1
|
Li X, Hallajzadeh J. Circulating microRNAs and physical activity: Impact in diabetes. Clin Chim Acta 2025; 569:120178. [PMID: 39900127 DOI: 10.1016/j.cca.2025.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
The term "ci-miRNAs," or "circulating microRNAs," refers to extracellular microRNAs (miRNAs) that exist outside of cells and can be detected in various bodily fluids, including blood, saliva, urine, and breast milk. These ci-miRNAs play a role in regulating gene expression and are mainly recognized for their functions beyond the cell, serving as signaling molecules in the blood. Researchers have thoroughly investigated the roles of these circulating miRNAs in various diseases. The capacity to detect and quantify ci-miRNAs in bodily fluids suggests their potential as biomarkers for monitoring several health conditions, including cancer, heart disease, brain disorders, and metabolic disorders, where fluctuations in miRNA levels may correlate with different physiological and pathological states. Current methods enable researchers to identify and measure miRNAs in these fluids, facilitating the exploration of their roles in health maintenance and disease resistance. Although research on ci-miRNAs is ongoing, recent studies focus on uncovering their significance, assessing their viability as biomarkers, and clarifying their functions. However, our understanding of how various types, intensities, and durations of exercise influence the levels of these miRNAs in the bloodstream is still limited. This section seeks to provide an overview of the changes in ci-miRNAs in response to exercise.
Collapse
Affiliation(s)
- Xiu Li
- Shanghai Minyuan College, Shanghai 201210, China.
| | - Jamal Hallajzadeh
- Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
2
|
He L, Wang X, Chen X. Unveiling the role of microRNAs in metabolic dysregulation of Gestational Diabetes Mellitus. Reprod Biol 2024; 24:100924. [PMID: 39013209 DOI: 10.1016/j.repbio.2024.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024]
Abstract
Gestational Diabetes Mellitus (GDM) presents a significant health concern globally, necessitating a comprehensive understanding of its metabolic intricacies for effective management. MicroRNAs (miRNAs) have emerged as pivotal regulators in GDM pathogenesis, influencing glucose metabolism, insulin signaling, and lipid homeostasis during pregnancy. Dysregulated miRNA expression, both upregulated and downregulated, contributes to GDM-associated metabolic abnormalities. Ethnic and temporal variations in miRNA expression underscore the multifaceted nature of GDM susceptibility. This review examines the dysregulation of miRNAs in GDM and their regulatory functions in metabolic disorders. We discuss the involvement of specific miRNAs in modulating key pathways implicated in GDM pathogenesis, such as glucose metabolism, insulin signaling, and lipid homeostasis. Furthermore, we explore the potential diagnostic and therapeutic implications of miRNAs in GDM management, highlighting the promise of miRNA-based interventions for mitigating the adverse consequences of GDM on maternal and offspring health.
Collapse
Affiliation(s)
- Ling He
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Chen
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Mou Y, Sun Y, Liu G, Zhang N, He Z, Gu S. Screening of differentially expressed RNAs and identifying a ceRNA axis during cadmium-induced oxidative damage in pancreatic β cells. Sci Rep 2024; 14:18962. [PMID: 39152192 PMCID: PMC11329516 DOI: 10.1038/s41598-024-69937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Cadmium, a common metal pollutant, has been demonstrated to induce type 2 diabetes by disrupting pancreatic β cells function. In this study, transcriptome microarray was utilized to identify differential gene expression in oxidative damage to pancreatic β cells following cadmium exposure. The results indicated that a series of mRNAs, LncRNAs, and miRNAs were altered. Of the differentially expressed miRNAs, miR-29a-3p exhibited the most pronounced alteration, with an 11.62-fold increase relative to the control group. Following this, the target gene of miR-29a-3p was identified as Col3a1 through three databases (miRDB, miRTarbase and Tarbase), which demonstrated a decrease across the transcriptome microarray. The upstream target gene of miR-29a-3p was identified as NONMMUT036805, with decreased expression observed in the microarray. Finally, the expression trend of NONMMUT036805/miR-29a-3p/Col3a1 was reversed following NAC pretreatment. This was accompanied by a reduction in oxidative damage indicators, MDA/ROS/GSH-Px appeared to be negatively affected to varying degrees. In conclusion, this study has demonstrated that multiple RNAs are altered during cadmium exposure-induced oxidative damage in pancreatic β cells. The NONMMUT036805/miR-29a-3p/Col3a1 axis has been shown to be involved in this process, which provides a foundation for the identification of potential targets for cadmium toxicity intervention.
Collapse
Affiliation(s)
- Yahao Mou
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
- Sichuan Tianfu New Area Public Health Center, Zhengxing Street, Chengdu, Sichuan, 610218, People's Republic of China
| | - Yifei Sun
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
| | - Nan Zhang
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China.
| |
Collapse
|
4
|
Toljic M, Nikolic N, Joksic I, Carkic J, Munjas J, Karadzov Orlic N, Milasin J. Expression of miRNAs and proinflammatory cytokines in pregnant women with gestational diabetes mellitus. J Reprod Immunol 2024; 162:104211. [PMID: 38342070 DOI: 10.1016/j.jri.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Altered microRNAs (miRNAs1) and cytokines expression levels are associated with several pregnancy-induced complications. We evaluated the profile of circulating miRNAs (miR-17, miR-29a and miR-181a) and proinflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-17) in women with gestational diabetes mellitus (GDM2), as well as their potential use as GDM biomarkers. The case-control study included 65 pregnant women divided into 2 groups - GDM and control. Expression levels of miRNAs in plasma samples and cytokines mRNA isolated from peripheral blood buffy coat were analyzed by quantitative real-time PCR (qPCR3). Significant miR-29a downregulation was found in GDM compared to the control group, and was even more significant after adjustments for covariates. miR-17 and miR-181a expression levels did not differ between the examined groups. Expression levels of IL-1β were significantly higher in GDM group compared to controls, while TNF-α, IL-6 and IL-17 did not show significant changes in expression between the two groups. As jugded from the ROC curve analysis, miR-29a and IL-1β had a significant capacity to discriminate between CG and GDM. Additionally, a positive correlation was established between IL-1β and TNF-α in the GDM group. GDM appeared to be associated with altered levels of miR-29a and IL-1β making them markers of this condition.
Collapse
Affiliation(s)
- Mina Toljic
- Genetic Laboratory Department, Obstetrics and Gynecology Clinic "Narodni Front", Kraljice Natalije Street 62, 11000 Belgrade, Serbia
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| | - Ivana Joksic
- Genetic Laboratory Department, Obstetrics and Gynecology Clinic "Narodni Front", Kraljice Natalije Street 62, 11000 Belgrade, Serbia.
| | - Jelena Carkic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Natasa Karadzov Orlic
- High-Risk Pregnancy Department, Obstetrics and Gynecology Clinic "Narodni Front", School of Medicine, University of Belgrade, Kraljice Natalije Street 62, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Xue B, Kadeerhan G, Sun LB, Chen YQ, Hu XF, Zhang ZK, Wang DW. Circulating exosomal miR-16-5p and let-7e-5p are associated with bladder fibrosis of diabetic cystopathy. Sci Rep 2024; 14:837. [PMID: 38191820 PMCID: PMC10774280 DOI: 10.1038/s41598-024-51451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Diabetic cystopathy (DCP) is a prevalent etiology of bladder dysfunction in individuals with longstanding diabetes, frequently leading to bladder interstitial fibrosis. Research investigating the initial pathological alterations of DCP is notably scarce. To comprehend the development of fibrosis and find effective biomarkers for its diagnosis, we prepared streptozotocin-induced long-term diabetic SD rats exhibiting a type 1 diabetes phenotype and bladder fibrosis in histology detection. After observing myofibroblast differentiation from rats' primary bladder fibroblasts with immunofluorescence, we isolated fibroblasts derived exosomes and performed exosomal miRNA sequencing. The co-differentially expressed miRNAs (DEMis) (miR-16-5p and let-7e-5p) were screened through a joint analysis of diabetic rats and long-term patients' plasma data (GES97123) downloaded from the GEO database. Then two co-DEMis were validated by quantitative PCR on exosomes derived from diabetic rats' plasma. Following with a series of analysis, including target mRNAs and transcription factors (TFs) prediction, hubgenes identification, protein-protein interaction (PPI) network construction and gene enrichment analysis, a miRNA-mediated genetic regulatory network consisting of two miRNAs, nine TFs, and thirty target mRNAs were identified in relation to fibrotic processes. Thus, circulating exosomal miR-16-5p and let-7e-5p are associated with bladder fibrosis of DCP, and the crucial genes in regulatory network might hold immense significance in studying the pathogenesis and molecular mechanisms of fibrosis, which deserves further exploration.
Collapse
Affiliation(s)
- Bo Xue
- Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Gaohaer Kadeerhan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Li-Bin Sun
- Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Xiao-Feng Hu
- Shanxi Medical University, Taiyuan, 030001, China
| | | | - Dong-Wen Wang
- Shanxi Medical University, Taiyuan, 030001, China.
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
6
|
Lizárraga D, Gómez-Gil B, García-Gasca T, Ávalos-Soriano A, Casarini L, Salazar-Oroz A, García-Gasca A. Gestational diabetes mellitus: genetic factors, epigenetic alterations, and microbial composition. Acta Diabetol 2024; 61:1-17. [PMID: 37660305 DOI: 10.1007/s00592-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder, usually diagnosed during the third trimester of pregnancy that usually disappears after delivery. In GDM, the excess of glucose, fatty acids, and amino acids results in foetuses large for gestational age. Hyperglycaemia and insulin resistance accelerate the metabolism, raising the oxygen demand, and creating chronic hypoxia and inflammation. Women who experienced GDM and their offspring are at risk of developing type-2 diabetes, obesity, and other metabolic or cardiovascular conditions later in life. Genetic factors may predispose the development of GDM; however, they do not account for all GDM cases; lifestyle and diet also play important roles in GDM development by modulating epigenetic signatures and the body's microbial composition; therefore, this is a condition with a complex, multifactorial aetiology. In this context, we revised published reports describing GDM-associated single-nucleotide polymorphisms (SNPs), DNA methylation and microRNA expression in different tissues (such as placenta, umbilical cord, adipose tissue, and peripheral blood), and microbial composition in the gut, oral cavity, and vagina from pregnant women with GDM, as well as the bacterial composition of the offspring. Altogether, these reports indicate that a number of SNPs are associated to GDM phenotypes and may predispose the development of the disease. However, extrinsic factors (lifestyle, nutrition) modulate, through epigenetic mechanisms, the risk of developing the disease, and some association exists between the microbial composition with GDM in an organ-specific manner. Genes, epigenetic signatures, and microbiota could be transferred to the offspring, increasing the possibility of developing chronic degenerative conditions through postnatal life.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Laboratory of Microbial Genomics, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, 76230, Juriquilla, Querétaro, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Azucena Salazar-Oroz
- Maternal-Fetal Department, Instituto Vidalia, Hospital Sharp Mazatlán, Avenida Rafael Buelna y Dr. Jesús Kumate s/n, 82126, Mazatlán, Sinaloa, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
7
|
Gao D, Ren L, Hao YD, Schaduangrat N, Liu XW, Yuan SS, Yang YH, Wang Y, Shoombuatong W, Ding H. The role of ncRNA regulatory mechanisms in diseases-case on gestational diabetes. Brief Bioinform 2023; 25:bbad489. [PMID: 38189542 PMCID: PMC10772982 DOI: 10.1093/bib/bbad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not have the potential to encode proteins. Meanwhile, they can occupy a significant portion of the human genome and participate in gene expression regulation through various mechanisms. Gestational diabetes mellitus (GDM) is a pathologic condition of carbohydrate intolerance that begins or is first detected during pregnancy, making it one of the most common pregnancy complications. Although the exact pathogenesis of GDM remains unclear, several recent studies have shown that ncRNAs play a crucial regulatory role in GDM. Herein, we present a comprehensive review on the multiple mechanisms of ncRNAs in GDM along with their potential role as biomarkers. In addition, we investigate the contribution of deep learning-based models in discovering disease-specific ncRNA biomarkers and elucidate the underlying mechanisms of ncRNA. This might assist community-wide efforts to obtain insights into the regulatory mechanisms of ncRNAs in disease and guide a novel approach for early diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Dong Gao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Yu-Duo Hao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Xiao-Wei Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Shi Yuan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu-He Yang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Hui Ding
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
8
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
9
|
Sharma S, Bhonde R. Dilemma of Epigenetic Changes Causing or Reducing Metabolic Disorders in Offsprings of Obese Mothers. Horm Metab Res 2023; 55:665-676. [PMID: 37813098 DOI: 10.1055/a-2159-9128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Maternal obesity is associated with fetal complications predisposing later to the development of metabolic syndrome during childhood and adult stages. High-fat diet seems to influence individuals and their subsequent generations in mediating weight gain, insulin resistance, obesity, high cholesterol, diabetes, and cardiovascular disorder. Research evidence strongly suggests that epigenetic alteration is the major contributor to the development of metabolic syndrome through DNA methylation, histone modifications, and microRNA expression. In this review, we have discussed the outcome of recent studies on the adverse and beneficial effects of nutrients and vitamins through epigenetics during pregnancy. We have further discussed about the miRNAs altered during maternal obesity. Identification of new epigenetic modifiers such as mesenchymal stem cells condition media (MSCs-CM)/exosomes for accelerating the reversal of epigenetic abnormalities for the development of new treatments is yet another aspect of the present review.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ramesh Bhonde
- Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Vidyapeeth Pune (Deemed University), Pune, India
| |
Collapse
|
10
|
Kang BS, Lee SU, Hong S, Choi SK, Shin JE, Wie JH, Jo YS, Kim YH, Kil K, Chung YH, Jung K, Hong H, Park IY, Ko HS. Prediction of gestational diabetes mellitus in Asian women using machine learning algorithms. Sci Rep 2023; 13:13356. [PMID: 37587201 PMCID: PMC10432552 DOI: 10.1038/s41598-023-39680-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
This study developed a machine learning algorithm to predict gestational diabetes mellitus (GDM) using retrospective data from 34,387 pregnancies in multi-centers of South Korea. Variables were collected at baseline, E0 (until 10 weeks' gestation), E1 (11-13 weeks' gestation) and M1 (14-24 weeks' gestation). The data set was randomly divided into training and test sets (7:3 ratio) to compare the performances of light gradient boosting machine (LGBM) and extreme gradient boosting (XGBoost) algorithms, with a full set of variables (original). A prediction model with the whole cohort achieved area under the receiver operating characteristics curve (AUC) and area under the precision-recall curve (AUPR) values of 0.711 and 0.246 at baseline, 0.720 and 0.256 at E0, 0.721 and 0.262 at E1, and 0.804 and 0.442 at M1, respectively. Then comparison of three models with different variable sets were performed: [a] variables from clinical guidelines; [b] selected variables from Shapley additive explanations (SHAP) values; and [c] Boruta algorithms. Based on model [c] with the least variables and similar or better performance than the other models, simple questionnaires were developed. The combined use of maternal factors and laboratory data could effectively predict individual risk of GDM using a machine learning model.
Collapse
Affiliation(s)
- Byung Soo Kang
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seon Ui Lee
- Department of Obstetrics and Gynecology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Subeen Hong
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sae Kyung Choi
- Department of Obstetrics and Gynecology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Eun Shin
- Department of Obstetrics and Gynecology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Ha Wie
- Department of Obstetrics and Gynecology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yun Sung Jo
- Department of Obstetrics and Gynecology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon Hee Kim
- Department of Obstetrics and Gynecology, Uijeongbu St. Mary's Hospital,, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kicheol Kil
- Department of Obstetrics and Gynecology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo Hyun Chung
- Department of Obstetrics and Gynecology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - In Yang Park
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Sun Ko
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
11
|
da Silva PHCM, Santos KDF, da Silva L, da Costa CCP, Santos RDS, Reis AADS. MicroRNAs Associated with the Pathophysiological Mechanisms of Gestational Diabetes Mellitus: A Systematic Review for Building a Panel of miRNAs. J Pers Med 2023; 13:1126. [PMID: 37511739 PMCID: PMC10381583 DOI: 10.3390/jpm13071126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
miRNAs, a class of small non-coding RNAs, play a role in post-transcriptional gene expression. Therefore, this study aimed to conduct a systematic review of miRNAs associated with GDM to build a panel of miRNAs. A bibliographic search was carried out in the PubMed/Medline, Virtual Health Library (VHL), Web of Science, and EMBASE databases, selecting observational studies in English without time restriction. The protocol was registered on the PROSPERO platform (number CRD42021291791). Fifty-five studies were included in this systematic review, and 82 altered miRNAs in GDM were identified. In addition, four miRNAs were most frequently dysregulated in GDM (mir-16-5p, mir-20a-5p, mir-222-3p, and mir-330-3p). The dysregulation of these miRNAs is associated with the mechanisms of cell cycle homeostasis, growth, and proliferation of pancreatic β cells, glucose uptake and metabolism, insulin secretion, and resistance. On the other hand, identifying miRNAs associated with GDM and elucidating its main mechanisms can assist in the characterization and definition of potential biomarkers for the diagnosis and treatment of GDM.
Collapse
Affiliation(s)
- Pedro Henrique Costa Matos da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Kamilla de Faria Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Laura da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Caroline Christine Pincela da Costa
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Rodrigo da Silva Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| | - Angela Adamski da Silva Reis
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| |
Collapse
|
12
|
Elhag DA, Al Khodor S. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes. J Transl Med 2023; 21:392. [PMID: 37330548 PMCID: PMC10276491 DOI: 10.1186/s12967-023-04269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression. Recent studies have indicated a role of miRNAs in the pathogenesis of gestational diabetes mellitus (GDM), a common pregnancy-related disorder characterized by impaired glucose metabolism. Aberrant expression of miRNAs has been observed in the placenta and/or maternal blood of GDM patients, suggesting their potential use as biomarkers for early diagnosis and prognosis. Additionally, several miRNAs have been shown to modulate key signaling pathways involved in glucose homeostasis, insulin sensitivity, and inflammation, providing insights into the pathophysiology of GDM. This review summarizes the current knowledge on the dynamics of miRNA in pregnancy, their role in GDM as well as their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
13
|
Sarkar MS, Mia MM, Amin MA, Hossain MS, Islam MZ. Bioinformatics and network biology approach to identifying type 2 diabetes genes and pathways that influence the progression of breast cancer. Heliyon 2023; 9:e16151. [PMID: 37234659 PMCID: PMC10205526 DOI: 10.1016/j.heliyon.2023.e16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer is the second most prevalent malignancy affecting women. Postmenopausal women breast tumor is one of the top causes of death in women, accounting for 23% of cancer cases. Type 2 diabetes, a worldwide pandemic, has been connected to a heightened risk of several malignancies, although its association with breast cancer is still uncertain. In comparison to non-diabetic women, women with T2DM had a 23% elevated likelihood of developing breast cancer. It is difficult to determine causative or genetic susceptibility that connect T2DM and breast cancer. We created a large-scale network-based quantitative approach employing unbiased methods to discover abnormally amplified genes in both T2DM and breast cancer, to solve these issues. We performed transcriptome analysis to uncover identical genetic biomarkers and pathways to clarify the connection between T2DM and breast cancer patients. In this study, two RNA-seq datasets (GSE103001 and GSE86468) from the Gene Expression Omnibus (GEO) are used to identify mutually differentially expressed genes (DEGs) for breast cancer and T2DM, as well as common pathways and prospective medicines. Firstly, 45 shared genes (30 upregulated and 15 downregulated) between T2D and breast cancer were detected. We employed gene ontology and pathway enrichment to characterize prevalent DEGs' molecular processes and signal transduction pathways and observed that T2DM has certain connections to the progression of breast cancer. Using several computational and statistical approaches, we created a protein-protein interactions (PPI) network and revealed hub genes. These hub genes can be potential biomarkers, which may also lead to new therapeutic strategies for investigated diseases. We conducted TF-gene interactions, gene-microRNA interactions, protein-drug interactions, and gene-disease associations to find potential connections between T2DM and breast cancer pathologies. We assume that the potential drugs that emerged from this study could be useful therapeutic values. Researchers, doctors, biotechnologists, and many others may benefit from this research.
Collapse
Affiliation(s)
- Md Sumon Sarkar
- Department of Pharmacy, Islamic University, Kushtia-7003, Bangladesh
| | - Md Misor Mia
- Department of Pharmacy, Islamic University, Kushtia-7003, Bangladesh
| | - Md Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka-1216, Bangladesh
| | - Md Sojib Hossain
- Department of Mathematics, Govt. Bangla College, Dhaka-1216, Bangladesh
| | - Md Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia-7003, Bangladesh
| |
Collapse
|
14
|
Dinesen S, El-Faitarouni A, Frisk NLS, Sørensen AE, Dalgaard LT. Circulating microRNA as Biomarkers for Gestational Diabetes Mellitus-A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:6186. [PMID: 37047159 PMCID: PMC10094234 DOI: 10.3390/ijms24076186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a severe pregnancy complication for both the woman and the child. Women who suffer from GDM have a greater risk of developing Type 2 diabetes mellitus (T2DM) later in life. Identification of any potential biomarkers for the early prediction of gestational diabetes can help prevent the disease in women with a high risk. Studies show microRNA (miRNA) as a potential biomarker for the early discovery of GDM, but there is a lack of clarity as to which miRNAs are consistently altered in GDM. This study aimed to perform a systematic review and meta-analysis to investigate miRNAs associated with GDM by comparing GDM cases with normoglycemic controls. The systematic review was performed according to PRISMA guidelines with searches in PubMed, Web of Science, and ScienceDirect. The primary search resulted in a total of 849 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 35 full-text articles, which were evaluated for risk of bias and estimates of quality, after which data were extracted and relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: MiR-29a, miR-330, miR-134, miR-132, miR-16, miR-223, miR-155, miR-122, miR-17, miR-103, miR-125, miR-210, and miR-222. While some miRNAs showed considerable between-study variability, miR-29a, miR-330, miR-134, miR-16, miR-223, and miR-17 showed significant overall upregulation in GDM, while circulating levels of miR-132 and miR-155 were decreased among GDM patients, suggesting further studies of these as biomarkers for early GDM discovery.
Collapse
Affiliation(s)
- Sofie Dinesen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Alisar El-Faitarouni
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | | | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Roskilde Hospital, Region Zealand, 4000 Roskilde, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|
15
|
Lowe WL. Genetics and Epigenetics: Implications for the Life Course of Gestational Diabetes. Int J Mol Sci 2023; 24:6047. [PMID: 37047019 PMCID: PMC10094577 DOI: 10.3390/ijms24076047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Gestational diabetes (GDM) is one of the most common complications of pregnancy, affecting as many as one in six pregnancies. It is associated with both short- and long-term adverse outcomes for the mother and fetus and has important implications for the life course of affected women. Advances in genetics and epigenetics have not only provided new insight into the pathophysiology of GDM but have also provided new approaches to identify women at high risk for progression to postpartum cardiometabolic disease. GDM and type 2 diabetes share similarities in their pathophysiology, suggesting that they also share similarities in their genetic architecture. Candidate gene and genome-wide association studies have identified susceptibility genes that are shared between GDM and type 2 diabetes. Despite these similarities, a much greater effect size for MTNR1B in GDM compared to type 2 diabetes and association of HKDC1, which encodes a hexokinase, with GDM but not type 2 diabetes suggest some differences in the genetic architecture of GDM. Genetic risk scores have shown some efficacy in identifying women with a history of GDM who will progress to type 2 diabetes. The association of epigenetic changes, including DNA methylation and circulating microRNAs, with GDM has also been examined. Targeted and epigenome-wide approaches have been used to identify DNA methylation in circulating blood cells collected during early, mid-, and late pregnancy that is associated with GDM. DNA methylation in early pregnancy had some ability to identify women who progressed to GDM, while DNA methylation in blood collected at 26-30 weeks gestation improved upon the ability of clinical factors alone to identify women at risk for progression to abnormal glucose tolerance post-partum. Finally, circulating microRNAs and long non-coding RNAs that are present in early or mid-pregnancy and associated with GDM have been identified. MicroRNAs have also proven efficacious in predicting both the development of GDM as well as its long-term cardiometabolic complications. Studies performed to date have demonstrated the potential for genetic and epigenetic technologies to impact clinical care, although much remains to be done.
Collapse
Affiliation(s)
- William L Lowe
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior Street, Chicago, IL 60611, USA
| |
Collapse
|
16
|
Atic AI, Thiele M, Munk A, Dalgaard LT. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2023; 324:C588-C602. [PMID: 36645666 DOI: 10.1152/ajpcell.00253.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are secreted from cells as either protein-bound or enclosed in extracellular vesicles. Circulating liver-derived miRNAs are modifiable by weight-loss or insulin-sensitizing treatments, indicating that they could be important biomarker candidates for diagnosis, monitoring, and prognosis in nonalcoholic liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Unfortunately, the noninvasive diagnosis of NASH and fibrosis remains a key challenge, which limits case finding. Current diagnostic guidelines, therefore, recommend liver biopsies, with risks of pain and bleeding for the patient and substantial healthcare costs. Here, we summarize mechanisms of RNA secretion and review circulating RNAs associated with NAFLD and NASH for their biomarker potential. Few circulating miRNAs are consistently associated with NAFLD/NASH: miR-122, miR-21, miR-34a, miR-192, miR-193, and the miR-17-92 miRNA-cluster. The hepatocyte-enriched miRNA-122 is consistently increased in NAFLD and NASH but decreased in liver cirrhosis. Circulating miR-34a, part of an existing diagnostic algorithm for NAFLD, and miR-21 are consistently increased in NAFLD and NASH. MiR-192 appears to be prominently upregulated in NASH compared with NAFDL, whereas miR-193 was reported to distinguish NASH from fibrosis. Various members of miRNA cluster miR-17-92 are reported to be associated with NAFLD and NASH, although with less consistency. Several other circulating miRNAs have been reported to be associated with fatty liver in a few studies, indicating the existence of more circulating miRNAs with relevant as diagnostic markers for NAFLD or NASH. Thus, circulating miRNAs show potential as biomarkers of fatty liver disease, but more information about phenotype specificity and longitudinal regulation is needed.
Collapse
Affiliation(s)
- Amila Iriskic Atic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Novo Nordisk A/S, Obesity Research, Måløv, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Center for Liver Research, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
17
|
Roy D, Modi A, Ghosh R, Ghosh R, Benito-León J. Visceral Adipose Tissue Molecular Networks and Regulatory microRNA in Pediatric Obesity: An In Silico Approach. Int J Mol Sci 2022; 23:11036. [PMID: 36232337 PMCID: PMC9569899 DOI: 10.3390/ijms231911036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity carries an increased risk of metabolic complications, sleep disturbances, and cancer. Visceral adiposity is independently associated with inflammation and insulin resistance in obese children. However, the underlying pathogenic mechanisms are still unclear. We aimed to detect the gene expression pattern and its regulatory network in the visceral adipose tissue of obese pediatric individuals. Using differentially-expressed genes (DEGs) identified from two publicly available datasets, GSE9624 and GSE88837, we performed functional enrichment, protein-protein interaction, and network analyses to identify pathways, targeting transcription factors (TFs), microRNA (miRNA), and regulatory networks. There were 184 overlapping DEGs with six significant clusters and 19 candidate hub genes. Furthermore, 24 TFs targeted these hub genes. The genes were regulated by miR-16-5p, miR-124-3p, miR-103a-3p, and miR-107, the top miRNA, according to a maximum number of miRNA-mRNA interaction pairs. The miRNA were significantly enriched in several pathways, including lipid metabolism, immune response, vascular inflammation, and brain development, and were associated with prediabetes, diabetic nephropathy, depression, solid tumors, and multiple sclerosis. The genes and miRNA detected in this study involve pathways and diseases related to obesity and obesity-associated complications. The results emphasize the importance of the TGF-β signaling pathway and its regulatory molecules, the immune system, and the adipocytic apoptotic pathway in pediatric obesity. The networks associated with this condition and the molecular mechanisms through which the potential regulators contribute to pathogenesis are open to investigation.
Collapse
Affiliation(s)
- Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
- Indian Institute of Technology (IIT), Madras 600036, Tamil Nadu, India
- School of Humanities, Indira Gandhi National Open University (IGNOU), New Delhi 110044, Delhi, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College & Hospital, Burdwan 713104, West Bengal, India
| | - Raghumoy Ghosh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 636921, Singapore
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, Av. De Córdoba, s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Av. De Córdoba, s/n, 28041 Madrid, Spain
- Department of Medicine, Universidad Complutense, Pl. de Ramón y Cajal, s/n, 28040 Madrid, Spain
| |
Collapse
|
18
|
Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int J Mol Sci 2022; 23:ijms231810635. [PMID: 36142536 PMCID: PMC9501303 DOI: 10.3390/ijms231810635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian descent in the absence of other pregnancy-related complications. Whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated microRNAs showed the highest accuracy for the early identification of pregnancies destinated to develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate (FPR). The predictive model for GDM based on aberrant microRNA expression profile was further improved via the implementation of clinical characteristics (maternal age and BMI at early stages of gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17% of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for severe GDM requiring administration of therapy involved using a combination of these three clinical characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed by diet only required the involvement of these three clinical characteristics and eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in first-degree relatives were included in the GDM prediction model, the predictive power was further increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM managed by diet only). Cardiovascular disease-associated microRNAs represent promising early biomarkers to be implemented into routine first-trimester screening programs with a very good predictive potential for GDM.
Collapse
|
19
|
Hitit M, Kose M, Kaya MS, Kırbas M, Dursun S, Alak I, Atli MO. Circulating miRNAs in maternal plasma as potential biomarkers of early pregnancy in sheep. Front Genet 2022; 13:929477. [PMID: 36061213 PMCID: PMC9428447 DOI: 10.3389/fgene.2022.929477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in the control of gene expression and is implied in many biological functions, including embryo implantation and development. The aim was to assess plasma miRNA profiles during the peri-implantation and ascertain potential candidate miRNA markers for early pregnancy diagnosis in ovine plasma. The plasma samples were obtained from a total of 24 ewes on days 12 (pre-implantation; P12, n = 4), 16 (implantation; P16, n = 4) and 22 (post-implantation; P22, n = 4) after mating, and on their corresponding days of 12 (Pre-C; C12, n = 4), 16 (Imp-C; C16, n = 4) and 22 (Post-C; C22, n = 4) of the estrous cycle. The miRNA profiles in plasma were assessed by microarray technology. We detected the presence of 60 ovine-specific miRNAs in plasma samples. Of these miRNAs, 22 demonstrated a differential expression pattern, especially between the estrous cycle and early pregnancy, and targeted 521 genes. Two miRNAs (oar-miR-218a and oar-miR-1185-3p) were confirmed using RT-qPCR in the ovine plasma samples. Protein-protein interaction (PPI) network of target genes established six functional modules, of which modules 1 and 3 were enriched in the common GO terms, such as inflammatory response, defense response, and regulation of immune response. In contrast, module 2 was enriched in the developmental process involved in reproduction, embryo development, embryonic morphogenesis, and regulation of the developmental process. The results indicate that miRNAs profiles of plasma seemed to be modulated during the peri-implantation stage of pregnancy in ewes. Circulating miRNAs could be promising candidates for diagnosis in early ovine pregnancy.
Collapse
Affiliation(s)
- Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
- *Correspondence: Mustafa Hitit, ; Mehmet Osman Atli,
| | - Mehmet Kose
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Dicle University, Diyarbakir, Turkey
| | - Mehmet Salih Kaya
- Department of Physiology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Mesut Kırbas
- Bahri Dagdas International Agricultural Research Institute, Konya, Turkey
| | - Sukru Dursun
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Turkey
| | - Ilyas Alak
- Department of Animal Sciences, Vocational School of Technical Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Mehmet Osman Atli
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
- *Correspondence: Mustafa Hitit, ; Mehmet Osman Atli,
| |
Collapse
|
20
|
Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: A review. Artif Intell Med 2022; 132:102378. [DOI: 10.1016/j.artmed.2022.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022]
|
21
|
Diminished miR-374c-5p negatively regulates IL (interleukin)-6 in unexplained recurrent spontaneous abortion. J Mol Med (Berl) 2022; 100:1043-1056. [PMID: 35689099 DOI: 10.1007/s00109-022-02178-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
Unexplained recurrent spontaneous abortion (URSA) is commonly observed, and seriously affects women's reproductive health. Excessive interleukin-6 (IL-6) production has been shown to frequently occur and relate to URSA pathogenesis. In this study, the miRNA expression profile in peripheral blood mononuclear cells (PBMCs) from URSA patients and normal pregnant (NP) women was assessed by miRNA microarray and real-time quantitative reverse-transcription polymerase chain reaction (qPCR). MiRNA target prediction tools and luciferase reporter assay were used to detect direct binding between miRNAs and IL6. Functional study of administering anti-IL-6 neutralizing antibody and miR-374c-5p mimics to an URSA animal model was performed to evaluate embryo resorption rates. In the results, compared with NP women, the expression of IL-6 increased markedly in PBMCs and decidual tissues at both mRNA and protein levels, while miR-374c-5p expression decreased significantly. Prediction software and luciferase reporter assay showed that miR-374c-5p binds with IL6 3'UTR via the complementary bases. Transfection of miR-374c-5p mimics into an in vitro HeLa cell line significantly downregulated the expression of IL-6, while transfection of the miR-374c-5p inhibitor induced an opposite result. In the URSA mouse model, miR-374c-5p overexpression reduced the embryo resorption rate significantly, accompanied with decreased expression of IL-6 in the decidua. To sum up, downregulated miR-374c-5p was involved in the pathogenesis of URSA by enhancing IL-6 expression. Modulation of miR-374c-5p expression may be used to regulate IL-6 production for the treatment of URSA.
Collapse
|
22
|
The Mystery of Exosomes in Gestational Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2169259. [PMID: 35720179 PMCID: PMC9200544 DOI: 10.1155/2022/2169259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Gestational diabetes mellitus (GDM) is one of the common pregnancy complications, which increases the risk of short-term and long-term adverse consequences in both the mother and offspring. However, the pathophysiological mechanism of GDM is still poorly understood. Inflammation, insulin resistance and oxidative stress are considered critical factors in the occurrence and development of GDM. Although the lifestyle intervention and insulin are the primary treatment, adverse pregnancy outcomes still cannot be ignored. Exosomes have a specific function of carrying biological information, which can transmit information to target cells and play an essential role in intercellular communication. Their possible roles in normal pregnancy and GDM have been widely concerned. The possibility of exosomal cargos as biomarkers of GDM is proposed. This paper reviews the literature in recent years and discusses the role of exosomes in GDM and their possible mechanisms to provide some reference for the prediction, prevention, and treatment of GDM and improve the outcome of pregnancy.
Collapse
|
23
|
Dalgaard LT, Sørensen AE, Hardikar AA, Joglekar MV. The microRNA-29 family - role in metabolism and metabolic disease. Am J Physiol Cell Physiol 2022; 323:C367-C377. [PMID: 35704699 DOI: 10.1152/ajpcell.00051.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microRNA-29a family members miR-29a-3p, miR-29b-3p and miR-29c-3p are ubiquitously expressed and consistently increased in various tissues and cell types in conditions of metabolic disease; obesity, insulin resistance and type 2 diabetes. In pancreatic beta cells, miR-29a is required for normal exocytosis, but increased levels are associated with impaired beta cell function. Similarly, in liver miR-29 species are higher in models of insulin resistance and type 2 diabetes, and either knock-out or depletion using a microRNA inhibitor improves hepatic insulin resistance. In skeletal muscle, miR-29 upregulation is associated with insulin resistance and altered substrate oxidation, and similarly, in adipocytes over-expression of miR-29a leads to insulin resistance. Blocking miR-29a using nucleic acid antisense therapeutics show promising results in preclinical animal models of obesity and type 2 diabetes, although the widespread expression pattern of miR-29 family members complicates the exploration of single target tissues. However, in fibrotic diseases, such as in late complications of diabetes and metabolic disease (diabetic kidney disease, non-alcoholic steatohepatitis), miR-29 expression is suppressed by TGFβ allowing increased extracellular matrix collagen to form. In the clinical setting circulating levels of miR-29a and miR-29b are consistently increased in type 2 diabetes and in gestational diabetes, and are also possible prognostic markers for deterioration of glucose tolerance. In conclusion, miR-29 plays an essential role in various organs relevant to intermediary metabolism and its upregulation contribute to impaired glucose metabolism, while it suppresses fibrosis development. Thus, a correct balance of miR-29a levels seems important for cellular and organ homeostasis in metabolism.
Collapse
Affiliation(s)
- Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
24
|
Juchnicka I, Kuźmicki M, Niemira M, Bielska A, Sidorkiewicz I, Zbucka-Krętowska M, Krętowski AJ, Szamatowicz J. miRNAs as Predictive Factors in Early Diagnosis of Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:839344. [PMID: 35340328 PMCID: PMC8948421 DOI: 10.3389/fendo.2022.839344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Circulating miRNAs are important mediators in epigenetic changes. These non-coding molecules regulate post-transcriptional gene expression by binding to mRNA. As a result, they influence the development of many diseases, such as gestational diabetes mellitus (GDM). Therefore, this study investigates the changes in the miRNA profile in GDM patients before hyperglycemia appears. Materials and Methods The study group consisted of 24 patients with GDM, and the control group was 24 normoglycemic pregnant women who were matched for body mass index (BMI), age, and gestational age. GDM was diagnosed with an oral glucose tolerance test between the 24th and 26th weeks of pregnancy. The study had a prospective design, and serum for analysis was obtained in the first trimester of pregnancy. Circulating miRNAs were measured using the NanoString quantitative assay platform. Validation with real time-polymerase chain reaction (RT-PCR) was performed on the same group of patients. Mann-Whitney U-test and Spearman correlation were done to assess the significance of the results. Results Among the 800 miRNAs, 221 miRNAs were not detected, and 439 were close to background noise. The remaining miRNAs were carefully investigated for their average counts, fold changes, p-values, and false discovery rate (FDR) scores. We selected four miRNAs for further validation: miR-16-5p, miR-142-3p, miR-144-3p, and miR-320e, which showed the most prominent changes between the studied groups. The validation showed up-regulation of miR-16-5p (p<0.0001), miR-142-3p (p=0.001), and miR-144-3p (p=0.003). Conclusion We present changes in miRNA profile in the serum of GDM women, which may indicate significance in the pathophysiology of GDM. These findings emphasize the role of miRNAs as a predictive factor that could potentially be useful in early diagnosis.
Collapse
Affiliation(s)
- Ilona Juchnicka
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Kuźmicki
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, Bialystok, Poland
| | | | - Jacek Szamatowicz
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
25
|
Sørensen AE, van Poppel MNM, Desoye G, Simmons D, Damm P, Jensen DM, Dalgaard LT. The Temporal Profile of Circulating miRNAs during Gestation in Overweight and Obese Women with or without Gestational Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10020482. [PMID: 35203692 PMCID: PMC8962411 DOI: 10.3390/biomedicines10020482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Circulating non-coding microRNAs (miRNAs) are important for placentation, but their expression profiles across gestation in pregnancies, which are complicated by gestational diabetes mellitus (GDM), have not been fully established. Investigating a single time point is insufficient, as pregnancy is dynamic, involving several processes, including placenta development, trophoblast proliferation and differentiation and oxygen sensing. Thus, the aim of this study was to compare the temporal expression of serum miRNAs in pregnant women with and without GDM. This is a nested case-control study of longitudinal data obtained from a multicentric European study (the ‘DALI’ study). All women (n = 82) were overweight/obese (BMI ≥ 29 kg/m2) and were normal glucose tolerant (NGT) at baseline (before 20 weeks of gestation). We selected women (n = 41) who were diagnosed with GDM at 24–28 weeks, according to the IADPSG/WHO2013 criteria. They were matched with 41 women who remained NGT in their pregnancy. miRNA (miR-16-5p, -29a-3p, -103-3p, -134-5p, -122-5p, -223-3p, -330-3p and miR-433-3p) were selected based on their suggested importance for placentation, and measurements were performed at baseline and at 24–28 and 35–37 weeks of gestation. Women with GDM presented with overall miRNA levels above those observed for women remaining NGT. In both groups, levels of miR-29a-3p and miR-134-5p increased consistently with progressing gestation. The change over time only differed for miR-29a-3p when comparing women with GDM with those remaining NGT (p = 0.044). Our findings indicate that among overweight/obese women who later develop GDM, miRNA levels are already elevated early in pregnancy and remain above those of women who remain NGT during their pregnancy. Maternal circulating miRNAs may provide further insight into placentation and the cross talk between the maternal and fetal compartments.
Collapse
Affiliation(s)
- Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
- Correspondence: ; Tel.: +45-4674-3994
| | - Mireille N. M. van Poppel
- Faculty of Environmental and Regional Sciences and Education, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - David Simmons
- Macarthur Clinical School, School of Medicine, Western Sydney University, Campbelltown, NSE 2560, Australia;
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dorte Møller Jensen
- Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Steno Diabetes Center Odense, Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | | |
Collapse
|
26
|
Lazarus G, Dirjayanto VJ, Sambowo NB, Vianca E. Detection of gestational diabetes mellitus by circulating plasma and serum microRNAs: A systematic review and meta-analysis. Diabetes Metab Syndr 2022; 16:102383. [PMID: 35016043 DOI: 10.1016/j.dsx.2021.102383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS The diagnostic performance of microRNAs (miRNAs), which have recently emerged as a potential early diagnostic tool capable of detecting gestational diabetes mellitus (GDM) in its early stages, has yet to be systematically investigated. This meta-analysis aims to investigate the diagnostic utility of circulating plasma or serum miRNAs in detecting GDM patients. METHODS Eligible studies were included and assessed for risk of bias with the Quality Assessment of Diagnostic Accuracy Studies 2 tool. A bivariate meta-analysis using the hierarchical summary receiver operating characteristic model was performed to estimate the pooled diagnostic value of miRNAs. RESULTS Twelve studies (32 index tests) cumulating a total of 1768 patients were included in the present study. The pooled sensitivity of miRNAs was 74.5% (95% confidence interval [CI]: 63.7-82.9) and the pooled specificity was 84.1% (95% CI: 76.8-89.3). The overall area under the curve was 0.869 (95% CI: 0.818-0.907) with a relatively narrow 95% confidence region and a wide 95% prediction region. CONCLUSION miRNAs may emerge as a promising diagnostic tool in detecting GDM. Further cross-sectional cohort studies with larger sample sizes and more heterogeneous populations, and studies evaluating the accuracy of multiple miRNAs in diagnosing GDM are required to confirm our findings.
Collapse
Affiliation(s)
- Gilbert Lazarus
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | | | | | - Elena Vianca
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
27
|
Yang X, Wu N. MicroRNAs and Exosomal microRNAs May Be Possible Targets to Investigate in Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:321-330. [PMID: 35140490 PMCID: PMC8820256 DOI: 10.2147/dmso.s330323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance that occurs during the second or third trimester of pregnancy. As the incidence of GDM rises, so does the risk of maternal and fetal complications with short- and long-term consequences. As a result, early diagnosis and treatment of this condition are important to avoiding adverse pregnancy outcomes. Exosomes are tiny vesicles secreted by living cells which contain a variety of bioactive substances. They are released by cells to facilitate cell-to-cell communication and regulate a variety of biological processes such as cellular immune response, inflammatory response, and apoptosis, among others. Many studies have recently confirmed that changes in the expression and secretion of exosomal miRNAs can be used as novel markers for the diagnosis, prognosis, and treatment of GDM. In this review, we summarized the various roles of exosomal miRNAs and circulating miRNAs in GDM. We found that the changes in the expression of certain miRNAs could be used to diagnosing GDM. Exosomal miRNAs target metabolic pathways, resulting in insulin resistance. We also highlighted the potential for miRNAs and exosomal miRNAs to be used as biomarkers for diagnosis or therapeutic agents.
Collapse
Affiliation(s)
- Xiyao Yang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence: Na Wu, Department of Endocrinology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, Liaoning Province, 110004, People’s Republic of China, Tel +86 18940258445, Email
| |
Collapse
|
28
|
Lewis KA, Chang L, Cheung J, Aouizerat BE, Jelliffe-Pawlowski LL, McLemore MR, Piening B, Rand L, Ryckman KK, Flowers E. Systematic review of transcriptome and microRNAome associations with gestational diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:971354. [PMID: 36704034 PMCID: PMC9871895 DOI: 10.3389/fendo.2022.971354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Gestational diabetes (GDM) is associated with increased risk for preterm birth and related complications for both the pregnant person and newborn. Changes in gene expression have the potential to characterize complex interactions between genetic and behavioral/environmental risk factors for GDM. Our goal was to summarize the state of the science about changes in gene expression and GDM. DESIGN The systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS PubMed articles about humans, in English, from any date were included if they described mRNA transcriptome or microRNA findings from blood samples in adults with GDM compared with adults without GDM. RESULTS Sixteen articles were found representing 1355 adults (n=674 with GDM, n=681 controls) from 12 countries. Three studies reported transcriptome results and thirteen reported microRNA findings. Identified pathways described various aspects of diabetes pathogenesis, including glucose and insulin signaling, regulation, and transport; natural killer cell mediated cytotoxicity; and fatty acid biosynthesis and metabolism. Studies described 135 unique miRNAs that were associated with GDM, of which eight (miR-16-5p, miR-17-5p, miR-20a-5p, miR-29a-3p, miR-195-5p, miR-222-3p, miR-210-3p, and miR-342-3p) were described in 2 or more studies. Findings suggest that miRNA levels vary based on the time in pregnancy when GDM develops, the time point at which they were measured, sex assigned at birth of the offspring, and both the pre-pregnancy and gestational body mass index of the pregnant person. CONCLUSIONS The mRNA, miRNA, gene targets, and pathways identified in this review contribute to our understanding of GDM pathogenesis; however, further research is warranted to validate previous findings. In particular, longitudinal repeated-measures designs are needed that control for participant characteristics (e.g., weight), use standardized data collection methods and analysis tools, and are sufficiently powered to detect differences between subgroups. Findings may be used to improve early diagnosis, prevention, medication choice and/or clinical treatment of patients with GDM.
Collapse
Affiliation(s)
- Kimberly A. Lewis
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Kimberly A. Lewis,
| | - Lisa Chang
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Julinna Cheung
- College of Biological Sciences, University of California at Davis, Davis, CA, United States
| | | | - Laura L. Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Monica R. McLemore
- School of Nursing, Department of Family Health Care Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Brian Piening
- Earle A. Chiles Research Institute, Providence St Joseph Health, Portland, OR, United States
| | - Larry Rand
- Obstetrics and Gynecology, Reproductive Sciences, School of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Kelli K. Ryckman
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Elena Flowers
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
29
|
Ke W, Chen Y, Zheng L, Zhang Y, Wu Y, Li L. miR-134-5p promotes inflammation and apoptosis of trophoblast cells via regulating FOXP2 transcription in gestational diabetes mellitus. Bioengineered 2022; 13:319-330. [PMID: 34969354 PMCID: PMC8805916 DOI: 10.1080/21655979.2021.2001219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a prevalent and risky pregnant complication which warrants targeted therapy for restriction the inflammation and apoptosis of trophoblast cells. This study sought to analyze the aberrant expression and regulatory mechanism of microRNA (miR)-134-5p in GDM. The miR-134-5p expression in the serum of GDM patients and normal participants was detected via qRT-PCR, followed by receiver operating characteristic (ROC) curve analysis. In vitro GDM cell model was established in the HTR-8/SVneo cells using 25 mmol/L glucose, followed by transfection with miR-134-5p inhibitor and si-Forkhead box p2(FOXP2). The miR-134-5p and FOXP2 expressions, TNF-α, IL-1β, and IL-10 levels, cell proliferation, migration, and apoptosis were determined by a combination of qRT-PCR, western blot, ELISA, and cell counting Kit-8, Transwell assay, and flow cytometry. The binding relationship between miR-134-5p and FOXP2 was predicted and verified. Our results revealed that miR-134-5p was increased in the serum of GDM patients and could serve as a critical diagnostic marker for GDM. Moreover, miR-134-5p was upregulated in the high glucose (HG)-induced HTR-8/SVneo cells. The miR-134-5p inhibition suppressed the inflammation and apoptosis of HG-induced HTR-8/SVneo cells. miR-134-5p inhibited FOXP2 expression. FOXP2 expression was decreased in GDM. FOXP2 inhibition attenuated the function of miR-134-5p in HG-induced HTR-8/SVneo cells. Overall, miR-134-5p inhibited the FOXP2 expression to facilitate the inflammation and apoptosis of trophoblast cells, thereby exacerbating GDM.
Collapse
Affiliation(s)
- Weiqi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yixiang Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lijing Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yuting Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yudan Wu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Li Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong Province, China
| |
Collapse
|
30
|
Légaré C, Desgagné V, Thibeault K, White F, Clément AA, Poirier C, Luo ZC, Scott MS, Jacques PÉ, Perron P, Guérin R, Hivert MF, Bouchard L. First Trimester Plasma MicroRNA Levels Predict Risk of Developing Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:928508. [PMID: 36440215 PMCID: PMC9693764 DOI: 10.3389/fendo.2022.928508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Our objective is to identify first-trimester plasmatic miRNAs associated with and predictive of GDM. METHODS We quantified miRNA using next-generation sequencing in discovery (Gen3G: n = 443/GDM = 56) and replication (3D: n = 139/GDM = 76) cohorts. We have diagnosed GDM using a 75-g oral glucose tolerance test and the IADPSG criteria. We applied stepwise logistic regression analysis among replicated miRNAs to build prediction models. RESULTS We identified 17 miRNAs associated with GDM development in both cohorts. The prediction performance of hsa-miR-517a-3p|hsa-miR-517b-3p, hsa-miR-218-5p, and hsa-let7a-3p was slightly better than GDM classic risk factors (age, BMI, familial history of type 2 diabetes, history of GDM or macrosomia, and HbA1c) (AUC 0.78 vs. 0.75). MiRNAs and GDM classic risk factors together further improved the prediction values [AUC 0.84 (95% CI 0.73-0.94)]. These results were replicated in 3D, although weaker predictive values were obtained. We suggest very low and higher risk GDM thresholds, which could be used to identify women who could do without a diagnostic test for GDM and women most likely to benefit from an early GDM prevention program. CONCLUSIONS In summary, three miRNAs combined with classic GDM risk factors provide excellent prediction values, potentially strong enough to improve early detection and prevention of GDM.
Collapse
Affiliation(s)
- Cécilia Légaré
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Véronique Desgagné
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay–Lac-St-Jean – Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
| | - Kathrine Thibeault
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédérique White
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cédrik Poirier
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Zhong Cheng Luo
- Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Michelle S. Scott
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
| | - Patrice Perron
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Renée Guérin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay–Lac-St-Jean – Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
| | - Marie-France Hivert
- Department of Medicine, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, United States
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay–Lac-St-Jean – Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
- *Correspondence: Luigi Bouchard,
| |
Collapse
|
31
|
Masete M, Dias S, Malaza N, Adam S, Pheiffer C. A Big Role for microRNAs in Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:892587. [PMID: 35957839 PMCID: PMC9357936 DOI: 10.3389/fendo.2022.892587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 12/16/2022] Open
Abstract
Maternal diabetes is associated with pregnancy complications and poses a serious health risk to both mother and child. Growing evidence suggests that pregnancy complications are more frequent and severe in pregnant women with pregestational type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) compared to women with gestational diabetes mellitus (GDM). Elucidating the pathophysiological mechanisms that underlie the different types of maternal diabetes may lead to targeted strategies to prevent or reduce pregnancy complications. In recent years, microRNAs (miRNAs), one of the most common epigenetic mechanisms, have emerged as key players in the pathophysiology of pregnancy-related disorders including diabetes. This review aims to provide an update on the status of miRNA profiling in pregnancies complicated by maternal diabetes. Four databases, Pubmed, Web of Science, EBSCOhost, and Scopus were searched to identify studies that profiled miRNAs during maternal diabetes. A total of 1800 articles were identified, of which 53 are included in this review. All studies profiled miRNAs during GDM, with no studies on miRNA profiling during pregestational T1DM and T2DM identified. Studies on GDM were mainly focused on the potential of miRNAs to serve as predictive or diagnostic biomarkers. This review highlights the lack of miRNA profiling in pregnancies complicated by T1DM and T2DM and identifies the need for miRNA profiling in all types of maternal diabetes. Such studies could contribute to our understanding of the mechanisms that link maternal diabetes type with pregnancy complications.
Collapse
Affiliation(s)
- Matladi Masete
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Nompumelelo Malaza
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Center for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Carmen Pheiffer,
| |
Collapse
|
32
|
Significance of Sex Differences in ncRNAs Expression and Function in Pregnancy and Related Complications. Biomedicines 2021; 9:biomedicines9111509. [PMID: 34829737 PMCID: PMC8614665 DOI: 10.3390/biomedicines9111509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
In the era of personalized medicine, fetal sex-specific research is of utmost importance for comprehending the mechanisms governing pregnancy and pregnancy-related complications. In recent times, noncoding RNAs (ncRNAs) have gained increasing attention as critical players in gene regulation and disease pathogenesis, and as candidate biomarkers in human diseases as well. Different types of ncRNAs, including microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in every step of pregnancy progression, although studies taking into consideration fetal sex as a central variable are still limited. To date, most of the available data have been obtained investigating sex-specific placental miRNA expression. Several studies revealed that miRNAs regulate the (patho)-physiological processes in a sexually dimorphic manner, ensuring normal fetal development, successful pregnancy, and susceptibility to diseases. Moreover, the observation that ncRNA profiles differ according to cells, tissues, and developmental stages of pregnancy, along with the complex interactions among different types of ncRNAs in regulating gene expression, strongly indicates that more studies are needed to understand the role of sex-specific ncRNA in pregnancy and associated disorders.
Collapse
|
33
|
MicroRNA-29a in Osteoblasts Represses High-Fat Diet-Mediated Osteoporosis and Body Adiposis through Targeting Leptin. Int J Mol Sci 2021; 22:ijms22179135. [PMID: 34502056 PMCID: PMC8430888 DOI: 10.3390/ijms22179135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Skeletal tissue involves systemic adipose tissue metabolism and energy expenditure. MicroRNA signaling controls high-fat diet (HFD)-induced bone and fat homeostasis dysregulation remains uncertain. This study revealed that transgenic overexpression of miR-29a under control of osteocalcin promoter in osteoblasts (miR-29aTg) attenuated HFD-mediated body overweight, hyperglycemia, and hypercholesterolemia. HFD-fed miR-29aTg mice showed less bone mass loss, fatty marrow, and visceral fat mass together with increased subscapular brown fat mass than HFD-fed wild-type mice. HFD-induced O2 underconsumption, respiratory quotient repression, and heat underproduction were attenuated in miR-29aTg mice. In vitro, miR-29a overexpression repressed transcriptomic landscapes of the adipocytokine signaling pathway, fatty acid metabolism, and lipid transport, etc., of bone marrow mesenchymal progenitor cells. Forced miR-29a expression promoted osteogenic differentiation but inhibited adipocyte formation. miR-29a signaling promoted brown/beige adipocyte markers Ucp-1, Pgc-1α, P2rx5, and Pat2 expression and inhibited white adipocyte markers Tcf21 and Hoxc9 expression. The microRNA also reduced peroxisome formation and leptin expression during adipocyte formation and downregulated HFD-induced leptin expression in bone tissue. Taken together, miR-29a controlled leptin signaling and brown/beige adipocyte formation of osteogenic progenitor cells to preserve bone anabolism, which reversed HFD-induced energy underutilization and visceral fat overproduction. This study sheds light on a new molecular mechanism by which bone integrity counteracts HFD-induced whole-body fat overproduction.
Collapse
|
34
|
Allegra A, Giarratana RM, Scola L, Balistreri CR. The close link between the fetal programming imprinting and neurodegeneration in adulthood: The key role of "hemogenic endothelium" programming. Mech Ageing Dev 2021; 195:111461. [PMID: 33600833 DOI: 10.1016/j.mad.2021.111461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The research on neurodegenerative diseases (NeuroDegD) has been traditionally focused on later life stages. There is now an increasing evidence, that they may be programmed during early development. Here, we propose that NeuroDegD are the result of the complex process of imprinting on fetal hemogenic endothelium, from which the microglial cells make to origin. The central role of placenta and epigenetic mechanisms (methylation of DNA, histone modifications and regulation by non-coding RNAs) in mediating the short and long-term effects has been also described. Precisely, it reports their role in impacting plasticity and memory of microglial cells. In addition, we also underline the necessity of further studies for clearing all mechanisms involved and developing epigenetic methods for identifying potential targets as biomarkers, and for developing preventive measures. Such biomarkers might be used to identify individuals at risk to NeuroDegD. Finally, the sex dependence of fetal programming process has been discussed. It might justify the sex differences in the epidemiologic, imaging, biomarkers, and pathology studies of these pathologies. The discovery of related mechanisms might have important clinical implications in both the etiology of disorders and the management of pregnant women for encouraging healthy long-term outcomes for their children, and future generations. Impending research on the mechanisms related to transgenerational transmission of prenatal stress might consent the development and application of therapies and/or intervention strategies for these disorders in humans.
Collapse
Affiliation(s)
| | - Rosa Maria Giarratana
- Department of BioMedicine, Neuroscience, and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Letizia Scola
- Department of BioMedicine, Neuroscience, and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Carmela Rita Balistreri
- Department of BioMedicine, Neuroscience, and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| |
Collapse
|