1
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Cheng Z, Li X, Wang S, Sun W, Pan J, Wang X, Zhou J, Li T, Luan G, Guan Y. High Translocation of High Mobility Group Box 1 in the Brain Tissue of Patients with Sturge-Weber Syndrome. J Inflamm Res 2024; 17:9347-9358. [PMID: 39588143 PMCID: PMC11587792 DOI: 10.2147/jir.s473377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Purpose Sturge-Weber syndrome (SWS), a rare congenital neurological and skin disorder, is frequently associated with drug-resistant epilepsy. Translocation of high mobility group box 1 (HMGB1) protein from the nucleus to the cytoplasm or extracellular milieu has been implicated in neuroinflammatory processes contributing to the development of epileptogenesis. This study aimed to explore the expression and distribution of HMGB1 in brain tissue from SWS patients with drug-resistant epilepsy, with the goal of elucidating its potential involvement in the pathogenesis of epilepsy. Patients and Methods The study enrolled eight patients with drug-resistant epilepsy who underwent hemispherectomy. Brain tissue specimens were obtained and analyzed using immunofluorescence staining to detect HMGB1 distribution in microglia, astrocytes, or different neuronal subtypes. Correlation analyses were performed to investigate the potential relationship between HMGB1 translocation within cells and the clinical characteristics of SWS patients. Results In lesional tissues of SWS patients, we observed significantly higher cytoplasmic HMGB1 levels. Meanwhile, HMGB1 was widely distributed in the cytoplasm of microglia and neurons, while in astrocytes, it was primarily localized in the nucleus. This translocation occurred across many neuronal subtypes, including excitatory glutamatergic, inhibitory GABAergic, and cholinergic neurons. The lower proportion of HMGB1-translocated cholinergic neurons was seen compared to the other two neuronal subtypes. Furthermore, no correlation was found between cytoplasmic HMGB1 levels and clinical characteristics of SWS patients. Conclusion The results suggest the involvement of HMGB1 in the pathogenesis of drug-resistant epilepsy in SWS patients. Additional research is required to elucidate the precise mechanisms and potential therapeutic targets associated with HMGB1 that underlie the epilepsy linked to SWS.
Collapse
Affiliation(s)
- Zizhang Cheng
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, People’s Republic of China
| | - Xiaoli Li
- Department of Neurology, Affiliated Zhong Da Hospital, Southeast University, Nanjing, People’s Republic of China
| | - Shu Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, People’s Republic of China
| | - Weijin Sun
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, People’s Republic of China
| | - Junhong Pan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, People’s Republic of China
| | - Xiongfei Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, People’s Republic of China
| | - Jian Zhou
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, People’s Republic of China
| | - Tianfu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Epilepsy, Beijing, 100093, People’s Republic of China
- Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100093, People’s Republic of China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, People’s Republic of China
- Beijing Key Laboratory of Epilepsy, Beijing, 100093, People’s Republic of China
- Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100093, People’s Republic of China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, People’s Republic of China
- Beijing Key Laboratory of Epilepsy, Beijing, 100093, People’s Republic of China
- Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100093, People’s Republic of China
| |
Collapse
|
3
|
Date S, Bhatt LK. Targeting high-mobility-group-box-1-mediated inflammation: a promising therapeutic approach for myocardial infarction. Inflammopharmacology 2024:10.1007/s10787-024-01586-w. [PMID: 39487941 DOI: 10.1007/s10787-024-01586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Myocardial ischemia, resulting from coronary artery blockage, precipitates cardiac arrhythmias, myocardial structural changes, and heart failure. The pathophysiology of MI is mainly based on inflammation and cell death, which are essential in aggravating myocardial ischemia and reperfusion injury. Emerging research highlights the functionality of high mobility group box-1, a non-histone nucleoprotein functioning as a chromosomal stabilizer and inflammatory mediator. HMGB1's release into the extracellular compartment during ischemia acts as damage-associated molecular pattern, triggering immune reaction by pattern recognition receptors and exacerbating tissue inflammation. Its involvement in signaling pathways like PI3K/Akt, TLR4/NF-κB, and RAGE/HMGB1 underscores its significance in promoting angiogenesis, apoptosis, and reducing inflammation, which is crucial for MI treatment strategies. This review highlights the complex function of HMGB1 in the pathogenesis of myocardial infarction by summarizing novel findings on the protein in ischemic situations. Understanding the mechanisms underlying HMGB1 could widen the way to specific treatments that minimize the severity of MI and enhance patient outcomes.
Collapse
Affiliation(s)
- Shrutika Date
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Ye S, Ma F, Mahmood DF, Vera PL. Modulation of persistent bladder pain in mice: The role of macrophage migration inhibitory factor, high mobility group box-1, and downstream signaling pathways. Bladder (San Franc) 2024; 11:e21200011. [PMID: 39539469 PMCID: PMC11555136 DOI: 10.14440/bladder.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Repeated intravesical activation of protease-activated receptor-4 (PAR4) serves as a model of persistent bladder hyperalgesia (BHA) in mice, which lasts several days after the final stimulus. Spinal macrophage migration inhibitory factor (MIF) and high mobility group box 1 (HMGB1) are critical mediators in the persistence of BHA. Objective We aimed to identify effective systemic treatments for persistent BHA using antagonists or transgenic deletions. Methods Persistent BHA was induced through transurethral instillations of a PAR4-activating peptide (PAR4-AP; 100 μM, 1 h; scrambled peptide, control) under anesthesia, administered on Days 0, 2, and 4. Lower abdominal hypersensitivity was measured on Days 0-4 and 7-9. Systemic injections from Days 2-8 included ISO-1 (a MIF antagonist), ethyl pyruvate (an inhibitor of HMGB1 release), phosphate-buffered saline, or 10% DMSO (vehicle control) in C57BL/6 mice. To examine the role of HMGB1 receptors, Toll-like receptor-4 (TLR4)-null mice or systemic treatment with FPS-ZM1 (receptor for advanced glycation end product [RAGE] antagonist) were used. In addition, TIR-domain-containing adaptor-inducing interferon-β (TRIF)-null mice were tested to assess the involvement of TLR4 signaling pathways. Micturition volume and frequency were assessed on Day 9, and the bladder was histopathologically examined to assess inflammation and edema. Results MIF antagonism significantly reversed persistent BHA, whereas HMGB1 antagonism led to a partial reduction of persistent BHA. TLR4 deficiency or systemic administration of FPS-ZM1 significantly mitigated persistent BHA, while TRIF-deficient mice experienced a faster onset of BHA. Only MIF or HMGB1 inhibition resulted in increased micturition volume. The histopathological examination revealed no changes in inflammation or edema. Conclusion MIF and HMGB1, acting through TLR4 and RAGE, mediated persistent BHA, while TRIF might modulate its onset. Further exploration of downstream TLR4 signaling may uncover novel therapeutic targets for treating persistent bladder pain.
Collapse
Affiliation(s)
- Shaojing Ye
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Fei Ma
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Dlovan F.D. Mahmood
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Pedro L. Vera
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
- Department of Physiology, School of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Wang G, Hiramoto K, Ma N, Ohnishi S, Morita A, Xu Y, Yoshikawa N, Chinzei Y, Murata M, Kawanishi S. Immunohistochemical analyses reveal FoxP3 expressions in spleen and colorectal cancer in mice treated with AOM/DSS, and their suppression by glycyrrhizin. PLoS One 2024; 19:e0307038. [PMID: 39150932 PMCID: PMC11329161 DOI: 10.1371/journal.pone.0307038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/27/2024] [Indexed: 08/18/2024] Open
Abstract
We previously demonstrated that glycyrrhizin (GL) suppressed inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer (CC). In this study, we found an accumulation of regulatory T cells (Tregs) in the spleen and suppression by GL in model mice. ICR mice were divided into four groups: Control, GL, CC, and GL-treated CC (CC+GL), and were sacrificed 20 weeks after AOM/DSS treatment. We measured spleen weight, areas of white and red pulp, and CD8+ T cells (cytotoxic T lymphocytes, CTL), and CD11c-positive cells (dendritic cells) in splenic tissues and forkhead box protein 3 (FoxP3)-positive cells (Tregs) in colorectal and splenic tissues. In all cases, the CC group showed a significant increase compared with those in Control group, and GL administration significantly attenuated this increase. These results indicate that Tregs accumulated in the spleen may participate in inflammation-related carcinogenesis by suppressing CTL. We also suggest that GL which binds to high-mobility group box 1 (HMGB1), suppresses carcinogenesis with decreasing Tregs in the spleen. Furthermore, there was an expression of FoxP3 in cancer cells, indicating that it may be involved in the malignant transformation of cancer cells.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Acupuncture and Moxibustion Medical Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Akihiro Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yifei Xu
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Yasuo Chinzei
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
6
|
Soytürk H, Önal C, Kılıç Ü, Türkoğlu ŞA, Ayaz E. The effect of the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy and its relationship with toxoplasmosis. J Cell Mol Med 2024; 28:e18542. [PMID: 39046369 PMCID: PMC11267981 DOI: 10.1111/jcmm.18542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024] Open
Abstract
This study aims to investigate the relationship between toxoplasmosis and this pathway, which may be effective in the formation of epilepsy by acting through the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy. In the study, four different experimental groups were formed by selecting Toxoplasma gondii IgG positive and negative patients with idiopathic epilepsy and healthy controls. Experimental groups were as follows: Group 1: Epilepsy+/Toxo- (E+, T-) (n = 10), Group 2: Epilepsy-/Toxo- (E-, T-) (n = 10), Group 3: Epilepsy-/Toxo+ (E-, T+) (n = 10), Group 4: Epilepsy+/Toxo+ (E+, T+) (n = 10). HMGB1, RAGE, TLR4, TLR1, TLR2, TLR3, IRAK1, IRAK2, IKBKB, IKBKG, BCL3, IL1β, IL10, 1 L8 and TNFα mRNA expression levels in the HMGB/RAGE/TLR4/NF-κB signalling pathway were determined by quantitative simultaneous PCR (qRT-PCR) after collecting blood samples from all patients in the groups. Statistical analysis was performed by one-way ANOVA followed by LSD post-hoc tests, and p < 0.05 was considered to denote statistical significance. The gene expression levels of HMGB1, TLR4, IL10, IL1B, IL8, and TLR2 were significantly higher in the G1 group than in the other groups (p < 0.05). In the G3 group, RAGE and BCL3 gene expression levels were significantly higher than in the other groups (p < 0.05). In the G4 group, however, IRAK2, IKBKB, and IKBKG gene expression levels were significantly higher than in the other groups (p < 0.05). HMGB1, TLR4, IRAK2, IKBKB, IL10, IL1B, IL1B, and IL8 in this signalling pathway are highly expressed in epilepsy patients in G1 and seizures occur with the stimulation of excitatory mechanisms by acting through this pathway. The signalling pathway in epilepsy may be activated by HMGB1, TLR4, and TLR2, which are considered to increase the level of proinflammatory cytokines. In T. gondii, this pathway is activated by RAGE and BCL3.
Collapse
Affiliation(s)
- Hayriye Soytürk
- Bolu Abant Izzet Baysal University, Institute of Graduate Studies Interdisciplinary NeuroscienceBoluTurkey
| | - Cansu Önal
- Zonguldak Bülent Ecevit UniversityDepartment of Molecular Biology and Genetics, Faculty of ScienceZonguldakTurkey
| | - Ümit Kılıç
- Duzce University Vocational School of Health ServicesDuzceTurkey
| | - Şule Aydın Türkoğlu
- Department of Neurology, Faculty of MedicineBolu Abant Izzet Baysal UniversityBoluTurkey
| | - Erol Ayaz
- Department of Parasitology, Faculty of MedicineBolu Abant Izzet Baysal UniversityBoluTurkey
| |
Collapse
|
7
|
Deepu V, Rai V, Agrawal DK. Quantitative Assessment of Intracellular Effectors and Cellular Response in RAGE Activation. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:80-103. [PMID: 38784044 PMCID: PMC11113086 DOI: 10.26502/aimr.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The review delves into the methods for the quantitative assessment of intracellular effectors and cellular response of Receptor for Advanced Glycation End products (RAGE), a vital transmembrane receptor involved in a range of physiological and pathological processes. RAGE bind to Advanced Glycation End products (AGEs) and other ligands, which in turn activate diverse downstream signaling pathways that impact cellular responses such as inflammation, oxidative stress, and immune reactions. The review article discusses the intracellular signaling pathways activated by RAGE followed by differential activation of RAGE signaling across various diseases. This will ultimately guide researchers in developing targeted and effective interventions for diseases associated with RAGE activation. Further, we have discussed how PCR, western blotting, and microscopic examination of various molecules involved in downstream signaling can be leveraged to monitor, diagnose, and explore diseases involving proteins with unique post-translational modifications. This review article underscores the pressing need for advancements in molecular approaches for disease detection and management involving RAGE.
Collapse
Affiliation(s)
- Vinitha Deepu
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
8
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
9
|
Morioka N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. High mobility group box-1: A therapeutic target for analgesia and associated symptoms in chronic pain. Biochem Pharmacol 2024; 222:116058. [PMID: 38367818 DOI: 10.1016/j.bcp.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The number of patients with chronic pain continues to increase against the background of an ageing society and a high incidence of various epidemics and disasters. One factor contributing to this situation is the absence of truly effective analgesics. Chronic pain is a persistent stress for the organism and can trigger a variety of neuropsychiatric symptoms. Hence, the search for useful analgesic targets is currently being intensified worldwide, and it is anticipated that the key to success may be molecules involved in emotional as well as sensory systems. High mobility group box-1 (HMGB1) has attracted attention as a therapeutic target for a variety of diseases. It is a very unique molecule having a dual role as a nuclear protein while also functioning as an inflammatory agent outside the cell. In recent years, numerous studies have shown that HMGB1 acts as a pain inducer in primary sensory nerves and the spinal dorsal horn. In addition, HMGB1 can function in the brain, and is involved in the symptoms of depression, anxiety and cognitive dysfunction that accompany chronic pain. In this review, we will summarize recent research and discuss the potential of HMGB1 as a useful drug target for chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
10
|
Wulandari S, Nuryastuti T, Oktoviani FN, Daniwijaya MEW, Supriyati E, Arguni E, Hartono, Wibawa T. The association between high mobility group box 1 (HMGB1) and Interleukin-18 (IL-18) serum concentrations in COVID-19 inpatients. Heliyon 2024; 10:e26619. [PMID: 38434314 PMCID: PMC10907672 DOI: 10.1016/j.heliyon.2024.e26619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Background High mobility group box 1 (HMGB1) and interleukin-18 (IL-18) are involved in various non-coronavirus disease pathogenesis and are reported as potential biomarkers for coronavirus disease (COVID-19). However, their association with COVID-19 pathogenesis has not yet been explored. Aim This study aimed to investigate the association between HMGB1 and IL-18 concentrations in the sera of COVID-19 patients versus non-COVID-19 patients. Material and methods We used stored serum samples obtained from 30 COVID-19 patients and 30 non-COVID-19 patients. We collected data on age, gender, treatment status, principal diagnosis, and comorbidity from patient medical records. HMGB1 and IL-18 concentrations were analyzed in the serum by enzyme-linked immunosorbent assay (ELISA). The swab samples' RT-PCR cycle threshold (CT) values were obtained from the laboratory database. Results HMGB1 concentrations were increased in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 151.33 (90.27-192.38) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0316; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 152.66 (104.04-288.51) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0199). IL-18 concentrations were also higher in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 620.00 (461.50-849.6) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0376; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 835.70 (558.30-1602.00) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0026). Moreover, HMGB1 was associated with IL-18 concentrations in the sera of COVID-19 inpatients (p = 0.0337; r = 0.5500). Conclusion The association of HMGB1 and IL-18 in COVID-19 might indicate the potential for a dangerous cycle leading to a cytokine storm to occur.
Collapse
Affiliation(s)
- Sri Wulandari
- Doctorate Program of Medicine and Health Science, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Farida Nur Oktoviani
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hartono
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
11
|
Crews FT, Macht V, Vetreno RP. Epigenetic regulation of microglia and neurons by proinflammatory signaling following adolescent intermittent ethanol (AIE) exposure and in human AUD. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12094. [PMID: 38524847 PMCID: PMC10957664 DOI: 10.3389/adar.2024.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Departments of Pharmacology and Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
12
|
Luo Y, Feng Q, Ma D, Wang B, Chi C, Ding CF, Yan Y. Highly sensitive quantitative detection of glycans on exosomes in renal disease serums using fluorescence signal amplification strategies. Talanta 2024; 269:125467. [PMID: 38042140 DOI: 10.1016/j.talanta.2023.125467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Exosomal glycoproteins play a significant role in many physiological and pathological processes. However, the detection of exosome surface glycans is currently challenged by the complexity of biological samples or the sensitivity of the methods. Herein, we prepared a novel fluorescent probe of biotin-functionalized nanocrystals (denoted as CdTe@cys-biotin) and applied it for the first time for the detection of the expression of exosomal surface glycans using a fluorescence amplification strategy. First, the dual affinity of TiO2 and CD63 aptamers of Fe3O4@TiO2-CD63 was utilized to rapidly and efficiently capture exosomes within 25 min. In this design, interference from other vesicles and soluble impurities can be avoided due to the dual recognition strategy. The chemical oxidation of NaIO4 oxidized the hydroxyl sites of exosomal surface glycans to aldehydes, which were then labeled with aniline-catalyzed biotin hydrazide. Using the high affinity between streptavidin and biotin, streptavidin-FITC and probes were successively anchored to the glycans on the exosomes. The fluorescent probe achieved the dual function of specific recognition and fluorescent labeling by modifying biotin on the surface of nanocrystals. This method showed excellent specificity and sensitivity for exosomes at concentrations ranging from 3.30 × 102 to 3.30 × 106 particles/mL, with a detection limit of 121.48 particles/mL. The fluorescent probe not only quantified exosomal surface glycans but also distinguished with high accuracy between serum exosomes from normal individuals and patients with kidney disease. In general, this method provides a powerful platform for sensitive detection of exosomes in cancer diagnosis.
Collapse
Affiliation(s)
- Yiting Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Dumei Ma
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Chaoxian Chi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Pang XL, Li J, Wang J, Yan SS, Yang J. MiR-142-3p Regulates ILC1s by Targeting HMGB1 via the NF-κB Pathway in a Mouse Model of Early Pregnancy Loss. Curr Med Sci 2024; 44:195-211. [PMID: 38393528 DOI: 10.1007/s11596-024-2833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/16/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Innate lymphoid cells (ILCs) are a class of newly discovered immunocytes. Group 1 ILCs (ILC1s) are identified in the decidua of humans and mice. High mobility group box 1 (HMGB1) is predicted to be one of the target genes of miR-142-3p, which is closely related to pregnancy-related diseases. Furthermore, miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway. This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway. METHODS Mouse models of normal pregnancy and abortion were constructed, and the alterations of ILC1s, miR-142-3p, ILC1 transcription factor (T-bet), and pro-inflammatory cytokines of ILC1s (TNF-α, IFN-γ and IL-2) were detected in mice from different groups. The targeting regulation of HMGB1 by miR-142-3p in ILC1s, and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated. In addition, the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8, Annexin-V/PI, ELISA, and RT-PCR, respectively. Furthermore, changes of the NF-κB signaling pathway in ILC1s were examined in the different groups. For the in vivo studies, miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface, and further detect the expression of HMGB1, pro-inflammatory cytokines, and the NF-κB signaling pathway. RESULTS The number of ILC1s was significantly increased, the level of HMGB1 was significantly upregulated, and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice (all P<0.05). In addition, miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway (P<0.05). The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group (all P<0.05). CONCLUSION miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway, and attenuate the inflammation at the maternal-fetal interface in abortive mice.
Collapse
Affiliation(s)
- Xiang-Li Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei Province, Wuhan, 430060, China
| | - Jing Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Si-Si Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei Province, Wuhan, 430060, China.
| |
Collapse
|
14
|
Li W, Wu J, Zeng Y, Zheng W. Neuroinflammation in epileptogenesis: from pathophysiology to therapeutic strategies. Front Immunol 2023; 14:1269241. [PMID: 38187384 PMCID: PMC10771847 DOI: 10.3389/fimmu.2023.1269241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Epilepsy is a group of enduring neurological disorder characterized by spontaneous and recurrent seizures with heterogeneous etiology, clinical expression, severity, and prognosis. Growing body of research investigates that epileptic seizures are originated from neuronal synchronized and excessive electrical activity. However, the underlying molecular mechanisms of epileptogenesis have not yet been fully elucidated and 30% of epileptic patients still are resistant to the currently available pharmacological treatments with recurrent seizures throughout life. Over the past two decades years accumulated evidences provide strong support to the hypothesis that neuroinflammation, including microglia and astrocytes activation, a cascade of inflammatory mediator releasing, and peripheral immune cells infiltration from blood into brain, is associated with epileptogenesis. Meanwhile, an increasing body of preclinical researches reveal that the anti-inflammatory therapeutics targeting crucial inflammatory components are effective and promising in the treatment of epilepsy. The aim of the present study is to highlight the current understanding of the potential neuroinflammatory mechanisms in epileptogenesis and the potential therapeutic targets against epileptic seizures.
Collapse
|
15
|
Joma N, Zhang I, Righetto GL, McKay L, Gran ER, Kakkar A, Maysinger D. Flavonoids Regulate Redox-Responsive Transcription Factors in Glioblastoma and Microglia. Cells 2023; 12:2821. [PMID: 38132142 PMCID: PMC10871111 DOI: 10.3390/cells12242821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The tumor microenvironment (TME) has emerged as a valuable therapeutic target in glioblastoma (GBM), as it promotes tumorigenesis via an increased production of reactive oxygen species (ROS). Immune cells such as microglia accumulate near the tumor and its hypoxic core, fostering tumor proliferation and angiogenesis. In this study, we explored the therapeutic potential of natural polyphenols with antioxidant and anti-inflammatory properties. Notably, flavonoids, including fisetin and quercetin, can protect non-cancerous cells while eliminating transformed cells (2D cultures and 3D tumoroids). We tested the hypothesis that fisetin and quercetin are modulators of redox-responsive transcription factors, for which subcellular location plays a critical role. To investigate the sites of interaction between natural compounds and stress-responsive transcription factors, we combined molecular docking with experimental methods employing proximity ligation assays. Our findings reveal that fisetin decreased cytosolic acetylated high mobility group box 1 (acHMGB1) and increased transcription factor EB (TFEB) abundance in microglia but not in GBM. Moreover, our results suggest that the most powerful modulator of the Nrf2-KEAP1 complex is fisetin. This finding is in line with molecular modeling and calculated binding properties between fisetin and Nrf2-KEAP1, which indicated more sites of interactions and stronger binding affinities than quercetin.
Collapse
Affiliation(s)
- Natali Joma
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
| | - Germanna L. Righetto
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
- Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, ON M5G 1L7, Canada
| | - Laura McKay
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC H3A 0B8, Canada; (L.M.); (A.K.)
| | - Evan Rizzel Gran
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC H3A 0B8, Canada; (L.M.); (A.K.)
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
| |
Collapse
|
16
|
Kaya Z, Belder N, Sever-Bahcekapili M, Donmez-Demir B, Erdener ŞE, Bozbeyoglu N, Bagci C, Eren-Kocak E, Yemisci M, Karatas H, Erdemli E, Gursel I, Dalkara T. Vesicular HMGB1 release from neurons stressed with spreading depolarization enables confined inflammatory signaling to astrocytes. J Neuroinflammation 2023; 20:295. [PMID: 38082296 PMCID: PMC10712196 DOI: 10.1186/s12974-023-02977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The role of high mobility group box 1 (HMGB1) in inflammation is well characterized in the immune system and in response to tissue injury. More recently, HMGB1 was also shown to initiate an "inflammatory signaling cascade" in the brain parenchyma after a mild and brief disturbance, such as cortical spreading depolarization (CSD), leading to headache. Despite substantial evidence implying a role for inflammatory signaling in prevalent neuropsychiatric disorders such as migraine and depression, how HMGB1 is released from healthy neurons and how inflammatory signaling is initiated in the absence of apparent cell injury are not well characterized. We triggered a single cortical spreading depolarization by optogenetic stimulation or pinprick in naïve Swiss albino or transgenic Thy1-ChR2-YFP and hGFAP-GFP adult mice. We evaluated HMGB1 release in brain tissue sections prepared from these mice by immunofluorescent labeling and immunoelectron microscopy. EzColocalization and Costes thresholding algorithms were used to assess the colocalization of small extracellular vesicles (sEVs) carrying HMGB1 with astrocyte or microglia processes. sEVs were also isolated from the brain after CSD, and neuron-derived sEVs were captured by CD171 (L1CAM). sEVs were characterized with flow cytometry, scanning electron microscopy, nanoparticle tracking analysis, and Western blotting. We found that HMGB1 is released mainly within sEVs from the soma of stressed neurons, which are taken up by surrounding astrocyte processes. This creates conditions for selective communication between neurons and astrocytes bypassing microglia, as evidenced by activation of the proinflammatory transcription factor NF-ĸB p65 in astrocytes but not in microglia. Transmission immunoelectron microscopy data illustrated that HMGB1 was incorporated into sEVs through endosomal mechanisms. In conclusion, proinflammatory mediators released within sEVs can induce cell-specific inflammatory signaling in the brain without activating transmembrane receptors on other cells and causing overt inflammation.
Collapse
Affiliation(s)
- Zeynep Kaya
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Nevin Belder
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Melike Sever-Bahcekapili
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Buket Donmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Naz Bozbeyoglu
- Department of Molecular Biology and Genetics, Science Faculty, Bilkent University, Ankara, Turkey
| | - Canan Bagci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| | - Emine Eren-Kocak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Esra Erdemli
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Science Faculty, Bilkent University, Ankara, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, İzmir, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey.
| |
Collapse
|
17
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Fan H, Bai Q, Yang Y, Shi X, Du G, Yan J, Shi J, Wang D. The key roles of reactive oxygen species in microglial inflammatory activation: Regulation by endogenous antioxidant system and exogenous sulfur-containing compounds. Eur J Pharmacol 2023; 956:175966. [PMID: 37549725 DOI: 10.1016/j.ejphar.2023.175966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Aberrant innate immunity in the brain has been implicated in the pathogenesis of several central nervous system (CNS) disorders, including Alzheimer's disease, Huntington's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and depression. Except for extraparenchymal CNS-associated macrophages, which predominantly afford protection against peripheral invading pathogens, it has been reported that microglia, a population of macrophage-like cells governing CNS immune defense in nearly all neurological diseases, are the main CNS resident immune cells. Although microglia have been recognized as the most important source of reactive oxygen species (ROS) in the CNS, ROS also may underlie microglial functions, especially M1 polarization, by modulating redox-sensitive signaling pathways. Recently, endogenous antioxidant systems, including glutathione, hydrogen sulfide, superoxide dismutase, and methionine sulfoxide reductase A, were found to be involved in regulating microglia-mediated neuroinflammation. A series of natural sulfur-containing compounds, including S-adenosyl methionine, S-methyl-L-cysteine, sulforaphane, DMS, and S-alk(enyl)-l-cysteine sulfoxide, modulating endogenous antioxidant systems have been discovered. We have summarized the current knowledge on the involvement of endogenous antioxidant systems in regulating microglial inflammatory activation and the effects of sulfur-containing compounds on endogenous antioxidant systems. Finally, we discuss the possibilities associated with compounds targeting the endogenous antioxidant system to treat neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Qianqian Bai
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yang Yang
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jian Shi
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
19
|
Lei Y, Zhu Y, Mallah MA, Lu P, Yang L, He X, Shang P, Chen Y, Zhou X, Feng F, Zhang Q. The activation of SIRT1 ameliorates BPDE-induced inflammatory damage in BEAS-2B cells via HMGB1/TLR4/NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2429-2439. [PMID: 37436145 DOI: 10.1002/tox.23878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023]
Abstract
Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the metabolite of environmental pollutant benzo(a)pyrene (B(a)P) could induce pulmonary toxicity and inflammation. SIRT1, an NAD+ -dependent histone deacetylase, is known to regulate inflammation in the occurrence and development of various diseases, but its effects on BPDE-induced acute lung injury are still unknown. The present study aimed to explore the role of SIRT1 in BPDE-induced acute lung injury. Here, human bronchial epithelial (HBE) cells (BEAS-2B) cells were stimulated with BPDE at different concentrations (0.50, 0.75, and 1.00 μmol/L) for 24 h, we found that the levels of cytokines in the supernatant were increased and the expression of SIRT1 in cells was down-regulated, at the same time, BPDE stimulation up-regulated the protein expression of HMGB1, TLR4, and p-NF-κBp65 in BEAS-2B cells. Then the activator and inhibitor of SIRT1 were used before BPDE exposure, it was shown that the activation of SIRT1 significantly attenuated the levels of inflammatory cytokines and HMGB1, and reduced the expression of HMGB1, AC-HMGB1, TLR4, and p-NF-κBp65 protein; while these results were reversed by the inhibition of SIRT1. This study revealed that the SIRT1 activation may protect against BPDE-induced inflammatory damage in BEAS-2B cells by regulating the HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Yanting Lei
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Yonghang Zhu
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Manthar Ali Mallah
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Ping Lu
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Liu Yang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Xi He
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNC, Zhengzhou, China
| | - Yusong Chen
- Quality Supervision & Test Center, China National Tobacco Corporation Shandong Branch, Jinan, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Qiao Zhang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| |
Collapse
|
20
|
Sanchez JE, Noor S, Sun MS, Zimmerly J, Pasmay A, Sanchez JJ, Vanderwall AG, Haynes MK, Sklar LA, Escalona PR, Milligan ED. The FDA-approved compound, pramipexole and the clinical-stage investigational drug, dexpramipexole, reverse chronic allodynia from sciatic nerve damage in mice, and alter IL-1β and IL-10 expression from immune cell culture. Neurosci Lett 2023; 814:137419. [PMID: 37558176 PMCID: PMC10552878 DOI: 10.1016/j.neulet.2023.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
During the onset of neuropathic pain from a variety of etiologies, nociceptors become hypersensitized, releasing neurotransmitters and other factors from centrally-projecting nerve terminals within the dorsal spinal cord. Consequently, glial cells (astrocytes and microglia) in the spinal cord are activated and mediate the release of proinflammatory cytokines that act to enhance pain transmission and sensitize mechanical non-nociceptive fibers which ultimately results in light touch hypersensitivity, clinically observed as allodynia. Pramipexole, a D2/D3 preferring agonist, is FDA-approved for the treatment of Parkinson's disease and demonstrates efficacy in animal models of inflammatory pain. The clinical-stage investigational drug, R(+) enantiomer of pramipexole, dexpramipexole, is virtually devoid of D2/D3 agonist actions and is efficacious in animal models of inflammatory and neuropathic pain. The current experiments focus on the application of a mouse model of sciatic nerve neuropathy, chronic constriction injury (CCI), that leads to allodynia and is previously characterized to generate spinal glial activation with consequent release IL-1β. We hypothesized that both pramipexole and dexpramipexole reverse CCI-induced chronic neuropathy in mice, and in human monocyte cell culture studies (THP-1 cells), pramipexole prevents IL-1β production. Additionally, we hypothesized that in rat primary splenocyte culture, dexpramixole increases mRNA for the anti-inflammatory and pleiotropic cytokine, interleukin-10 (IL-10). Results show that following intravenous pramipexole or dexpramipexole, a profound decrease in allodynia was observed by 1 hr, with allodynia returning 24 hr post-injection. Pramipexole significantly blunted IL-1β protein production from stimulated human monocytes and dexpramipexole induced elevated IL-10 mRNA expression from rat splenocytes. The data support that clinically-approved compounds like pramipexole and dexpramipexole support their application as anti-inflammatory agents to mitigate chronic neuropathy, and provide a blueprint for future, multifaceted approaches for opioid-independent neuropathic pain treatment.
Collapse
Affiliation(s)
- J E Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - S Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M S Sun
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - J Zimmerly
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - A Pasmay
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - J J Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - A G Vanderwall
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M K Haynes
- Center for Molecular Discovery (CMD) Innovation, Discovery and Training Complex (IDTC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - L A Sklar
- Center for Molecular Discovery (CMD) Innovation, Discovery and Training Complex (IDTC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - P R Escalona
- Department of Psychiatry, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; New Mexico VA Health Care System, Albuquerque NM 87108, USA
| | - E D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
21
|
Zheng X, Lu J, Liu J, Zhou L, He Y. HMGB family proteins: Potential biomarkers and mechanistic factors in cardiovascular diseases. Biomed Pharmacother 2023; 165:115118. [PMID: 37437373 DOI: 10.1016/j.biopha.2023.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023] Open
Abstract
Cardiovascular disease (CVD) is the most fatal disease that causes sudden death, and inflammation contributes substantially to its occurrence and progression. The prevalence of CVD increases as the population ages, and the pathophysiology is complex. Anti-inflammatory and immunological modulation are the potential methods for CVD prevention and treatment. High-Mobility Group (HMG) chromosomal proteins are one of the most abundant nuclear nonhistone proteins which act as inflammatory mediators in DNA replication, transcription, and repair by producing cytokines and serving as damage-associated molecular patterns in inflammatory responses. The most common and well-studied HMG proteins are those with an HMGB domain, which participate in a variety of biological processes. HMGB1 and HMGB2 were the first members of the HMGB family to be identified and are present in all investigated eukaryotes. Our review is primarily concerned with the involvement of HMGB1 and HMGB2 in CVD. The purpose of this review is to provide a theoretical framework for diagnosing and treating CVD by discussing the structure and function of HMGB1 and HMGB2.
Collapse
Affiliation(s)
- Xialei Zheng
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Junmi Lu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jing Liu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liufang Zhou
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Cardiovascular Medicine, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China
| | - Yuhu He
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
22
|
Chen R, Zou J, Kang R, Tang D. The Redox Protein High-Mobility Group Box 1 in Cell Death and Cancer. Antioxid Redox Signal 2023; 39:569-590. [PMID: 36999916 DOI: 10.1089/ars.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Significance: As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. Recent Advances: HMGB1 is a nonhistone nuclear protein that acts as a deoxyribonucleic acid chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depend on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on the tumor types and stages. Critical Issues: A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. Future Directions: Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease. Antioxid. Redox Signal. 39, 569-590.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Kahan R, Cray PL, Abraham N, Gao Q, Hartwig MG, Pollara JJ, Barbas AS. Sterile inflammation in liver transplantation. Front Med (Lausanne) 2023; 10:1223224. [PMID: 37636574 PMCID: PMC10449546 DOI: 10.3389/fmed.2023.1223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Sterile inflammation is the immune response to damage-associated molecular patterns (DAMPs) released during cell death in the absence of foreign pathogens. In the setting of solid organ transplantation, ischemia-reperfusion injury results in mitochondria-mediated production of reactive oxygen and nitrogen species that are a major cause of uncontrolled cell death and release of various DAMPs from the graft tissue. When properly regulated, the immune response initiated by DAMP-sensing serves as means of damage control and is necessary for initiation of recovery pathways and re-establishment of homeostasis. In contrast, a dysregulated or overt sterile inflammatory response can inadvertently lead to further injury through recruitment of immune cells, innate immune cell activation, and sensitization of the adaptive immune system. In liver transplantation, sterile inflammation may manifest as early graft dysfunction, acute graft failure, or increased risk of immunosuppression-resistant rejection. Understanding the mechanisms of the development of sterile inflammation in the setting of liver transplantation is crucial for finding reliable biomarkers that predict graft function, and for development of therapeutic approaches to improve long-term transplant outcomes. Here, we discuss the recent advances that have been made to elucidate the early signs of sterile inflammation and extent of damage from it. We also discuss new therapeutics that may be effective in quelling the detrimental effects of sterile inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew S. Barbas
- Duke Ex-Vivo Organ Lab (DEVOL)—Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
24
|
Liu MK, Chen YJ, Chen F, Lin ZX, Zhu ZC, Lin Y, Fang YF, Wu DM. Intervention effects and related mechanisms of glycyrrhizic acid on zebrafish with Hirschsprung-associated enterocolitis. World J Gastrointest Surg 2023; 15:1317-1330. [PMID: 37555121 PMCID: PMC10405109 DOI: 10.4240/wjgs.v15.i7.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The prevention and treatment of Hirschsprung-associated enterocolitis (HAEC) is a serious challenge in pediatric surgery. Exploring the mechanism of HAEC is conducive to the prevention of this disease. AIM To explore the possible mechanism of glycyrrhizic acid (GA) and its therapeutic effect on HAEC. METHODS We developed a model of enteritis induced by trinitrobenzenesulfonic acid (TNBS) in zebrafish, and treated it with different concentrations of GA. We analyzed the effect of GA on the phenotype and inflammation of zebrafish. RESULTS After treatment with TNBS, the area of the intestinal lumen in zebrafish was significantly increased, but the number of goblet cells in the intestinal lumen was significantly reduced, but these did not increase the mortality of zebrafish, indicating that the zebrafish enteritis model was successfully developed. Different concentrations of GA protected zebrafish with enteritis. In particular, high concentrations of GA were important for the prevention and control of HAEC because it significantly reduced the intestinal luminal area, increased the number of goblet cells in the intestinal lumen, and reduced the levels of interleukin (IL)-1β and IL-8. CONCLUSION GA significantly reduced the intestinal luminal area, increased the number of intestinal goblet cells, and decreased IL-1β and IL-8 in zebrafish, and is important for prevention and control of HAEC.
Collapse
Affiliation(s)
- Ming-Kun Liu
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Pediatric Surgery, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Ying-Jian Chen
- Department of Pediatric Surgery, Fujian Children’s Hospital, Fuzhou 350001, Fujian Province, China
| | - Fei Chen
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Pediatric Surgery, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Zhi-Xiong Lin
- Department of Pediatric Surgery, Fujian Children’s Hospital, Fuzhou 350001, Fujian Province, China
| | - Zi-Cheng Zhu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Yu Lin
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Pediatric Surgery, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Yi-Fan Fang
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Pediatric Surgery, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Dian-Ming Wu
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Pediatric Surgery, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| |
Collapse
|
25
|
Koncz G, Jenei V, Tóth M, Váradi E, Kardos B, Bácsi A, Mázló A. Damage-mediated macrophage polarization in sterile inflammation. Front Immunol 2023; 14:1169560. [PMID: 37465676 PMCID: PMC10351389 DOI: 10.3389/fimmu.2023.1169560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Most of the leading causes of death, such as cardiovascular diseases, cancer, dementia, neurodegenerative diseases, and many more, are associated with sterile inflammation, either as a cause or a consequence of these conditions. The ability to control the progression of inflammation toward tissue resolution before it becomes chronic holds significant clinical potential. During sterile inflammation, the initiation of inflammation occurs through damage-associated molecular patterns (DAMPs) in the absence of pathogen-associated molecules. Macrophages, which are primarily localized in the tissue, play a pivotal role in sensing DAMPs. Furthermore, macrophages can also detect and respond to resolution-associated molecular patterns (RAMPs) and specific pro-resolving mediators (SPMs) during sterile inflammation. Macrophages, being highly adaptable cells, are particularly influenced by changes in the microenvironment. In response to the tissue environment, monocytes, pro-inflammatory macrophages, and pro-resolution macrophages can modulate their differentiation state. Ultimately, DAMP and RAMP-primed macrophages, depending on the predominant subpopulation, regulate the balance between inflammatory and resolving processes. While sterile injury and pathogen-induced reactions may have distinct effects on macrophages, most studies have focused on macrophage responses induced by pathogens. In this review, which emphasizes available human data, we illustrate how macrophages sense these mediators by examining the expression of receptors for DAMPs, RAMPs, and SPMs. We also delve into the signaling pathways induced by DAMPs, RAMPs, and SPMs, which primarily contribute to the regulation of macrophage differentiation from a pro-inflammatory to a pro-resolution phenotype. Understanding the regulatory mechanisms behind the transition between macrophage subtypes can offer insights into manipulating the transition from inflammation to resolution in sterile inflammatory diseases.
Collapse
Affiliation(s)
- Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Váradi
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Balázs Kardos
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
26
|
Wulandari S, Hartono, Wibawa T. The role of HMGB1 in COVID-19-induced cytokine storm and its potential therapeutic targets: A review. Immunology 2023; 169:117-131. [PMID: 36571562 PMCID: PMC9880760 DOI: 10.1111/imm.13623] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Hyperinflammation characterized by elevated proinflammatory cytokines known as 'cytokine storms' is the major cause of high severity and mortality seen in COVID-19 patients. The pathology behind the cytokine storms is currently unknown. Increased HMGB1 levels in serum/plasma of COVID-19 patients were reported by many studies, which positively correlated with the level of proinflammatory cytokines. Dead cells following SARS-CoV-2 infection might release a large amount of HMGB1 and RNA of SARS-CoV-2 into extracellular space. HMGB1 is a well-known inflammatory mediator. Additionally, extracellular HMGB1 might interact with SARS-CoV-2 RNA because of its high capability to bind with a wide variety of molecules including nucleic acids and could trigger massive proinflammatory immune responses. This review aimed to critically explore the many possible pathways by which HMGB1-SARS-CoV-2 RNA complexes mediate proinflammatory responses in COVID-19. The contribution of these pathways to impair host immune responses against SARS-CoV-2 infection leading to a cytokine storm was also evaluated. Moreover, since blocking the HMGB1-SARS-CoV-2 RNA interaction might have therapeutic value, some of the HMGB1 antagonists have been reviewed. The HMGB1- SARS-CoV-2 RNA complexes might trigger endocytosis via RAGE which is linked to lysosomal rupture, PRRs activation, and pyroptotic death. High levels of the proinflammatory cytokines produced might suppress many immune cells leading to uncontrolled viral infection and cell damage with more HMGB1 released. Altogether these mechanisms might initiate a proinflammatory cycle leading to a cytokine storm. HMGB1 antagonists could be considered to give benefit in alleviating cytokine storms and serve as a potential candidate for COVID-19 therapy.
Collapse
Affiliation(s)
- Sri Wulandari
- Doctorate Program of Medicine and Health Science, Faculty of MedicinePublic Health and Nursing Universitas Gadjah MadaYogyakartaIndonesia
- Department of Physiology, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Hartono
- Department of Physiology, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of MedicinePublic Health and Nursing Universitas Gadjah MadaYogyakartaIndonesia
| |
Collapse
|
27
|
Xu S, Liu W, Zhang L, He Q, Ma C, Jiang J, Ye S, Ge L, Chen Z, Zhou L. High mobility group box 1 levels as potential predictors of asthma severity. Chin Med J (Engl) 2023:00029330-990000000-00552. [PMID: 37057723 DOI: 10.1097/cm9.0000000000002491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 04/15/2023] Open
Affiliation(s)
- Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weihua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Liuchao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Quan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenhui Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | - Sheng Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Linyang Ge
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Institute of Integrative Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
28
|
Peng P, Yu Y, Ma W, Lyu S, Ma L, Liu T, Dong Y, Wei C. Proteomic characterization of aqueous humor in corneal endothelial decompensation after penetrating keratoplasty. Exp Eye Res 2023; 230:109457. [PMID: 36948439 DOI: 10.1016/j.exer.2023.109457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Corneal endothelial decompensation (CED) is the major cause of the long-term graft failure, but the underlying mechanisms remain unclear. The purpose of this study was to characterize the proteomic profile in CED aqueous humor (AH) after penetrating keratoplasty (PKP). We collected AH samples (n = 6/group) from CED patients underwent PKP and cataract patients, respectively. The label-free quantitative proteomic analysis was performed to identify the differentially-expressed proteins (DEPs). The biological functions of DEPs were evaluated using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. The protein-protein interaction (PPI) network construction was employed to distinguish the hub proteins of DEPs, and the selected proteins were validated by parallel reaction monitoring (PRM). The human peripheral blood mononuclear cells (PBMCs) were adopted to investigate the effect of biglycan (BGN) on inflammatory response, and the subsequent outcomes of inflammation on human corneal endothelial cells (HCECs). A total of 174 DEPs were identified in CED AH of patients underwent PKP, including 102 up-regulated proteins and 72 down-regulated proteins. Bioinformatics analysis revealed the significant enrichment of cytokine-mediated signaling pathway and extracellular matrix (ECM) organization in the up-regulated proteins, as well as the alterations of cellular components, including the increase of collagen and complement component C1 complex, and reduction in extracellular exosomes. A hub protein cluster of 15 proteins was determined by Molecular Complex Detection (MCODE), including FN1, BGN, COMP, COL11A1, COLA3A1, and COL1A1. Moreover, BGN promoted pro-inflammatory cytokine (such as TNF-α, IL-1β and IL-6) production in PBMCs through NF-κB signaling pathway, which subsequently resulted in HCECs death. These findings provided a systemic protein profile of AH in CED patients after corneal transplantation, with the alterations implicated in cytokine-mediated signaling, ECM, complement system, and exsomes. The identified proteins and signaling pathways probably paved the novel insight into understanding the pathogenesis of the disease.
Collapse
Affiliation(s)
- Peng Peng
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Wenhui Ma
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shanmei Lyu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yanling Dong
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
29
|
Gauthier AG, Lin M, Zefi S, Kulkarni A, Thakur GA, Ashby CR, Mantell LL. GAT107-mediated α7 nicotinic acetylcholine receptor signaling attenuates inflammatory lung injury and mortality in a mouse model of ventilator-associated pneumonia by alleviating macrophage mitochondrial oxidative stress via reducing MnSOD-S-glutathionylation. Redox Biol 2023; 60:102614. [PMID: 36717349 PMCID: PMC9950665 DOI: 10.1016/j.redox.2023.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Supraphysiological concentrations of oxygen (hyperoxia) can compromise host defense and increase susceptibility to bacterial and viral infections, causing ventilator-associated pneumonia (VAP). Compromised host defense and inflammatory lung injury are mediated, in part, by high extracellular concentrations of HMGB1, which can be decreased by GTS-21, a partial agonist of α7 nicotinic acetylcholine receptor (α7nAChR). Here, we report that a novel α7nAChR agonistic positive allosteric modulator (ago-PAM), GAT107, at 3.3 mg/kg, i.p., significantly decreased animal mortality and markers of inflammatory injury in mice exposed to hyperoxia and subsequently infected with Pseudomonas aeruginosa. The incubation of macrophages with 3.3 μM of GAT107 significantly decreased hyperoxia-induced extracellular HMGB1 accumulation and HMGB1-induced macrophage phagocytic dysfunction. Hyperoxia-compromised macrophage function was correlated with impaired mitochondrial membrane integrity, increased superoxide levels, and decreased manganese superoxide dismutase (MnSOD) activity. This compromised MnSOD activity is due to a significant increase in its level of glutathionylation. The incubation of hyperoxic macrophages with 3.3 μM of GAT107 significantly decreases the levels of glutathionylated MnSOD, and restores MnSOD activity and mitochondrial membrane integrity. Thus, GAT107 restored hyperoxia-compromised phagocytic functions by decreasing HMGB1 release, most likely via a mitochondrial-directed pathway. Overall, our results suggest that GAT107 may be a potential treatment to decrease acute inflammatory lung injury by increasing host defense in patients with VAP.
Collapse
Affiliation(s)
- Alex G. Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sidorela Zefi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | | | | | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA,Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA,Corresponding author. Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 128 St. Albert Hall, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
30
|
de Oliveira Matos A, dos Santos Dantas PH, Colmenares MTC, Sartori GR, Silva-Sales M, Da Silva JHM, Neves BJ, Andrade CH, Sales-Campos H. The CDR3 region as the major driver of TREM-1 interaction with its ligands, an in silico characterization. Comput Struct Biotechnol J 2023; 21:2579-2590. [PMID: 37122631 PMCID: PMC10130352 DOI: 10.1016/j.csbj.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor heavily investigated in infectious and non-infectious diseases. Because of its role in amplifying inflammation, TREM-1 has been explored as a diagnostic/prognostic biomarker. Further, as the receptor has been implicated in the pathophysiology of several diseases, therapies aiming at modulating its activity represent a promising strategy to constrain uncontrolled inflammatory or infectious diseases. Despite this, several aspects concerning its interaction with ligands and activation process, remain unclear. Although many molecules have been suggested as TREM-1 ligands, only five have been confirmed to interact with the receptor: actin, eCIRP, HMGB1, Hsp70 and PGLYRP1. However, the domains involved in the interaction between the receptor and these proteins are not clarified yet. Therefore, here we used in silico approaches to investigate the putative binding domains in the receptor, using hot spots analysis, molecular docking and molecular dynamics simulations between TREM-1 and its five known ligands. Our results indicated the complementarity-determining regions (CDRs) of the receptor as the main mediators of antigen recognition, especially the CDR3 loop. We believe that our study could be used as structural basis for the elucidation of TREM-1's recognition process, and may be useful for prospective in silico and biological investigations exploring the receptor in different contexts.
Collapse
Affiliation(s)
| | | | | | | | - Marcelle Silva-Sales
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Bruno Junior Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Helioswilton Sales-Campos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
- Correspondence to: Universidade Federal de Goiás – UFG, Instituto de Patologia Tropical e Saúde Pública – IPTSP, Rua 235, S/N, sala 332, Setor Leste Universitário, Goiânia, Goiás 746050-05, Brazil.
| |
Collapse
|
31
|
Wang J, Pan Y, Wei G, Mao H, Liu R, He Y. Damage-associated molecular patterns in vitiligo: igniter fuse from oxidative stress to melanocyte loss. Redox Rep 2022; 27:193-199. [PMID: 36154894 PMCID: PMC9518600 DOI: 10.1080/13510002.2022.2123864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The pathogenesis of vitiligo remains unclear. In this review, we comprehensively describe the role of damage associated molecular patterns (DAMPs) during vitiligo pathogenesis. METHODS Published papers on vitiligo, oxidative stress and DAMPs were collected and reviewed via database searching on PubMed, MEDLINE and Embase, etc. RESULTS Oxidative stress may be an important inducer of vitiligo. At high oxidative stress levels, damage-associated molecular patterns (DAMPs) are released from keratinocytes or melanocytes in the skin and induce downstream immune responses during vitiligo. Treatment regimens targeting DAMPs can effectively improve disease severity. DISCUSSION DAMPs play key roles in initiating host defenses against danger signals, deteriorating the condition of vitiligo. DAMP levels in serum and skin may be used as biomarkers to indicate vitiligo activity and prognosis. Targeted therapies, incorporating HMGB1, Hsp70, and IL-15 could significantly improve disease etiology. Thus, novel strategies could be identified for vitiligo treatment by targeting DAMPs.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yinghao Pan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Guangmin Wei
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hanxiao Mao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Rulan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China, Yuanmin He Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
32
|
Shi J, Xiao Y, Zhang N, Jiao M, Tang X, Dai C, Wang C, Xu Y, Tan Z, Gong F, Zheng F. HMGB1 from Astrocytes Promotes EAE by Influencing the Immune Cell Infiltration-Associated Functions of BMECs in Mice. Neurosci Bull 2022; 38:1303-1314. [PMID: 35697993 PMCID: PMC9672173 DOI: 10.1007/s12264-022-00890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
High mobility group box 1 (HMGB1) has been reported to play an important role in experimental autoimmune encephalomyelitis (EAE). Astrocytes are important components of neurovascular units and tightly appose the endothelial cells of microvessels by their perivascular endfeet and directly regulate the functions of the blood-brain barrier. Astrocytes express more HMGB1 during EAE while the exact roles of astrocytic HMGB1 in EAE have not been well elucidated. Here, using conditional-knockout mice, we found that astrocytic HMGB1 depletion decreased morbidity, delayed the onset time, and reduced the disease score and demyelination of EAE. Meanwhile, there were fewer immune cells, especially pathogenic T cells infiltration in the central nervous system of astrocytic HMGB1 conditional-knockout EAE mice, accompanied by up-regulated expression of the tight-junction protein Claudin5 and down-regulated expression of the cell adhesion molecules ICAM1 and VCAM1 in vivo. In vitro, HMGB1 released from astrocytes decreased Claudin5 while increased ICAM1 and VCAM1 expressed by brain microvascular endothelial cells (BMECs) through TLR4 or RAGE. Taken together, our results demonstrate that HMGB1 derived from astrocytes aggravates EAE by directly influencing the immune cell infiltration-associated functions of BMECs.
Collapse
Affiliation(s)
- Junyu Shi
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yifan Xiao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenchen Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China.
| |
Collapse
|
33
|
Liu J, Liu Y, Wang Y, Kang R, Tang D. HMGB1 is a mediator of cuproptosis-related sterile inflammation. Front Cell Dev Biol 2022; 10:996307. [PMID: 36211458 PMCID: PMC9534480 DOI: 10.3389/fcell.2022.996307] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cuproptosis is a recently recognized modality of cell death driven by intracellular copper-dependent mitochondrial stress. However, the mediators of the sterile inflammatory response to cuproptotic death are undetermined. Here, we report that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern, is released by cuproptotic cells to initiate inflammation. Mechanically, copper accumulation-induced adenosine triphosphate (ATP) depletion activates AMP-activated protein kinase (AMPK) to promote HMGB1 phosphorylation, resulting in increased extracellular release. In contrast, genetic (using RNAi) or pharmacologic (using dorsomorphin) inhibition of AMPK activation limits cuproptosis and HMGB1 release. Functionally, the ability of HMGB1-deficient cuproptotic cells to promote advanced glycosylation end product-specific receptor (AGER, also known as RAGE)-dependent inflammatory cytokine production is greatly reduced. Thus, HMGB1 is a key immune mediator of cuproptosis-initiated sterile inflammation.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Jiao Liu, ; Daolin Tang,
| | - Yang Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuan Wang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Jiao Liu, ; Daolin Tang,
| |
Collapse
|
34
|
Fischer S, Deindl E. State of the Art of Innate Immunity—An Overview. Cells 2022; 11:cells11172705. [PMID: 36078113 PMCID: PMC9454720 DOI: 10.3390/cells11172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The innate immune system is the first line of defense against bacterial and viral infections and sterile inflammation through the recognition of pathogen-associated molecular patterns (PAMPs) as well as danger-associated molecular patterns (DAMPs) by pathogen-recognition receptors (PRRs), and produces proinflammatory and antiviral cytokines and chemokines [...]
Collapse
Affiliation(s)
- Silvia Fischer
- Institute of Biochemistry, Justus-Liebig-University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-9947440
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, 82152 Munich, Germany
| |
Collapse
|
35
|
Zhang S, Chen F, Zhai F, Liang S. Role of HMGB1/TLR4 and IL-1β/IL-1R1 Signaling Pathways in Epilepsy. Front Neurol 2022; 13:904225. [PMID: 35837232 PMCID: PMC9274112 DOI: 10.3389/fneur.2022.904225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
Epilepsy is a chronic disorder of the nervous system characterized by recurrent seizures. Inflammation is one of the six major causes of epilepsy, and its role in the pathogenesis of epilepsy is gaining increasing attention. Two signaling pathways, the high mobility group box-1 (HMGB1)/toll-like receptor 4 (TLR4) and interleukin-1β (IL-1β)/interleukin-1 receptor 1 (IL-1R1) pathways, have become the focus of research in recent years. These two signaling pathways have potential as biomarkers in the prediction, prognosis, and targeted therapy of epilepsy. This review focuses on the association between epilepsy and the neuroinflammatory responses mediated by these two signaling pathways. We hope to contribute further in-depth studies on the role of HMGB1/TLR4 and IL-1β/IL-1R1 signaling in epileptogenesis and provide insights into the development of specific agents targeting these two pathways.
Collapse
Affiliation(s)
- Shaohui Zhang
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China
- Neurosurgery Department, People's Liberation of Army (PLA) General Hospital, Beijing, China
| | - Feng Chen
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Feng Zhai
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China
- *Correspondence: Feng Zhai
| | - Shuli Liang
- Beijing Key Laboratory of Major Diseases in Children, Ministry of Education, Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China
- Shuli Liang
| |
Collapse
|
36
|
Dong Y, Ming B, Dong L. The Role of HMGB1 in Rheumatic Diseases. Front Immunol 2022; 13:815257. [PMID: 35250993 PMCID: PMC8892237 DOI: 10.3389/fimmu.2022.815257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
HMGB1, a highly conserved non-histone nuclear protein, is widely expressed in mammalian cells. HMGB1 in the nucleus binds to the deoxyribonucleic acid (DNA) to regulate the structure of chromosomes and maintain the transcription, replication, DNA repair, and nucleosome assembly. HMGB1 is actively or passively released into the extracellular region during cells activation or necrosis. Extracellular HMGB1 as an alarmin can initiate immune response alone or combined with other substances such as nucleic acid to participate in multiple biological processes. It has been reported that HMGB1 is involved in various inflammatory responses and autoimmunity. This review article summarizes the physiological function of HMGB1, the post-translational modification of HMGB1, its interaction with different receptors, and its recent advances in rheumatic diseases and strategies for targeted therapy.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Gaboriaud C, Lorvellec M, Rossi V, Dumestre-Pérard C, Thielens NM. Complement System and Alarmin HMGB1 Crosstalk: For Better or Worse. Front Immunol 2022; 13:869720. [PMID: 35572583 PMCID: PMC9095977 DOI: 10.3389/fimmu.2022.869720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Our immune system responds to infectious (PAMPs) and tissue damage (DAMPs) signals. The complement system and alarmin High-Mobility Group Box 1 (HMGB1) are two powerful soluble actors of human host defense and immune surveillance. These systems involve molecular cascades and amplification loops for their signaling or activation. Initially activated as alarm raising systems, their function can be finally switched towards inflammation resolution, where they sustain immune maturation and orchestrate repair mechanisms, opening the way back to homeostasis. However, when getting out of control, these defense systems can become deleterious and trigger serious cellular and tissue damage. Therefore, they can be considered as double-edged swords. The close interaction between the complement and HMGB1 pathways is described here, as well as their traditional and non-canonical roles, their functioning at different locations and their independent and collective impact in different systems both in health and disease. Starting from these systems and interplay at the molecular level (when elucidated), we then provide disease examples to better illustrate the signs and consequences of their roles and interaction, highlighting their importance and possible vicious circles in alarm raising and inflammation, both individually or in combination. Although this integrated view may open new therapeutic strategies, future challenges have to be faced because of the remaining unknowns regarding the molecular mechanisms underlying the fragile molecular balance which can drift towards disease or return to homeostasis, as briefly discussed at the end.
Collapse
Affiliation(s)
| | | | | | - Chantal Dumestre-Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratoire d’Immunologie, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France
| | | |
Collapse
|
38
|
High Mobility Group Box 1: Biological Functions and Relevance in Oxidative Stress Related Chronic Diseases. Cells 2022; 11:cells11050849. [PMID: 35269471 PMCID: PMC8909428 DOI: 10.3390/cells11050849] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/03/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function of HMGB1 depends on its subcellular localization and expression. It plays a critical role in the nucleus and cytoplasm as DNA chaperone, chromosome gatekeeper, autophagy maintainer, and protector from apoptotic cell death. HMGB1 also functions as an extracellular alarmin acting as a damage-associated molecular pattern molecule (DAMP). Recent findings describe HMGB1 as a sophisticated signal of danger, with a pleiotropic function, which is useful as a clinical biomarker for several disorders. HMGB1 has emerged as a mediator in acute and chronic inflammation. Furthermore, HMGB1 targeting can induce beneficial effects on oxidative stress related diseases. This review focus on HMGB1 redox status, localization, mechanisms of release, binding with receptors, and its activities in different oxidative stress-related chronic diseases. Since a growing number of reports show the key role of HMGB1 in socially relevant pathological conditions, to our knowledge, for the first time, here we analyze the scientific literature, evaluating the number of publications focusing on HMGB1 in humans and animal models, per year, from 2006 to 2021 and the number of records published, yearly, per disease and category (studies on humans and animal models).
Collapse
|
39
|
Paracrine signal emanating from stressed cardiomyocytes aggravates inflammatory microenvironment in diabetic cardiomyopathy. iScience 2022; 25:103973. [PMID: 35281739 PMCID: PMC8905320 DOI: 10.1016/j.isci.2022.103973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/17/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) is a novel transcriptional regulator of cardiac high-mobility group box-1 (HMGB1). Cardiac stress-induced release of HMGB1 facilitates M1 macrophage polarization, aggravating myocardial inflammation. Therapeutically, sequestering the extracellular HMGB1 using glycyrrhizin conferred cardioprotection through its anti-inflammatory action. Our findings also indicated that an intact cardiac ER function and protective effects of the antidiabetic drug interdependently attenuated the cardiac inflammation-induced dysfunction. Collectively, we introduce an ER stress-mediated cardiomyocyte-macrophage link, altering the macrophage response, thereby providing insight into therapeutic prospects for diabetes-associated cardiac dysfunction.
Collapse
|