1
|
Zhong XN, Peng JJ, Wang MY, Yang XL, Sun L. Overexpression of NAC transcription factors from Eremopyrum triticeum promoted abiotic stress tolerance. Transgenic Res 2024; 34:3. [PMID: 39738759 DOI: 10.1007/s11248-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
Eremopyrum triticeum is a typical spring ephemeral species, which in China mainly distributed in the desert regions of northern Xinjiang, and play an important role in the desert ecosystems. E. triticeum has several adaptive characteristics such as short growth rhythms, high photosynthetic efficiency, high seed production, drought and salt resistance. However, the molecular regulatory mechanism of E. triticeum in responses to abiotic stress resistance is still unknown. In this study, two NAC-like transcription factor-encoding genes, EtNAC1 and EtNAC2, were isolated from E. triticeum. The predicted EtNAC1 and EtNAC2 proteins possess a typical NAC DNA-binding domain at the N-terminal region. The qRT-PCR analysis showed that EtNAC1 and EtNAC2 were highly expressed in mature roots of E. triticeum, and were significantly up-regulated under drought, high salt and abscisic acid (ABA) stresses. Subcellular localization analysis in onion epidermal cells revealed that EtNAC1 and EtNAC2 were located in the nucleus. Expression of EtNAC1 and EtNAC2 in yeast cells improved the survival rate of yeast under low temperature, H2O2, high drought and salt stresses. Overexpression of EtNAC1 and EtNAC2 in Arabidopsis thaliana conferred enhanced tolerance to drought and salt stresses, increased ABA sensitivity, and transgenic plants showed higher proline (Pro) content, but lower malondialdehyde content, lower chlorophyll leaching, lower water loss rate and stomatal aperture (width/length) than WT plants. In conclusion, EtNAC1 and EtNAC2 play important roles in abiotic stress responses of E. triticeum, which might have significant potential in crop molecular breeding for abiotic stress tolerance.
Collapse
Affiliation(s)
- Xue-Ni Zhong
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Jun-Jie Peng
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Meng-Yao Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Xiu-Li Yang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Li Sun
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
2
|
Xie X, Ren Z, Su H, Abou-Elwafa SF, Shao J, Ku L, Jia L, Tian Z, Wei L. Functional study of ZmHDZ4 in maize (Zea mays) seedlings under drought stress. BMC PLANT BIOLOGY 2024; 24:1209. [PMID: 39701983 DOI: 10.1186/s12870-024-05951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Maize is a major feed and industrial crop and pivotal for ensuring global food security. In light of global warming and climate change, improving maize tolerance to water deficit is crucial. Identification and functional analysis of drought tolerance genes have potential practical importance in understanding the molecular mechanisms of drought stress. RESULTS Here, we identified a maize Homeodomain-Leucine Zipper I, ZmHDZ4, in maize seedlings that is associated with drought tolerance. We demonstrated that ZmHDZ4 has transcriptional activation activity, exclusively localized in the nucleus. Several Cis-acting elements associated with abiotic stress have been identified in the core promoter region of ZmHDZ4. Under drought-stressed conditions, transgenic maize plants overexpressing ZmHDZ4 exhibited significantly higher relative water content and peroxidase (POD) and superoxidase dismutase (SOD) activities compared to wide-type plants, while displaying lower malondialdehyde (MAD) content. The expressions of ZmMFS1-88, ZmGPM573, and ZmPHD9 were significantly repressed in the ZmHDZ4-OE plants under drought-stressed conditions, indicating that ZmMFS1-88, ZmGPM573, and ZmPHD9 were the candidate target genes of ZmHDZ4. CONCLUSIONS ZmHDZ4 is involved in the regulation of drought stress tolerance in maize by participating in osmotic regulation, sugar metabolism pathways, and hormone regulation.
Collapse
Affiliation(s)
- Xiaowen Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhenzhen Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Huihui Su
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | | | - Jing Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lin Jia
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Zhiqiang Tian
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Li Wei
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
3
|
Singh A, Samtani H, Gangwar H, Sharma A, Jaiswal V, Djalovic I, Prasad PVV, Gahlaut V. Comparative analysis of IRE1s in plants: insights into heat stress adaptation in Triticum aestivum. BMC PLANT BIOLOGY 2024; 24:1083. [PMID: 39543477 PMCID: PMC11566738 DOI: 10.1186/s12870-024-05785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The unfolded protein response (UPR) pathway serves as a crucial mechanism enabling plants to perceive, respond to, and shield themselves from adverse environmental conditions. Inositol-requiring enzyme 1 (IRE1) is one of the key players of the UPR, and resides in the endoplasmic reticulum (ER) within the cell. This study provides a comprehensive analysis of 195 IRE1 genes across 90 diverse plant species, with a focus on their identification and characterization. RESULTS To decipher the functions of IRE1 family members, we investigated the evolution and spread of IREs in plants and analysed their structural and localization characteristics. Our detailed cis-element analysis revealed unique IRE1 regulation patterns in different plant species. Furthermore, gene expression analysis revealed tissue-specific and heat stress-responsive expression patterns of TaIRE1s, which were subsequently confirmed via quantitative gene expression analysis. TaIRE1-6A was upregulated in response to dithiothreitol (DTT) treatment as well as heat stress. This finding suggests that IRE1 might play a role in linking the UPR pathway and the heat stress response (HSR). CONCLUSIONS Our findings provide a comprehensive understanding of the evolution and expansion of IRE1 genes in different plant species. These findings provide a foundation for further in-depth research on the functional diversity of IREs in nutritious crops following polyploidization. By linking the UPR with HSR, IRE1 could be a key contributor to wheat's resilience against heat stress. Additionally, this connection offers important insights for future functional studies in other crops. Thus, this knowledge could be used for engineering climate resilience in crops such as wheat.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Biotechnology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Harsha Samtani
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Himanshi Gangwar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Aishwarye Sharma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, 21000, Serbia
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Vijay Gahlaut
- Department of Biotechnology & University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
4
|
Ben Romdhane W, Al-Ashkar I, Ibrahim A, Sallam M, Al-Doss A, Hassairi A. Aeluropus littoralis stress-associated protein promotes water deficit resilience in engineered durum wheat. Heliyon 2024; 10:e30933. [PMID: 38765027 PMCID: PMC11097078 DOI: 10.1016/j.heliyon.2024.e30933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
Global climate change-related water deficit negatively affect the growth, development and yield performance of multiple cereal crops, including durum wheat. Therefore, the improvement of water-deficit stress tolerance in durum wheat varieties in arid and semiarid areas has become imperative for food security. Herein, we evaluated the water deficiency resilience potential of two marker-free transgenic durum wheat lines (AlSAP-lines: K9.3 and K21.3) under well-watered and water-deficit stress conditions at both physiological and agronomic levels. These two lines overexpressed the AlSAP gene, isolated from the halophyte grass Aeluropus littoralis, encoding a stress-associated zinc finger protein containing the A20/AN1 domains. Under well-watered conditions, the wild-type (WT) and both AlSAP-lines displayed comparable performance concerning all the evaluated parameters. Ectopic transgene expression exerted no adverse effects on growth and yield performance of the durum wheat plants. Under water-deficit conditions, no significant differences in the plant height, leaf number, spike length, and spikelet number were observed between AlSAP-lines and WT plants. However, compared to WT, the AlSAP-lines exhibited greater dry matter production, greater flag leaf area, improved net photosynthetic rate, stomatal conductance, and water use efficiency. Notably, the AlSAP-lines displayed 25 % higher grain yield (GY) than the WT plants under water-deficit conditions. The RT-qPCR-based selected stress-related gene (TdDREB1, TdLEA, TdAPX1, and TdBlt101-2) expression analyses indicated stress-related genes enhancement in AlSAP-durum wheat plants under both well-watered and water-deficit conditions, potentially related to the water-deficit resilience. Collectively, our findings support that the ectopic AlSAP expression in durum wheat lines enhances water-deficit resilience ability, thereby potentially compensate for the GY loss in arid and semi-arid regions.
Collapse
Affiliation(s)
- Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Ibrahim Al-Ashkar
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Abdullah Ibrahim
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Mohammed Sallam
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Afif Hassairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Hornai EML, Aycan M, Mitsui T. The Promising B-Type Response Regulator hst1 Gene Provides Multiple High Temperature and Drought Stress Tolerance in Rice. Int J Mol Sci 2024; 25:2385. [PMID: 38397061 PMCID: PMC10889171 DOI: 10.3390/ijms25042385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
High temperatures, drought, and salt stresses severely inhibit plant growth and production due to the effects of climate change. The Arabidopsis ARR1, ARR10, and ARR12 genes were identified as negative salt and drought stress regulators. However, in rice, the tolerance capacity of the hst1 gene, which is orthologous to the ARR1, ARR10, and ARR12 genes, to drought and multiple high temperature and drought stresses remains unknown. At the seedling and reproductive stages, we investigated the drought (DS) high temperature (HT) and multiple high temperature and drought stress (HT+DS) tolerance capacity of the YNU31-2-4 (YNU) genotype, which carries the hst1 gene, and its nearest genomic relative Sister Line (SL), which has a 99% identical genome without the hst1 gene. At the seedling stage, YNU demonstrated greater growth, photosynthesis, antioxidant enzyme activity, and decreased ROS accumulation under multiple HT+DS conditions. The YNU genotype also demonstrated improved yield potential and grain quality due to higher antioxidant enzyme activity and lower ROS generation throughout the reproductive stage under multiple HT+DS settings. Furthermore, for the first time, we discovered that the B-type response regulator hst1 gene controls ROS generation and antioxidant enzyme activities by regulating upstream and downstream genes to overcome yield reduction under multiple high temperatures and drought stress. This insight will help us to better understand the mechanisms of high temperature and drought stress tolerance in rice, as well as the evolution of tolerant crops that can survive increased salinity to provide food security during climate change.
Collapse
Affiliation(s)
- Ermelinda Maria Lopes Hornai
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- National Division of Research and Statistics, Timor-Leste Ministry of Agriculture, Fisheries and Forest, Dili 626, Timor-Leste
| | - Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
6
|
Ma X, Feng L, Tao A, Zenda T, He Y, Zhang D, Duan H, Tao Y. Identification and validation of seed dormancy loci and candidate genes and construction of regulatory networks by WGCNA in maize introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:259. [PMID: 38038768 DOI: 10.1007/s00122-023-04495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
KEY MESSAGE Seventeen PHS-QTLs and candidate genes were obtained, including eleven major loci, three under multiple environments and two with co-localization by the other mapping methods; The functions of three candidate genes were validated using mutants; nine target proteins and five networks were filtered by joint analysis of GWAS and WGCNA. Seed dormancy (SD) and pre-harvest sprouting (PHS) affect yield, as well as grain and hybrid quality in seed production. Therefore, identification of genetic and regulatory pathways underlying PHS and SD is key to gene function analysis, allelic variation mining and genetic improvement. In this study, 78,360 SNPs by SLAF-seq of 230 maize chromosome segment introgression lines (ILs), PHS under five environments were used to conduct GWAS (genome wide association study) (a threshold of 1/n), and seventeen unreported PHS QTLs were obtained, including eleven QTLs with PVE > 10% and three QTLs under multiple environments. Two QTL loci were co-located between the other two genetic mapping methods. Using differential gene expression analyses at two stages of grain development, gene functional analysis of Arabidopsis mutants, and gene functional analysis in the QTL region, seventeen PHS QTL-linked candidate genes were identified, and their five molecular regulatory networks constructed. Based on the Arabidopsis T-DNA mutations, three candidate genes were shown to regulate for SD and PHS. Meanwhile, using RNA-seq of grain development, the weighted correlation network analysis (WGCNA) was performed, deducing five regulatory pathways and target genes that regulate PHS and SD. Based on the conjoint analysis of GWAS and WGCNA, four pathways, nine target proteins and target genes were revealed, most of which regulate cell wall metabolism, cell proliferation and seed dehydration tolerance. This has important theoretical and practical significance for elucidating the genetic basis of maize PHS and SD, as well as mining of genetic resources and genetic improvement of traits.
Collapse
Affiliation(s)
- Xiaolin Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Liqing Feng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Anyan Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yuan He
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Daxiao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Yongsheng Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
7
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
9
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Roychowdhury R, Das SP, Gupta A, Parihar P, Chandrasekhar K, Sarker U, Kumar A, Ramrao DP, Sudhakar C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses. Genes (Basel) 2023; 14:1281. [PMID: 37372461 PMCID: PMC10298225 DOI: 10.3390/genes14061281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The present day's ongoing global warming and climate change adversely affect plants through imposing environmental (abiotic) stresses and disease pressure. The major abiotic factors such as drought, heat, cold, salinity, etc., hamper a plant's innate growth and development, resulting in reduced yield and quality, with the possibility of undesired traits. In the 21st century, the advent of high-throughput sequencing tools, state-of-the-art biotechnological techniques and bioinformatic analyzing pipelines led to the easy characterization of plant traits for abiotic stress response and tolerance mechanisms by applying the 'omics' toolbox. Panomics pipeline including genomics, transcriptomics, proteomics, metabolomics, epigenomics, proteogenomics, interactomics, ionomics, phenomics, etc., have become very handy nowadays. This is important to produce climate-smart future crops with a proper understanding of the molecular mechanisms of abiotic stress responses by the plant's genes, transcripts, proteins, epigenome, cellular metabolic circuits and resultant phenotype. Instead of mono-omics, two or more (hence 'multi-omics') integrated-omics approaches can decipher the plant's abiotic stress tolerance response very well. Multi-omics-characterized plants can be used as potent genetic resources to incorporate into the future breeding program. For the practical utility of crop improvement, multi-omics approaches for particular abiotic stress tolerance can be combined with genome-assisted breeding (GAB) by being pyramided with improved crop yield, food quality and associated agronomic traits and can open a new era of omics-assisted breeding. Thus, multi-omics pipelines together are able to decipher molecular processes, biomarkers, targets for genetic engineering, regulatory networks and precision agriculture solutions for a crop's variable abiotic stress tolerance to ensure food security under changing environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Soumya Prakash Das
- School of Bioscience, Seacom Skills University, Bolpur 731236, West Bengal, India
| | - Amber Gupta
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Parul Parihar
- Department of Biotechnology and Bioscience, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kottakota Chandrasekhar
- Department of Plant Biochemistry and Biotechnology, Sri Krishnadevaraya College of Agricultural Sciences (SKCAS), Affiliated to Acharya N.G. Ranga Agricultural University (ANGRAU), Guntur 522034, Andhra Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Ajay Kumar
- Department of Botany, Maharshi Vishwamitra (M.V.) College, Buxar 802102, Bihar, India
| | - Devade Pandurang Ramrao
- Department of Biotechnology, Mizoram University, Pachhunga University College Campus, Aizawl 796001, Mizoram, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
| |
Collapse
|
11
|
Samtani H, Sharma A, Khurana P. Ectopic overexpression of TaHsfA5 promotes thermomorphogenesis in Arabidopsis thaliana and thermotolerance in Oryza sativa. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01355-3. [PMID: 37166615 DOI: 10.1007/s11103-023-01355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/16/2023] [Indexed: 05/12/2023]
Abstract
Heat stress transcription factors (Hsfs) play an important role in regulating the heat stress response in plants. Among the Hsf family members, the group A members act upstream in initiating the response upon sensing heat stress and thus, impart thermotolerance to the plants. In the present study, wheat HsfA5 (TaHsfA5) was found to be one of the Hsfs, which was upregulated both in heat stress and during the recovery period after the stress. TaHsfA5 was found to interact with TaHsfA3 and TaHsfA4, both of which are known to positively regulate the heat stress-responsive genes. Apart from these, TaHsfA5 also interacted with TaHSBP2 protein, whose role has been implicated in attenuating the heat stress response. Further, its heterologous overexpression in Arabidopsis and Oryza sativa promoted thermotolerance in these plants. This indicated that TaHsfA5 positively regulated the heat stress response. Interestingly, the TaHsfA5 overexpression Arabidopsis plants when grown at warm temperatures showed a hyper-thermomorphogenic response in comparison to the wild-type plants. This was found to be consistent with the higher expression of PIF4 and its target auxin-responsive genes in these transgenics in contrast to the wild-type plants. Thus, these results suggest the involvement of TaHsfA5 both in the heat stress response as well as in the thermomorphogenic response in plants.
Collapse
Affiliation(s)
- Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aishwarye Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
12
|
Trono D, Pecchioni N. Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233358. [PMID: 36501397 PMCID: PMC9737347 DOI: 10.3390/plants11233358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
Wheat represents one of the most important staple food crops worldwide and its genetic improvement is fundamental to meeting the global demand of the growing population. However, the environmental stresses, worsened by climate change, and the increasing deterioration of arable land make it very difficult to fulfil this demand. In light of this, the tolerance of wheat to abiotic stresses has become a key objective of genetic improvement, as an effective strategy to ensure high yields without increasing the cultivated land. Genetic erosion related to modern agriculture, whereby elite, high-yielding wheat varieties are the product of high selection pressure, has reduced the overall genetic diversity, including the allelic diversity of genes that could be advantageous for adaptation to adverse environmental conditions. This makes traditional breeding a less effective or slower approach to generating new stress-tolerant wheat varieties. Either mining for the diversity of not-adapted large germplasm pools, or generating new diversity, are the mainstream approaches to be pursued. The advent of genetic engineering has opened the possibility to create new plant variability and its application has provided a strong complement to traditional breeding. Genetic engineering strategies such as transgenesis and genome editing have then provided the opportunity to improve environmental tolerance traits of agronomic importance in cultivated species. As for wheat, several laboratories worldwide have successfully produced transgenic wheat lines with enhanced tolerance to abiotic stresses, and, more recently, significant improvements in the CRISPR/Cas9 tools available for targeted variations within the wheat genome have been achieved. In light of this, the present review aims to provide successful examples of genetic engineering applications for the improvement of wheat adaptation to drought, salinity and extreme temperatures, which represent the most frequent and most severe events causing the greatest losses in wheat production worldwide.
Collapse
|
13
|
Sintaha M, Man CK, Yung WS, Duan S, Li MW, Lam HM. Drought Stress Priming Improved the Drought Tolerance of Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:2954. [PMID: 36365408 PMCID: PMC9653977 DOI: 10.3390/plants11212954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The capability of a plant to protect itself from stress-related damages is termed "adaptability" and the phenomenon of showing better performance in subsequent stress is termed "stress memory". While drought is one of the most serious disasters to result from climate change, the current understanding of drought stress priming in soybean is still inadequate for effective crop improvement. To fill this gap, in this study, the drought memory response was evaluated in cultivated soybean (Glycine max). To determine if a priming stress prior to a drought stress would be beneficial to the survival of soybean, plants were divided into three treatment groups: the unprimed group receiving one cycle of stress (1S), the primed group receiving two cycles of stress (2S), and the unstressed control group not subjected to any stress (US). When compared with the unprimed plants, priming led to a reduction of drought stress index (DSI) by 3, resulting in more than 14% increase in surviving leaves, more than 13% increase in leaf water content, slight increase in shoot water content and a slower rate of loss of water from the detached leaves. Primed plants had less than 60% the transpiration rate and stomatal conductance compared to the unprimed plants, accompanied by a slight drop in photosynthesis rate, and about a 30% increase in water usage efficiency (WUE). Priming also increased the root-to-shoot ratio, potentially improving water uptake. Selected genes encoding late embryogenesis abundant (LEA) proteins and MYB, NAC and PP2C domain-containing transcription factors were shown to be highly induced in primed plants compared to the unprimed group. In conclusion, priming significantly improved the drought stress response in soybean during recurrent drought, partially through the maintenance of water status and stronger expression of stress related genes. In sum, we have identified key physiological parameters for soybean which may be used as indicators for future genetic study to identify the genetic element controlling the drought stress priming.
Collapse
Affiliation(s)
- Mariz Sintaha
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chun-Kuen Man
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wai-Shing Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shaowei Duan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
14
|
The heat stress transcription factor family in Aegilops tauschii: genome-wide identification and expression analysis under various abiotic stresses and light conditions. Mol Genet Genomics 2022; 297:1689-1709. [DOI: 10.1007/s00438-022-01952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
|
15
|
Gahlaut V, Samtani H, Gautam T, Khurana P. Identification and Characterization of DNA Demethylase Genes and Their Association With Thermal Stress in Wheat (Triticum aestivum L.). Front Genet 2022; 13:894020. [PMID: 35938005 PMCID: PMC9355123 DOI: 10.3389/fgene.2022.894020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
DNA demethylases (dMTases) are essential proteins in plants that regulate DNA methylation levels. The dMTase genes have been explored in a number of plant species, however, members of this family have not been reported in wheat. We identified 12 wheat dMTase genes divided into two subfamilies: repressor of silencing 1 (ROS1) and DEMETER-Like (DML). The TadMTases in the same subfamily or clade in the phylogenetic tree have similar gene structures, protein motifs, and domains. The promoter sequence contains multiple cis-regulatory elements (CREs) that respond to abiotic stress, hormones, and light, suggesting that the majority of TadMTase genes play a role in wheat growth, development, and stress response. The nuclear localization signals (NLSs), subcellular localization, and SRR motifs were also analyzed. The expression profile analyses revealed that TadMTase genes showed differential gene expression patterns in distinct developmental stages and tissues as well as under heat stress (HS). Furthermore, the qRT-PCR analysis revealed that TadMTase gene expression differed amongst wheat cultivars with varying degrees of HS tolerance. Overall, this work contributes to the understanding of the biological function of wheat dMTases and lays the foundation for future investigations.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- *Correspondence: Vijay Gahlaut,
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
16
|
Samtani H, Sharma A, Khurana P. Wheat ocs-Element Binding Factor 1 Enhances Thermotolerance by Modulating the Heat Stress Response Pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:914363. [PMID: 35712575 PMCID: PMC9194769 DOI: 10.3389/fpls.2022.914363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 05/26/2023]
Abstract
The basic leucine zipper family (bZIP) represents one of the largest families of transcription factors that play an important role in plant responses to abiotic stresses. However, their role in contributing to thermotolerance in plants is not well explored. In this article, two homoeologs of wheat ocs-element binding factor 1 (TaOBF1-5B and TaOBF1-5D) were found to be heat-responsive TabZIP members. Their expression analysis in Indian wheat cultivars revealed their differential expression pattern and TaOBF1-5B was found to be more receptive to heat stress. Consistent with this, the heterologous overexpression of TaOBF1-5B in Arabidopsis thaliana and Oryza sativa promoted the expression of stress-responsive genes, which contributed to thermotolerance in transgenic plants. TaOBF1-5B was seen to interact with TaHSP90 in the nucleus and TaSTI in the nucleolus and the ER. Thus, the results suggest that TaOBF1-5B might play an important regulatory role in the heat stress response and is a major factor governing thermotolerance in plants.
Collapse
Affiliation(s)
| | | | - Paramjit Khurana
- *Correspondence: Paramjit Khurana ; orcid.org/0000-0002-8629-1245
| |
Collapse
|
17
|
Hsiao AS. Plant Protein Disorder: Spatial Regulation, Broad Specificity, Switch of Signaling and Physiological Status. FRONTIERS IN PLANT SCIENCE 2022; 13:904446. [PMID: 35685011 PMCID: PMC9171514 DOI: 10.3389/fpls.2022.904446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 05/14/2023]
Affiliation(s)
- An-Shan Hsiao
- *Correspondence: An-Shan Hsiao ; orcid.org/0000-0002-2485-9034
| |
Collapse
|