1
|
Tang J, Wang X, Chen S, Chang T, Gu Y, Zhang F, Hou J, Luo Y, Li M, Huang J, Liu M, Zhang L, Wang Y, Shen X, Xu L. Disruption of glucose homeostasis by bacterial infection orchestrates host innate immunity through NAD +/NADH balance. Cell Rep 2024; 43:114648. [PMID: 39167491 DOI: 10.1016/j.celrep.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.
Collapse
Affiliation(s)
- Jingjing Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shukun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyuan Chang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuhua Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mohua Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Holloway AJ, Saito TB, Naqvi KF, Huante MB, Fan X, Lisinicchia JG, Gelman BB, Endsley JJ, Endsley MA. Inhibition of caspase pathways limits CD4 + T cell loss and restores host anti-retroviral function in HIV-1 infected humanized mice with augmented lymphoid tissue. Retrovirology 2024; 21:8. [PMID: 38693565 PMCID: PMC11064318 DOI: 10.1186/s12977-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.
Collapse
Affiliation(s)
- Alex J Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Current at the Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 59840, Hamilton, MT, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Medicine, University of Toledo, 43614, Toledo, OH, USA
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA.
| |
Collapse
|
3
|
Bernard Q, Goumeidane M, Chaumond E, Robbe-Saule M, Boucaud Y, Esnault L, Croué A, Jullien J, Marsollier L, Marion E. Type-I interferons promote innate immune tolerance in macrophages exposed to Mycobacterium ulcerans vesicles. PLoS Pathog 2023; 19:e1011479. [PMID: 37428812 PMCID: PMC10358927 DOI: 10.1371/journal.ppat.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
Buruli ulcer is a chronic infectious disease caused by Mycobacterium ulcerans. The pathogen persistence in host skin is associated with the development of ulcerative and necrotic lesions leading to permanent disabilities in most patients. However, few of diagnosed cases are thought to resolve through an unknown self-healing process. Using in vitro and in vivo mouse models and M. ulcerans purified vesicles and mycolactone, we showed that the development of an innate immune tolerance was only specific to macrophages from mice able to heal spontaneously. This tolerance mechanism depends on a type I interferon response and can be induced by interferon beta. A type I interferon signature was further detected during in vivo infection in mice as well as in skin samples from patients under antibiotics regiment. Our results indicate that type I interferon-related genes expressed in macrophages may promote tolerance and healing during infection with skin damaging pathogen.
Collapse
Affiliation(s)
- Quentin Bernard
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | | | - Emmanuel Chaumond
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Marie Robbe-Saule
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Yan Boucaud
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Lucille Esnault
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Anne Croué
- Laboratoire d'anatomo-pathologie, CHU Angers, Angers, France
| | | | - Laurent Marsollier
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Estelle Marion
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| |
Collapse
|
4
|
Afarid M, Bahari H, Sanie-Jahromi F. In Vitro Evaluation of Apoptosis, Inflammation, Angiogenesis, and Neuroprotection Gene Expression in Retinal Pigmented Epithelial Cell Treated with Interferon α-2b. J Interferon Cytokine Res 2023. [PMID: 37289822 DOI: 10.1089/jir.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Angiogenesis, retinal neuropathy, and inflammation are the main molecular features of diabetic retinopathy (DR) and should be taken into consideration for potential treatment approaches. Retinal pigmented epithelial (RPE) cells play a major role in DR progression. This study evaluated the in vitro effect of interferon (IFN) α-2b on the expression of genes involved in apoptosis, inflammation, neuroprotection, and angiogenesis in RPE cells. RPE cells were cocultured with IFN α-2b at 2 doses (500 and 1,000 IU) and treatment periods (24 and 48 h). The quantitative relative expression of genes (BCL-2, BAX, BDNF, VEGF, and IL-1b) was evaluated in the treated versus control cells through real-time polymerase chain reaction (PCR). The result of this study demonstrated that IFN treatment at 1,000 IU (48 h) led to significant upregulation of BCL-2, BAX, BDNF, and IL-1b; however, the BCL-2/BAX ratio was not statistically altered from 1:1, in any of the treatment patterns. We also showed that VEGF expression was downregulated in RPE cells treated with 500 IU for 24 h. It can be concluded that IFN α-2b was safe (BCL-2/BAX ∼1:1) and enhanced neuroprotection at 1,000 IU (48 h); however-at the same time-IFN α-2b induced inflammation in RPE cells. Moreover, the antiangiogenic effect of IFN α-2b was solely observed in RPE cells treated with 500 IU (24 h). It seems that IFN α-2b in lower doses and short duration exerts antiangiogenic effects and in higher doses and longer duration has neuroprotective and inflammatory effects. Hence, appropriate concentration and duration of treatment, according to the type and stage of the disease, should be considered to achieve success in IFN therapy.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bahari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
6
|
Fischer S, Deindl E. State of the Art of Innate Immunity—An Overview. Cells 2022; 11:cells11172705. [PMID: 36078113 PMCID: PMC9454720 DOI: 10.3390/cells11172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The innate immune system is the first line of defense against bacterial and viral infections and sterile inflammation through the recognition of pathogen-associated molecular patterns (PAMPs) as well as danger-associated molecular patterns (DAMPs) by pathogen-recognition receptors (PRRs), and produces proinflammatory and antiviral cytokines and chemokines [...]
Collapse
Affiliation(s)
- Silvia Fischer
- Institute of Biochemistry, Justus-Liebig-University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-9947440
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, 82152 Munich, Germany
| |
Collapse
|
7
|
Types of necroinflammation, the effect of cell death modalities on sterile inflammation. Cell Death Dis 2022; 13:423. [PMID: 35501340 PMCID: PMC9061831 DOI: 10.1038/s41419-022-04883-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Distinct types of immune responses are activated by infections, which cause the development of type I, II, or III inflammation, regulated by Th1, Th2, Th17 helper T cells and ILC1, ILC2 and ILC3 cells, respectively. While the classification of immune responses to different groups of pathogens is widely accepted, subtypes of the immune response elicited by sterile inflammation have not yet been detailed. Necroinflammation is associated with the release of damage-associated molecular patterns (DAMP) from dying cells. In this review, we present that the distinct molecular mechanisms activated during apoptosis, necroptosis, pyroptosis, and ferroptosis lead to the release of different patterns of DAMPs and their suppressors, SAMPs. We summarize the currently available data on how regulated cell death pathways and released DAMPs and SAMPs direct the differentiation of T helper and ILC cells. Understanding the subtypes of necroinflammation can be crucial in developing strategies for the treatment of sterile inflammatory diseases caused by cell death processes.
Collapse
|
8
|
Lepelley A, Wai T, Crow YJ. Mitochondrial Nucleic Acid as a Driver of Pathogenic Type I Interferon Induction in Mendelian Disease. Front Immunol 2021; 12:729763. [PMID: 34512665 PMCID: PMC8428523 DOI: 10.3389/fimmu.2021.729763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
The immune response to viral infection involves the recognition of pathogen-derived nucleic acids by intracellular sensors, leading to type I interferon (IFN), and downstream IFN-stimulated gene, induction. Ineffective discrimination of self from non-self nucleic acid can lead to autoinflammation, a phenomenon implicated in an increasing number of disease states, and well highlighted by the group of rare genetic disorders referred to as the type I interferonopathies. To understand the pathogenesis of these monogenic disorders, and polyfactorial diseases associated with pathogenic IFN upregulation, such as systemic lupus erythematosus and dermatomyositis, it is important to define the self-derived nucleic acid species responsible for such abnormal IFN induction. Recently, attention has focused on mitochondria as a novel source of immunogenic self nucleic acid. Best appreciated for their function in oxidative phosphorylation, metabolism and apoptosis, mitochondria are double membrane-bound organelles that represent vestigial bacteria in the cytosol of eukaryotic cells, containing their own DNA and RNA enclosed within the inner mitochondrial membrane. There is increasing recognition that a loss of mitochondrial integrity and compartmentalization can allow the release of mitochondrial nucleic acid into the cytosol, leading to IFN induction. Here, we provide recent insights into the potential of mitochondrial-derived DNA and RNA to drive IFN production in Mendelian disease. Specifically, we summarize current understanding of how nucleic acids are detected as foreign when released into the cytosol, and then consider the findings implicating mitochondrial nucleic acid in type I interferonopathy disease states. Finally, we discuss the potential for IFN-driven pathology in primary mitochondrial disorders.
Collapse
Affiliation(s)
- Alice Lepelley
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Paris, France
| | - Timothy Wai
- Mitochondrial Biology Group, Institut Pasteur CNRS UMR 3691, Paris, France
| | - Yanick J Crow
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Paris, France.,Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|