1
|
Gregori G, Johansson L, Silberberg L, Imberg H, Magnusson P, Lind M, Lorentzon M. Prevention of glucocorticoid-induced impairment of bone metabolism-a randomized, placebo-controlled, single centre proof-of-concept clinical trial. JBMR Plus 2025; 9:ziaf031. [PMID: 40162303 PMCID: PMC11950668 DOI: 10.1093/jbmrpl/ziaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 04/02/2025] Open
Abstract
Oral glucocorticoid (GC) therapy rapidly and deleteriously affects bone metabolism and blood glucose regulation. The gut microbiota regulates bone metabolism and a prior study found that Limosilactobacillus reuteri ATCC PTA6475 (L. reuteri) reduced bone loss over 12 mo in older women. Mice treated either with broad-spectrum antibiotics or with L. reuteri did not experience GC-induced trabecular bone loss. This proof-of-concept, randomized, double-blind, placebo-controlled trial aimed to investigate if daily supplementation with L. reuteri, compared with placebo, could mitigate or prevent the negative effects of oral GC on bone turnover and blood glucose regulation in healthy young adults. Twenty-one men and 29 women, aged 18-45, were randomized to either placebo or L. reuteri (1 × 1010 CFU/d) treatment for 2 wk, followed by open-label oral prednisolone 25 mg daily for 7 d. Primary outcomes were changes in blood bone status indices (osteocalcin, C-terminal telopeptide cross-links of collagen type-I (CTX), and type-I procollagen intact N-terminal propeptide [PINP]) from baseline to 7 d after starting oral GC. Secondary endpoints included changes in blood glucose levels using continuous glucose monitoring during the same period (ClinicalTrials.gov NCT04767711). Blood samples were collected from participants in the morning after overnight fasting. Forty-six participants completed the 30-d study. The L. reuteri and placebo groups were well balanced in terms of baseline characteristics (age, BMI, sex, dietary intake, and physical activity). No significant differences were found between L. reuteri vs placebo for percent changes in CTX (-0.3 [95%CI -19.2-18.7], p = .98) or PINP (4.2 [-6.3-14.8], p = .43), or in osteocalcin levels (14.2 [-7.8-36.3], p = .21), although the group-to-group difference in osteocalcin was larger. There was no effect of treatment on mean blood glucose (-0.1 [-0.3-0.1] mmol/L, p = .28). In conclusion, we failed to detect a significant effect of L. reuteri supplementation on GC-related adverse effects on bone status indices in this proof-of-concept RCT. Larger studies are needed to identify any potential smaller effects.
Collapse
Affiliation(s)
- Giulia Gregori
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Lisa Johansson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Orthopedics, Sahlgrenska University Hospital, SE-431 80 Mölndal, Sweden
| | - Lena Silberberg
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Henrik Imberg
- Statistiska Konsultgruppen, SE-414 63 Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Per Magnusson
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - Marcus Lind
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
- Department of Medicine, NU-Hospital Group, SE-451 53 Uddevalla, Sweden
| | - Mattias Lorentzon
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Geriatric Medicine, Sahlgrenska University Hospital, SE-431 80 Mölndal, Sweden
| |
Collapse
|
2
|
Casimiro-Rosas M, Parra I, Sandoval-Ramírez J, Fernández Herrera MA, Tizabi Y, Martínez-García I, Mendieta L. BSS-4, a diosgenin analogue, reduces carrageenan-induced paw inflammation in rat. Steroids 2025; 217:109602. [PMID: 40122485 DOI: 10.1016/j.steroids.2025.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Inflammation is an adaptive response that ensures the survival of the organism in the face of injuries or trauma primarily via the immune system. However, overactivation of this process can be detrimental to the point of fatality. To overcome this overactivation, immunosuppressant agents such as steroids and non-steroidal anti-inflammatory drugs (NSAIDs) are used. Given the limitations of these drugs, including their side effects, an urgent need for development of potent and safer anti-inflammatory drugs is evident. Diosgenin, a steroidal saponin (a glycoside found in plants) and its analog, BSS-4 are gaining ground in this respect. Our objective in this study was to determine the effectiveness of BSS-4 in an established model of inflammation and provide clues on its mechanism of action. Carrageenan (Carr)-induced paw edema was used to evaluate the effectiveness of two doses of BSS-4 (0.5 and 1 mg/kg administered intraperitoneally) in adult male Wistar rats. Plantar edema was induced by subcutaneous injection of 50 µL of carrageenan (1 %) into the plantar aponeurosis of the right paw. Inflammatory cytokine markers, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) were quantified in this paw region using immunohistochemical assays. BSS-4 at 0.5 mg/kg dose, significantly reduced the paw edema up to three hours after administration. Concomitantly, TNF-α and IL-1β immunostaining were significantly reduced. BSS-4 also preserved the tissue architecture as assessed by hematoxylin and eosin (H&E) staining. These results indicate that BSS-4 can impart potent anti-inflammatory effects as well as reductions in TNF-α and IL-1β in an inflammatory rat model.
Collapse
Affiliation(s)
- Marisol Casimiro-Rosas
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irving Parra
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Jesús Sandoval-Ramírez
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - María A Fernández Herrera
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC 20059, USA
| | - Isabel Martínez-García
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Liliana Mendieta
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| |
Collapse
|
3
|
Braidotti S, Ferraro RM, Franca R, Genova E, Giambuzzi F, Mancini A, Marinozzi V, Pugnetti L, Zudeh G, Tesser A, Tommasini A, Decorti G, Giliani SC, Stocco G. Pharmacological evaluation of drug therapies in Aicardi-Goutières syndrome: insights from patient-derived neural stem cells. Front Pharmacol 2025; 16:1549183. [PMID: 40183101 PMCID: PMC11966042 DOI: 10.3389/fphar.2025.1549183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a rare genetic disorder classified among type I interferonopathies. Current pharmacological management of AGS is symptomatic and supportive, with recent clinical applications of JAK inhibitors (JAKi) and antiretroviral therapies (RTIs). To investigate the effects of these therapies, patient-specific induced pluripotent stem cells (iPSCs) were generated by reprogramming fibroblasts from three AGS patients with distinct genetic mutations (AGS1, AGS2, AGS7) and differentiated into neural stem cells (NSCs). iPSCs and NSCs derived from commercial BJ fibroblasts of a healthy donor served as control. The cytotoxic effects of glucocorticoids, thiopurines, JAK inhibitors (ruxolitinib, baricitinib, tofacitinib, pacritinib), and RTIs (abacavir, lamivudine, zidovudine) were evaluated using the MTT assay. Results showed that glucocorticoids did not compromise NSC viability. Among thiopurines, thioguanine, but not mercaptopurine, exhibited cytotoxicity in NSCs. All tested JAK inhibitors, except pacritinib, were non-toxic to iPSCs and NSCs. Interestingly, high concentrations of certain JAK inhibitors (ruxolitinib, baricitinib, tofacitinib) led to an unexpected increase in cell viability in AGS patient-derived cells compared to control, suggesting potential alterations in cell proliferation or stress responses. RTIs demonstrated no cytotoxicity, except for zidovudine, which showed selective toxicity in AGS2-derived iPSCs compared to controls. These findings suggest that glucocorticoids, JAK inhibitors (excluding pacritinib), and RTIs are likely safe for NSCs of AGS patients, while caution is warranted with thioguanine and pacritinib. Further studies are needed to explore the mechanisms underlying increased cell viability at high JAK inhibitor concentrations and the selective sensitivity to zidovudine.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of Paediatrics, Institute for Maternal and Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Rosalba Monica Ferraro
- “Angelo Nocivelli” Institute for Molecular Medicine, ASST Spedali Civili, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Elena Genova
- Department of Paediatrics, Institute for Maternal and Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Francesco Giambuzzi
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Andrea Mancini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Valentina Marinozzi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Letizia Pugnetti
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Giulia Zudeh
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Alessandra Tesser
- Department of Paediatrics, Institute for Maternal and Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Alberto Tommasini
- Department of Paediatrics, Institute for Maternal and Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Silvia Clara Giliani
- “Angelo Nocivelli” Institute for Molecular Medicine, ASST Spedali Civili, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gabriele Stocco
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| |
Collapse
|
4
|
Sahoo A, Paidesetty SK, Panda M. Target-specific high-throughput screening of anti-inflammatory phytosteroids for autoimmune diseases: A molecular docking-dynamics simulation approach. Steroids 2025; 217:109601. [PMID: 40120839 DOI: 10.1016/j.steroids.2025.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Without proper pathophysiology and recommended therapy, synthetic steroids are widely used as a first-line option for the management of autoimmune diseases. However, their prolonged use often leads to severe side effects such as osteoporosis, hypertension, cardiovascular, gastrointestinal complications, etc. To search for potential and safer therapeutic options, the present study aims to explore the potency and drug-ability profiles of anti-inflammatory phytosteroids (PSs). In a target-specific approach, we have selected three key molecular targets: glucocorticoid receptor/GR (PDB ID: 4P6W), cyclooxygenase-2/COX2 (PDB ID: 5F1A), and inducible nitric oxide synthase/iNOS (PDB ID: 4NOS) for a docking study of 167) selected PSs. The drug-chemistry profiles (physicochemical, toxicity, pharmacokinetic, drug-ability, etc.) of PSs were also assessed using various bioinformatics and chemoinformatics tools. The above assessment suggested that withaminilide B (PS46) is a lead candidate with higher drug-ability properties. Further, the drug stability and kinetic behaviour of the lead with the GR target 'GR-withaminilide B' in comparison with the control drug, 'GR-triamcinolone acetonide' docking complex, were studied through molecular dynamics (MD) simulation at 200 nanosecond with free energy calculation (MM/PBSA). Overall findings suggested that PSs exhibit distinct drug-ability profiles based on their functional attachments with a steroidal core moiety, where withaminilide B is a lead PSs among all to be used as alternative/ complementary candidates expected with limited adverse effects. Further experimentation is essential before mainstream application, but the study provided a platform to select drug-able candidates with a higher chance of experimental success and accelerate the drug discovery process within limited resources.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India.
| |
Collapse
|
5
|
Mallick R, Basak S, Chowdhury P, Bhowmik P, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Targeting Cytokine-Mediated Inflammation in Brain Disorders: Developing New Treatment Strategies. Pharmaceuticals (Basel) 2025; 18:104. [PMID: 39861166 PMCID: PMC11769149 DOI: 10.3390/ph18010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Cytokine-mediated inflammation is increasingly recognized for playing a vital role in the pathophysiology of a wide range of brain disorders, including neurodegenerative, psychiatric, and neurodevelopmental problems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) cause neuroinflammation, alter brain function, and accelerate disease development. Despite progress in understanding these pathways, effective medicines targeting brain inflammation are still limited. Traditional anti-inflammatory and immunomodulatory drugs are effective in peripheral inflammatory illnesses. Still, they face substantial hurdles when applied to the central nervous system (CNS), such as the blood-brain barrier (BBB) and unwanted systemic effects. This review highlights the developing treatment techniques for modifying cytokine-driven neuroinflammation, focusing on advances that selectively target critical cytokines involved in brain pathology. Novel approaches, including cytokine-specific inhibitors, antibody-based therapeutics, gene- and RNA-based interventions, and sophisticated drug delivery systems like nanoparticles, show promise with respect to lowering neuroinflammation with greater specificity and safety. Furthermore, developments in biomarker discoveries and neuroimaging techniques are improving our ability to monitor inflammatory responses, allowing for more accurate and personalized treatment regimens. Preclinical and clinical trial data demonstrate the therapeutic potential of these tailored techniques. However, significant challenges remain, such as improving delivery across the BBB and reducing off-target effects. As research advances, the creation of personalized, cytokine-centered therapeutics has the potential to alter the therapy landscape for brain illnesses, giving patients hope for better results and a higher quality of life.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Premanjali Chowdhury
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden;
- Department of Textile Engineering, Green University of Bangladesh, Narayanganj 1461, Bangladesh
| | - Ranjit K. Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, India; (A.B.); (S.P.)
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico;
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, India; (A.B.); (S.P.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
6
|
Hamed AM, Elbahy DA, Ahmed ARH, Thabet SA, Refaei RA, Ragab I, Elmahdy SM, Osman AS, Abouelella AMA. Comparison of the efficacy of curcumin and its nano formulation on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in Wistar rats. Heliyon 2024; 10:e41043. [PMID: 39759349 PMCID: PMC11696662 DOI: 10.1016/j.heliyon.2024.e41043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background and objective Insulin resistance is a primary feature of type 2 diabetes. This study compared the effects of curcumin and its nanoformulation on insulin resistance, fasting blood sugar, liver function, GLUT4, lipid profile, and oxidative stress in the liver and pancreas in a diabetic model. Methods Thirty male Wistar rats were divided into five groups: a control group, a diabetic group, a diabetic group treated with metformin (40 mg/kg), a diabetic group treated with curcumin (100 mg/kg), and a diabetic group treated with curcumin NPs (100 mg/kg). Diabetes was induced by injecting dexamethasone daily for 14 days. Treatment with curcumin and curcumin NPs was administered by gavage for 14 days. Body weight and fasting blood sugar levels were measured on days 1, 14, and 28. Results The metformin, curcumin, and curcumin NPs groups showed significantly greater body weight gain than the untreated diabetic group (P < 0.001). In diabetic rats treated with curcumin and curcumin NPs, insulin resistance decreased by approximately 40 %, while fasting blood sugar levels dropped by 35-40 % (P < 0.001). The levels of liver enzymes (AST, ALT), cholesterol, triglycerides, LDL, and the oxidative stress marker MDA in liver and pancreatic tissues were reduced by 30-50 %. Additionally, beneficial markers such as albumin, HDL, antioxidants (GSH, SOD), and GLUT4 levels were increased by 25-45 % (P < 0.001). Nano-curcumin consistently showed greater improvements than curcumin, especially in reducing oxidative stress and supporting liver and pancreatic health. Conclusion This study demonstrates that curcumin NPs has a superior effect on reducing oxidative stress and improving metabolic parameters in diabetes compared to curcumin. by enhancing the bioavailability and stability of curcumin, the nanoformulation showed stronger therapeutic potential for managing high blood sugar, cholesterol issues, and liver health, positioning curcumin NPs as a promising alternative to conventional treatments for diabetes and its complications.
Collapse
Affiliation(s)
- Amany M. Hamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Dalia A. Elbahy
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed RH. Ahmed
- Department of Pathology, faculty of medicine, Sohag University, Sohag, Egypt
| | - Shymaa A. Thabet
- Central Research Center, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Islam Ragab
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | | | - Ahmed S. Osman
- Department of Biochemistry, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Azza MA. Abouelella
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
7
|
Kim ME, Lee JS. Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders. Curr Issues Mol Biol 2024; 47:8. [PMID: 39852123 PMCID: PMC11763386 DOI: 10.3390/cimb47010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells. Key signaling pathways, including NF-κB, JAK-STAT, and the NLRP3 inflammasome, are discussed alongside emerging regulators such as non-coding RNAs, epigenetic modifications, and the gut-brain axis. The therapeutic landscape is evolving, with traditional anti-inflammatory drugs like NSAIDs and corticosteroids offering limited efficacy in chronic conditions. Immunomodulators, gene and RNA-based therapeutics, and stem cell methods have all shown promise for more specific and effective interventions. Additionally, the modulation of metabolic states and gut microbiota has emerged as a novel strategy to regulate neuroinflammation. Despite significant progress, challenges remain in translating these findings into clinically viable therapies. Future studies should concentrate on integrated, interdisciplinary methods to reduce chronic neuroinflammation and slowing the progression of neurodegenerative disorders, providing opportunities for revolutionary advances in CNS therapies.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
8
|
Hemajha L, Singh S, Biji CA, Balde A, Benjakul S, Nazeer RA. A review on inflammation modulating venom proteins/peptide therapeutics and their delivery strategies: A review. Int Immunopharmacol 2024; 142:113130. [PMID: 39278056 DOI: 10.1016/j.intimp.2024.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Inflammation is an initial biological reaction that occurs in response to infection caused by foreign pathogens or injury. This process involves a tightly controlled series of signaling events at the molecular and cellular levels, with the ultimate goal of restoring tissue balance and protecting against invading pathogens. Malfunction in the process of inflammation can result in a diverse array of diseases, such as cardiovascular, neurological, and autoimmune disorders. Therefore, the management of inflammation is of utmost importance in modern medicine. Nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids have long been the mainstays of pharmacological treatment for inflammation, effectively alleviating symptoms in many patients. Recently, toxins and venom, formerly seen as mostly harmful to the human body, have been recognized as possible medicinal substances for treating inflammation. Organisms that are venomous, such as spiders, scorpions, snakes, and certain marine species, have developed a wide range of powerful toxins that can effectively disable or discourage predators. Remarkably, the majority of these poisons and venoms consist of proteins and peptides, which are acknowledged as significant bioactive compounds with medicinal potential. The goal of this review is to investigate the medicinal potential of peptides derived from venoms and their complex mechanism of action in suppressing inflammation. This review also discusses various challenges and future prospects for effective venom delivery.
Collapse
Affiliation(s)
- Lakshmikanthan Hemajha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Simran Singh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
9
|
Anwar S, Alhumaydhi FA, Rahmani AH, Kumar V, Alrumaihi F. A Review on Risk Factors, Traditional Diagnostic Techniques, and Biomarkers for Pneumonia Prognostication and Management in Diabetic Patients. Diseases 2024; 12:310. [PMID: 39727640 PMCID: PMC11726889 DOI: 10.3390/diseases12120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
People of all ages can contract pneumonia, and it can cause mild to severe disease and even death. In addition to being a major cause of death for elderly people and those with prior medical conditions such as diabetes, it isthe world's biggest infectious cause of death for children. Diabetes mellitus is a metabolic condition with a high glucose level and is a leading cause of lower limb amputation, heart attacks, strokes, blindness, and renal failure. Hyperglycemia is known to impair neutrophil activity, damage antioxidant status, and weaken the humoral immune system. Therefore, diabetic patients are more susceptible to pneumonia than people without diabetes and linked fatalities. The absence of quick, precise, simple, and affordable ways to identify the etiologic agents of community-acquired pneumonia has made diagnostic studies' usefulness contentious. Improvements in biological markers and molecular testing techniques have significantly increased the ability to diagnose pneumonia and other related respiratory infections. Identifying the risk factors for developing severe pneumonia and early testing in diabetic patients might lead to a significant decrease in the mortality of diabetic patients with pneumonia. In this regard, various risk factors, traditional testing techniques, and pathomechanisms are discussed in this review. Further, biomarkers and next-generation sequencing are briefly summarized. Finding biomarkers with the ability to distinguish between bacterial and viral pneumonia could be crucial because identifying the precise pathogen would stop the unnecessary use of antibiotics and effectively save the patient's life.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, College of Nursing and Paramedical Sciences, Bareilly 243302, Uttar Pradesh, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (A.H.R.)
| | - Vikalp Kumar
- Department of Medical Laboratory Technology, College of Nursing and Paramedical Sciences, Bareilly 243302, Uttar Pradesh, India
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (A.H.R.)
| |
Collapse
|
10
|
Al-Naimi MS, Abu-Raghif AR, Fawzi HA. Novel therapeutic effects of rifaximin in combination with methylprednisolone for LPS-induced oxidative stress and inflammation in mice: An in vivo study. Toxicol Rep 2024; 13:101808. [PMID: 39640902 PMCID: PMC11617758 DOI: 10.1016/j.toxrep.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
Cytokine-releasing syndrome (CRS) is a special form of systemic inflammatory response syndrome provoked by factors like viral infections and certain immunomodulatory drugs. To elucidate the potential role of rifaximin (RIF) and its combination with methylprednisolone (MP) against the development and progression of CRS in mice. This experiment consists of two parts: protective and therapeutic interventions. The protective experiment: in the induction group, mice received an intraperitoneal injection (IP) of 5 mg/kg lipopolysaccharide (LPS) without intervention. The other group received various drugs before the induction by three days, then observed for an additional two days (50 mg/kg MP, 50 mg/kg RIF, and a combination of 25 mg/kg RIF with 25 mg/kg MP. The second part of the study involves the therapeutic potential; all groups received similar doses of drugs to that received in the prevention groups, except LPS induction was given first, and after one hour, the mice received daily doses of the drugs for five days. At the end of the experiment, blood and tissue samples were obtained. Mice treated with RIF and its combination with MP showed improved serum TNF-α, IL-6, IL-8, IL-1β, INF-γ, MDA, and GSH in both prevention and therapeutic groups. Histopathologically, mice treated with rifaximin and its combination with MP ameliorates the tissue damage in both lung and liver tissues following LPS induction. In conclusion, rifaximin showed protective and therapeutic effects in LPS-induced cytokine storms in mice through anti-inflammatory and antioxidant mechanisms, and its combination with methylprednisolone showed additive/ synergistic action.
Collapse
Affiliation(s)
- Marwa Salih Al-Naimi
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Farahidi University, Baghdad, Iraq
| | - Ahmed R. Abu-Raghif
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
11
|
Kim B, Kostaki A, McClymont S, Matthews SG. Identification of a DNA methylation signature in whole blood of newborn guinea pigs and human neonates following antenatal betamethasone exposure. Transl Psychiatry 2024; 14:465. [PMID: 39511158 PMCID: PMC11543945 DOI: 10.1038/s41398-024-03175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Antenatal corticosteroids (ACS) are administered where there is risk of preterm birth to promote fetal lung development and improve perinatal survival. However, treatment may be associated with increased risk of developing neurobehavioural disorders. We have recently identified that ACS results in significant changes to DNA methylation patterns in the newborn and juvenile prefrontal cortex (PFC) of exposed guinea pig offspring. Methylation changes at transcription factor binding sites (TFBS) for PLAGL1, TFAP2C, ZNF263, and SP1 were consistently noted at both post-natal stages, suggesting a long-lasting signature of ACS exposure. In this study, we determined if comparable methylation changes are also present in the newborn blood of ACS-exposed guinea pig offspring, as this would determine whether blood methylation patterns may be used as a peripheral biomarker of changes in the brain. Pregnant guinea pigs were treated with saline or betamethasone (1 mg/kg) on gestational days 50/51. gDNA from whole blood of term-born offspring on post-natal day (PND) 1 was used for reduced representation bisulfite sequencing. Overall, 1677 differentially methylated CpG sites (DMCs) were identified in response to ACS. While no specific DMCs identified in the blood overlapped with those previously reported in the PFC of PND1 offspring, significant differential methylation at TFBSs for PLAGL1, TFAP2C, EGR1, ZNF263, and SP1 was persistently observed. Furthermore, re-examination of our previously reported data of DMCs in human neonatal blood following ACS identified the presence of this same TFBS signature in human infants, suggesting the potential for clinical translation of our epigenomic data.
Collapse
Affiliation(s)
- Bona Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
| | - Alisa Kostaki
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sarah McClymont
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Ioniuc IK, Lupu A, Dragan F, Tarnita I, Alexoae MM, Streanga V, Mitrofan C, Thet AA, Nedelcu AH, Salaru DL, Burlea SL, Mitrofan EC, Lupu VV, Azoicai AN. Oxidative Stress and Antioxidants in Pediatric Asthma's Evolution and Management. Antioxidants (Basel) 2024; 13:1331. [PMID: 39594473 PMCID: PMC11590961 DOI: 10.3390/antiox13111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Within the pediatric population, bronchial asthma is one of the most prevalent chronic respiratory system diseases. The number of exacerbations, severity, and duration of symptoms all have a significant impact on children's life quality. In the last decades, the prevention and management strategies of this pathology have focused on maintaining or even increasing the pulmonary function to maximum levels in early childhood, as it has been demonstrated that functional deficits at this level occurring before school age cause pathological manifestations later, in adulthood. The epithelium of the airways and implicitly that of the lung is the first barrier against the lesions caused by pro-oxidative factors. Both oxidative and antioxidative factors can be of endogenous origin (produced by the body) or exogenous (from the environment or diet). Good functioning of antioxidant defense mechanisms from the molecular level to the tissue level, and a balance between pro-oxidative factors and anti- oxidative factors, influence the occurrence of compensatory mechanisms at the level of the respiratory epithelium, causing the delay of local responses to the stress induced by chronic inflammation (bronchial remodeling, thickening of airway smooth muscles, bronchoconstriction, bronchial hyper-reactivity). These mechanisms underlie the pathophysiological changes in asthma. Numerous studies carried out among the pediatric population inclusively have demonstrated the effectiveness of antioxidants in the prophylaxis, slowing down and preventing the progression of this pathology. This review complements the scientific articles, aiming at emphasizing the complexity of oxidative physio-pathological pathways and their importance in the occurrence, development, and therapeutic response in asthma, providing a good understanding of the relationship between oxidative and antioxidative factors, and being a source of future therapeutic strategies.
Collapse
Affiliation(s)
- Ileana Katerina Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Irina Tarnita
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Monica Mihaela Alexoae
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Violeta Streanga
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Aye Aung Thet
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Stefan Lucian Burlea
- Public Health and Management Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Alice Nicoleta Azoicai
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| |
Collapse
|
13
|
Balogun O, Brownmiller CR, Lee SO, Kang HW. Onion Peel Extract Prevents Intestinal Inflammation via AMK-Activated Protein Kinase Activation in Caco-2/HT-29 Cells. Nutrients 2024; 16:3609. [PMID: 39519442 PMCID: PMC11547908 DOI: 10.3390/nu16213609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Obesogenic diets cause intestinal inflammation and dysfunction. Polyphenols have shown a positive impact on reducing inflammation in in vitro studies. However, their bioactivity may not be the same in the in vivo system due to structural alteration by the gastrointestinal digestive process. The purpose of this study was to investigate the anti-inflammatory effect of onion peel and its major bioactive compound, quercetin, in the intestine and further examine the impact of intestinal digestion on this effect. METHODS Onion peel extract (OPE) and quercetin (Q) were digested using gastrointestinal digestive enzymes in vitro and then treated into lipopolysaccharide (LPS)-stimulated Caco-2/HT-29 cells. Genes and proteins related to tight junction, inflammation, and epithelial integrity were measured. RESULTS OPE and digested OPE (DOPE) had a higher protective effect on LPS-induced tight junction and inflammatory genes and paracellular permeability than Q and digested Q (DQ). DOPE was more effective than OPE, while digestion did not change the activity of Q. The anti-inflammatory effect of OPE and Q with or without digestion was achieved by inhibiting nuclear factor kappa B through AMP-activated protein kinase-activated silent mating-type information regulation 2 homolog 1. CONCLUSIONS It was the first to find that a crude extract, after undergoing gastrointestinal digestion, demonstrated a notably superior anti-inflammatory effect in the cell study, suggesting the consumption of onion peels could potentially yield similar benefits in the human intestine. This discovery underscores the potential of onion peel polyphenols in combating intestinal inflammation, making them a compelling area of research for future therapeutic applications using food byproducts.
Collapse
Affiliation(s)
- Olugbenga Balogun
- Applied Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Cindi R. Brownmiller
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; (C.R.B.); (S.-O.L.)
| | - Sun-Ok Lee
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; (C.R.B.); (S.-O.L.)
| | - Hye Won Kang
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
14
|
Deochand DK, Dacic M, Bale MJ, Daman AW, Chaudhary V, Josefowicz SZ, Oliver D, Chinenov Y, Rogatsky I. Mechanisms of epigenomic and functional convergence between glucocorticoid- and IL4-driven macrophage programming. Nat Commun 2024; 15:9000. [PMID: 39424780 PMCID: PMC11489752 DOI: 10.1038/s41467-024-52942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2IL4). Glucocorticoids (GC), widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2GC), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2IL4 and M2GC transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets. This core homeostatic program is enacted by transcriptional effectors KLF4 and the glucocorticoid receptor, whose genome-wide occupancy and actions are integrated in a stimulus-specific manner by the nuclear receptor cofactor GRIP1. Indeed, many of the M2IL4:M2GC-shared transcriptomic changes were GRIP1-dependent. Consistently, GRIP1 loss attenuated phagocytic activity of both populations in vitro and macrophage tissue-repair properties in the murine colitis model in vivo. These findings provide a mechanistic framework for homeostatic macrophage programming by distinct signals, to better inform anti-inflammatory drug design.
Collapse
Affiliation(s)
- Dinesh K Deochand
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Michael J Bale
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Andrew W Daman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Vidyanath Chaudhary
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - David Oliver
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
| | - Yurii Chinenov
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, David Z. Rosensweig Genomics Center, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
15
|
Suri C, Pande B, Sahithi LS, Sahu T, Verma HK. Interplay between Lung Diseases and Viral Infections: A Comprehensive Review. Microorganisms 2024; 12:2030. [PMID: 39458339 PMCID: PMC11510474 DOI: 10.3390/microorganisms12102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The intricate relationship between chronic lung diseases and viral infections is a significant concern in respiratory medicine. We explore how pre-existing lung conditions, including chronic obstructive pulmonary disease, asthma, and interstitial lung diseases, influence susceptibility, severity, and outcomes of viral infections. We also examine how viral infections exacerbate and accelerate the progression of lung disease by disrupting immune responses and triggering inflammatory pathways. By summarizing current evidence, this review highlights the bidirectional nature of these interactions, where underlying lung diseasesincrease vulnerability to viral infections, while these infections, in turn, worsen the clinical course. This review underscores the importance of preventive measures, such as vaccination, early detection, and targeted therapies, to mitigate adverse outcomes in patients with chronic lung conditions. The insights provided aim to inform clinical strategies that can improve patient management and reduce the burden of chronic lung diseases exacerbated by viral infections.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | | | - Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
16
|
Villarreal Rizzo AF, Davis EI, Khalife WI, Peek MK, Downer B. Myocardial infarction & C-reactive protein levels among Mexican adults with arthritis: Findings from the Mexican Health and Aging Study. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 22:200309. [PMID: 39055965 PMCID: PMC11269949 DOI: 10.1016/j.ijcrp.2024.200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Background Studies of adult populations in high-income countries have found an association between arthritis and myocardial infarction (MI) due to high levels of systemic inflammation. Our objectives were to examine the association between arthritis and MI among Mexican adults and to assess the mediating effect of C-reactive protein (CRP) on this association. Methods Data came from the 2012, 2015, and 2018 observation waves of the Mexican Health and Aging Study. Our sample included 11,707 participants aged 50 and older with no prior MI before 2012. We used self-reported information for arthritis, joint pain, medication use, and limitations to daily activities in 2012. Logistic regression was used to model the association between arthritis and self-reported MI in 2015 or 2018. We used a sub-sample of 1602 participants to assess the mediating effect of CRP. Results In the full sample, participants with arthritis that limited their daily activities had higher odds of MI than participants with no arthritis (OR = 1.40; 95 % CI = 1.04-1.88). In the sub-sample, arthritis that limited daily activities was associated with higher mean CRP (5.2 mg/dL; 95 % CI = 4.10-6.21) than arthritis with no limitations (3.5 mg/dL; 95 % CI = 2.93-4.01). However, CRP levels had a small mediating effect, and the relationship between arthritis with physical limitations and MI remained statistically significant. Conclusion Mexican adults with arthritis that limits their daily activities are at an increased risk for MI. Continued research is needed to identify factors that contribute to this increased risk.
Collapse
Affiliation(s)
- Alan F. Villarreal Rizzo
- Division of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN, USA
| | - Elizabeth I. Davis
- Division of Cardiovascular Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Wissam I. Khalife
- Division of Cardiovascular Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - M. Kristen Peek
- School of Public and Population Health, Department of Population Health & Health Disparities, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging & School of Public and Population Health, Department of Population Health & Health Disparities, The University of Texas Medical Branch, Galveston, TX, USA
| | - Brian Downer
- School of Public and Population Health, Department of Population Health & Health Disparities, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging & School of Public and Population Health, Department of Population Health & Health Disparities, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
17
|
Li H, Guo J, Zhang G, Zhou J, Wang Q. Protective Effect of a Isothiazolinone Derivative on Acute Lung Injury by Regulating PI3K-AKT Signaling Pathway. Chem Biodivers 2024; 21:e202400892. [PMID: 38924251 DOI: 10.1002/cbdv.202400892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Acute lung injury (ALI) is a prevalent organ injury in sepsis, characterized by an inflammatory reactive disorder. Both the incidence and mortality rates of ALI have been steadily increasing. Isothiazolinone derivatives have displayed anti-inflammatory activity and have shown effectiveness in treating pneumonia. The objective of the study is to assess the effects and mechanisms of the isothiazolinone derivative 4-benzoyl-2-butyl-5-(ethylsulfinyl)isothiazol-3(2H)-one (C6) on sepsis-induced ALI.The analysis of biological function and signal pathway enrichment demonstrated that C6 primarily exhibited anti-inflammatory effects. Administration of different doses of C6 through intraperitoneal injection significantly improved the survival rate, body temperature, and body mass of mice with ALI induced by cecal ligation and puncture (CLP). Additionally, it mitigated lung tissue injury, pulmonary edema, lung permeability, inflammatory cell infiltration, apoptosis, and the expression of inflammatory cytokines. Network targeting analysis and experimental validation in mouse leukemia cells of monocyte macrophage (RAW264.7) cells and CLP-induced ALI mice revealed that the anti-inflammatory effect of C6 was mediated by the inhibition of the phosphatidylinositol 3 kinase -protein kinase B (PI3K-AKT) signaling pathway. The research suggest that C6 has protective effects against ALI by inhibiting the PI3K-AKT signaling pathway. This information could be valuable in developing potential treatments for ALI.
Collapse
Affiliation(s)
- Hua Li
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Jie Guo
- The Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Gaiyue Zhang
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Jing Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Qiang Wang
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| |
Collapse
|
18
|
Milosevic A, Milosevic K, Zivkovic A, Lavrnja I, Savic D, Bjelobaba I, Janjic MM. Alterations in the Hypothalamic-Pituitary-Adrenal Axis as a Response to Experimental Autoimmune Encephalomyelitis in Dark Agouti Rats of Both Sexes. Biomolecules 2024; 14:1020. [PMID: 39199407 PMCID: PMC11352252 DOI: 10.3390/biom14081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that affects the central nervous system, usually diagnosed during the reproductive period. Both MS and its commonly used animal model, experimental autoimmune encephalomyelitis (EAE), exhibit sex-specific features regarding disease progression and disturbances in the neuroendocrine and endocrine systems. This study investigates the hypothalamic-pituitary-adrenal (HPA) axis response of male and female Dark Agouti rats during EAE. At the onset of EAE, Crh expression in the hypothalamus of both sexes is decreased, while males show reduced plasma adrenocorticotropic hormone levels. Adrenal gland activity is increased during EAE in both males and females, as evidenced by enlarged adrenal glands and increased StAR gene and protein expression. However, only male rats show increased serum and adrenal corticosterone levels, and an increased volume of the adrenal cortex. Adrenal 3β-HSD protein and progesterone levels are elevated in males only. Serum progesterone levels of male rats are also increased, although testicular progesterone levels are decreased during the disease, implying that the adrenal gland is the source of elevated serum progesterone levels in males. Our results demonstrate a sex difference in the response of the HPA axis at the adrenal level, with male rats showing a more pronounced induction during EAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marija M. Janjic
- Department for Neurobiology, Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.M.); (K.M.); (A.Z.); (I.L.); (D.S.); (I.B.)
| |
Collapse
|
19
|
Knoll R, Helbig ET, Dahm K, Bolaji O, Hamm F, Dietrich O, van Uelft M, Müller S, Bonaguro L, Schulte-Schrepping J, Petrov L, Krämer B, Kraut M, Stubbemann P, Thibeault C, Brumhard S, Theis H, Hack G, De Domenico E, Nattermann J, Becker M, Beyer MD, Hillus D, Georg P, Loers C, Tiedemann J, Tober-Lau P, Lippert L, Millet Pascual-Leone B, Tacke F, Rohde G, Suttorp N, Witzenrath M, Saliba AE, Ulas T, Polansky JK, Sawitzki B, Sander LE, Schultze JL, Aschenbrenner AC, Kurth F. The life-saving benefit of dexamethasone in severe COVID-19 is linked to a reversal of monocyte dysregulation. Cell 2024; 187:4318-4335.e20. [PMID: 38964327 DOI: 10.1016/j.cell.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/27/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.
Collapse
Affiliation(s)
- Rainer Knoll
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Elisa T Helbig
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kilian Dahm
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Olufemi Bolaji
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederik Hamm
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Dietrich
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Martina van Uelft
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Sophie Müller
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Lev Petrov
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Michael Kraut
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Paula Stubbemann
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heidi Theis
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Gudrun Hack
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Elena De Domenico
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc D Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - David Hillus
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Georg
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Constantin Loers
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janina Tiedemann
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Lippert
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Belén Millet Pascual-Leone
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine, Medical Clinic I, Goethe-Universität Frankfurt am Main, Frankfurt, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; CAPNETZ STIFTUNG, 30625 Hannover, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; CAPNETZ STIFTUNG, 30625 Hannover, Germany; German Center for Lung Research (DZL), Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; CAPNETZ STIFTUNG, 30625 Hannover, Germany; German Center for Lung Research (DZL), Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany; Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Julia K Polansky
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Germany
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
| | - Florian Kurth
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Germany
| |
Collapse
|
20
|
Zhao X, Huang X, Huang C, Wang X, Yang Y, Dang R, Zhang S, Deng Y, Yan P, Zhou Y, Fan P, Cheng X. Study on the mechanism of glucocorticoid receptor mitochondrial translocation and glucocorticoid-induced apoptosis in macrophages. Immunopharmacol Immunotoxicol 2024:1-14. [PMID: 38862214 DOI: 10.1080/08923973.2024.2366867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Our research aimed to investigate the therapeutic effects of Tubastatin-A, a glucocorticoid receptor (GR) mitochondrial translocation inhibitor, and mitoquinone (MitoQ), an antioxidant, on attenuating dexamethasone (DEX)-induced macrophage apoptosis. METHODS We treated RAW264.7 macrophages with different combinations of DEX and either Tubastatin-A or MitoQ. Parameters such as mitochondrial GR translocation, mitochondrial reactive oxygen species levels, mitochondrial membrane potential, mitochondrial permeability transition pore opening, cytochrome C efflux to the cytosol, and apoptosis were subsequently evaluated in the different treatment groups via qRT-PCR, western blotting, and immunofluorescence assays. RESULTS DEX intervention increased the translocation of GRs into the mitochondria, while reducing the expression of the mitochondrial gene MT-CO1 and the activity of mitochondrial respiratory chain complex IV in macrophages. In addition, DEX administration increased mtROS levels, mitochondrial permeability transition pore opening, and mitochondrial cytochrome C release in macrophages, which promoted their apoptosis. We found that Tubastatin-A inhibited mitochondrial GR translocation and reversed the DEX-induced increase in GR levels within the mitochondria. Furthermore, Tubastatin-A mitigated various mitochondrial changes induced by DEX, including reducing the efflux of mitochondrial cytochrome C and inhibiting macrophage apoptosis. Similarly, MitoQ exerted its effects on macrophage apoptosis by reducing mtROS levels through the mitochondrial pathway. CONCLUSIONS The DEX-mediated translocation of GR into mitochondria disrupts the mitochondrial function of macrophages, which induces their apoptosis. By inhibiting mitochondrial translocation of GR and reducing mtROS levels, Tubastatin-A and MitoQ can effectively attenuate macrophage apoptosis, which has clinical implications for reducing the notable side effects associated with glucocorticoid use.
Collapse
Affiliation(s)
- Xiaoqing Zhao
- Department of Dermatology, Guangzhou Twelfth People's Hospital, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Xinglan Huang
- Department of Dermatology, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Caifeng Huang
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingrong Wang
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqi Yang
- Institute of Integrated Traditional Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruonan Dang
- Institute of Integrated Traditional Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suiying Zhang
- Department of Dermatology, Dongguan Songshan Lake Central Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Yuqiong Deng
- Department of Dermatology, Panyu Maternal And Child Care Service Centre Of Guangzhou, Guangzhou, China
| | - Peng Yan
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Yiye Zhou
- Institute of Integrated Traditional Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Fan
- Institute of Integrated Traditional Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiping Cheng
- Institute of Integrated Traditional Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Ishihara R, Watanabe R, Shiomi M, Katsushima M, Fukumoto K, Yamada S, Okano T, Hashimoto M. Exploring the Link between Varicella-Zoster Virus, Autoimmune Diseases, and the Role of Recombinant Zoster Vaccine. Biomolecules 2024; 14:739. [PMID: 39062454 PMCID: PMC11274381 DOI: 10.3390/biom14070739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The varicella-zoster virus (VZV) is a human neurotropic herpes virus responsible for varicella and herpes zoster (HZ). Following primary infection in childhood, VZV manifests as varicella (chickenpox) and enters a period of latency within the dorsal root ganglion. A compromised cellular immune response due to aging or immunosuppression triggers viral reactivation and the development of HZ (shingles). Patients with autoimmune diseases have a higher risk of developing HZ owing to the immunodeficiency associated with the disease itself and/or the use of immunosuppressive agents. The introduction of new immunosuppressive agents with unique mechanisms has expanded the treatment options for autoimmune diseases but has also increased the risk of HZ. Specifically, Janus kinase (JAK) inhibitors and anifrolumab have raised concerns regarding HZ. Despite treatment advances, a substantial number of patients suffer from complications such as postherpetic neuralgia for prolonged periods. The adjuvanted recombinant zoster vaccine (RZV) is considered safe and effective even in immunocompromised patients. The widespread adoption of RZV may reduce the health and socioeconomic burdens of HZ patients. This review covers the link between VZV and autoimmune diseases, assesses the risk of HZ associated with immunosuppressant use, and discusses the benefits and risks of using RZV in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Ryuhei Ishihara
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Mayu Shiomi
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masao Katsushima
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kazuo Fukumoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shinsuke Yamada
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tadashi Okano
- Center for Senile Degenerative Disorders (CSDD), Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
22
|
Liu YG, Zhang SS, Jin SW, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Anti-inflammatory effect and pharmacokinetics of dehydroandrographolide, an active component of Andrographis paniculata, on Poly(I:C)-induced acute lung injury. Biomed Pharmacother 2024; 174:116456. [PMID: 38552441 DOI: 10.1016/j.biopha.2024.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024] Open
Abstract
Acute lung injury (ALI) is a common and critical respiratory disorder caused by various factors, with viral infection being the leading contributor. Dehydroandrographolide (DAP), a constituent of the Chinese herbal plant Andrographis paniculata, exhibits a range of activities including anti-inflammatory, in vitro antiviral and immune-enhancing effects. This study evaluated the anti-inflammatory effects and pharmacokinetics (PK) profile of DAP in ALI mice induced by intratracheal instillation of Poly(I:C) (PIC). The results showed that oral administration of DAP (10-40 mg/kg) effectively suppressed the increase in lung wet-dry weight ratio, total cells, total protein content, accumulation of immune cells, inflammatory cytokines and neutrophil elastase levels in bronchoalveolar lavage fluid of PIC-treated mice. DAP concentrations, determined by an LC-MS/MS method, in plasma after receiving DAP (20 mg/kg) were unchanged compared to those in normal mice. However, DAP concentrations and relative PK parameters in the lungs were significantly altered in PIC-treated mice, exhibiting a relatively higher maximum concentration, larger AUC, and longer elimination half-life than those in the lungs of normal mice. These results demonstrated that DAP could improve lung edema and inflammation in ALI mice, and suggested that lung injury might influence the PK properties of DAP, leading to increased lung distribution and residence. Our study provides evidence that DAP displays significant anti-inflammatory activity against viral lung injury and is more likely to distribute to damaged lung tissue.
Collapse
Affiliation(s)
- Yong-Guang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shan-Shan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Su-Wei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Tian-Ji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Rui-Le Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
23
|
Qing C, Wu Y, Liu B, Wang C, Zeng Z. Ameliorative Effect of Morinda Officinalis Oligosaccharides on LPS-Induced Acute Lung Injury. Chem Biodivers 2024; 21:e202400506. [PMID: 38507138 DOI: 10.1002/cbdv.202400506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 03/22/2024]
Abstract
Acute lung injury (ALI) is a disease characterized by extensive lung damage and rampant inflammation, with a high mortality rate and no effective treatments available. Morinda officinalis oligosaccharides (MOOs), derived from the root of the traditional Chinese medicinal herb Morinda officinalis, known for its immune-boosting properties, presents a novel therapeutic possibility. To date, the impact of MOOs on ALI has not been explored. Our study aimed to investigate the potential protective effects of MOOs against ALI and to uncover the underlying mechanisms through an integrated approach of network pharmacology, molecular docking, and experimental validation. We discovered that MOOs significantly mitigated the pathological damage and decreased the expression of pro-inflammatory cytokines in LPS-induced ALI in mice. Complementary in vitro studies further demonstrated that MOOs effectively attenuated the M1 polarization induced by LPS. Network pharmacology analysis identified HSP90AA1, HSP90AB1, and NF-κB as key overlapping targets within a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses elucidated the biological processes and signaling pathways implicated in MOOs' therapeutic action on ALI. Subsequently, molecular docking affirmed the binding of MOOs to the active sites of these identified targets. Corroborating these findings, our in vivo and in vitro experiments consistently demonstrated that MOOs significantly inhibited the LPS-induced upregulation of HSP90 and NF-κB. Collectively, these findings suggest that MOOs confer protection against ALI through a multi-target, multi-pathway mechanism, offering a promising new therapeutic strategy to mitigate this severe pulmonary condition.
Collapse
Affiliation(s)
- Cheng Qing
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Critical Care Medicine, Jiangxi Provincial Health Commission, Nanchang, 330000, China
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases of Nanchang University, Nanchang, 330096, China
| | - Yanrong Wu
- Department of Ophthalmology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Binbin Liu
- Department of Critical Care Medicine, Nanchang Hongdu Hospital of Traditional Chinese Medicine Nanchang, Nanchang, 330000, China
| | - Cheng Wang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Critical Care Medicine, Jiangxi Provincial Health Commission, Nanchang, 330000, China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Critical Care Medicine, Jiangxi Provincial Health Commission, Nanchang, 330000, China
| |
Collapse
|
24
|
Hall L, Hart R. Role of corticosteroids in skin physiology and therapeutic potential of an 11β-HSD1 inhibitor: A review. Int J Dermatol 2024; 63:443-454. [PMID: 38146184 DOI: 10.1111/ijd.16967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Skin is a major site of cortisol bioconversion by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzymes which catalyze intracellular inactive cortisone into physiologically active cortisol. 11β-HSD1 is highly expressed in skin, especially in dermal fibroblasts, epidermal keratinocytes, melanocytes, and hair follicles, and plays important roles in regulating keratinocytes, fibroblast proliferation, and has roles in skin aging. Inhibition of 11β-HSD1 may reverse decreased collagen levels observed in extrinsically and intrinsically aged skin. Inhibitors of 11β-HSD1 may also have the potential to reverse decreased collagen observed in skin atrophy induced by glucocorticoid treatment. This systematic review aimed to summarize the current knowledge of roles for 11β-HSD1 inhibitor in skin physiology and potential for future use in medications. Studies have demonstrated that immediately following experimental insult in an animal model, there is increased expression of 11β-HSD1, and that topical application of an 11β-HSD1 inhibitor increases the rate of healing, increases skin collagen content, increases dermal fibroblasts, and increases dermal thickness. Furthermore, in patients with type 2 diabetes mellitus, 11β-HSD1 inhibitors reduce wound diameter after injury. Further development of 11β-HSD1 inhibitors appears to be a promising area for treating aging skin, aiding wound healing, and mitigating effects of systemic glucocorticoid use. Both topically and orally administered 11β-HSD1 inhibitors appear to be viable avenues for future research.
Collapse
Affiliation(s)
- Larissa Hall
- Faculty of Science and Agriculture, Business and Law, School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Robert Hart
- Faculty of Science and Agriculture, Business and Law, School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
25
|
Ai L, Li R, Wang X, Liu Z, Li Y. Tempol alleviates acute lung injury by affecting glutathione synthesis through Nrf2 and inhibiting ferroptosis in lung epithelial cells. J Biochem Mol Toxicol 2024; 38:e23674. [PMID: 38454815 DOI: 10.1002/jbt.23674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/12/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
As a life-threatening disease, acute lung injury (ALI) may progress to chronic pulmonary fibrosis. For the treatment of lung injury, Tempol is a superoxide dismutase mimetic and intracellular redox agent that can be a potential drug. This study investigated the regulatory mechanism of Tempol in the treatment of ALI. A mouse model of ALI was established, and HE staining was used to examine histomorphology. The CCK-8 assay was used to measure cell viability, and oxidative stress was assessed by corresponding kits. Flow cytometry and dichlorodihydrofluorescein diacetate staining assays were used to detect reactive oxygen species (ROS) levels. Protein expression levels were measured by Western blot analysis and ELISA. Pulmonary vascular permeability was used to measure the lung wet/dry weight ratio. The level of oxidative stress was increased in ALI mice, and the level of ferroptosis was upregulated. Tempol inhibited this effect and alleviated ALI. The administration of Tempol alleviated the pathological changes in ALI, inhibited pulmonary vascular permeability, and improved lung injury in ALI mice. The upregulation of genes essential for glutathione (GSH) metabolism induced by lipopolysaccharide (LPS) was inhibited by Tempol. In addition, nuclear factor-related factor 2 (Nrf2) is activated by Tempol therapy to regulate the de novo synthesis pathway of GSH, thereby alleviating LPS-induced lung epithelial cell damage. The results showed that Tempol alleviated ALI by activating the Nrf2 pathway to inhibit oxidative stress and ferroptosis in lung epithelial cells. In conclusion, this study demonstrates that Tempol alleviates ALI by inhibiting ferroptosis in lung epithelial cells through the effect of Nrf2 on GSH synthesis.
Collapse
Affiliation(s)
- Li Ai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaona Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhijuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongxia Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
26
|
Gómez C, Alimajstorovic Z, Othonos N, Winter DV, White S, Lavery GG, Tomlinson JW, Sinclair AJ, Odermatt A. Identification of a human blood biomarker of pharmacological 11β-hydroxysteroid dehydrogenase 1 inhibition. Br J Pharmacol 2024; 181:698-711. [PMID: 37740611 DOI: 10.1111/bph.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND AND PURPOSE 11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) catalyses the oxoreduction of cortisone to cortisol, amplifying levels of active glucocorticoids. It is a pharmaceutical target in metabolic disease and cognitive impairments. 11β-HSD1 also converts some 7oxo-steroids to their 7β-hydroxy forms. A recent study in mice described the ratio of tauroursodeoxycholic acid (TUDCA)/tauro-7oxolithocholic acid (T7oxoLCA) as a biomarker for decreased 11β-HSD1 activity. The present study evaluates the equivalent bile acid ratio of glycoursodeoxycholic acid (GUDCA)/glyco-7oxolithocholic acid (G7oxoLCA) as a biomarker for pharmacological 11β-HSD1 inhibition in humans and compares it with the currently applied urinary (5α-tetrahydrocortisol + tetrahydrocortisol)/tetrahydrocortisone ((5αTHF + THF)/THE) ratio. EXPERIMENTAL APPROACH Bile acid profiles were analysed by ultra-HPLC tandem-MS in blood samples from two independent, double-blind placebo-controlled clinical studies of the orally administered selective 11β-HSD1 inhibitor AZD4017. The blood GUDCA/G7oxoLCA ratio was compared with the urinary tetrahydro-glucocorticoid ratio for ability to detect 11β-HSD1 inhibition. KEY RESULTS No significant alterations were observed in bile acid profiles following 11β-HSD1 inhibition by AZD4017, except for an increase of the secondary bile acid G7oxoLCA. The enzyme product/substrate ratio GUDCA/G7oxoLCA was found to be more reliable to detect 11β-HSD1 inhibition than the absolute G7oxoLCA concentration in both cohorts. Comparison of the blood GUDCA/G7oxoLCA ratio with the urinary (5αTHF + THF)/THE ratio revealed that both successfully detect 11β-HSD1 inhibition. CONCLUSIONS AND IMPLICATIONS 11β-HSD1 inhibition does not cause major alterations in bile acid homeostasis. The GUDCA/G7oxoLCA ratio represents the first blood biomarker of pharmacological 11β-HSD1 inhibition and may replace or complement the urinary (5αTHF + THF)/THE ratio biomarker.
Collapse
Affiliation(s)
- Cristina Gómez
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Zerin Alimajstorovic
- Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Nantia Othonos
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Denise V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sarah White
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Gareth G Lavery
- Department for Biosciences, Nottingham Trent University, Nottingham, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Alexandra J Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham, Birmingham, UK
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Chen Y, Mateski J, Gerace L, Wheeler J, Burl J, Prakash B, Svedin C, Amrick R, Adams BD. Non-coding RNAs and neuroinflammation: implications for neurological disorders. Exp Biol Med (Maywood) 2024; 249:10120. [PMID: 38463392 PMCID: PMC10911137 DOI: 10.3389/ebm.2024.10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Neuroinflammation is considered a balanced inflammatory response important in the intrinsic repair process after injury or infection. Under chronic states of disease, injury, or infection, persistent neuroinflammation results in a heightened presence of cytokines, chemokines, and reactive oxygen species that result in tissue damage. In the CNS, the surrounding microglia normally contain macrophages and other innate immune cells that perform active immune surveillance. The resulting cytokines produced by these macrophages affect the growth, development, and responsiveness of the microglia present in both white and gray matter regions of the CNS. Controlling the levels of these cytokines ultimately improves neurocognitive function and results in the repair of lesions associated with neurologic disease. MicroRNAs (miRNAs) are master regulators of the genome and subsequently control the activity of inflammatory responses crucial in sustaining a robust and acute immunological response towards an acute infection while dampening pathways that result in heightened levels of cytokines and chemokines associated with chronic neuroinflammation. Numerous reports have directly implicated miRNAs in controlling the abundance and activity of interleukins, TGF-B, NF-kB, and toll-like receptor-signaling intrinsically linked with the development of neurological disorders such as Parkinson's, ALS, epilepsy, Alzheimer's, and neuromuscular degeneration. This review is focused on discussing the role miRNAs play in regulating or initiating these chronic neurological states, many of which maintain the level and/or activity of neuron-specific secondary messengers. Dysregulated miRNAs present in the microglia, astrocytes, oligodendrocytes, and epididymal cells, contribute to an overall glial-specific inflammatory niche that impacts the activity of neuronal conductivity, signaling action potentials, neurotransmitter robustness, neuron-neuron specific communication, and neuron-muscular connections. Understanding which miRNAs regulate microglial activation is a crucial step forward in developing non-coding RNA-based therapeutics to treat and potentially correct the behavioral and cognitive deficits typically found in patients suffering from chronic neuroinflammation.
Collapse
Affiliation(s)
- Yvonne Chen
- Department of Biology, Brandeis University, Waltham, MA, United States
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| | - Julia Mateski
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biological Sciences, Gustavus Adolphus College, St. Peter, MN, United States
| | - Linda Gerace
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Missouri State University, Springfield, MO, United States
| | - Jonathan Wheeler
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Electrical and Computer Engineering Tech, New York Institute of Tech, Old Westbury, NY, United States
| | - Jan Burl
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Southern New Hampshire University, Manchester, NH, United States
| | - Bhavna Prakash
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Medicine, Tufts Medical Center, Medford, MA, United States
| | - Cherie Svedin
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biology, Utah Tech University, St. George, UT, United States
| | - Rebecca Amrick
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Villanova University, Villanova, PA, United States
| | - Brian D Adams
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| |
Collapse
|
28
|
Deochand DK, Dacic M, Bale MJ, Daman AW, Josefowicz SZ, Oliver D, Chinenov Y, Rogatsky I. Mechanisms of Epigenomic and Functional Convergence Between Glucocorticoid- and IL4-Driven Macrophage Programming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580560. [PMID: 38405750 PMCID: PMC10888924 DOI: 10.1101/2024.02.16.580560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2IL4). Glucocorticoids, widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2GC), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2IL4 and M2GC transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets. This core homeostatic program is enacted by transcriptional effectors KLF4 and the GC receptor, whose genome-wide occupancy and actions are integrated in a stimulus-specific manner by the nuclear receptor cofactor GRIP1. Indeed, many of the M2IL4:M2GC-shared transcriptomic changes were GRIP1-dependent. Consistently, GRIP1 loss attenuated phagocytic activity of both populations in vitro and macrophage tissue-repair properties in the murine colitis model in vivo. These findings provide a mechanistic framework for homeostatic macrophage programming by distinct signals, to better inform anti-inflammatory drug design.
Collapse
Affiliation(s)
- Dinesh K Deochand
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Michael J Bale
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Andrew W Daman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - David Oliver
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
| | - Yurii Chinenov
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
29
|
Li YQ, Wu M, Wang YJ, Zhang YX, Lu J, Zhao YN, Ji BF, Chen ZQ, Tang RN, Liu BC. The analysis of low-dose glucocorticoid maintenance therapy in patients with primary nephrotic syndrome suffering from COVID-19. Front Mol Biosci 2024; 10:1326111. [PMID: 38274101 PMCID: PMC10808412 DOI: 10.3389/fmolb.2023.1326111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Objectives: This study aimed to describe the effects of low-dose (prednisolone acetate 2.5-7.5 mg/day) glucocorticoids (GCs) maintenance therapy in patients with primary nephrotic syndrome (NS) suffering from coronavirus disease 2019 (COVID-19). Methods: A single-center retrospective study of NS patients with COVID-19 infection in Zhongda Hospital Affiliated to Southeast University from 1 February 2022 to 31 March 2023 was conducted. All enrolled patients underwent renal biopsy for the pathological diagnosis and reached complete remission (CR) or near-CR before COVID-19 infection. According to the maintained therapy regimen, patients were divided into low-dose GCs group and non-GCs group. Results: A total of 125 patients were enrolled in the study. Their median age was 46.0 ± 15.6 years, and the median value of 24-h urine protein was 0.77 g. The majority of these patients received treatment for more than 6 months, with a significant portion achieving CR (29.6%) or near-CR (43.2%). The leading cause of NS was membranous nephropathy (52%). There were no significant differences in the baseline characteristics between low-dose GCs and non-GCs group. As compared to those in the non-GCs group, patients receiving low-dose GCs treatment showed less fatigue or muscle weakness, smell disorder, palpitations, decreased appetite, taste disorder, dizziness, sore throat or difficult to swallow and fever (p < 0.05). Moreover, patients in the low-dose GCs group were with higher median quality of life scores (85.0) than in the non-GCs group (p = 0.001). Further serum inflammatory factor analysis indicated that interleukin-6 (IL-6) levels in the non-GCs group were significantly higher than that in the low-dose GCs group (p < 0.05). Conclusion: Patients with NS in low-dose GCs maintenance therapy stage showed milder symptom, higher quality of life and decreased serum IL-6 levels compared to those, who were not on GCs maintenance therapy. These results suggest the beneficial effect of low-dose GCs therapy in NS patients with CR/near-CR suffering from COVID-19 infection.
Collapse
Affiliation(s)
- Yong-Qi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Institute of Nephrology, Zhongda Hospital, Nanjing Lishui People’ Hospital, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu-Jia Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu-Xia Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jing Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi-Nan Zhao
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo-Fan Ji
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Qing Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhongda Hospital, Nanjing Lishui People’ Hospital, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Mehta V, Dwivedi AR, Ludhiadch A, Rana V, Goel KK, Uniyal P, Joshi G, Kumar A, Kumar B. A decade of USFDA-approved small molecules as anti-inflammatory agents: Recent trends and Commentaries on the "industrial" perspective. Eur J Med Chem 2024; 263:115942. [PMID: 38000212 DOI: 10.1016/j.ejmech.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Inflammation is the human body's defence process against various pathogens, toxic substances, irradiation, and physically injured cells that have been damaged. Inflammation is characterized by swelling, pain, redness, heat, as well as diminished tissue function. Multiple important inflammatory markers determine the prognosis of inflammatory processes, which include likes of pro-inflammatory cytokines which are controlled by nuclear factor kappa-B (NF-kB), mitogen-activated protein kinase (MAPK), Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway, all of which are activated in response to the stimulation of specific receptors. Besides these, the cyclooxygenase (COX) enzyme family also plays a significant role in inflammation. The current review is kept forth to compile a summary of small molecules-based drugs approved by the USFDA during the study period of 2013-2023. A thorough discussion has also been made to focus on biologics, macromolecules, and small chemical entities approved during this study period and their greener synthetic routes with a brief discussion on the chemical spacing parameters of anti-inflammatory drugs. The compilation is expected to assist the medicinal chemist and the scientist actively engaged in drug discovery and development of anti-inflammatory agents from newer perspectives during the current years.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | | | - Abhilash Ludhiadch
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, 10032, USA
| | - Vikas Rana
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand, India.
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Panchgaon, Manesar, 122413, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
31
|
Zheng L, Chen Y, Gu X, Li Y, Zhao H, Shao W, Ma T, Wu C, Wang Q. Co-delivery of drugs by adhesive transdermal patches equipped with dissolving microneedles for the treatment of rheumatoid arthritis. J Control Release 2024; 365:274-285. [PMID: 37979695 DOI: 10.1016/j.jconrel.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In this study, a dosage form consisting of dissolving (D) microneedles (M) and an adhesive (A) transdermal patch (P; DMAP) was designed and pre-clinically evaluated for the treatment of rheumatoid arthritis (RA). The tip of the dissolving microneedles (DMNs) was loaded with the macromolecular drug melittin (Mel@DMNs), this to treat joint inflammation and bone damage, while the adhesive transdermal patches contained the low molecular weight drug diclofenac sodium (DS; DS@AP) for pain relief. Mel@DMNs and DS@AP were ingeniously connected through an isolation layer for compounding Mel-DS@DMAP for the simultaneous delivery of the drugs. In vitro and in vivo experiments showed that DS@AP did not affect the mechanical properties and dissolution process of Mel@DMNs while the pores formed by the microneedles promoted the skin penetration of DS. Treatment of rats suffering from RA with Mel-DS@DMAP reduced paw swelling and damage of the synovium, joint and cartilage, suggesting that the 'patch-microneedle' dosage form might be promising for the treatment and management of RA.
Collapse
Affiliation(s)
- Lijie Zheng
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yuanzheng Chen
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xun Gu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yingying Li
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Hanqing Zhao
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Wenjun Shao
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Chuanbin Wu
- School of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Qingqing Wang
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China.
| |
Collapse
|
32
|
Yuan J, Tao Y, Wang M, Huang F, Wu X. Natural compounds as potential therapeutic candidates for multiple sclerosis: Emerging preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155248. [PMID: 38096716 DOI: 10.1016/j.phymed.2023.155248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic neurodegenerative disease, with main characteristics of pathological inflammation, neural damage and axonal demyelination. Current mainstream treatments demonstrate more or less side effects, which limit their extensive use. PURPOSE Increasing studies indicate that natural compounds benefit multiple sclerosis without remarkable side effects. Given the needs to explore the potential effects of natural compounds of plant origin on multiple sclerosis and their mechanisms, we review publications involving the role of natural compounds in animal models of multiple sclerosis, excluding controlled trials. STUDY DESIGN AND METHODS Articles were conducted on PubMed and Web of Science databases using the keywords ``multiple sclerosis'' and ``natural compounds'' published from January 1, 2008, to September 1, 2023. RESULTS This review summarized the effects of natural ingredients (flavonoids, terpenoids, polyphenols, alkaloids, glycosides, and others) from three aspects: immune regulation, oxidative stress suppression, and myelin protection and regeneration in multiple sclerosis. CONCLUSION Overall, we concluded 80 studies to show the preclinical evidence that natural compounds may attenuate multiple sclerosis progression via suppressing immune attacks and/or promoting myelin protection or endogenous repair processes. It would pave the roads for the future development of effective therapeutic regiments of multiple sclerosis.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
33
|
D'Cunha R, Kupper H, Arikan D, Zhao W, Carter D, Blaes J, Ruzek M, Pang Y. A first-in-human study of the novel immunology antibody-drug conjugate, ABBV-3373, in healthy participants. Br J Clin Pharmacol 2024; 90:189-199. [PMID: 37596703 DOI: 10.1111/bcp.15888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/20/2023] Open
Abstract
AIMS ABBV-3373, an immunology antibody-drug conjugate composed of adalimumab conjugated to a proprietary glucocorticoid receptor modulator (the small-molecule payload), has the potential to treat immune-mediated inflammatory diseases. This first-in-human study investigated the pharmacokinetics (PK), immunogenicity, pharmacodynamics (PD) using a safety PD marker, and safety/tolerability of ABBV-3373 in healthy adults. METHODS Fifty-five participants were randomly assigned to single-dose subcutaneous (SC; 30, 100 or 300 mg) or intravenous (IV; 30, 300 or 900 mg) ABBV-3373 or placebo. Eight additional participants received a single dose of 10 mg oral prednisone for evaluation of systemic glucocorticoid effects. Blood samples were collected for up to 85 days postdose for PK, anti-drug antibody and serum cortisol (safety PD marker) assessments. RESULTS ABBV-3373 and total antibody displayed antibody-like SC/IV PK profiles and the unconjugated/free payload in circulation exhibited formation rate-limited kinetics with exposure several fold lower than ABBV-3373 or total antibody. Treatment-emergent anti-drug antibody incidence was 69%, with loss of exposure in 6% (SC) and 5% (IV) of participants, but without any impact on safety. ABBV-3373 up to 300 mg SC/IV had no apparent impact on serum cortisol, and only caused a transient decrease at 900 mg IV. Treatment-emergent adverse events were primarily mild in severity, and no pattern emerged with respect to dose or route of administration. CONCLUSIONS ABBV-3373 had favourable PK profiles, manageable immunogenicity, and was generally well-tolerated. Except for a transient effect at 900 mg IV, there was no apparent impact on serum cortisol. Study results supported further clinical development of ABBV-3373.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonas Blaes
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Melanie Ruzek
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | |
Collapse
|
34
|
Albers GJ, Amouret A, Ciupka K, Montes-Cobos E, Feldmann C, Reichardt HM. Glucocorticoid Nanoparticles Show Full Therapeutic Efficacy in a Mouse Model of Acute Lung Injury and Concomitantly Reduce Adverse Effects. Int J Mol Sci 2023; 24:16843. [PMID: 38069173 PMCID: PMC10705980 DOI: 10.3390/ijms242316843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glucocorticoids (GCs) are widely used to treat inflammatory disorders such as acute lung injury (ALI). Here, we explored inorganic-organic hybrid nanoparticles (IOH-NPs) as a new delivery vehicle for GCs in a mouse model of ALI. Betamethasone (BMZ) encapsulated into IOH-NPs (BNPs) ameliorated the massive infiltration of neutrophils into the airways with a similar efficacy as the free drug. This was accompanied by a potent inhibition of pulmonary gene expression and secretion of pro-inflammatory mediators, whereas the alveolar-capillary barrier integrity was only restored by BMZ in its traditional form. Experiments with genetically engineered mice identified myeloid cells and alveolar type II (AT II) cells as essential targets of BNPs in ALI therapy, confirming their high cell-type specificity. Consequently, adverse effects were reduced when using IOH-NPs for GC delivery. BNPs did not alter T and B cell numbers in the blood and also prevented the induction of muscle atrophy after three days of treatment. Collectively, our data suggest that IOH-NPs target GCs to myeloid and AT II cells, resulting in full therapeutic efficacy in the treatment of ALI while being associated with reduced adverse effects.
Collapse
Affiliation(s)
- Gesa J. Albers
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Katrin Ciupka
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Elena Montes-Cobos
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
35
|
Aimaiti M, Zhang H, Aikebaier D, Ni B, Yin H, Dong Z, Zhang Y, Guan Y, Bai L, Wang S, Xia X, Zhang Z. Clinicopathological characteristics of gastric cancer patients with dermatomyositis and analysis of perioperative management: a case series study. Front Surg 2023; 10:1276575. [PMID: 38026488 PMCID: PMC10646486 DOI: 10.3389/fsurg.2023.1276575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background This study aimed to investigate the clinical characteristics of gastric cancer (GC) patients with dermatomyositis (DM) and summarize the perioperative outcomes. Methods The clinical and pathological data of five patients diagnosed with co-occurring DM and GC (DM-GC group) were retrospectively analyzed, who were admitted to the Department of Gastrointestinal Surgery at Ren ji Hospital, Shanghai Jiao Tong University, between January 2012 and April 2023. Their data were compared with 618 GC patients (GC-1 group) from September 2016 to August 2017 and 35 GC patients who were meticulously screened from 14,580 GC cases from January 2012 and April 2023. The matching criteria included identical gender, age, tumor location, TNM stage, and surgical procedure (7 GC patients were matched for each DM-GC patient). Results Analysis indicated that the DM-GC group comprised four female and one male patient. The female proportion was significantly higher (P = 0.032) than that of GC-1 group. In DM-GC group, four DM patients were diagnosed as GC within 12 months. One DM patients was diagnosed as GC within 15 months. Among them, four patients presented with varying degrees of skin rashes, muscle weakness while one patient had elevated CK levels as the typical symptom. Similarly, the preoperative tumor markers (CA-199 and CA-125) in the DM-GC group were significantly higher than normal levels (CA-199: 100 vs. 28.6%, P = 0.002; CA-125: 40 vs. 2.9%, P = 0.003) compared to GC-2 group. Moreover, postoperative complication incidence and the length of hospital stay were significantly higher in the DM-GC than GC-2 group [complication rate: 40 vs. 8.6%, P = 0.047; hospital stay: 15 days (range: 9-28) vs. 9 days (range: 8-10), P = 0.021]. Conclusion GC Patients with dermatomyositis are more prone to experience postoperative complications and longer hospital stay.
Collapse
Affiliation(s)
- Muerzhate Aimaiti
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyu Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dilidaer Aikebaier
- Department of General Medicine, Kashe District Second People’s Hospital, Xinjiang, China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanlin Yin
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongyi Dong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yeqi Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujing Guan
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long Bai
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuchang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Delaney FT, MacMahon PJ. An update on epidural steroid injections: is there still a role for particulate corticosteroids? Skeletal Radiol 2023; 52:1863-1871. [PMID: 36171350 DOI: 10.1007/s00256-022-04186-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2023]
Abstract
Epidural steroid injections (ESIs) play an important role in the multifaceted management of neck and back pain. Corticosteroid preparations used in ESIs may be considered "particulate" or "non-particulate" based on whether they form a crystalline suspension or a soluble clear solution, respectively. In the past two decades, there have been reports of rare but severe and permanent neurological complications as a result of ESI. These complications have principally occurred with particulate corticosteroid preparations when using a transforaminal injection technique at cervical or thoracic levels, and only rarely in the lumbosacral spine. As a result, some published clinical guidelines and recommendations have advised against the use of particulate corticosteroids for transforaminal ESI, and the FDA introduced a warning label for injectable corticosteroids regarding the risk of serious neurological adverse events. There is growing evidence that the efficacy of non-particulate corticosteroids for pain relief and functional improvement after ESI is non-inferior to particulate agents, and that non-particulate injections almost never result in permanent neurological injury. Despite this, particulate corticosteroids continue to be routinely used for transforaminal epidural injections. More consistent clinical guidelines and societal recommendations are required alongside increased awareness of the comparative efficacy of non-particulate agents among specialists who perform ESIs. The current role for particulate corticosteroids in ESIs should be limited to caudal and interlaminar approaches, or transforaminal injections in the lumbar spine only if initial non-particulate ESI resulted in a significant but short-lived improvement.
Collapse
Affiliation(s)
- Francis T Delaney
- Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland.
| | - Peter J MacMahon
- Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
38
|
Wang J, Ni R, Jiang T, Peng D, Ming Y, Cui H, Liu Y. The applications of functional materials-based nano-formulations in the prevention, diagnosis and treatment of chronic inflammation-related diseases. Front Pharmacol 2023; 14:1222642. [PMID: 37593176 PMCID: PMC10427346 DOI: 10.3389/fphar.2023.1222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chronic inflammation, in general, refers to systemic immune abnormalities most often caused by the environment or lifestyle, which is the basis for various skin diseases, autoimmune diseases, cardiovascular diseases, liver diseases, digestive diseases, cancer, and so on. Therapeutic strategies have focused on immunosuppression and anti-inflammation, but conventional approaches have been poor in enhancing the substantive therapeutic effect of drugs. Nanomaterials continue to attract attention for their high flexibility, durability and simplicity of preparation, as well as high profitability. Nanotechnology is used in various areas of clinical medicine, such as medical diagnosis, monitoring and treatment. However, some related problems cannot be ignored, including various cytotoxic and worsening inflammation caused by the nanomaterials themselves. This paper provides an overview of functional nanomaterial formulations for the prevention, diagnosis and treatment of chronic inflammation-related diseases, with the intention of providing some reference for the enhancement and optimization of existing therapeutic approaches.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Jiang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
39
|
Grecu M, Minea B, Foia LG, Bostanaru-Iliescu AC, Miron L, Nastasa V, Mares M. Short Review on the Biological Activity of Cyclodextrin-Drug Inclusion Complexes Applicable in Veterinary Therapy. Molecules 2023; 28:5565. [PMID: 37513437 PMCID: PMC10383344 DOI: 10.3390/molecules28145565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclodextrins (CDs) are a family of carrier molecules used to improve the pharmacokinetic parameters of therapeutic molecules. These cyclic oligosaccharides have medical and pharmaceutical applications by being able to form inclusion complexes with molecules that are poorly soluble in water. The benefits of these complexes are directed towards improving the chemical and biological properties-i.e., solubility, bioavailability, stability, non-toxicity and shelf life of drug molecules. Since the 1960s, the first inclusion complexes used in therapeutics were those with α-, β- and γ-CD, which proved their usefulness, but had certain degrees of particularly renal toxicity. Currently, to correct these deficiencies, β-CD derivatives are most frequently used, such as sulfobutylether-β-CD, hydroxypropyl-β-CD, etc. Therefore, it is of interest to bring to the attention of those interested the diversity of current and potential future clinical applications of inclusion complexes in veterinary medicine and to present the contribution of these inclusion complexes in improving drug efficacy. The most important biological activities of β-CD complexed molecules in the veterinary field are summarized in this short review.
Collapse
Affiliation(s)
- Mariana Grecu
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Bogdan Minea
- Department of Surgery, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Liliana-Georgeta Foia
- Department of Surgery, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Andra-Cristina Bostanaru-Iliescu
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Liviu Miron
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Valentin Nastasa
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences of Iasi (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| |
Collapse
|
40
|
Julia Altube M, Perez N, Lilia Romero E, José Morilla M, Higa L, Paula Perez A. Inhaled lipid nanocarriers for pulmonary delivery of glucocorticoids: previous strategies, recent advances and key factors description. Int J Pharm 2023:123146. [PMID: 37330156 DOI: 10.1016/j.ijpharm.2023.123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In view of the strong anti-inflammatory activity of glucocorticoids (GC) they are used in the treatment of almost all inflammatory lung diseases. In particular, inhaled GC (IGC) allow high drug concentrations to be deposited in the lung and may reduce the incidence of adverse effects associated with systemic administration. However, rapid absorption through the highly absorbent surface of the lung epithelium may limit the success of localized therapy. Therefore, inhalation of GC incorporated into nanocarriers is a possible approach to overcome this drawback. In particular, lipid nanocarriers, which showed high pulmonary biocompatibility and are well known in the pharmaceutical industry, have the best prospects for pulmonary delivery of GC by inhalation. This review provides an overview of the pre-clinical applications of inhaled GC-lipid nanocarriers based on several key factors that will determine the efficiency of local pulmonary GC delivery: 1) stability to nebulization, 2) deposition profile in the lungs, 3) mucociliary clearance, 4) selective accumulation in target cells, 5) residence time in the lung and systemic absorption and 6) biocompatibility. Finally, novel preclinical pulmonary models for inflammatory lung diseases are also discussed.
Collapse
Affiliation(s)
- María Julia Altube
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Noelia Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - María José Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Leticia Higa
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Ana Paula Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
41
|
Abdelrahman W, Al-Shaarawy A, El-Zorkany B. Influence of perception of glucocorticoids on compliance of treatment in patients with rheumatoid arthritis and systemic lupus erythematosus. THE EGYPTIAN RHEUMATOLOGIST 2023. [DOI: 10.1016/j.ejr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
42
|
Mao X, Zhou J, Kong L, Zhu L, Yang D, Zhang Z. A peptide encoded by lncRNA MIR7-3 host gene (MIR7-3HG) alleviates dexamethasone-induced dysfunction in pancreatic β-cells through the PI3K/AKT signaling pathway. Biochem Biophys Res Commun 2023; 647:62-71. [PMID: 36731335 DOI: 10.1016/j.bbrc.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/26/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Dysfunction of pancreatic β-cells induced by glucocorticoids contributes to diabetes mellitus development. Long noncoding RNAs (lncRNAs) have been recognized to contain short open reading frames (ORFs) that can be translated into functional small peptides. Here, we investigated whether the short peptide encoded by the lncRNA MIR7-3 host gene (MIR7-3HG) can affect dexamethasone (DEX)-induced β-cell dysfunction. METHODS Bioinformatics analysis was used for selection of MIR7-3HG and prediction of its protein encoding potential. The small peptide was identified by a western blot method. The cell-permeable TAT was fused into MIR7-3HG ORF to produce the cell-permeable fusion peptide (TAT-MIR7-3HG-ORF). The effects of TAT-MIR7-3HG-ORF on DEX-induced β-cell dysfunction were evaluated by examining cell viability, apoptosis, insulin secretion, and reactive oxygen species (ROS) generation. RESULTS DEX induced β-TC6 cell dysfunction by impairing cell viability, insulin secretion and promoting cell apoptosis and ROS generation. The MIR7-3HG ORF could encode a 125-amino-acid-long short peptide. TAT-MIR7-3HG-ORF effectively transduced into β-TC6 cells and attenuated DEX-induced dysfunction in β-TC6 cells. Moreover, transduced TAT-MIR7-3HG-ORF reversed DEX-mediated inhibition of the activation of the PI3K/AKT signaling pathway. The inhibitor of the PI3K/AKT pathway partially abolished the alleviative effect of transduced TAT-MIR7-3HG-ORF on DEX-induced β-TC6 cell dysfunction. CONCLUSION The lncRNA MIR7-3HG encodes a short peptide, which can protect pancreatic β-cells from DEX-induced dysfunction by activating the PI3K/AKT pathway. Our study broadens the diversity and breadth of lncRNAs in human disorders.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Geriatrics, Henan Key Laboratory for Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China
| | - Jinliang Zhou
- Department of Hip Surgery, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, 471000, China
| | - Limin Kong
- Xinxiang Medical University, Xinxiang, Henan, 453003, China; The Sixth People's Hospital of Zhengzhou, Zhengzhou, Henan, 450000, China
| | - Li Zhu
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Desheng Yang
- Department of Geriatrics, Henan Key Laboratory for Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China.
| | - Zhiyu Zhang
- Department of Geriatrics, Henan Key Laboratory for Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
43
|
Mangani D, Yang D, Anderson AC. Learning from the nexus of autoimmunity and cancer. Immunity 2023; 56:256-271. [PMID: 36792572 PMCID: PMC9986833 DOI: 10.1016/j.immuni.2023.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The immune system plays critical roles in both autoimmunity and cancer, diseases at opposite ends of the immune spectrum. Autoimmunity arises from loss of T cell tolerance against self, while in cancer, poor immunity against transformed self fails to control tumor growth. Blockade of pathways that preserve self-tolerance is being leveraged to unleash immunity against many tumors; however, widespread success is hindered by the autoimmune-like toxicities that arise in treated patients. Knowledge gained from the treatment of autoimmunity can be leveraged to treat these toxicities in patients. Further, the understanding of how T cell dysfunction arises in cancer can be leveraged to induce a similar state in autoreactive T cells. Here, we review what is known about the T cell response in autoimmunity and cancer and highlight ways in which we can learn from the nexus of these two diseases to improve the application, efficacy, and management of immunotherapies.
Collapse
Affiliation(s)
- Davide Mangani
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svizzera Italiana, Bellinzona 6500, Switzerland.
| | - Dandan Yang
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Karra AG, Tsialtas I, Kalousi FD, Georgantopoulos A, Sereti E, Dimas K, Psarra AMG. Increased Expression of the Mitochondrial Glucocorticoid Receptor Enhances Tumor Aggressiveness in a Mouse Xenograft Model. Int J Mol Sci 2023; 24:ijms24043740. [PMID: 36835152 PMCID: PMC9966287 DOI: 10.3390/ijms24043740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondria are important organelles for cellular physiology as they generate most of the energy requirements of the cell and orchestrate many biological functions. Dysregulation of mitochondrial function is associated with many pathological conditions, including cancer development. Mitochondrial glucocorticoid receptor (mtGR) is proposed as a crucial regulator of mitochondrial functions via its direct involvement in the regulation of mitochondrial transcription, oxidative phosphorylation (OXPHOS), enzymes biosynthesis, energy production, mitochondrial-dependent apoptosis, and regulation of oxidative stress. Moreover, recent observations revealed the interaction of mtGR with the pyruvate dehydrogenase (PDH), a key player in the metabolic switch observed in cancer, indicating direct involvement of mtGR in cancer development. In this study, by using a xenograft mouse model of mtGR-overexpressing hepatocarcinoma cells, we showed increased mtGR-associated tumor growth, which is accompanied by reduced OXPHOS biosynthesis, reduction in PDH activity, and alterations in the Krebs cycle and glucose metabolism, metabolic alterations similar to those observed in the Warburg effect. Moreover, autophagy activation is observed in mtGR-associated tumors, which further support tumor progression via increased precursors availability. Thus, we propose that increased mitochondrial localization of mtGR is associated with tumor progression possible via mtGR/PDH interaction, which could lead to suppression of PDH activity and modulation of mtGR-induced mitochondrial transcription that ends up in reduced OXPHOS biosynthesis and reduced oxidative phosphorylation versus glycolytic pathway energy production, in favor of cancer cells.
Collapse
Affiliation(s)
- Aikaterini G. Karra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Foteini D. Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Evangelia Sereti
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Anna-Maria G. Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
- Correspondence: ; Tel.: +30-24-1056-5221; Fax: +30-24-1056-5290
| |
Collapse
|
45
|
Overnight Corticosterone and Gene Expression in Mouse Hippocampus: Time Course during Resting Period. Int J Mol Sci 2023; 24:ijms24032828. [PMID: 36769150 PMCID: PMC9917930 DOI: 10.3390/ijms24032828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of the experiment was to test the effect of an elevated level of glucocorticoids on the mouse hippocampal transcriptome after 12 h of treatment with corticosterone that was administered during an active phase of the circadian cycle. Additionally, we also tested the circadian changes in gene expression and the decay time of transcriptomic response to corticosterone. Gene expression was analyzed using microarrays. Obtained results show that transcriptomic responses to glucocorticoids are heterogeneous in terms of the decay time with some genes displaying persistent changes in expression during 9 h of rest. We have also found a considerable overlap between genes regulated by corticosterone and genes implicated previously in stress response. The examples of such genes are Acer2, Agt, Apod, Aqp4, Etnppl, Fabp7, Fam107a, Fjx1, Fmo2, Galnt15, Gjc2, Heph, Hes5, Htra1, Jdp2, Kif5a, Lfng, Lrg1, Mgp, Mt1, Pglyrp1, Pla2g3, Plin4, Pllp, Ptgds, Ptn, Slc2a1, Slco1c1, Sult1a1, Thbd and Txnip. This indicates that the applied model is a useful tool for the investigation of mechanisms underlying the stress response.
Collapse
|
46
|
Zhu Y, Luo L, Zhang M, Song X, Wang P, Zhang H, Zhang J, Liu D. Xuanfei Baidu Formula attenuates LPS-induced acute lung injury by inhibiting the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115833. [PMID: 36252879 PMCID: PMC9562620 DOI: 10.1016/j.jep.2022.115833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is a common manifestation of COVID-19. Xuanfei Baidu Formula(XFBD) is used in China to treat mild or common damp-toxin obstructive pulmonary syndrome in COVID-19 patients. However, the active ingredients of XFBD have not been extensively studied, and its mechanism of action in the treatment of ALI is not well understood. AIM OF THE STUDY The purpose of this study was to investigate the mechanism of action of XFBD in treating ALI in rats, by evaluating its active components. MATERIALS AND METHODS Firstly, the chemical composition of XFBD was identified using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The potential targets of XFBD for ALI treatment were predicted using network pharmacological analysis. Finally, the molecular mechanism of XFBD was validated using a RAW264.7 cell inflammation model and a mouse ALI model. RESULTS A total of 113 compounds were identified in XFBD. Network pharmacology revealed 34 hub targets between the 113 compounds and ALI. The results of Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses indicated that the NF-κB signaling pathway was the main pathway for XFBD in the treatment of ALI. We found that XFBD reduced proinflammatory factor levels in LPS-induced cellular models. By examining the lung wet/dry weight ratio and pathological sections in vivo, XFBD was found that XFBD could alleviate ALI. Immunohistochemistry results showed that XFBD inhibited ALI-induced increases in p-IKK, p-NF-κB p65, and iNOS proteins. In vitro experiments demonstrated that XFBD inhibited LPS-induced activation of the NF-κB pathway. CONCLUSION This study identified the potential practical components of XFBD, combined with network pharmacology and experimental validation to demonstrate that XFBD can alleviate lung injury caused by ALI by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanru Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lifei Luo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Meng Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Xinbo Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Ping Wang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Dailin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China.
| |
Collapse
|
47
|
T Cell Energy Metabolism Is a Target of Glucocorticoids in Mice, Healthy Humans, and MS Patients. Cells 2023; 12:cells12030450. [PMID: 36766792 PMCID: PMC9914408 DOI: 10.3390/cells12030450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Glucocorticoids (GCs) are used to treat inflammatory disorders such as multiple sclerosis (MS) by exerting prominent activities in T cells including apoptosis induction and suppression of cytokine production. However, little is known about their impact on energy metabolism, although it is widely accepted that this process is a critical rheostat of T cell activity. We thus tested the hypothesis that GCs control genes and processes involved in nutrient transport and glycolysis. Our experiments revealed that escalating doses of dexamethasone (Dex) repressed energy metabolism in murine and human primary T cells. This effect was mediated by the GC receptor and unrelated to both apoptosis induction and Stat1 activity. In contrast, treatment of human T cells with rapamycin abolished the repression of metabolic gene expression by Dex, unveiling mTOR as a critical target of GC action. A similar phenomenon was observed in MS patients after intravenous methylprednisolon (IVMP) pulse therapy. The expression of metabolic genes was reduced in the peripheral blood T cells of most patients 24 h after GC treatment, an effect that correlated with disease activity. Collectively, our results establish the regulation of T cell energy metabolism by GCs as a new immunomodulatory principle.
Collapse
|
48
|
Chi ZC. Progress in research of low-grade inflammation in irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2022; 30:1051-1065. [DOI: 10.11569/wcjd.v30.i24.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common intestinal disease with a prevalence of 10%-15%. However, its pathophysiology is still not completely clear, and it has long been considered as a functional disease. In recent years, it has been found that low-grade inflammation plays a pathogenic role in IBS. Studies have confirmed that there is persistent mucosal inflammation at the microscopic and molecular levels. This review discusses the evidence, role, and clinical relevance of mucosal inflammation in IBS. In addition to mucosal inflammation, neuroinflammation may lead to changes in neuroendocrine pathways and glucocorticoid receptor genes through the "gut-brain" axis, and thus cause IBS through proinflammatory phenotype and hypothalamic pituitary adrenal axis and 5-hydroxytryptamine dysfunction. The observation that IBS patients can benefit from anti-inflammatory therapy also confirms that IBS is associated with inflammation.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
49
|
J. M. Schaaf M, Meijer OC. Immune Modulations by Glucocorticoids: From Molecular Biology to Clinical Research. Cells 2022; 11:cells11244032. [PMID: 36552795 PMCID: PMC9777355 DOI: 10.3390/cells11244032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their potent anti-inflammatory and immune-suppressive actions, glucocorticoids have been used in the treatment of inflammatory and autoimmune disease for more than 70 years [...].
Collapse
Affiliation(s)
- Marcel J. M. Schaaf
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Correspondence:
| | - Onno C. Meijer
- Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
50
|
Strokotova AV, Grigorieva EV. Glucocorticoid Effects on Proteoglycans and Glycosaminoglycans. Int J Mol Sci 2022; 23:ijms232415678. [PMID: 36555315 PMCID: PMC9778983 DOI: 10.3390/ijms232415678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids are steroid hormones that play diverse roles in numerous normal and pathological processes. They are actively used to treat a wide variety of diseases, including neurodegenerative and inflammatory diseases, cancers, and COVID-19, among others. However, the long-term use of glucocorticoids is associated with numerous side effects. Molecular mechanisms of these negative side effects are not completely understood. Recently, arguments have been made that one such mechanisms may be related to the influence of glucocorticoids on O-glycosylated components of the cell surface and extracellular matrix, in particular on proteoglycans and glycosaminoglycans. The potential toxic effects of glucocorticoids on these glycosylated macromolecules are particularly meaningful for brain physiology because proteoglycans/glycosaminoglycans are the main extracellular components of brain tissue. Here, we aim to review the known effects of glucocorticoids on proteoglycan expression and glycosaminoglycan content in different tissues, with a specific focus on the brain.
Collapse
|