwork-based mechanisms. Protective compounds against arsenic toxicity were determined and their target interactions in the core sub-network were identified by the comparative toxicogenomic database (CTD). The binding affinity between the effective factor and target was calculated by molecular docking. A total of 15 key proteins were screened out as critical arsenic-responsive subnetwork (FN1, IL-1A, CCN2, PECAM1, FGF5, EDN1, FGF1, PXDN, DNAJB9, XBP1, ERN1, PDIA4, DNAJB11, FOS, PDIA6) and 7 effective protective agents were identified (folic acid, quercetin, zinc, acetylcysteine, methionine, catechin, selenium). The GeneMANIA predicted detailed interactions of the subnetwork and revealed terms related to unfolded protein response as the main processes. FN1, IL1A and CCN2, as top significant genes, had good docking affinity with folic acid and quercetin, as selected key compounds. Integration of gene expression and protein-protein interaction related to arsenic exposure in cSCC explored the potential mechanisms and protective agents.
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fateminasab
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Bourne CM, Taabazuing CY. Harnessing Pyroptosis for Cancer Immunotherapy. Cells 2024; 13:346. [PMID: 38391959 PMCID: PMC10886719 DOI: 10.3390/cells13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Cancer immunotherapy is a novel pillar of cancer treatment that harnesses the immune system to fight tumors and generally results in robust antitumor immunity. Although immunotherapy has achieved remarkable clinical success for some patients, many patients do not respond, underscoring the need to develop new strategies to promote antitumor immunity. Pyroptosis is an immunostimulatory type of regulated cell death that activates the innate immune system. A hallmark of pyroptosis is the release of intracellular contents such as cytokines, alarmins, and chemokines that can stimulate adaptive immune activation. Recent studies suggest that pyroptosis promotes antitumor immunity. Here, we review the mechanisms by which pyroptosis can be induced and highlight new strategies to induce pyroptosis in cancer cells for antitumor defense. We discuss how pyroptosis modulates the tumor microenvironment to stimulate adaptive immunity and promote antitumor immunity. We also suggest research areas to focus on for continued development of pyroptosis as an anticancer treatment. Pyroptosis-based anticancer therapies offer a promising new avenue for treating immunologically 'cold' tumors.
Collapse
Affiliation(s)
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
6
|
Yamada A, Wake K, Imaoka S, Motoyoshi M, Yamamoto T, Asano M. Analysis of the effects of importin α1 on the nuclear translocation of IL-1α in HeLa cells. Sci Rep 2024; 14:1322. [PMID: 38225348 PMCID: PMC10789739 DOI: 10.1038/s41598-024-51521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024] Open
Abstract
Interleukin-1α (IL-1α), a cytokine released by necrotic cells, causes sterile inflammation. On the other hand, IL-1α is present in the nucleus and also regulates the expression of many proteins. A protein substrate containing a classical nuclear localization signal (cNLS) typically forms a substrate/importin α/β complex, which is subsequently transported to the nucleus. To the best of our knowledge, no study has directly investigated whether IL-1α-which includes cNLS-is imported into the nucleus in an importin α/β-dependent manner. In this study, we noted that all detected importin α subtypes interacted with IL-1α. In HeLa cells, importin α1-mediated nuclear translocation of IL-1α occurred at steady state and was independent of importin β1. Importin α1 not only was engaged in IL-1α nuclear transport but also concurrently functioned as a molecule that regulated IL-1α protein level in the cell. Furthermore, we discussed the underlying mechanism of IL-1α nuclear translocation by importin α1 based on our findings.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Kiyotaka Wake
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Saya Imaoka
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Takenori Yamamoto
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima, 770-8503, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
7
|
Nenu I, Baldea I, Coadă CA, Crăciun RC, Moldovan R, Tudor D, Petrushev B, Toma VA, Ştefanescu H, Procopeţ B, Spârchez Z, Vodnar D, Lenghel M, Clichici S, Filip GA. Lactobacillus rhamnosus probiotic treatment modulates gut and liver inflammatory pathways in a hepatocellular carcinoma murine model. A preliminary study. Food Chem Toxicol 2024; 183:114314. [PMID: 38052407 DOI: 10.1016/j.fct.2023.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a growing global concern with an increasing incidence rate. The intestinal microbiota has been identified as a potential culprit in modulating the effects of antitumoral drugs. We aimed to assess the impact of adding Lactobacillus rhamnosus probiotic to regorafenib in mice with HCC. METHODS Cirrhosis and HCCs were induced in 56 male Swiss mice via diethylnitrosamine injection and carbon tetrachloride administration. Mice were divided into four groups: treated with vehicle (VC), regorafenib (Rego), L. rhamnosus probiotic, and a combination of regorafenib and probiotic (Rego-Pro). After 3 weeks of treatment, liver and intestinal fragments were collected for analysis. RESULTS Regorafenib elevated gut permeability, an effect mitigated by probiotic intervention, which exhibited a notable correlation with reduced inflammation (p < 0.01). iNOS levels were also reduced by adding the probiotic with respect to the mice treated with regorafenib only (p < 0.001). Notably, regorafenib substantially increased IL-6, TNF-a and TLR4 in intestinal fragments (p < 0.01). The administration of the probiotic effectively restored IL-6 to its initial levels (p < 0.001). CONCLUSION Reducing systemic and intestinal inflammation by administering L. rhamnosus probiotic may alleviate tumoral resistance and systemic adverse effects.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Ioana Baldea
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | | | - Rareş Călin Crăciun
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Remus Moldovan
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Diana Tudor
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Bobe Petrushev
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Experimental Biology and Biochemistry, Institute of Biological Research, Branch of NIRDBS, Cluj-Napoca, Romania; Department of Molecular and Biomolecular Physics, NIRD for Isotopic and Molecular Technologies, Cluj-Napoca, Romania.
| | - Horia Ştefanescu
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Bogdan Procopeţ
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Zeno Spârchez
- Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Dan Vodnar
- Department of Food Science University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Manuela Lenghel
- Radiology Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Simona Clichici
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Gabriela Adriana Filip
- Department of Functional Sciences, Physiology Discipline, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Kim ME, Lee JS. Immune Diseases Associated with Aging: Molecular Mechanisms and Treatment Strategies. Int J Mol Sci 2023; 24:15584. [PMID: 37958564 PMCID: PMC10647753 DOI: 10.3390/ijms242115584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Aging is associated with a decline in immune function, thereby causing an increased susceptibility to various diseases. Herein, we review immune diseases associated with aging, focusing on tumors, atherosclerosis, and immunodeficiency disorders. The molecular mechanisms underlying these conditions are discussed, highlighting telomere shortening, tissue inflammation, and altered signaling pathways, e.g., the mammalian target of the rapamycin (mTOR) pathway, as key contributors to immune dysfunction. The role of the senescence-associated secretory phenotype in driving chronic tissue inflammation and disruption has been examined. Our review underscores the significance of targeting tissue inflammation and immunomodulation for treating immune disorders. In addition, anti-inflammatory medications, including corticosteroids and nonsteroidal anti-inflammatory drugs, and novel approaches, e.g., probiotics and polyphenols, are discussed. Immunotherapy, particularly immune checkpoint inhibitor therapy and adoptive T-cell therapy, has been explored for its potential to enhance immune responses in older populations. A comprehensive analysis of immune disorders associated with aging and underlying molecular mechanisms provides insights into potential treatment strategies to alleviate the burden of these conditions in the aging population. The interplay among immune dysfunction, chronic tissue inflammation, and innovative therapeutic approaches highlights the importance of elucidating these complex processes to develop effective interventions to improve the quality of life in older adults.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Department of Biological Science, Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
10
|
Treewipanon N, Kasetsuwan N, Reinprayoon U, Satitpitakul V, Uthaithammarat L, Tanpowpong T. Efficacy of Interleukin-1β Inhibitor on Dry Eye Disease in Patients with Degenerative Arthritis. Clin Ophthalmol 2023; 17:2967-2974. [PMID: 37841899 PMCID: PMC10573358 DOI: 10.2147/opth.s419310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose To evaluate diacerein (interleukin-1β inhibitor) efficacy on ocular surface disease (OSD). Patients and Methods This prospective observational study included patients who received diacerein for osteoarthritis and had dry eye (DE). The primary outcome was corneal staining score. Secondary outcomes were ocular surface disease index (OSDI) score, tear breakup time (TBUT), tear osmolarity (Osm), Schirmer's test results, interleukin-1α (IL-1α), interleukin-1β (IL-1β), and interleukin-1 receptor antagonist (IL-1Ra) levels in tears. All measurements were done at baseline and 2-month follow-up visits. Linear mixed models were used to examine the effect of all parameters, and log-transformed models were used for IL-1α, IL-1β, and IL-1Ra analyses. Results Thirty-four patients (31 females and 3 males) were enrolled. The corneal staining score improved by 1.29 points (P=0.022, 95% confidence interval [95% CI] 0.19 to 2.40) after 2 months, and the OSDI score improved by 17.2 points (P<0.001, 95% CI 10.82 to 23.58) but TUBT decreased by 0.66 seconds (P=0.021, 95% CI 0.10 to 1.22). No significant differences were observed in the tear Osm and Schirmer's test. IL-1Ra demonstrated no statistical difference, IL-1α was significantly increased by 80% (P=0.260), and IL-1β was significantly decreased by 99.21% (P<0.001). Conclusion Diacerein can improve corneal staining and decrease IL-1β levels in tears, which reflects better DE symptoms. Diacerein may be a promising alternative treatment for patients with OSD and osteoarthritis.
Collapse
Affiliation(s)
- Nathapon Treewipanon
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ngamjit Kasetsuwan
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Cornea Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Usanee Reinprayoon
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Cornea Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vannarut Satitpitakul
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Cornea Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Lita Uthaithammarat
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thanathep Tanpowpong
- Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
11
|
Dhamdhere MR, Spiegelman DV, Schneper L, Erbe AK, Sondel PM, Spiegelman VS. Generation of Novel Immunocompetent Mouse Cell Lines to Model Experimental Metastasis of High-Risk Neuroblastoma. Cancers (Basel) 2023; 15:4693. [PMID: 37835389 PMCID: PMC10571844 DOI: 10.3390/cancers15194693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
NB, being a highly metastatic cancer, is one of the leading causes of cancer-related deaths in children. Increased disease recurrence and clinical resistance in patients with metastatic high-risk NBs (HR-NBs) result in poor outcomes and lower overall survival. However, the paucity of appropriate in vivo models for HR-NB metastasis has limited investigations into the underlying biology of HR-NB metastasis. This study was designed to address this limitation and develop suitable immunocompetent models for HR-NB metastasis. Here, we developed several highly metastatic immunocompetent murine HR-NB cell lines. Our newly developed cell lines show 100% efficiency in modeling experimental metastasis in C57BL6 mice and feature metastasis to the sites frequently observed in humans with HR-NB (liver and bone). In vivo validation demonstrated their specifically gained metastatic phenotype. The in vitro characterization of the cell lines showed increased cell invasion, acquired anchorage-independent growth ability, and resistance to MHC-I induction upon IFN-γ treatment. Furthermore, RNA-seq analysis of the newly developed cells identified a differentially regulated gene signature and an enrichment of processes consistent with their acquired metastatic phenotype, including extracellular matrix remodeling, angiogenesis, cell migration, and chemotaxis. The presented newly developed cell lines are, thus, suitable and promising tools for HR-NB metastasis and microenvironment studies in an immunocompetent system.
Collapse
Affiliation(s)
- Mayura R. Dhamdhere
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dan V. Spiegelman
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA; (D.V.S.); (P.M.S.)
| | - Lisa Schneper
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amy K. Erbe
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA; (D.V.S.); (P.M.S.)
| | - Paul M. Sondel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA; (D.V.S.); (P.M.S.)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Pan Y, Ikoma K, Matsui R, Nakayama A, Takemura N, Saitoh T. Dasatinib suppresses particulate-induced pyroptosis and acute lung inflammation. Front Pharmacol 2023; 14:1250383. [PMID: 37705538 PMCID: PMC10495768 DOI: 10.3389/fphar.2023.1250383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Background: Humans are constantly exposed to various industrial, environmental, and endogenous particulates that result in inflammatory diseases. After being engulfed by immune cells, viz. Macrophages, such particulates lead to phagolysosomal dysfunction, eventually inducing pyroptosis, a form of cell death accompanied by the release of inflammatory mediators, including members of the interleukin (IL)-1 family. Phagolysosomal dysfunction results in the activation of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, an immune complex that induces pyroptosis upon exposure to various external stimuli. However, several particulates induce pyroptosis even if the NLRP3 inflammasome is inhibited; this indicates that such inhibition is not always effective in treating diseases induced by particulates. Therefore, discovery of drugs suppressing particulate-induced NLRP3-independent pyroptosis is warranted. Methods: We screened compounds that inhibit silica particle (SP)-induced cell death and release of IL-1α using RAW264.7 cells, which are incapable of NLRP3 inflammasome formation. The candidates were tested for their ability to suppress particulate-induced pyroptosis and phagolysosomal dysfunction using mouse primary macrophages and alleviate SP-induced NLRP3-independent lung inflammation. Results: Several Src family kinase inhibitors, including dasatinib, effectively suppressed SP-induced cell death and IL-1α release. Furthermore, dasatinib suppressed pyroptosis induced by other particulates but did not suppress that induced by non-particulates, such as adenosine triphosphate. Dasatinib reduced SP-induced phagolysosomal dysfunction without affecting phagocytosis of SPs. Moreover, dasatinib treatment strongly suppressed the increase in IL-1α levels and neutrophil counts in the lungs after intratracheal SP administration. Conclusion: Dasatinib suppresses particulate-induced pyroptosis and can be used to treat relevant inflammatory diseases.
Collapse
Affiliation(s)
- Yixi Pan
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kenta Ikoma
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Risa Matsui
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Naoki Takemura
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
14
|
Monterde B, Rojano E, Córdoba-Caballero J, Seoane P, Perkins JR, Medina MÁ, Ranea JAG. Integrating differential expression, co-expression and gene network analysis for the identification of common genes associated with tumor angiogenesis deregulation. J Biomed Inform 2023; 144:104421. [PMID: 37315831 DOI: 10.1016/j.jbi.2023.104421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Angiogenesis is essential for tumor growth and cancer metastasis. Identifying the molecular pathways involved in this process is the first step in the rational design of new therapeutic strategies to improve cancer treatment. In recent years, RNA-seq data analysis has helped to determine the genetic and molecular factors associated with different types of cancer. In this work we performed integrative analysis using RNA-seq data from human umbilical vein endothelial cells (HUVEC) and patients with angiogenesis-dependent diseases to find genes that serve as potential candidates to improve the prognosis of tumor angiogenesis deregulation and understand how this process is orchestrated at the genetic and molecular level. We downloaded four RNA-seq datasets (including cellular models of tumor angiogenesis and ischaemic heart disease) from the Sequence Read Archive. Our integrative analysis includes a first step to determine differentially and co-expressed genes. For this, we used the ExpHunter Suite, an R package that performs differential expression, co-expression and functional analysis of RNA-seq data. We used both differentially and co-expressed genes to explore the human gene interaction network and determine which genes were found in the different datasets that may be key for the angiogenesis deregulation. Finally, we performed drug repositioning analysis to find potential targets related to angiogenesis inhibition. We found that that among the transcriptional alterations identified, SEMA3D and IL33 genes are deregulated in all datasets. Microenvironment remodeling, cell cycle, lipid metabolism and vesicular transport are the main molecular pathways affected. In addition to this, interacting genes are involved in intracellular signaling pathways, especially in immune system and semaphorins, respiratory electron transport and fatty acid metabolism. The methodology presented here can be used for finding common transcriptional alterations in other genetically-based diseases.
Collapse
Affiliation(s)
- Beatriz Monterde
- Departamento de Señalización Celular y Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC., C/Albert Einstein, 22, Santander, 39011, Spain
| | - Elena Rojano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
| | - José Córdoba-Caballero
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Avda. Ana de Viya, 21, Cádiz, 11009, Spain
| | - Pedro Seoane
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain; CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain.
| | - James R Perkins
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain; CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain; CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Juan A G Ranea
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain; CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain; Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), C/ Sinesio Delgado, 4, Madrid, 28029, Spain
| |
Collapse
|
15
|
Blockade of IL-1α and IL-1β signaling by the anti-IL1RAP antibody nadunolimab (CAN04) mediates synergistic anti-tumor efficacy with chemotherapy. Cancer Immunol Immunother 2023; 72:667-678. [PMID: 36036818 DOI: 10.1007/s00262-022-03277-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
IL-1α and IL-1β are both involved in several aspects of tumor biology, including tumor initiation, progression, metastasis, and not least in resistance to various therapies. IL-1α can function as an alarmin to signal cellular stress, and acts to induce downstream events, including production of IL-1β, to amplify the signal. Both IL-1α and IL-1β act through the same receptor complex, IL-1R1-IL1RAP, to mediate signal transduction. IL1RAP is expressed on tumor cells and in the tumor microenvironment by for example CAF, macrophages and endothelial cells. The anti-IL1RAP antibody nadunolimab (CAN04) inhibits both IL-1α and IL-1β signaling and induces ADCC of IL1RAP-expressing tumor cells. As both IL-1α and IL-1β mediate chemoresistance, the aim of this study was to explore the potential synergy between nadunolimab and chemotherapy. This was performed using the NSCLC PDX model LU2503 and the syngeneic MC38 model, in addition to in vitro cell line experiments. We show that chemotherapy induces expression and release of IL-1α from tumor cells and production of IL-1β-converting enzyme, ICE, in the tumor stroma. IL-1α is also demonstrated to act on stromal cells to further induce the secretion of IL-1β, an effect disrupted by nadunolimab. Nadunolimab, and its surrogate antibody, synergize with platinum-based as well as non-platinum-based chemotherapy to induce potent anti-tumor effects, while blockade of only IL-1β signaling by anti-IL-1β antibody does not achieve this effect. In conclusion, blockade of IL1RAP with nadunolimab reduces IL-1-induced chemoresistance of tumors.
Collapse
|
16
|
Cheng KJ, Mohamed EHM, Syafruddin SE, Ibrahim ZA. Interleukin-1 alpha and high mobility group box-1 secretion in polyinosinic:polycytidylic-induced colorectal cancer cells occur via RIPK1-dependent mechanism and participate in tumourigenesis. J Cell Commun Signal 2023; 17:189-208. [PMID: 35534784 PMCID: PMC10030748 DOI: 10.1007/s12079-022-00681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022] Open
Abstract
Pathogenic infections have significant roles in the pathogenesis of colorectal cancer (CRC). These infections induce the secretion of various damage-associated molecular patterns (DAMPs) including interleukin-1 alpha (IL-1α) and high mobility group box-1 (HMGB1). Despite their implication in CRC pathogenesis, the mechanism(s) that modulate the secretion of IL-1α and HMGB1, along with their roles in promoting CRC tumourigenesis remain poorly understood. To understand the secretory mechanism, HT-29 and SW480 cells were stimulated with infectious mimetics; polyinosinic:polycytidylic acid [Poly(I:C)], lipopolysaccharide (LPS) and pro-inflammatory stimuli; tumour necrosis factor-alpha (TNF-α). IL-1α and HMGB1 secretion levels upon stimulation were determined via ELISA. Mechanism(s) mediating IL-1α and HMGB1 secretion in CRC cells were characterized using pharmacological inhibitors and CRISPR-Cas9 gene editing targeting relevant pathways. Recombinant IL-1α and HMGB1 were utilized to determine their impact in modulating pro-tumourigenic properties of CRC cells. Pharmacological inhibition showed that Poly(I:C)-induced IL-1α secretion was mediated through endoplasmic reticulum (ER) stress and RIPK1 signalling pathway. The secretion of HMGB1 was RIPK1-dependent but independent of ER stress. RIPK1-targeted CRC cell pools exhibited decreased cell viability upon Poly(I:C) stimulation, suggesting a potential role of RIPK1 in CRC cells survival. IL-1α has both growth-promoting capabilities and stimulates the production of pro-metastatic mediators, while HMGB1 only exhibits the latter; with its redox status having influence. We demonstrated a potential role of RIPK1-dependent signalling pathway in mediating the secretion of IL-1α and HMGB1 in CRC cells, which in turn enhances CRC tumorigenesis. RIPK1, IL-1α and HMGB1 may serve as potential therapeutic targets to mitigate CRC progression.
Collapse
Affiliation(s)
- Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Deding U, Clausen BH, Al-Najami I, Baatrup G, Jensen BL, Kobaek-Larsen M. Effect of Oral Intake of Carrot Juice on Cyclooxygenases and Cytokines in Healthy Human Blood Stimulated by Lipopolysaccharide. Nutrients 2023; 15:nu15030632. [PMID: 36771338 PMCID: PMC9920447 DOI: 10.3390/nu15030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
In vitro studies and animal studies have shown that chemical compounds contained in carrots, such as falcarinol and falcarindiol, can prevent inflammation. The present study was designed to test whether the oral intake of carrot juice containing falcarinol and falcarindiol affects the activity of cyclooxygenase (COX) enzymes and the secretion of inflammatory cytokines in human blood. Carrot juice (500 mL) was administered orally to healthy volunteers, and blood samples were drawn before and 1 h after juice intake at the time point when peak concentrations of falcarinol and falcariondiol have been shown in the blood. The blood samples were divided, and one sample was allowed to coagulate for 1 h at room temperature before analyzing the synthesis of thromboxane B2 (TBX2) by the COX1 enzyme using an enzyme linked immunosorbent assay (ELISA). The other blood samples were stimulated ex vivo with lipopolysaccharide and incubated at 37 °C for 24 h. The ELISA and cytokine multiplex analysis assessed the levels of COX-2-induced prostaglandin E2 (PGE2) and inflammatory markers interleukin (IL) 1α, IL1β, IL6, IL16, and tumor necrosis factor α (TNFα). Inflammatory cytokines such as IL1α and IL16 were significantly reduced in the LPS stimulated blood samples with higher concentrations of falcarinol and falcariondiol compared to the control samples taken before the intake of carrot juice. The levels of TBX2, PGE2, IL1β, IL6, and TNFα were not affected by the carrot juice intake blood samples not stimulated with LPS. In conclusion, carrot juice rich in the polyacetylens falcarinol and falcarindiol affects blood leukocytes, priming them to better cope with inflammatory conditions, evident by the reduced secretion of the proinflammatory cytokines IL1α and IL16.
Collapse
Affiliation(s)
- Ulrik Deding
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Issam Al-Najami
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Gunnar Baatrup
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Boye Lagerbon Jensen
- Cardiovascular and Renal Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Kobaek-Larsen
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Correspondence: ; Tel.: +45-2461-3161
| |
Collapse
|
18
|
Virgilio T, Bordini J, Cascione L, Sartori G, Latino I, Molina Romero D, Leoni C, Akhmedov M, Rinaldi A, Arribas AJ, Morone D, Seyed Jafari SM, Bersudsky M, Ottolenghi A, Kwee I, Chiaravalli AM, Sessa F, Hunger RE, Bruno A, Mortara L, Voronov E, Monticelli S, Apte RN, Bertoni F, Gonzalez SF. Subcapsular Sinus Macrophages Promote Melanoma Metastasis to the Sentinel Lymph Nodes via an IL1α-STAT3 Axis. Cancer Immunol Res 2022; 10:1525-1541. [PMID: 36206577 PMCID: PMC9716256 DOI: 10.1158/2326-6066.cir-22-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
During melanoma metastasis, tumor cells originating in the skin migrate via lymphatic vessels to the sentinel lymph node (sLN). This process facilitates tumor cell spread across the body. Here, we characterized the innate inflammatory response to melanoma in the metastatic microenvironment of the sLN. We found that macrophages located in the subcapsular sinus (SS) produced protumoral IL1α after recognition of tumoral antigens. Moreover, we confirmed that the elimination of LN macrophages or the administration of an IL1α-specific blocking antibody reduced metastatic spread. To understand the mechanism of action of IL1α in the context of the sLN microenvironment, we applied single-cell RNA sequencing to microdissected metastases obtained from animals treated with the IL1α-specific blocking antibody. Among the different pathways affected, we identified STAT3 as one of the main targets of IL1α signaling in metastatic tumor cells. Moreover, we found that the antitumoral effect of the anti-IL1α was not mediated by lymphocytes because Il1r1 knockout mice did not show significant differences in metastasis growth. Finally, we found a synergistic antimetastatic effect of the combination of IL1α blockade and STAT3 inhibition with stattic, highlighting a new immunotherapy approach to preventing melanoma metastasis.
Collapse
Affiliation(s)
- Tommaso Virgilio
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Joy Bordini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,GenomSys SA, Lugano, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Irene Latino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniel Molina Romero
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Murodzhon Akhmedov
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alberto J. Arribas
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - S. Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ivo Kwee
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Anna Maria Chiaravalli
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Robert E. Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy.,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Francesco Bertoni
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Santiago F. Gonzalez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Corresponding Author: Santiago F. Gonzalez, Institute for Research in Biomedicine, via Francesco Chiesa 5. CH-6500 Bellinzona. Switzerland. Phone: +41 58 666 7226; E-mail:
| |
Collapse
|
19
|
Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol Cancer 2022; 21:177. [PMID: 36071472 PMCID: PMC9454207 DOI: 10.1186/s12943-022-01645-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.
Collapse
Affiliation(s)
- Ruixue Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
20
|
Tezcan G, Alsaadi M, Hamza S, Garanina EE, Martynova EV, Ziganshina GR, Farukshina ER, Rizvanov AA, Khaiboullina SF. Azithromycin and Ceftriaxone Differentially Activate NLRP3 in LPS Primed Cancer Cells. Int J Mol Sci 2022; 23:ijms23169484. [PMID: 36012769 PMCID: PMC9409354 DOI: 10.3390/ijms23169484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Cancer patients are prescribed antibiotics, such as macrolides and lactamides, for infection treatment. However, the effect of these antibiotics on NLRP3 activation remains largely unknown. Method: Lung cancer (A549) and prostate cancer (PC3) cell lines were primed with lipopolysaccharide (LPS) to activate NLRP3 transcription. Cells were then treated with azithromycin (Az) or ceftriaxone (Cf). NLRP3 activation was analyzed by qPCR, Western blot, and ELISA. Cell growth and viability were assessed by real-time cell analysis and Annexin V expression. Levels of 41 cytokines were also analyzed using a multiplex assay. Results: LPS-Az activated transcription of NLRP3, Pro-CASP-1, and Pro-IL-1β in A549 cells, while failing to upregulate NLRP3 and Pro-IL-1β in PC3 cells. LPS-Az decreased the secretion of pro-inflammatory cytokines while it induced the pro-angiogenic factors in A549 and PC3 cells. In contrast, LPS-Cf suppressed the expression of NLRP3-associated genes, NLRP3 protein expression, the inflammatory cytokine secretion in A549 and PC3 cells. LPS-Az and LPS-Cf had a limited effect on cell growth and viability. Discussion: Our data suggest that Cf could suppress LPS induced NLRP3, which should be considered when selecting antibiotics for cancer treatment. In contrast, the effect of Az on LPS primed NLRP3 and the inflammatory cytokines production appears to depend on the cancer cell origin. Therefore, these data indicate that considerations are required when selecting Az for the treatment of cancer patients.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa 16059, Turkey
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina V. Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Gulshat R. Ziganshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elina R. Farukshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: or
| |
Collapse
|
21
|
High Levels of Progesterone Receptor B in MCF-7 Cells Enable Radical Anti-Tumoral and Anti-Estrogenic Effect of Progestin. Biomedicines 2022; 10:biomedicines10081860. [PMID: 36009407 PMCID: PMC9405688 DOI: 10.3390/biomedicines10081860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The widely reported conflicting effects of progestin on breast cancer suggest that the progesterone receptor (PR) has dual functions depending on the cellular context. Cell models that enable PR to fully express anti-tumoral properties are valuable for the understanding of molecular determinant(s) of the anti-tumoral property. This study evaluated whether the expression of high levels of PR in MCF-7 cells enabled a strong anti-tumoral response to progestin. MCF-7 cells were engineered to overexpress PRB by stable transfection. A single dose of Promegestone (R5020) induced an irreversible cell growth arrest and senescence-associated secretory phenotype in MCF-7 cells with PRB overexpression (MCF-7PRB cells) but had no effect on MCF-7 cells with PRA overexpression. The growth-arresting effect was associated with downregulations of cyclin A2 and B1, CDK2, and CDK4 despite an initial upregulation of cyclin A2 and B1. R5020 also induced an evident activation of Nuclear Factor κB (NF-κB) and upregulation of interleukins IL-1α, IL-1β, and IL-8. Although R5020 caused a significant increase of CD24+CD44+ cell population, R5020-treated MCF-7PRB cells were unable to form tumorspheres and underwent massive apoptosis, which is paradoxically associated with marked downregulations of the pro-apoptotic proteins BID, BAX, PARP, and Caspases 7 and 8, as well as diminution of anti-apoptotic protein BCL-2. Importantly, R5020-activated PRB abolished the effect of estrogen. This intense anti-estrogenic effect was mediated by marked downregulation of ERα and pioneer factor FOXA1, leading to diminished chromatin-associated ERα and FOXA1 and estrogen-induced target gene expression. In conclusion, high levels of agonist-activated PRB in breast cancer cells can be strongly anti-tumoral and anti-estrogenic despite the initial unproductive cell cycle acceleration. Repression of ERα and FOXA1 expression is a major mechanism for the strong anti-estrogenic effect.
Collapse
|
22
|
Lin D, Mei Y, Lei L, Binte Hanafi Z, Jin Z, Liu Y, Song Y, Zhang Y, Hu B, Liu C, Lu J, Liu H. Immune suppressive function of IL-1α release in the tumor microenvironment regulated by calpain 1. Oncoimmunology 2022; 11:2088467. [PMID: 35756844 PMCID: PMC9225674 DOI: 10.1080/2162402x.2022.2088467] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-1α (IL-1α) plays an important role in inflammation and hematopoiesis. Many tumors have increased IL-1α expression. However, the immune regulatory role of secreted IL-1α in tumor development and whether it can be targeted for cancer therapy are still unclear. Here, we found that tumoral-secreted IL-1α significantly promoted hepatocellular carcinoma (HCC) development in vivo. Tumoral-released IL-1α were found to inhibit T and NK cell activation, and the killing capacity of CD8+ T cells. Moreover, MDSCs were dramatically increased by tumoral-released IL-1α in both spleens and tumors. Indeed, higher tumoral IL-1α expression is associated with increased tumoral infiltration of MDSCs in HCC patients. Further studies showed that tumoral-released IL-1α promoted MDSC recruitment to the tumor microenvironment through a CXCR2-dependent mechanism. Depletion of MDSCs could diminish the tumor-promoting effect of tumoral-released IL-1α. On the contrary, systemic administration of recombinant IL-1α protein significantly inhibited tumor development by activating T cells. In fact, IL-1α protein could promote T cell activation and enhance the cytotoxicity of CD8+ T cells in vitro. Thus, our study demonstrated that tumoral-released IL-1α promoted tumor development through recruiting MDSCs to inhibit T cell activation, while systemic IL-1α directly promoted anti-tumor T cell responses. We further identified calpain 1 as the major intracellular protease mediating tumoral IL-1α secretion. Calpain 1 KO tumors had diminished IL-1α release and reduced tumor development. Thus, our findings provide new insights into the functions of secreted IL-1α in tumor immunity and its implications for immunotherapy.
Collapse
Affiliation(s)
- Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Yu Mei
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Zuhairah Binte Hanafi
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Yonghao Liu
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yuan Song
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yinsheng Zhang
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Chunliang Liu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Jinhua Lu
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Glioblastoma Multiforme-Literature Review. Cancers (Basel) 2022; 14:2412. [PMID: 35626018 PMCID: PMC9139611 DOI: 10.3390/cancers14102412] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive malignancies, with a median overall survival of approximately 15 months. In this review, we analyze the pathogenesis of GBM, as well as epidemiological data, by age, gender, and tumor location. The data indicate that GBM is the higher-grade primary brain tumor and is significantly more common in men. The risk of being diagnosed with glioma increases with age, and median survival remains low, despite medical advances. In addition, it is difficult to determine clearly how GBM is influenced by stimulants, certain medications (e.g., NSAIDs), cell phone use, and exposure to heavy metals.
Collapse
Affiliation(s)
- Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48 St., 71-210 Szczecin, Poland
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| |
Collapse
|
24
|
Macleod T, Berekmeri A, Bridgewood C, Stacey M, McGonagle D, Wittmann M. The Immunological Impact of IL-1 Family Cytokines on the Epidermal Barrier. Front Immunol 2022; 12:808012. [PMID: 35003136 PMCID: PMC8733307 DOI: 10.3389/fimmu.2021.808012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
The skin barrier would not function without IL-1 family members, but their physiological role in the immunological aspects of skin barrier function are often overlooked. This review summarises the role of IL-1 family cytokines (IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37 and IL-38) in the skin. We focus on novel aspects of their interaction with commensals and pathogens, the important impact of proteases on cytokine activity, on healing responses and inflammation limiting mechanisms. We discuss IL-1 family cytokines in the context of IL-4/IL-13 and IL-23/IL-17 axis-driven diseases and highlight consequences of human loss/gain of function mutations in activating or inhibitory pathway molecules. This review highlights recent findings that emphasize the importance of IL-1 family cytokines in both physiological and pathological cutaneous inflammation and emergent translational therapeutics that are helping further elucidate these cytokines.
Collapse
Affiliation(s)
- Tom Macleod
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Anna Berekmeri
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Martin Stacey
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
25
|
Abstract
Interleukin-1 (IL-1) is an inflammatory cytokine associated with tumor invasiveness and metastasis. We recently found that baseline IL-1 in melanomas promoted resistance to immunotherapy by creating an immunosuppressive tumor microenvironment and that IL-1 produced in response to CD40 agonist also induced resistance to therapy. Here, we discuss how naturally occurring and immunotherapy-induced IL-1 in tumors causes immune suppression and resistance to immunotherapy, and we discuss targeting the IL-1 pathway to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zhilan Xiao
- Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shubhra Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manisha Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Innate-Immunity Genes in Obesity. J Pers Med 2021; 11:jpm11111201. [PMID: 34834553 PMCID: PMC8623883 DOI: 10.3390/jpm11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
The main functions of adipose tissue are thought to be storage and mobilization of the body’s energy reserves, active and passive thermoregulation, participation in the spatial organization of internal organs, protection of the body from lipotoxicity, and ectopic lipid deposition. After the discovery of adipokines, the endocrine function was added to the above list, and after the identification of crosstalk between adipocytes and immune cells, an immune function was suggested. Nonetheless, it turned out that the mechanisms underlying mutual regulatory relations of adipocytes, preadipocytes, immune cells, and their microenvironment are complex and redundant at many levels. One possible way to elucidate the picture of adipose-tissue regulation is to determine genetic variants correlating with obesity. In this review, we examine various aspects of adipose-tissue involvement in innate immune responses as well as variants of immune-response genes associated with obesity.
Collapse
|
27
|
Mohapatra PK, Srivastava R, Varshney KK, Babu SH. Formulation and Evaluation of Isradipine Nanosuspension and Exploring its Role as a Potential Anticancer Drug by Computational Approach. Anticancer Agents Med Chem 2021; 22:1984-2001. [PMID: 34353274 DOI: 10.2174/1871520621666210805125426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND T-type calcium channels are aberrantly expressed in different human cancers and regulate cell cycle progression, proliferation, migration, and survival. FAK-1 can promote tumor protein degradation (p53) through ubiquitination, leading to cancer cell growth and proliferation. Similar findings are obtained regarding protease inhibitors' effect on cytokine-induced neutrophil activation that suppresses Granulocyte-macrophage colony-stimulating-factor (GM-CSF) TNF-α-induced O2 release and adherence in human neutrophils without affecting phosphorylation of Extracellular signal-regulated kinase (ERK) and p38. Nanosuspensions are carrier-free, submicron colloidal dispersions which consist of pure drugs and stabilizers. Incorporating drug loaded in nanosuspensions possessed great advantages of passive drug targeting with improved solubility, stability, and bioavailability, as well as lower systemic toxicity. OBJECTIVE The present investigation objective was to establish a molecular association of Protease and Focal Adhesion Kinase 1 as cancer targets for isradipine a calcium channel blocker (CCB). Furthermore, the study also aimed to formulate its optimized nanosuspension and how the physical, morphological, and dissolution properties of isradipine impact nanosuspension stability. MATERIAL AND METHOD Five different molecular targets, namely Cysteine Proteases (Cathepsin B), Serine Proteases (Matriptase), Aspartate Proteases, Matrix Metalloproteases (MMP), and FAK-1 were obtained from RCSB-PDB, which has some leading associations with the inhibition in cancer pathogenesis. Molecular interactions of these targets with CCB isradipine were identified and established by the molecular simulation docking studies. Isradipine-loaded nanosuspension was prepared by precipitation technique by employing a 23 factorial design. PVP K-30, poloxamer 188, and sodium lauryl sulfate (SLS) were used as polymer, co-polymer, and surfactant. The nanosuspension particles are characterized for particle size, zeta potential, viscosity, polydispersity index (PDI), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), In-vitro drug release kinetics, and short-term stability study. RESULT It was found to show considerable interaction with Cysteine, Serine, Aspartate, Threonine, and Matrix metalloproteases with the binding energy of -3.91, -6.7, -3.48, -8.42, respectively. Furthermore, the interaction of isradipine with FAK-1 was compared with 7 native ligands and was found to show significant interaction with a binding energy of -8.62, -7.27, -7.69, -5.67, -5.41, -7.44, -8.21. The optimized nanosuspension was evaluated and exhibited the particle size of 754.9 nm, zeta potential of 32.5 mV, the viscosity of 1.287 cp, and PDI of 1.000. The in-vitro dissolution of the optimized formulation (F8) was higher (96.57%). CONCLUSION Isradipine could act as a potential inhibitor of different proteases and FAK-1 associated with tumor growth initiation, progression, and metastasis. Furthermore, isradipine-loaded nanosuspension with optimized release could be utilized to deliver the anticancer drug in a more targeted way as emerging cancer nanotechnology.
Collapse
Affiliation(s)
- Prasanta Kumar Mohapatra
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh. India
| | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh. India
| | - Krishna Kumar Varshney
- Moradabad Institute of Technology (MIT) College of Pharmacy, Moradabad, Uttar Pradesh. India
| | - S Haresh Babu
- Lydia College of Pharmacy, Ravulapalem, Andhra Pradesh. India
| |
Collapse
|