1
|
Mohammadi A, Karimian A, Shokri K, Mohammadi A, Hazhir-Karzar N, Bahar R, Radfar A, Pakyari M, Tehrani B. RNA Therapies in Cardio-Kidney-Metabolic Syndrome: Advancing Disease Management. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10603-4. [PMID: 40080261 DOI: 10.1007/s12265-025-10603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Cardio-Kidney-Metabolic (CKM) Syndrome involves metabolic, kidney, and cardiovascular dysfunction, disproportionately affecting disadvantaged groups. Its staging (0-4) highlights the importance of early intervention. While current management targets hypertension, heart failure, dyslipidemia, and diabetes, RNA-based therapies offer innovative solutions by addressing molecular mechanisms of CKM Syndrome. Emerging RNA treatments, including antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), show promise in slowing disease progression across CKM stages. For example, ASOs and siRNAs targeting ApoC-III and ANGPTL3 reduce triglycerides and LDL cholesterol, while siRNAs improve blood pressure control by targeting the renin-angiotensin-aldosterone system. Obesity treatments leveraging miRNAs and circRNAs tackle a key CKM risk factor. In heart failure and diabetes, RNA-based therapies improve cardiac function and glucose control, while early kidney disease trials show potential for RNAi in acute injury. Further research is essential to refine these therapies and ensure equitable access.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Department of Internal Medicine, Valley Health System, Las Vegas, NV, USA.
| | - Azin Karimian
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kasra Shokri
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Rayeheh Bahar
- Department of Internal Medicine, Valley Health System, Las Vegas, NV, USA
| | - Azar Radfar
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mohammadreza Pakyari
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
2
|
Jones BA, Gisch DL, Myakala K, Sadiq A, Cheng YH, Taranenko E, Panov J, Korolowicz K, Melo Ferreira R, Yang X, Santo BA, Allen KC, Yoshida T, Wang XX, Rosenberg AZ, Jain S, Eadon MT, Levi M. NAD+ prevents chronic kidney disease by activating renal tubular metabolism. JCI Insight 2025; 10:e181443. [PMID: 40059824 PMCID: PMC11949063 DOI: 10.1172/jci.insight.181443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/22/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD+) is a small molecule that participates in hundreds of metabolism-related reactions. NAD+ levels are decreased in CKD, and NAD+ supplementation is protective. However, both the mechanism of how NAD+ supplementation protects from CKD, as well as the cell types involved, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD+ precursor, stimulated renal PPARα signaling and restored FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing showed that renal metabolic pathways were impaired in Alport mice and activated by NR in both sexes. These transcriptional changes were confirmed by orthogonal imaging techniques and biochemical assays. Single-nuclei RNA sequencing and spatial transcriptomics, both the first of their kind to our knowledge from Alport mice, showed that NAD+ supplementation restored FAO in proximal tubule cells. Finally, we also report, for the first time to our knowledge, sex differences at the transcriptional level in this Alport model. In summary, the data herein identify a nephroprotective mechanism of NAD+ supplementation in CKD, and they demonstrate that this benefit localizes to the proximal tubule cells.
Collapse
Affiliation(s)
- Bryce A. Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Debora L. Gisch
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Amber Sadiq
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Ying-Hua Cheng
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizaveta Taranenko
- Department of Biology, University of La Verne, La Verne, California, USA
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Kyle Korolowicz
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Ricardo Melo Ferreira
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Briana A. Santo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine C. Allen
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Teruhiko Yoshida
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoxin X. Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael T. Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, USA
| |
Collapse
|
3
|
Vitulano C, Forcina G, Colosimo S, Frattolillo V, Villani AV, Marzuillo P, Miraglia Del Giudice E, Di Sessa A. A miRNA-Based Approach in Autosomal Dominant Polycystic Kidney Disease: Challenges and Insights from Adult to Pediatric Evidence. Mol Diagn Ther 2025; 29:183-193. [PMID: 39820940 DOI: 10.1007/s40291-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) represents the most common inherited kidney disorder leading to kidney failure in a significant percentage of patients over time. Although previously considered as an adult disease, robust evidence demonstrated that clinical manifestations might occur during childhood and adolescence. Therefore, early identification and treatment of the disease are of cardinal importance for pediatricians to ensure the best long-term outcomes. To date, licensed treatment options are limited but promising potential therapeutic targets are emerging. Among these, an intriguing pathophysiological role for microRNAs as small molecules with a critical role in regulating gene expression has been considered possible in ADPKD. Indeed, numerous circulating microRNAs have been found to be dysregulated in ADPKD, suggesting their potential role as biomarkers and therapeutic targets. Based on this background, further detailed insights into the mechanisms of miRNAs contributing to ADPKD development might pave the way for their effective application as a targeted treatment in young patients with ADPKD. We aimed to summarize the most recent evidence in this fascinating research area, providing a comprehensive overview of the current landscape of specific microRNAs in ADPKD as a potential innovative therapeutic strategy for these young patients.
Collapse
Affiliation(s)
- Caterina Vitulano
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Gianmario Forcina
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Simone Colosimo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Vittoria Frattolillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Annalisa Valentina Villani
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy.
| |
Collapse
|
4
|
Aleshcheva G, Salih S, Baumeier C, Escher F, Bock CT, Schultheiss HP. Discovery of miRNAs unique to actively transcribed erythroparvovirus infection in heart failure patients. ESC Heart Fail 2025. [PMID: 39970057 DOI: 10.1002/ehf2.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 02/21/2025] Open
Abstract
AIMS miRNAs, small non-coding RNAs, play key roles in gene regulation, cell differentiation and tissue development. They influence viral infection outcomes by directly interacting with viral genomes or modifying the host microenvironment. This study demonstrates miRNAs' ability to selectively suppress transcriptionally active erythroparvovirus, highlighting their potential in antiviral therapies. METHODS AND RESULTS Seventy-five endomyocardial biopsy (EMB) specimens from patients with unexplained heart failure were analysed. The samples included 19 with dilated cardiomyopathy and inflammation (DCMi), 12 with dilated cardiomyopathy (DCM), 25 with inflammation and active erythroparvovirus infection, 13 with active erythroparvovirus infection only and 6 from undiagnosed patients as controls. miRNA expression was measured using TaqMan assays. miR-98, miR-222, miR-106b and miR-197 were significantly upregulated in patients with transcriptionally active erythroparvovirus infection, independent of inflammation (P < 0.005). These miRNAs differentiated these patients from all other groups with over 90% specificity. CONCLUSIONS These specific miRNAs offer a novel diagnostic tool for active erythroparvovirus infections and hold promise as therapeutic targets, providing safer alternatives to traditional antiviral treatments.
Collapse
Affiliation(s)
- Ganna Aleshcheva
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany
| | - Sara Salih
- BHT - Berliner Hochschule für Technik, Berlin, Germany
| | | | - Felicitas Escher
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany
- DHZC (German Heart Centre of Charité), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - C Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
5
|
Albanese GM, Visioli G, Alisi L, Armentano M, Giovannetti F, Lucchino L, Marenco M, Pontecorvi P, Gharbiya M. Retinopathy of Prematurity and MicroRNAs. Biomedicines 2025; 13:400. [PMID: 40002813 PMCID: PMC11852721 DOI: 10.3390/biomedicines13020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Retinopathy of Prematurity (ROP), a leading cause of blindness in preterm infants, arises from dysregulated angiogenesis and inflammation. Without timely intervention, ROP can progress to severe outcomes, including dense fibrovascular plaques and retinal detachment. MicroRNAs (miRNAs) regulate key pathways such as hypoxia response, VEGF signaling, and vascular remodeling. Studies have identified miRNAs (e.g., miR-210, miR-146a, and miR-21) as potential biomarkers and therapeutic targets. Preclinical evidence supports miRNA-based therapies (e.g., miR-18a-5p and miR-181a), targeting HIF-1α and VEGFA to mitigate neovascularization, with nanoparticle delivery systems enhancing stability and specificity. These strategies, combined with anti-VEGF agents, show significant potential for improving ROP management. While promising, miRNA therapies require validation in clinical trials to ensure safety and efficacy. This review discusses the role of miRNAs in ROP, highlighting their relevance as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Giuseppe Maria Albanese
- Department of Sense Organs, Sapienza—University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.A.); (M.G.)
| | - Giacomo Visioli
- Department of Sense Organs, Sapienza—University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.A.); (M.G.)
| | - Ludovico Alisi
- Department of Sense Organs, Sapienza—University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.A.); (M.G.)
| | - Marta Armentano
- Department of Sense Organs, Sapienza—University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.A.); (M.G.)
| | - Francesca Giovannetti
- Department of Sense Organs, Sapienza—University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.A.); (M.G.)
| | - Luca Lucchino
- Department of Sense Organs, Sapienza—University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.A.); (M.G.)
| | - Marco Marenco
- Department of Sense Organs, Sapienza—University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.A.); (M.G.)
- Policlinico Umberto I University Hospital, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza—University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Magda Gharbiya
- Department of Sense Organs, Sapienza—University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.A.); (M.G.)
- Policlinico Umberto I University Hospital, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
6
|
Yoon J, Liu Z, Alaba M, Bruggeman LA, Janmey PA, Arana CA, Ayenuyo O, Medeiros I, Eddy S, Kretzler M, Henderson JM, Nair V, Naik AS, Chang AN, Miller RT. Glomerular Elasticity and Gene Expression Patterns Define Two Phases of Alport Nephropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582201. [PMID: 38948788 PMCID: PMC11212921 DOI: 10.1101/2024.02.26.582201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objectives To understand the early stages if Alport nephropathy, we characterize the structural, functional, and biophysical properties of glomerular capillaries and podocytes in Col4α3 -/- mice, analyze kidney cortex transcriptional profiles at three time points, and investigate the effects of the ER stress mitigation by TUDCA on these parameters. We use human FSGS associated genes to identify molecular pathways rescued by TUDCA. Findings We define a disease progression timeline in Col4α3 -/- mice. Podocyte injury is evident by 3 months, with glomeruli reaching maximum deformability at 4 months, associated with 40% podocytes loss, followed by progressive capillary stiffening, increasing proteinuria, reduced renal function, inflammatory infiltrates, and fibrosis from months 4 to 7. RNA sequencing at 2, 4, and 7 months reveals increased cytokine and chemokine signaling, matrix and cell injury, and activation of the TNF pathway genes by 7 months, similar to NEPTUNE FSGS cohorts. These features are suppressed by TUDCA. Conclusions We define two phases of Col4α3 -/- nephropathy. The first is characterized by podocytopathy, increased glomerular capillary deformability and accelerated podocyte loss, and the second by increased capillary wall stiffening and renal inflammatory and profibrotic pathway activation. Disease suppression by TUDCA treatment identifies potential therapeutic targets for treating Alport and related nephropathies.
Collapse
|
7
|
Delrue C, Eisenga MF, Delanghe JR, Speeckaert MM. Personalized Antifibrotic Therapy in CKD Progression. J Pers Med 2024; 14:1141. [PMID: 39728054 DOI: 10.3390/jpm14121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a chronic disorder characterized by kidney fibrosis and extracellular matrix accumulation that can lead to end-stage kidney disease. Epithelial-to-mesenchymal transition, inflammatory cytokines, the TGF-β pathway, Wnt/β-catenin signaling, the Notch pathway, and the NF-κB pathway all play crucial roles in the progression of fibrosis. Current medications, such as renin-angiotensin-aldosterone system inhibitors, try to delay disease development but do not stop or reverse fibrosis. This review emphasizes the growing need for tailored antifibrotic medications for CKD treatment. Precision medicine, which combines proteomic, metabolomic, and genetic data, provides a practical way to personalize treatment regimens. Proteomic signatures, such as CKD273, and genetic markers, such as APOL1 and COL4A5, help in patient stratification and focused therapy development. Two recently developed antifibrotic medications, nintedanib and pirfenidone, have been proven to diminish fibrosis in preclinical animals. Additionally, research is being conducted on the efficacy of investigational drugs targeting CTGF and galectin-3 in the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
8
|
Khare V, Cherqui S. Targeted gene therapy for rare genetic kidney diseases. Kidney Int 2024; 106:1051-1061. [PMID: 39222842 DOI: 10.1016/j.kint.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Chronic kidney disease is one of the leading causes of mortality worldwide because of kidney failure and the associated challenges of its treatment including dialysis and kidney transplantation. About one-third of chronic kidney disease cases are linked to inherited monogenic factors, making them suitable for potential gene therapy interventions. However, the intricate anatomical structure of the kidney poses a challenge, limiting the effectiveness of targeted gene delivery to the renal system. In this review, we explore the progress made in the field of targeted gene therapy approaches and their implications for rare genetic kidney disorders, examining preclinical studies and prospects for clinical application. In vivo gene therapy is most commonly used for kidney-targeted gene delivery and involves administering viral and nonviral vectors through various routes such as systemic, renal vein, and renal arterial injections. Small nucleic acids have also been used in preclinical and clinical studies for treating certain kidney disorders. Unexpectedly, hematopoietic stem and progenitor cells have been used as an ex vivo gene therapy vehicle for kidney gene delivery, highlighting their ability to differentiate into macrophages within the kidney, forming tunneling nanotubes that can deliver genetic material and organelles to adjacent kidney cells, even across the basement membrane to target the proximal tubular cells. As gene therapy technologies continue to advance and our understanding of kidney biology deepens, there is hope for patients with genetic kidney disorders to eventually avoid kidney transplantation.
Collapse
Affiliation(s)
- Veenita Khare
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
9
|
Jones BA, Gisch DL, Myakala K, Sadiq A, Cheng YH, Taranenko E, Panov J, Korolowicz K, Melo Ferreira R, Yang X, Santo BA, Allen KC, Yoshida T, Wang XX, Rosenberg AZ, Jain S, Eadon MT, Levi M. NAD + activates renal metabolism and protects from chronic kidney disease in a model of Alport syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.580911. [PMID: 38464264 PMCID: PMC10925224 DOI: 10.1101/2024.02.26.580911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD + ) is a small molecule that participates in hundreds of metabolism-related reactions. NAD + levels are decreased in CKD, and NAD + supplementation is protective. However, both the mechanism of how NAD + supplementation protects from CKD, as well as the cell types involved, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD + precursor, stimulates renal peroxisome proliferator-activated receptor alpha signaling and restores FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing shows that renal metabolic pathways are impaired in Alport mice and activated by NR in both sexes. These transcriptional changes are confirmed by orthogonal imaging techniques and biochemical assays. Single nuclei RNA-sequencing and spatial transcriptomics, both the first of their kind from Alport mice, show that NAD + supplementation restores FAO in proximal tubule cells. Finally, we also report, for the first time, sex differences at the transcriptional level in this Alport model. In summary, we identify a nephroprotective mechanism of NAD + supplementation in CKD, and we demonstrate that the proximal tubule cells substantially contribute to this benefit.
Collapse
|
10
|
Yuan F, Lerman LO. Targeted therapeutic strategies for the kidney. Expert Opin Ther Targets 2024; 28:979-989. [PMID: 39491501 PMCID: PMC11617265 DOI: 10.1080/14728222.2024.2421756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Kidney diseases impose a significant burden with high incidence and mortality rates. Current treatment options for kidney diseases are limited, necessitating urgent development of novel and effective therapeutic strategies to delay or reverse disease progression. Targeted therapies for the kidney hold promise in significantly enhancing treatment outcomes, offering hope to patients afflicted with renal disorders. AREAS COVERED This review summarized advances in kidney-targeted therapies including genes, peptides and proteins, cell-based, nanoparticles, and localized delivery routes. We also explored the potential clinical applications, prospects, and challenges of targeted therapies for renal disorders. EXPERT OPINION Advances in targeted therapies for renal conditions have enhanced therapeutic outcomes. Clinical application of kidney-targeted therapies is currently limited by renal structure and the scarcity of robust biomarkers. Bridging the gap from basic and pre-clinical research targeting the kidney to achieving clinical translation remains a formidable challenge.
Collapse
Affiliation(s)
- Fei Yuan
- Division of Nephrology and Hypertension, Mayo Clinic; Rochester, MN, USA
- Department of Urology, National Children’s Medical Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic; Rochester, MN, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Brillante S, Volpe M, Indrieri A. Advances in MicroRNA Therapeutics: From Preclinical to Clinical Studies. Hum Gene Ther 2024; 35:628-648. [PMID: 39150011 DOI: 10.1089/hum.2024.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of gene expression involved in various pathophysiological processes. Their ability to modulate multiple pathways simultaneously and their involvement in numerous diseases make miRNAs attractive tools and targets in therapeutic development. Significant efforts have been made to advance miRNA research in the preclinical stage, attracting considerable investment from biopharmaceutical companies. Consequently, an increasing number of miRNA-based therapies have entered clinical trials for both diagnostic and therapeutic applications across a wide range of diseases. While individual miRNAs can regulate a broad array of mRNA targets, this also complicates the management of adverse effects seen in clinical trials. Several candidates have been discontinued due to toxicity concerns, underscoring the need for comprehensive risk assessments of miRNA therapeutics. Despite no miRNA-based strategies have yet received approval from regulatory agencies, prominent progress in the miRNA modulation approaches and in the nano-delivery systems have been made in the last decade, leading to the development of novel safe and well-tolerated miRNA drug candidates. In this review, we present recent advances in the development of miRNA therapeutics currently in preclinical or clinical stages for treating both rare genetic disorders and multifactorial common conditions. We also address the challenges related to the safety and targeted delivery of miRNA therapies, as well as the identification of the most effective therapeutic candidates in preclinical and clinical trials.
Collapse
Affiliation(s)
- Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Mariagrazia Volpe
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| |
Collapse
|
12
|
Gale DP, Gross O, Wang F, Esteban de la Rosa RJ, Hall M, Sayer JA, Appel G, Hariri A, Liu S, Maski M, Shen Y, Zhang Q, Iqbal S, Kowthalam MU, Lin J, Ding J. A Randomized Controlled Clinical Trial Testing Effects of Lademirsen on Kidney Function Decline in Adults with Alport Syndrome. Clin J Am Soc Nephrol 2024; 19:995-1004. [PMID: 38829703 PMCID: PMC11321738 DOI: 10.2215/cjn.0000000000000458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Key Points Lademirsen, an anti–microRNA-21 therapy, was generally well-tolerated in adults with Alport syndrome at risk of rapid disease progression. There were no significant differences between lademirsen-treated and placebo-treated participants in eGFR at any timepoint. The proportions of participants with prespecified reductions in eGFR at weeks 24 and 48 were not significantly different for lademirsen versus placebo. Background Preclinical models of disease have suggested that targeting microRNA-21 (miRNA-21) may slow the decline in kidney function in individuals with Alport syndrome (AS). The objective of this study was to investigate the effects of the anti–miRNA-21 oligonucleotide, lademirsen, on rate of eGFR decline in adults with AS at risk of rapid disease progression. Methods This study was a phase 2 trial of lademirsen, with a randomized, double-blind, placebo-controlled period followed by an open-label period. Adults with AS, eGFR >35 to <90 ml/min per 1.73 m2, and evidence of rapidly progressive kidney dysfunction were randomized 2:1 to lademirsen 110 mg subcutaneously once weekly or placebo for 48 weeks. After a planned interim analysis (after 24 of 43 randomized participants completed the week 48 study visit or discontinued before week 48), the trial was terminated for futility. Results Forty-three adults with AS (26 men, 17 women) participated (mean age 34 years), and 28 (lademirsen: n =19; placebo: n =9) completed 48 weeks of double-blind treatment. All participants in both groups developed treatment-emergent adverse events, mainly respiratory tract infections, headache, dizziness, metabolic/electrolyte disturbances, and anemia. Treatment was discontinued in three lademirsen-treated participants in the double-blind period and one participant in the open-label period, owing to treatment-emergent adverse events. The least squares mean eGFR slope (95% confidence interval) over 48 weeks in the lademirsen and placebo groups was −5 (−8.7 to −1.1) and −5 (−10.2 to 0.8) ml/min per 1.73 m2 per year, respectively. No significant differences between groups were identified in eGFR at any timepoint or in proportion of participants with prespecified reductions in eGFR at week 24 or 48. Conclusions While anti–miRNA-21 therapy with lademirsen was generally well-tolerated with an acceptable safety profile, no meaningful improvement in rate of kidney function decline in adults with AS at risk of rapidly progressive disease was observed. Clinical Trial registration number: NCT02855268 .
Collapse
Affiliation(s)
- Daniel P. Gale
- Department of Renal Medicine, University College London, London, United Kingdom
- Royal Free Hospital London, London, United Kingdom
- Great Ormond Street Hospital, London, United Kingdom
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Göttingen, Göttingen, Germany
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | - Matthew Hall
- Nottingham University Hospitals, Nottingham, United Kingdom
| | - John A. Sayer
- Translational and Clinical Research Institute, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Gerald Appel
- Columbia University Medical Center, New York, New York
| | - Ali Hariri
- Eloxx Pharmaceuticals, Watertown, Massachusetts
| | | | | | | | - Qi Zhang
- Sanofi, Cambridge, Massachusetts
| | | | | | | | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Jackson JW, Frederick C Streich, Pal A, Coricor G, Boston C, Brueckner CT, Canonico K, Chapron C, Cote S, Dagbay KB, Danehy FT, Kavosi M, Kumar S, Lin S, Littlefield C, Looby K, Manohar R, Martin CJ, Wood M, Zawadzka A, Wawersik S, Nicholls SB, Datta A, Buckler A, Schürpf T, Carven GJ, Qatanani M, Fogel AI. An antibody that inhibits TGF-β1 release from latent extracellular matrix complexes attenuates the progression of renal fibrosis. Sci Signal 2024; 17:eadn6052. [PMID: 38980922 DOI: 10.1126/scisignal.adn6052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Inhibitors of the transforming growth factor-β (TGF-β) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-β homologs has safety liabilities. TGF-β1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-β-binding proteins (LTBPs) present TGF-β1 in the extracellular matrix, and TGF-β1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-β1 presented by LTBPs but did not bind to TGF-β1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-β1 that is not accessible on GARP- or LRRC33-presented TGF-β1, explaining the antibody's selectivity for LTBP-complexed TGF-β1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-β1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-β inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-β1 as an approach for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Ajai Pal
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - George Coricor
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Chris Boston
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | - Shaun Cote
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Kevin B Dagbay
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Mania Kavosi
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Sandeep Kumar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Susan Lin
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Kailyn Looby
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Rohan Manohar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Marcie Wood
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
- ToxStrategies LLC, 23501 Cinco Ranch Boulevard, Katy, TX 77494, USA
| | - Agatha Zawadzka
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Stefan Wawersik
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Abhishek Datta
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Alan Buckler
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Thomas Schürpf
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Adam I Fogel
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Huang HYR, Badar S, Said M, Shah S, Bharadwaj HR, Ramamoorthy K, Alrawashdeh MM, Haroon F, Basit J, Saeed S, Aji N, Tse G, Roy P, Bardhan M. The advent of RNA-based therapeutics for metabolic syndrome and associated conditions: a comprehensive review of the literature. Mol Biol Rep 2024; 51:493. [PMID: 38580818 DOI: 10.1007/s11033-024-09457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Badar
- Department of Biomedical Science, The University of the West Scotland, Paisley, Scotland
| | - Mohammad Said
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siddiqah Shah
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Krishna Ramamoorthy
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, Brunswick, NJ, USA
| | | | | | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Narjiss Aji
- Faculty of Medicine and Health, McGill University, Montreal, QC, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Priyanka Roy
- Directorate of Factories, Department of Labour, Government of West Bengal, Kolkata, India
| | - Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
15
|
Reiss AB, Jacob B, Zubair A, Srivastava A, Johnson M, De Leon J. Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets. J Clin Med 2024; 13:1881. [PMID: 38610646 PMCID: PMC11012936 DOI: 10.3390/jcm13071881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-β is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-β signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (B.J.); (A.Z.); (A.S.); (M.J.); (J.D.L.)
| | | | | | | | | | | |
Collapse
|
16
|
Akkaya-Ulum YZ, Sen B, Akbaba TH, Balci-Peynircioglu B. InflammamiRs in focus: Delivery strategies and therapeutic approaches. FASEB J 2024; 38:e23528. [PMID: 38441434 DOI: 10.1096/fj.202302028r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
microRNAs (miRNAs) are small non-protein-coding RNAs which are essential regulators of host genome expression at the post-transcriptional level. There is evidence of dysregulated miRNA expression patterns in a wide variety of diseases, such as autoimmune and inflammatory conditions. These miRNAs have been termed "inflammamiRs." When working with miRNAs, the method followed, the approach to treat or diagnosis, and the selected biological material are very crucial. Demonstration of the role of miRNAs in particular disease phenotypes facilitates their evaluation as potential and effective therapeutic tools. A growing number of reports suggest the significant utility of miRNAs and other small RNA drugs in clinical medicine. Most miRNAs seem promising therapeutic options, but some features associated with miRNA therapy like off-target effect, effective dosage, or differential delivery methods, mainly caused by the short target's sequence, make miRNA therapies challenging. In this review, we aim to discuss some of the inflammamiRs in diseases associated with inflammatory pathways and the challenge of identifying the most potent therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics. We also discuss the status of inflammamiRs in clinical trials.
Collapse
Affiliation(s)
- Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Basak Sen
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
17
|
Madison J, Wilhelm K, Meehan DT, Gratton MA, Vosik D, Samuelson G, Ott M, Fascianella J, Nelson N, Cosgrove D. Ramipril therapy in integrin α1-null, autosomal recessive Alport mice triples lifespan: mechanistic clues from RNA-seq analysis. J Pathol 2024; 262:296-309. [PMID: 38129319 PMCID: PMC10872630 DOI: 10.1002/path.6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023]
Abstract
The standard of care for patients with Alport syndrome (AS) is angiotensin-converting enzyme (ACE) inhibitors. In autosomal recessive Alport (ARAS) mice, ACE inhibitors double lifespan. We previously showed that deletion of Itga1 in Alport mice [double-knockout (DKO) mice] increased lifespan by 50%. This effect seemed dependent on the prevention of laminin 211-mediated podocyte injury. Here, we treated DKO mice with vehicle or ramipril starting at 4 weeks of age. Proteinuria and glomerular filtration rates were measured at 5-week intervals. Glomeruli were analyzed for laminin 211 deposition in the glomerular basement membrane (GBM) and GBM ultrastructure was analyzed using transmission electron microscopy (TEM). RNA sequencing (RNA-seq) was performed on isolated glomeruli at all time points and the results were compared with cultured podocytes overlaid (or not) with recombinant laminin 211. Glomerular filtration rate declined in ramipril-treated DKO mice between 30 and 35 weeks. Proteinuria followed these same patterns with normalization of foot process architecture in ramipril-treated DKO mice. RNA-seq revealed a decline in the expression of Foxc2, nephrin (Nphs1), and podocin (Nphs2) mRNAs, which was delayed in the ramipril-treated DKO mice. GBM accumulation of laminin 211 was delayed in ramipril-treated DKO mice, likely due to a role for α1β1 integrin in CDC42 activation in Alport mesangial cells, which is required for mesangial filopodial invasion of the subendothelial spaces of the glomerular capillary loops. Ramipril synergized with Itga1 knockout, tripling lifespan compared with untreated ARAS mice. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, USA
| | - Kevin Wilhelm
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | - Denise Vosik
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Megan Ott
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Noa Nelson
- Boys Town National Research Hospital, Omaha, NE, USA
| | | |
Collapse
|
18
|
Bravo-Vázquez LA, Paul S, Colín-Jurado MG, Márquez-Gallardo LD, Castañón-Cortés LG, Banerjee A, Pathak S, Duttaroy AK. Exploring the Therapeutic Significance of microRNAs and lncRNAs in Kidney Diseases. Genes (Basel) 2024; 15:123. [PMID: 38275604 PMCID: PMC10815231 DOI: 10.3390/genes15010123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two crucial classes of transcripts that belong to the major group of non-coding RNAs (ncRNAs). These RNA molecules have significant influence over diverse molecular processes due to their crucial role as regulators of gene expression. However, the dysregulated expression of these ncRNAs constitutes a fundamental factor in the etiology and progression of a wide variety of multifaceted human diseases, including kidney diseases. In this context, over the past years, compelling evidence has shown that miRNAs and lncRNAs could be prospective targets for the development of next-generation drugs against kidney diseases as they participate in a number of disease-associated processes, such as podocyte and nephron death, renal fibrosis, inflammation, transition from acute kidney injury to chronic kidney disease, renal vascular changes, sepsis, pyroptosis, and apoptosis. Hence, in this current review, we critically analyze the recent findings concerning the therapeutic inferences of miRNAs and lncRNAs in the pathophysiological context of kidney diseases. Additionally, with the aim of driving advances in the formulation of ncRNA-based drugs tailored for the management of kidney diseases, we discuss some of the key challenges and future prospects that should be addressed in forthcoming investigations.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Miriam Guadalupe Colín-Jurado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Luis David Márquez-Gallardo
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Luis Germán Castañón-Cortés
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai 603103, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai 603103, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| |
Collapse
|
19
|
Rajabi S, Saberi S, Najafipour H, Askaripour M, Rajizadeh MA, Shahraki S, Kazeminia S. Interaction of estradiol and renin-angiotensin system with microRNAs-21 and -29 in renal fibrosis: focus on TGF-β/smad signaling pathway. Mol Biol Rep 2024; 51:137. [PMID: 38236310 DOI: 10.1007/s11033-023-09127-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Kidney fibrosis is one of the complications of chronic kidney disease (CKD (and contributes to end-stage renal disease which requires dialysis and kidney transplantation. Several signaling pathways such as renin-angiotensin system (RAS), microRNAs (miRNAs) and transforming growth factor-β1 (TGF-β1)/Smad have a prominent role in pathophysiology and progression of renal fibrosis. Activation of classical RAS, the elevation of angiotensin II (Ang II) production and overexpression of AT1R, develop renal fibrosis via TGF-β/Smad pathway. While the non-classical RAS arm, Ang 1-7/AT2R, MasR reveals an anti-fibrotic effect via antagonizing Ang II. This review focused on studies illustrating the interaction of RAS with sexual female hormone estradiol and miRNAs in the progression of renal fibrosis with more emphasis on the TGF-β signaling pathway. MiRNAs, especially miRNA-21 and miRNA-29 showed regulatory effects in renal fibrosis. Also, 17β-estradiol (E2) is a renoprotective hormone that improved renal fibrosis. Beneficial effects of ACE inhibitors and ARBs are reported in the prevention of renal fibrosis in patients. Future studies are also merited to delineate the new therapy strategies such as miRNAs targeting, combination therapy of E2 or HRT, ACEis, and ARBs with miRNAs mimics and antagomirs in CKD to provide a new therapeutic approach for kidney patients.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sarieh Shahraki
- Department of Physiology and Pharmacology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Jones BA, Myakala K, Guha M, Davidson S, Adapa S, Lopez Santiago I, Schaffer I, Yue Y, Allegood JC, Cowart LA, Wang XX, Rosenberg AZ, Levi M. Farnesoid X receptor prevents neutrophil extracellular traps via reduced sphingosine-1-phosphate in chronic kidney disease. Am J Physiol Renal Physiol 2023; 325:F792-F810. [PMID: 37823198 PMCID: PMC10894665 DOI: 10.1152/ajprenal.00292.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Farnesoid X receptor (FXR) activation reduces renal inflammation, but the underlying mechanisms remain elusive. Neutrophil extracellular traps (NETs) are webs of DNA formed when neutrophils undergo specialized programmed cell death (NETosis). The signaling lipid sphingosine-1-phosphate (S1P) stimulates NETosis via its receptor on neutrophils. Here, we identify FXR as a negative regulator of NETosis via repressing S1P signaling. We determined the effects of the FXR agonist obeticholic acid (OCA) in mouse models of adenosine phosphoribosyltransferase (APRT) deficiency and Alport syndrome, both genetic disorders that cause chronic kidney disease. Renal FXR activity is greatly reduced in both models, and FXR agonism reduces disease severity. Renal NETosis and sphingosine kinase 1 (Sphk1) expression are increased in diseased mice, and they are reduced by OCA in both models. Genetic deletion of FXR increases Sphk1 expression, and Sphk1 expression correlates with NETosis. Importantly, kidney S1P levels in Alport mice are two-fold higher than controls, and FXR agonism restores them back to baseline. Short-term inhibition of sphingosine synthesis in Alport mice with severe kidney disease reverses NETosis, establishing a causal relationship between S1P signaling and renal NETosis. Finally, extensive NETosis is present in human Alport kidney biopsies (six male, nine female), and NETosis severity correlates with clinical markers of kidney disease. This suggests the potential clinical relevance of the newly identified FXR-S1P-NETosis pathway. In summary, FXR agonism represses kidney Sphk1 expression. This inhibits renal S1P signaling, thereby reducing neutrophilic inflammation and NETosis.NEW & NOTEWORTHY Many preclinical studies have shown that the farnesoid X receptor (FXR) reduces renal inflammation, but the mechanism is poorly understood. This report identifies FXR as a novel regulator of neutrophilic inflammation and NETosis via the inhibition of sphingosine-1-phosphate signaling. Additionally, NETosis severity in human Alport kidney biopsies correlates with clinical markers of kidney disease. A better understanding of this signaling axis may lead to novel treatments that prevent renal inflammation and chronic kidney disease.
Collapse
Affiliation(s)
- Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, United States
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Mahilan Guha
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Shania Davidson
- Department of Biology, Howard University, Washington, District of Columbia, United States
| | - Sharmila Adapa
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Isabel Lopez Santiago
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Isabel Schaffer
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Yang Yue
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
21
|
Pearce H, Mabillard H. Finerenone and other future therapeutic options for Alport syndrome. JOURNAL OF RARE DISEASES (BERLIN, GERMANY) 2023; 2:18. [PMID: 39429698 PMCID: PMC11489166 DOI: 10.1007/s44162-023-00022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2024]
Abstract
Alport syndrome is a rare genetic disease that results in disordered basement membrane type IV collagen resulting in haematuria, proteinuria and often development of renal fibrosis leading to progressive kidney disease. The therapeutic blockage of the renin-angiotensin-aldosterone system, which slows the progression to kidney failure, is supported by strong evidence. Recent clinical trials using sodium-glucose co-transporter-2 (SGLT2) inhibitors and mineralocorticoid receptor antagonists (MRA) in patients with chronic kidney disease have changed the therapeutic landscape. Patients with Alport syndrome and progressive kidney disease may benefit from treatment with MRAs because research has shown that these drugs are nephroprotective through a variety of mechanisms, including by preventing fibrosis. Ongoing clinical trials show great promise in order to help establish the long-term safety and efficacy of Finerenone, a MRA. This review discusses the evidence for the use of MRAs as a potential treatment in Alport syndrome that may slow the progression of chronic kidney disease and prevent patients reaching kidney failure.
Collapse
Affiliation(s)
- Helen Pearce
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN UK
| | - Holly Mabillard
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, NE4 5PL UK
| |
Collapse
|
22
|
Palmer TC, Hunter RW. Using RNA-based therapies to target the kidney in cardiovascular disease. Front Cardiovasc Med 2023; 10:1250073. [PMID: 37868774 PMCID: PMC10587590 DOI: 10.3389/fcvm.2023.1250073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
RNA-based therapies are currently used for immunisation against infections and to treat metabolic diseases. They can modulate gene expression in immune cells and hepatocytes, but their use in other cell types has been limited by an inability to selectively target specific tissues. Potential solutions to this targeting problem involve packaging therapeutic RNA molecules into delivery vehicles that are preferentially delivered to cells of interest. In this review, we consider why the kidney is a desirable target for RNA-based therapies in cardiovascular disease and discuss how such therapy could be delivered. Because the kidney plays a central role in maintaining cardiovascular homeostasis, many extant drugs used for preventing cardiovascular disease act predominantly on renal tubular cells. Moreover, kidney disease is a major independent risk factor for cardiovascular disease and a global health problem. Chronic kidney disease is projected to become the fifth leading cause of death by 2040, with around half of affected individuals dying from cardiovascular disease. The most promising strategies for delivering therapeutic RNA selectively to kidney cells make use of synthetic polymers and engineered extracellular vesicles to deliver an RNA cargo. Future research should focus on establishing the safety of these novel delivery platforms in humans, on developing palatable routes of administration and on prioritising the gene targets that are likely to have the biggest impact in cardiovascular disease.
Collapse
Affiliation(s)
- Trecia C. Palmer
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert W. Hunter
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary ofEdinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Dhas Y, Arshad N, Biswas N, Jones LD, Ashili S. MicroRNA-21 Silencing in Diabetic Nephropathy: Insights on Therapeutic Strategies. Biomedicines 2023; 11:2583. [PMID: 37761024 PMCID: PMC10527294 DOI: 10.3390/biomedicines11092583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
In diabetes, possibly the most significant site of microvascular damage is the kidney. Due to diabetes and/or other co-morbidities, such as hypertension and age-related nephron loss, a significant number of people with diabetes suffer from kidney diseases. Improved diabetic care can reduce the prevalence of diabetic nephropathy (DN); however, innovative treatment approaches are still required. MicroRNA-21 (miR-21) is one of the most studied multipotent microRNAs (miRNAs), and it has been linked to renal fibrosis and exhibits significantly altered expression in DN. Targeting miR-21 offers an advantage in DN. Currently, miR-21 is being pharmacologically silenced through various methods, all of which are in early development. In this review, we summarize the role of miR-21 in the molecular pathogenesis of DN and several therapeutic strategies to use miR-21 as a therapeutic target in DN. The existing experimental interventions offer a way to rectify the lower miRNA levels as well as to reduce the higher levels. Synthetic miRNAs also referred to as miR-mimics, can compensate for abnormally low miRNA levels. Furthermore, strategies like oligonucleotides can be used to alter the miRNA levels. It is reasonable to target miR-21 for improved results because it directly contributes to the pathological processes of kidney diseases, including DN.
Collapse
Affiliation(s)
- Yogita Dhas
- Rhenix Lifesciences, Hyderabad 500038, India
| | | | | | | | | |
Collapse
|
24
|
Cosgrove D, Gratton MA, Madison J, Vosik D, Samuelson G, Meehan D, Delimont D, Phillips G, Smyth B, Pramparo T, Jarocki D, Nguyen M, Komers R, Jenkinson C. Dual inhibition of the endothelin and angiotensin receptor ameliorates renal and inner ear pathologies in Alport mice. J Pathol 2023; 260:353-364. [PMID: 37256677 PMCID: PMC10330771 DOI: 10.1002/path.6087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dominic Cosgrove
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michael Anne Gratton
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacob Madison
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Denise Vosik
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Gina Samuelson
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel Meehan
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Duane Delimont
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Grady Phillips
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brendan Smyth
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Diana Jarocki
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mai Nguyen
- Travere Therapeutics, San Diego, CA, USA
| | | | | |
Collapse
|
25
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
26
|
Rheault MN. Targeting Fibrosis Pathways in Alport Syndrome-Is it Too Late? KIDNEY360 2023; 4:580-581. [PMID: 37229728 PMCID: PMC10371376 DOI: 10.34067/kid.0000000000000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Michelle N Rheault
- Division of Nephrology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
27
|
Bell-Hensley A, Das S, McAlinden A. The miR-181 family: Wide-ranging pathophysiological effects on cell fate and function. J Cell Physiol 2023; 238:698-713. [PMID: 36780342 PMCID: PMC10121854 DOI: 10.1002/jcp.30969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple mRNAs within a given cell type. As such, a number of different pathways and networks may be modulated as a result. In fact, miRNAs are known to regulate many cellular processes including differentiation, proliferation, inflammation, and metabolism. This review focuses on the miR-181 family and provides information from the published literature on the role of miR-181 homologs in regulating a range of activities in different cell types and tissues. Of note, we have not included details on miR-181 expression and function in the context of cancer since this is a broad topic area requiring independent review. Instead, we have focused on describing the function and mechanism of miR-181 family members on differentiation toward a number of cell lineages in various non-neoplastic conditions (e.g., immune/hematopoietic cells, osteoblasts, osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation of miR-181 homologs can have positive effects on disease states such as cardiac abnormalities, pulmonary arterial hypertension, thrombosis, osteoarthritis, and vascular inflammation. In this context, we have used some examples of FDA-approved drugs that modulate miR-181 expression. We conclude by discussing some common mechanisms by which miR-181 homologs appear to regulate a number of different cellular processes and how targeting specific miR-181 family members may lead to attractive therapeutic approaches to treat a number of human disease or repair conditions, including those associated with the aging process.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, Missouri
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Audrey McAlinden
- Department of Orthopaedic Surgery Washington University School of Medicine, St Louis, Missouri
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA
- Shriners Hospital for Children – St Louis, Missouri
| |
Collapse
|
28
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
29
|
Reiterová J, Tesař V. Current and Future Therapeutical Options in Alport Syndrome. Int J Mol Sci 2023; 24:5522. [PMID: 36982595 PMCID: PMC10056269 DOI: 10.3390/ijms24065522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease caused by pathogenic variants in COL4A3 and COL4A4 genes with autosomal recessive or autosomal dominant transmission or in the COL4A5 gene with X-linked inheritance. Digenic inheritance was also described. Clinically it is associated with microscopic hematuria, followed by proteinuria and chronic renal insufficiency with end-stage renal disease in young adults. Nowadays, there is no curative treatment available. The inhibitors of RAS (renin-angiotensin system) since childhood slow the progression of the disease. Sodium-glucose cotransporter-2 inhibitors seem to be promising drugs from DAPA-CKD (dapagliflozin-chronic kidney disease) study, but only a limited number of patients with Alport syndrome was included. Endothelin type A receptor and angiotensin II type 1 receptor combined inhibitors, and lipid-lowering agents are used in ongoing studies in patients with AS and focal segmental glomerulosclerosis (FSGS). Hydroxychloroquine in AS is studied in a clinical trial in China. Molecular genetic diagnosis of AS is crucial not only for prognosis prediction but also for future therapeutic options. Different types of mutations will require various types of gene, RNA, or protein therapy to improve the function, the of final protein product.
Collapse
Affiliation(s)
- Jana Reiterová
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
30
|
NUP133 Controls Nuclear Pore Assembly, Transcriptome Composition, and Cytoskeleton Regulation in Podocytes. Cells 2022; 11:cells11081259. [PMID: 35455939 PMCID: PMC9025798 DOI: 10.3390/cells11081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) frequently leads to end-stage renal disease, ultimately requiring kidney replacement therapies. SRNS is often caused by hereditary monogenic mutations, specifically affecting specialized epithelial cells (podocytes) of the glomerular filtration barrier. Mutations in several components of the nuclear pore complex, including NUP133 and NUP107, have been recently identified to cause hereditary SRNS. However, underlying pathomechanisms, eliciting podocyte-specific manifestations of these nucleoporopathies, remained largely elusive. Here, we generated an in vitro model of NUP133-linked nucleoporopathies using CRISPR/Cas9-mediated genome editing in human podocytes. Transcriptome, nuclear pore assembly, and cytoskeleton regulation of NUP133 loss-of-function, mutant, and wild-type podocytes were analyzed. Loss of NUP133 translated into a disruption of the nuclear pore, alterations of the podocyte-specific transcriptome, and impaired cellular protrusion generation. Surprisingly, comparative analysis of the described SRNS-related NUP133 mutations revealed only mild defects. Am impaired protein interaction in the Y-complex and decrease of NUP133 protein levels might be the primary and unifying consequence of mutant variants, leading to a partial loss-of-function phenotype and disease manifestation in susceptible cell types, such as podocytes.
Collapse
|