1
|
Park C, Soto-Heras S, Reinacher L, Chai K, Zhou S, Lin PC, Oh JE, Bunnell M, Hess RA, de França LR, Ko C. Inhibition of testicular development by suppressing neonatal LH rise in male domestic pigs. Anim Reprod Sci 2024; 270:107606. [PMID: 39437644 DOI: 10.1016/j.anireprosci.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The neonatal increase in circulating luteinizing hormone (LH) is crucial for testicular development. In male pigs, blood LH levels start to increase approximately 1 week after birth and return to basal level by 5-6 weeks of age. This study tested the hypothesis that neonatal treatment with a combination of estrogens and androgens suppresses LH secretion and thereby inhibits testicular development. On Day 1 after birth, piglets received a slow-release implant containing estradiol (E2, 8-40 mg) and trenbolone acetate (TBA, 40-200 mg) or remained intact. At 4 weeks of age, mean serum LH concentrations were ∼ 7 ng/mL in untreated males, whereas pigs with implants had serum LH concentrations < 1 ng/mL. Despite this reduction, LH was still detected in the pituitary glands of treated pigs. Interestingly, neonatal castration also lowered circulating LH, highlighting the importance of testis physiology in the early establishment of the reproductive axis. The higher dose (20 mg E2 + 100 mg TBA) inhibited testis function more effectively, as evidenced by lower circulating testosterone concentrations compared to intact pigs. Furthermore, E2 + TBA treatment had a lasting impact on testicular growth, resulting in smaller testes at 26 weeks of age and the presence of immature Leydig cells. Overall, neonatal E2 + TBA treatment suppressed the postnatal LH rise and testicular growth until market age, offering a potential non-surgical alternative to castration in male pigs.
Collapse
Affiliation(s)
- ChanJin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Epivara, Inc., Champaign, IL, 61820, USA
| | | | | | - Katie Chai
- Epivara, Inc., Champaign, IL, 61820, USA
| | | | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Luiz Renato de França
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Epivara, Inc., Champaign, IL, 61820, USA.
| |
Collapse
|
2
|
Ambhore NS, Balraj P, Kumar A, Reza MI, Ramakrishnan YS, Tesch J, Lohana S, Sathish V. Kiss1 receptor knockout exacerbates airway hyperresponsiveness and remodeling in a mouse model of allergic asthma. Respir Res 2024; 25:387. [PMID: 39468619 PMCID: PMC11520794 DOI: 10.1186/s12931-024-03017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND In asthma, sex-steroids signaling is recognized as a critical regulator of disease pathophysiology. However, the paradoxical role of sex-steroids, especially estrogen, suggests that an upstream mechanism or even independent of estrogen plays an important role in regulating asthma pathophysiology. In this context, in our previous studies, we explored kisspeptin (Kp) and its receptor Kiss1R's signaling in regulating human airway smooth muscle cell remodeling in vitro and airway hyperresponsiveness (AHR) in vivo in a mouse (wild-type, WT) model of asthma. In this study, we evaluated the effect of endogenous Kp in regulating AHR and remodeling using Kiss1R knockout (Kiss1R-/-) mice. METHODS C57BL/6J WT (Kiss1R+/+) and Kiss1R-/- mice, both male and female, were intranasally challenged with mixed-allergen (MA) and/or phosphate-buffered saline (PBS). We used flexiVent analysis to assess airway resistance (Rrs), elastance (Ers), and compliance (Crs). Following this, broncho-alveolar lavage (BAL) was performed for differential leukocyte count (DLC) and cytokine analysis. Histology staining was performed using hematoxylin and eosin (H&E) for morphological analysis and Masson's Trichrome (MT) for collagen deposition. Additionally, lung sections were processed for immunofluorescence (IF) of Ki-67, α-smooth muscle actin (α-SMA), and tenascin-c. RESULTS Interestingly, the loss of Kiss1R exacerbated lung function and airway contractility in mice challenged with MA, with more profound effects in Kiss1R-/- female mice. MA-challenged Kiss1R-/- mice showed a significant increase in immune cell infiltration and proinflammatory cytokine levels. Importantly, the loss of Kiss1R aggravated Th2/Th17 biased cytokines in MA-challenged mice. Furthermore, histology of lung sections from Kiss1R-/- mice showed increased collagen deposition on airway walls and mucin production in airway cells compared to Kiss1R+/+ mice. In addition, immunofluorescence analysis showed loss of Kiss1R significantly aggravated airway remodeling and subsequently AHR. CONCLUSIONS These findings demonstrate the importance of inherent Kiss1R signaling in regulating airway inflammation, AHR, and remodeling in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Ashish Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Mohammad Irshad Reza
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Yogaraj S Ramakrishnan
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Jacob Tesch
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Sahil Lohana
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
3
|
Koilpillai JN, Nunan E, Butler L, Pinaffi F, Butcher JT. Reversible Contraception in Males: An Obtainable Target? BIOLOGY 2024; 13:291. [PMID: 38785772 PMCID: PMC11117788 DOI: 10.3390/biology13050291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024]
Abstract
The last few decades have brought contraception to the forefront of research, with great strides made in effectively targeting and optimizing the physiology, pharmacology, and delivery processes that prevent pregnancy. However, these advances still predominantly target female contraceptives for the prevention of contraception, whereas targeting the male sex has lagged far behind. This has led to a marked deficiency in safe and effective male contraceptive agents, resulting in a heavy dependence on female contraceptives to prevent unwanted and unplanned pregnancies. Current research in the veterinary field and in rodents highlights several promising avenues whereby novel, safe, and effective male contraceptive alternatives are being developed-with an emphasis on reduced side effects and reversibility potential. This review aims to discuss current and novel male contraceptives (both human and veterinary formulations) while highlighting their efficacy, advantages, and disadvantages.
Collapse
Affiliation(s)
- Joanna Nandita Koilpillai
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Emily Nunan
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Landon Butler
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fabio Pinaffi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Joshua T. Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Patel B, Koysombat K, Mills EG, Tsoutsouki J, Comninos AN, Abbara A, Dhillo WS. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr Rev 2024; 45:30-68. [PMID: 37467734 PMCID: PMC10765167 DOI: 10.1210/endrev/bnad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.
Collapse
Affiliation(s)
- Bijal Patel
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kanyada Koysombat
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Edouard G Mills
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Jovanna Tsoutsouki
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Alexander N Comninos
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Ali Abbara
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| |
Collapse
|
5
|
Panda SP, Kesharwani A, Singh GD, Prasanth D, Vatchavai BR, Kumari PVK, Panda SK, Mallick SP. Impose of KNDy/GnRH neural circuit in PCOS, ageing, cancer and Alzheimer's disease: StAR actions in prevention of neuroendocrine dysfunction. Ageing Res Rev 2023; 92:102086. [PMID: 37821047 DOI: 10.1016/j.arr.2023.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The Kisspeptin1 (KISS1)/neurokinin B (NKB)/Dynorphin (Dyn) [KNDy] neurons in the hypothalamus regulate the reproduction stage in human beings and rodents. KNDy neurons co-expressed all KISS1, NKB, and Dyn peptides, and hence commonly regarded as KISS1 neurons. KNDy neurons contribute to the "GnRH pulse generator" and are implicated in the regulation of pulsatile GnRH release. The estradiol (E2)-estrogen receptor (ER) interactions over GnRH neurons in the hypothalamus cause nitric oxide (NO) discharge, in addition to presynaptic GABA and glutamate discharge from respective neurons. The released GABA and glutamate facilitate the activity of GnRH neurons via GABAA-R and AMPA/kainate-R. The KISS1 stimulates MAPK/ERK1/2 signaling and cause the release of Ca2+ from intracellular store, which contribute to neuroendocrine function, increase apoptosis and decrease cell proliferation and metastasis. The ageing in women deteriorates KISS1/KISS1R interaction in the hypothalamus which causes lower levels of GnRH. Because examining the human brain is so challenging, decades of clinical research have failed to find the causes of KNDy/GnRH dysfunction. The KISS1/KISS1R interactions in the brain have a neuroprotective effect against Alzheimer's disease (AD). These findings modulate the pathophysiological role of the KNDy/GnRH neural network in polycystic ovarian syndrome (PCOS) associated with ageing and, its protective role in cancer and AD. This review concludes with protecting effect of the steroid-derived acute regulatory enzyme (StAR) against neurotoxicity in the hippocampus, and hypothalamus, and these measures are fundamental for delaying ageing with PCOS. StAR could serve as novel diagnostic marker and therapeutic target for the most prevalent hormone-sensitive breast cancers (BCs).
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Dsnbk Prasanth
- KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhrapradesh, India
| | - Bhaskara Raju Vatchavai
- Sri Vasavi Institute of Pharmaceutical Sciences, Pedatadepalli, Tadepalligudem, Andhrapradesh, India
| | - P V Kamala Kumari
- Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, Andhrapradesh, India
| | | | | |
Collapse
|
6
|
Podgórski R, Galiniak S, Mazur A, Podgórska D, Domin A. Serum Levels of Hormones Regulating Appetite in Patients with Fetal Alcohol Spectrum Disorders. Nutrients 2023; 15:4215. [PMID: 37836499 PMCID: PMC10574197 DOI: 10.3390/nu15194215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Prenatal alcohol exposure is the cause of impaired growth and a wide range of developmental and behavioral disorders in the child. Improper eating patterns are commonly associated with fetal alcohol spectrum disorders (FASD) and may contribute to poor nutrition and growth restriction. To date, there have been only a few studies investigating the hormonal regulation of appetite in patients with FASD. We analyzed the levels of neuropeptide Y (NPY), Agouti signaling protein (ASP), alpha-melanocyte-stimulating hormone (α-MSH), and kisspeptin (KISS1) in 57 patients with FASD and 23 healthy controls. A comparison of the hormone levels studied was also performed in subgroups of fetal alcohol syndrome (FAS) and neurobehavioral disorder associated with prenatal alcohol exposure (ND PAE), as well as in males and females. We have found no differences in hormone levels tested between affected individuals and the controls and between FASD subgroups. In addition, sex had no effect on hormone levels. However, we identified some associations between hormone concentrations and parameters describing the clinical status of patients with FASD. Most of them concerned ASP, which has shown a positive correlation with age and hormones involved in appetite and metabolism, such as proopiomelanocortin (POMC) and adrenocorticotropic hormone (ACTH). We have also found a negative correlation of α-MSH with age, BMI percentile, and glycated hemoglobin (HbA1c). Furthermore, we found a weak negative correlation of NPY with HbA1c. Although FASD has been associated with impaired child growth and development, including nutrition and puberty onset, we did not identify differences in the levels of the hormones studied, which may suggest that prenatal alcohol exposure does not affect the levels of these metabolites.
Collapse
Affiliation(s)
- Rafał Podgórski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland;
| | - Sabina Galiniak
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland;
| | - Artur Mazur
- Department of Pediatric, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (A.M.); (A.D.)
| | - Dominika Podgórska
- Department of Rheumatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland;
| | - Agnieszka Domin
- Department of Pediatric, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (A.M.); (A.D.)
| |
Collapse
|
7
|
Lahimer M, Djekkoun N, Tricotteaux-Zarqaoui S, Corona A, Lafosse I, Ali HB, Ajina M, Bach V, Benkhalifa M, Khorsi-Cauet H. Impact of Perinatal Coexposure to Chlorpyrifos and a High-Fat Diet on Kisspeptin and GnRHR Presence and Reproductive Organs. TOXICS 2023; 11:789. [PMID: 37755799 PMCID: PMC10534599 DOI: 10.3390/toxics11090789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Emerging evidence has indicated the involvement of extrahypothalamic Kisspeptin and GnRHR in reproductive function. In this study, we evaluate if maternal exposure to the pesticide chlorpyrifos (CPF) and/or a high-fat diet (HFD) has an impact on the expression of Kisspeptin and GnRHR in the reproductive organs of rats' offspring. A total of 16 pregnant rats are divided into four groups: a control group (n = 4), CPF group (4 rats exposed daily to 1/mg/kg/day), HFD group (4 rats randomly fed a 5.25 kcal/g HFD), and coexposed group (4 rats exposed to CPF and HDF). At postnatal development postnatal day (PND) 60, male and female offspring were sacrificed. The reproductive organs (ovary and testis) were removed, and histological and immunohistological analysis and in silico quantification (TissueGnostics software 6.0.1.102, TissueFAXS, HistoQuest) were applied to investigate the impact of different treatments on Kisspeptin and GnRHR expression in reproductive organs. The main outcomes of the study showed a significant decrease in rat offspring's body weight in the CPF group from PND30 and PND60 (p < 0.05 and p < 0.01, respectively). Histological analysis showed a significant increase in the atretic follicle and abnormal testis structure with germ cell desquamation in the CPF-exposed group. The immunodetection quantification of protein shows a significant decrease in GnRHR and Kisspeptin in the HFD and CPF exposed groups, respectively, in testis rat offspring. Perinatal exposure to CPF and HFD exposure affect the reproduction function of rat offspring.
Collapse
Affiliation(s)
- Marwa Lahimer
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, 80025 Amiens, France
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and 9 Health” (Code: LR19ES09), Sousse 4002, Tunisia;
| | - Narimane Djekkoun
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Sophian Tricotteaux-Zarqaoui
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Aurélie Corona
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Isabelle Lafosse
- MP3CV—UPJV—UR 7517, Jules Verne University of Picardie, 80025 Amiens, France;
| | - Habib Ben Ali
- Laboratory Histology Embryology, Faculty of Medicine Sousse, University of Sousse, Sousse 4000, Tunisia;
| | - Mounir Ajina
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and 9 Health” (Code: LR19ES09), Sousse 4002, Tunisia;
- Service of Reproductive Medicine, University Hospital Farhat Hached, Sousse 4000, Tunisia
| | - Véronique Bach
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Moncef Benkhalifa
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, 80025 Amiens, France
| | - Hafida Khorsi-Cauet
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| |
Collapse
|
8
|
Zhang Y, Yuan X, Yang X, Lin X, Cai C, Chen S, Ai Z, ShangGuan H, Wu W, Chen R. Associations of Obesity With Growth and Puberty in Children: A Cross-Sectional Study in Fuzhou, China. Int J Public Health 2023; 68:1605433. [PMID: 37255545 PMCID: PMC10225596 DOI: 10.3389/ijph.2023.1605433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Objectives: To investigate the associations of obesity with growth and puberty in children. Methods: From November 2017 to December 2019, height, weight, and Tanner stages of 26,879 children aged 3-18 years in Fuzhou, China were assessed. Results: The obese group was significantly taller than the non-obese group after age 4 years for both genders, yet there was no significant difference in height between obese and non-obese group after 15.5 years old for boys and 12.5 years old for girls. The inflection points of significant growth deceleration in obese and non-obese groups were 14.4 and 14.6 years old for boys, and 11.8 and 12.8 years old for girls, respectively. The proportions of testicular development in boys with obesity and non-obesity were 7.96% and 5.08% at 8.5-8.9 years old, respectively, while the proportions of breast development in girls were 17.19% and 3.22% at age 7.5-7.9 years old, respectively. Conclusion: Children with obesity were taller in early childhood, earlier onset of puberty and earlier cessation of growth than children with non-obesity of the same age. However, there was sex dimorphism on the effect of obesity on the incidence of precocious puberty.
Collapse
|
9
|
Abstract
In men > ~35 years, aging is associated with perturbations in the hypothalamus-pituitary-testicular axis and declining serum testosterone concentrations. The major changes are decreased gonadotropin-releasing hormone (GnRH) outflow and decreased Leydig cell responsivity to stimulation by luteinizing hormone (LH). These physiologic changes increase the prevalence of biochemical secondary hypogonadism-a low serum testosterone concentration without an elevated serum LH concentration. Obesity, medications such as opioids or corticosteroids, and systemic disease further reduce GnRH and LH secretion and might result in biochemical or clinical secondary hypogonadism. Biochemical secondary hypogonadism related to aging often remits with weight reduction and avoidance or treatment of other factors that suppress GnRH and LH secretion. Starting at age ~65-70, progressive Leydig cell dysfunction increases the prevalence of biochemical primary hypogonadism-a low serum testosterone concentration with an elevated serum LH concentration. Unlike biochemical secondary hypogonadism in older men, biochemical primary hypogonadism is generally irreversible. The evaluation of low serum testosterone concentrations in older men requires a careful assessment for symptoms, signs and causes of male hypogonadism. In older men with a body mass index (BMI) ≥ 30, biochemical secondary hypogonadism and without an identifiable cause of hypothalamus or pituitary pathology, weight reduction and improvement of overall health might reverse biochemical hypogonadism. For older men with biochemical primary hypogonadism, testosterone replacement therapy might be beneficial. Because aging is associated with decreased metabolism of testosterone and increased tissue-specific androgen sensitivity, lower dosages of testosterone replacement therapy are often effective and safer in older men.
Collapse
Affiliation(s)
- Bradley D Anawalt
- Department of Medicine, University of Washington School of Medicine, Department of Medicine, 1959 NE Pacific Avenue, Box 356420, Seattle, WA, 98195, USA.
| | - Alvin M Matsumoto
- Department of Medicine, University of Washington School of Medicine, Department of Medicine, 1959 NE Pacific Avenue, Box 356420, Seattle, WA, 98195, USA
- Geriatric Research, Education and Clinical Center VA Puget Sound Health Care System, 1660 South Columbian Way (S-182-GRECC), Seattle, WA, 98118, USA
| |
Collapse
|
10
|
Serum kisspeptin and proopiomelanocortin in cystic fibrosis: a single study. Sci Rep 2022; 12:17669. [PMID: 36271282 PMCID: PMC9586927 DOI: 10.1038/s41598-022-21851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 01/18/2023] Open
Abstract
The determination of hormonal biomarkers is of increasing interest in many diseases, including cystic fibrosis (CF). Hormones that have not been estimated and described so far in CF include kisspeptin (KISS) and proopiomelanocortin (POMC), which are involved in the regulation of many processes, including appetite and fertility. Therefore, the aim of our study was to estimate the level of KISS and POMC in sera from CF patients and to determine the correlation between these hormones and clinical parameters. For this purpose, we estimated the levels of KISS and POMC in 38 CF patients and 16 healthy participants with enzyme-linked immunosorbent assay. We found significantly reduced levels of KISS and POMC in people with CF compared to healthy subjects (1.76 ± 0.46 vs. 2.27 ± 0.56 ng/mL, p < 0.05 and 6.25 ± 4.36 vs. 14.74 ± 6.24 ng/mL, p < 0.001, respectively). Furthermore, the level of both hormones was negatively correlated with age. The hormones studied did not correlate with the results of spirometry and each other. Thus, decreased KISS and POMC levels may be associated with lower body weight and delayed puberty in patients with CF.
Collapse
|