1
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Chen J, Xu J, Gou L, Zhu Y, Zhong W, Guo H, Du Y. Integrating transcriptomic and proteomic data for a comprehensive molecular perspective on the association between sarcopenia and osteoporosis. Arch Gerontol Geriatr 2024; 125:105486. [PMID: 38761527 DOI: 10.1016/j.archger.2024.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Osteoporosis and sarcopenia are common age-related conditions characterized by the progressive loss of bone density and muscle mass, respectively. Their co-occurrence, often referred to as osteosarcopenia, presents significant challenges in elderly care due to increased fragility and functional impairment. Existing studies have identified shared pathological mechanisms between these conditions, including inflammation, hormonal imbalances, and metabolic dysregulation, but a comprehensive understanding of their molecular interplay remains incomplete. OBJECTIVE This study aims to deepen our understanding of the molecular interactions between sarcopenia and osteoporosis through an integrated omics approach, revealing potential therapeutic targets and biomarkers. METHODS Employing a combination of proteomics and transcriptomics analyses, this study analyzed bone and muscle tissue samples from patients diagnosed with osteoporosis and osteosarcopenia. Techniques included high-throughput sequencing and label-free proteomics, supported by advanced bioinformatics tools for data analysis and functional annotation of genes and proteins. RESULTS The study found marked differences in gene and protein expressions between osteoporosis and osteosarcopenia tissues. Specifically, genes like PDIA5, TUBB1, and CYFIP2 in bone, along with MYH7 and NCAM1 in muscle, exhibited differential expression at both mRNA and protein levels. Pathway analyses revealed the significance of oxidative-reduction balance, cellular metabolism, and immune response in the progression of these conditions. Importantly, the study pinpointed osteoclast differentiation and NF-kappa B signaling pathways as critical in the molecular dynamics of osteosarcopenia, suggesting potential targets for therapy. CONCLUSIONS This study utilized transcriptomics and proteomics to identify key genes and proteins impacting sarcopenia and osteoporosis, employing advanced network tools to delineate interaction networks and crucial signaling pathways. It highlighted genes like PDIA5 and TUBB1, consistently expressed in both analyses, involved in pathways such as osteoclast differentiation and cytokine interactions. These insights enhance understanding of the molecular interplay in bone and muscle degeneration with aging, suggesting directions for future research into therapeutic interventions and prevention strategies for age-related degenerative diseases.
Collapse
Affiliation(s)
- Jincheng Chen
- The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, 545000, PR China; Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, PR China.
| | - Jie Xu
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350000, PR China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350000, PR China
| | - Lingyun Gou
- The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, 545000, PR China
| | - Yong Zhu
- The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, 545000, PR China
| | - Weihua Zhong
- The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, 545000, PR China
| | - Hai Guo
- The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, 545000, PR China
| | - Yujuan Du
- The Second People's Hospital of Kunming, Kunming, 650000, PR China
| |
Collapse
|
3
|
Deng X, Wu X, Sun Z, Liu Q, Yuan G. Associations between new obesity indices and abnormal bone density in type 2 diabetes mellitus patients. Osteoporos Int 2024; 35:1807-1815. [PMID: 38965122 DOI: 10.1007/s00198-024-07163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
The clinical data analysis found that, compared with the traditional obesity index, the waist-weight ratio (WWR) has more advantages in predicting abnormal bone mineral density in subjects with type 2 diabetes. WWR may serve as a new predictive indicator for osteoporosis in T2DM patients. PURPOSE This study was designed to explore the correlation between obesity-related indices and bone mineral density (BMD) and its influencing factors in type 2 diabetes mellitus (T2DM) patients. METHODS A total of 528 patients with type 2 diabetes were recruited. Glucose tolerance, insulin stimulation, and blood biochemical tests were conducted on all participants. All subjects underwent dual-energy X-ray bone density testing and were grouped based on the bone density results. RESULTS Compared with those in the normal BMD group, the waist-to-body weight ratio (WWR) and weight-adjusted-waist index (WWI) in the osteopenia and osteoporosis groups were significantly greater, while body mass index (BMI) was significantly lower (P < 0.05). The logistic regression results showed that the WWR, WWI, and BMI were independently correlated with abnormal BMD in T2DM patients (P < 0.05). WWR and the WWI were negatively correlated with the T-value of bone density in various parts of the body, while BMI was positively correlated with the T-value of bone density (P < 0.05). The area under the working characteristic curve (AUC) for T2DM patients with abnormal bone mass predicted by the WWR [0.806, 95% CI = (0.770-0.843), P < 0.001] was greater than that for patients with other obesity indicators, such as the WWI and BMI. CONCLUSION We found a positive correlation between the WWR and bone density in T2DM patients. Compared with other obesity indicators, such as BMI and WWI, the WWR has a stronger discriminative ability for T2DM patients with abnormal bone density. Therefore, more attention should be given to the WWR in T2DM patients.
Collapse
Affiliation(s)
- Xia Deng
- Department of Endocrinology and Metabolism, Institute of Endocrine and Metabolic Diseases, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xunan Wu
- Department of Endocrinology and Metabolism, Institute of Endocrine and Metabolic Diseases, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziyan Sun
- Department of Endocrinology and Metabolism, Institute of Endocrine and Metabolic Diseases, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiaoyan Liu
- Department of Endocrinology and Metabolism, Institute of Endocrine and Metabolic Diseases, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, Institute of Endocrine and Metabolic Diseases, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.
- Endocrine Research Institute, The affiliated hospital of jiangsu university, Zhenjiang, China.
| |
Collapse
|
4
|
Chen PJ, Lu YC, Lu SN, Liang FW, Chuang HY. Association Between Osteoporosis and Adiposity Index Reveals Nonlinearity Among Postmenopausal Women and Linearity Among Men Aged over 50 Years. J Epidemiol Glob Health 2024; 14:1202-1218. [PMID: 39046667 PMCID: PMC11442896 DOI: 10.1007/s44197-024-00275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE Previous research shows conflicting views on the relationship between obesity and osteoporosis, partly due to variations in obesity classification and the nonlinear nature of these relationships. This study investigated the association between adiposity indices and osteoporosis, diagnosed using dual-energy X-ray absorptiometry (DXA), employing nonlinear models and offering optimal thresholds to prevent further bone mineral density decline. METHODS In 2019, a prospective study enrolled males over 50 years and postmenopausal women. Anthropometric measurements, blood biochemistry, and osteoporosis measured by DXA were collected. Associations between adiposity indices and osteoporosis were analyzed using a generalized additive model and segmented regression model. RESULTS The study included 872 women and 1321 men. Indices such as abdominal volume index (AVI), visceral adiposity index (VAI), waist circumference (WC), hip circumference, body mass index (BMI), waist-to-hip ratio, and waist-to-height ratio (WHtR) were inversely associated with osteoporosis. In women, the relationship between the risk of osteoporosis and the adiposity indices was U-shaped, with thresholds of WC = 94 cm, AVI = 17.67 cm2, BMI = 25.74 kg/m2, VAI = 4.29, and WHtR = 0.61, considering changes in bone mineral density. Conversely, men exhibited a linear patterns for the inverse association. CONCLUSION The impact of obesity and adiposity on osteoporosis varies significantly between women and men. In postmenopausal women, the relationship is nonlinear (U-shaped), with both very low and very high adiposity linked to higher osteoporosis risk. In men over 50, the relationship is linear, with higher adiposity associated with lower osteoporosis risk. The study suggests that maintaining specific levels of adiposity could help prevent osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Po-Ju Chen
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Family Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yueh-Chien Lu
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Family Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Nan Lu
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Fu-Wen Liang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Yi Chuang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Community Medicine, Kaohsiung Medical University Hospital, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan.
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, and Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Forte YS, Nascimento-Silva V, Andrade-Santos C, Ramos-Andrade I, Atella GC, Kraemer-Aguiar LG, Leal PRF, Renovato-Martins M, Barja-Fidalgo C. Unlocking the Secrets of Adipose Tissue: How an Obesity-Associated Secretome Promotes Osteoblast Dedifferentiation via TGF-β1 Signaling, Paving the Path to an Adipogenic Phenotype. Cells 2024; 13:1418. [PMID: 39272990 PMCID: PMC11394205 DOI: 10.3390/cells13171418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Obesity poses a significant global health challenge, given its association with the excessive accumulation of adipose tissue (AT) and various systemic disruptions. Within the adipose microenvironment, expansion and enrichment with immune cells trigger the release of inflammatory mediators and growth factors, which can disrupt tissues, including bones. While obesity's contribution to bone loss is well established, the direct impact of obese AT on osteoblast maturation remains uncertain. This study aimed to explore the influence of the secretomes from obese and lean AT on osteoblast differentiation and activity. METHODS SAOS-2 cells were exposed to the secretomes obtained by culturing human subcutaneous AT from individuals with obesity (OATS) or lean patients, and their effects on osteoblasts were evaluated. RESULTS In the presence of the OATS, mature osteoblasts underwent dedifferentiation, showing an increased proliferation accompanied by a morphological shift towards a mesenchymal phenotype, with detrimental effects on osteogenic markers and the calcification capacity. Concurrently, the OATS promoted the expression of mesenchymal and adipogenic markers, inducing the formation of cytoplasmic lipid droplets in SAOS-2 cells exposed to an adipogenic differentiation medium. Additionally, TGF-β1 emerged as a key mediator of these effects, as the OATS was enriched with this growth factor. CONCLUSIONS Our findings demonstrate that obese subcutaneous AT promotes the dedifferentiation of osteoblasts and increases the adipogenic profile in these cells.
Collapse
Affiliation(s)
- Yasmin Silva Forte
- Laboratory of Cellular & Molecular Pharmacology, Department of Cell Biology, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Vany Nascimento-Silva
- Laboratory of Cellular & Molecular Pharmacology, Department of Cell Biology, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Caio Andrade-Santos
- Laboratory of Cellular & Molecular Pharmacology, Department of Cell Biology, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Isadora Ramos-Andrade
- Laboratory of Cellular & Molecular Pharmacology, Department of Cell Biology, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Georgia Correa Atella
- Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luiz Guilherme Kraemer-Aguiar
- Obesity Unit, Multiuser Clinical Research Center (CePEM), Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Paulo Roberto Falcão Leal
- Obesity Unit, Multiuser Clinical Research Center (CePEM), Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Mariana Renovato-Martins
- Department of Molecular & Cellular Biology, Universidade Federal Fluminense, Rio de Janeiro 24020-141, Brazil
| | - Christina Barja-Fidalgo
- Laboratory of Cellular & Molecular Pharmacology, Department of Cell Biology, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| |
Collapse
|
6
|
Guo Y, Jiang S, Li H, Xie G, Pavel V, Zhang Q, Li Y, Huang C. Obesity induces osteoimmunology imbalance: Molecular mechanisms and clinical implications. Biomed Pharmacother 2024; 177:117139. [PMID: 39018871 DOI: 10.1016/j.biopha.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The notion that obesity can be a protective factor for bone health is a topic of ongoing debate. Increased body weight may have a positive impact on bone health due to its mechanical effects and the production of estrogen by adipose tissue. However, recent studies have found a higher risk of bone fracture and delayed bone healing in elderly obese patients, which may be attributed to the heightened risk of bone immune regulation disruption associated with obesity. The balanced functions of bone cells such as osteoclasts, osteoblasts, and osteocytes, would be subverted by aberrant and prolonged immune responses under obese conditions. This review aims to explore the intricate relationship between obesity and bone health from the perspective of osteoimmunology, elucidate the impact of disturbances in bone immune regulation on the functioning of bone cells, including osteoclasts, osteoblasts, and osteocytes, highlighting the deleterious effects of obesity on various diseases development such as rheumatoid arthritis (RA), osteoarthritis (AS), bone fracture, periodontitis. On the one hand, weight loss may achieve significant therapeutic effects on the aforementioned diseases. On the other hand, for patients who have difficulty in losing weight, the osteoimmunological therapies could potentially serve as a viable approach in halting the progression of these disease. Additional research in the field of osteoimmunology is necessary to ascertain the optimal equilibrium between body weight and bone health.
Collapse
Affiliation(s)
- Yating Guo
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
7
|
Ren H, Mao K, Yuan X, Mu Y, Zhao S, Fan X, Zhu L, Ye Z, Lan J. AN698/40746067 suppresses bone marrow adiposity to ameliorate hyperlipidemia-induced osteoporosis through targeted inhibition of ENTR1. Biomed Pharmacother 2024; 176:116843. [PMID: 38810405 DOI: 10.1016/j.biopha.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
Hyperlipidemia-induced osteoporosis is marked by increased bone marrow adiposity, and treatment with statins for hyperlipidemia often leads to new-onset osteoporosis. Endosome-associated trafficking regulator 1 (ENTR1) has been found to interact with different proteins in pathophysiology, but its exact role in adipogenesis is not yet understood. This research aimed to explore the role of ENTR1 in adipogenesis and to discover a new small molecule that targets ENTR1 for evaluating its effectiveness in treating hyperlipidemia-induced osteoporosis. We found that ENTR1 expression increased during the adipogenesis of bone marrow mesenchymal cells (BMSCs). ENTR1 gain- and loss-of-function assays significantly enhanced lipid droplets formation. Mechanistically, ENTR1 binds peroxisome proliferator-activated receptor γ (PPARγ) and enhances its expression, thereby elevating adipogenic markers including C/EBPα and LDLR. Therapeutically, AN698/40746067 attenuated adipogenesis by targeting ENTR1 to suppress PPARγ. In vivo, AN698/40746067 reduced bone marrow adiposity and bone loss, as well as prevented lipogenesis-related obesity, inflammation, steatohepatitis, and abnormal serum lipid levels during hyperlipidemia. Together, these findings suggest that ENTR1 facilitates adipogenesis by PPARγ involved in BMSCs' differentiation, and targeted inhibition of ENTR1 by AN698/40746067 may offer a promising therapy for addressing lipogenesis-related challenges and alleviating osteoporosis following hyperlipidemia.
Collapse
Affiliation(s)
- Huiping Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Kai Mao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xin Yuan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yuqing Mu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shuaiqi Zhao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xin Fan
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 261053 China
| | - Lina Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.
| |
Collapse
|
8
|
Ilich JZ, Pokimica B, Ristić-Medić D, Petrović S, Arsić A, Vasiljević N, Vučić V, Kelly OJ. Osteosarcopenic adiposity (OSA) phenotype and its connection with cardiometabolic disorders: Is there a cause-and-effect? Ageing Res Rev 2024; 98:102326. [PMID: 38734146 DOI: 10.1016/j.arr.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The objectives were to examine if there is a causal relationship between osteosarcopenic adiposity (OSA) syndrome (coexistence of osteopenia/osteoporosis, sarcopenia, and excess adiposity) and cardiometabolic disorders or if these disorders initiate the development of OSA and its worsening. The search was conducted in PubMed, Scopus, and Web of Science to include articles up to the end of 2023. Of n=539 articles retrieved, n=15 met the eligibility criteria. Only studies conducted in adults and with all three body composition compartments (bone, muscle/lean, adipose) measured were considered. The results revealed that several cardiometabolic disorders, namely, hypertension, dyslipidemia (elevated total and LDL-cholesterol, lower HDL-cholesterol), insulin resistance, hyperglycemia, lower serum vitamin D, and some inflammatory markers were accompanied by OSA. In most cases, the OSA phenotype was associated with worse outcomes than cases with healthy or less impaired body composition. Our initial questions about the reciprocal cause-and-effect relationships could be surmised with more certainty for the OSA and some cardiovascular risks (hypertension, dyslipidemia) and some metabolic abnormalities (several inflammatory markers). The results of this review underscore the importance of body composition in health and from a clinical perspective, all three body composition compartments should be measured by standardized technologies using regulated diagnostic criteria to identify OSA. Randomized trials and prospective studies in diverse groups of older and younger individuals are necessary to determine if the relationships between OSA and clinical endpoints are causal and reversible through intervention and to uncover the mechanisms.
Collapse
Affiliation(s)
- Jasminka Z Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, Florida 32306, United States.
| | - Biljana Pokimica
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia; Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Danijela Ristić-Medić
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia; Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Snjezana Petrović
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia; Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Arsić
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia; Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Nadja Vasiljević
- Institute of Hygiene and Medical Ecology, Medical Faculty University of Belgrade, Belgrade 11000, Serbia
| | - Vesna Vučić
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia; Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Owen J Kelly
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, 925 City Central Avenue, Conroe, Texas 77304, USA
| |
Collapse
|
9
|
Abed MN, Alassaf FA, Qazzaz ME. Exploring the Interplay between Vitamin D, Insulin Resistance, Obesity and Skeletal Health. J Bone Metab 2024; 31:75-89. [PMID: 38886966 PMCID: PMC11184154 DOI: 10.11005/jbm.2024.31.2.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 06/20/2024] Open
Abstract
Vitamin D (ViD), plays an important role in calcium absorption and bone mineralization, is associated with bone mineral density. Severe deficiency in ViD has long been linked to conditions such as rickets in children and osteomalacia in adults, revealing its substantial role in skeletal health. Additionally, investigations show an existing interconnection between ViD and insulin resistance (Ins-R), especially in patients with type 2 diabetes mellitus (T2DM). Obesity, in conjunction with Ins-R, may augment the risk of osteoporosis and deterioration of skeletal health. This review aims to examine recent studies on the interplay between ViD, Ins-R, obesity, and their impact on skeletal health, to offer insights into potential therapeutic strategies. Cochrane Library, Google Scholar, and Pubmed were searched to investigate relevant studies until December 2023. Current research demonstrates ViD's impact on pancreatic β-cell function, systemic inflammation, and insulin action regulation. Our findings highlight an intricate association between ViD, Ins-R, obesity, and skeletal health, providing a perspective for the prevention and/or treatment of skeletal disorders in patients with obesity, Ins-R, and T2DM.
Collapse
Affiliation(s)
- Mohammed N. Abed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul,
Iraq
| | - Fawaz A. Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul,
Iraq
| | - Mohannad E. Qazzaz
- Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, University of Mosul, Mosul,
Iraq
| |
Collapse
|
10
|
Zhang Y, He X, Wang K, Xue Y, Hu S, Jin Y, Zhu G, Shi Q, Rui Y. Irisin alleviates obesity-induced bone loss by inhibiting interleukin 6 expression via TLR4/MyD88/NF-κB axis in adipocytes. J Adv Res 2024:S2090-1232(24)00156-5. [PMID: 38626873 DOI: 10.1016/j.jare.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024] Open
Abstract
INTRODUCTION Obesity-induced bone loss affects the life quality of patients all over the world. Irisin, one of the myokines, plays an essential role in bone and fat metabolism. OBJECTIVE Investigate the effects of irisin on bone metabolism via adipocytes in the bone marrow microenvironment. METHODS In this study, we fed fibronectin type III domain-containing protein 5 (FNDC5, the precursor protein of irisin) knockout mice (FNDC5-/-) with a high-fat diet (HFD) for 10 weeks. The quality of bone mass was assessed by micro-CT analysis, histological staining, and dynamic bone formation. In vitro, the lipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was assayed by Oil Red O staining, and the osteogenic differentiation was assayed by alkaline phosphatase staining. Meanwhile, the gene expression in the BMSC-differentiated adipocytes by RNA sequence and the involved pathway of irisin were determined by western blot and qRT-PCR were performed. RESULTS The FNDC5-/- mice fed with a HFD showed an increased body weight, fat content of the bone marrow and bone, and a decreased bone formation compared with those with a standard diet (SD). In vitro, irisin inhibited the differentiation of BMSCs into adipocytes and alleviated the inhibition of osteogenesis derived from BMSCs by the adipocyte supernatant. RNA sequence and blocking experiment showed that irisin reduced the production of interleukin 6 (IL-6) in adipocytes through downregulating the TLR4/MyD88/NF-κB pathway. Immunofluorescence staining of bone marrow further confirmed an increased IL-6 expression in the FNDC5-/- mice fed with HFD compared with those fed with SD, which suffered serious bone loss. CONCLUSION Irisin downregulates activation of the TLR4/MyD88/NF-κB pathway, thereby reducing IL-6 production in adipocytes to enhance the osteogenesis of BMSCs. Thus, the rescue of osteogenesis of BMSCs, initially inhibited by IL-6, is a potential therapeutic target to mitigate obesity-induced osteoporosis.
Collapse
Affiliation(s)
- Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Kai Wang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Yuan Xue
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China
| | - Sihan Hu
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China
| | - Yesheng Jin
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Guoqing Zhu
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China.
| | - Yongjun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China.
| |
Collapse
|
11
|
Guo M, Lei Y, Liu X, Li X, Xu Y, Zheng D. The relationship between weight-adjusted-waist index and total bone mineral density in adults aged 20-59. Front Endocrinol (Lausanne) 2023; 14:1281396. [PMID: 38075068 PMCID: PMC10701523 DOI: 10.3389/fendo.2023.1281396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction According to reports, obesity has a significant impact on bone health. And the weight-adjusted-waist index (WWI), superior to BMI and waist circumference (WC), is a new obesity indicator arising in recent years. This research investigated the relationship between WWI and total bone mineral density (BMD) for adults aged 20 to 59. Methods Using data from the 2011-2018 NHANES, we looked into the independent link between WWI and total BMD as well as its nonlinearity using weighted multiple linear regression and smooth curve fitting. Two-stage linear regression models were employed to calculate the threshold effects. There were additional subgroup analyses and testing for interactions. Results Multiple linear regression studies on a total of 10,372 individuals showed a significant inverse link between WWI and total BMD in adults between 20 and 59 [β = -0.04, 95% CI: (-0.04, -0.03), P<0.0001]. And smoking, race, and chronic kidney disease (CKD) had no significant effect on this negative connection (P for interaction >0.05). In addition, we found a nonlinear relationship between WWI and total BMD in diabetic and CKD patients, for which the saturation point was 11.38 cm/√kg in the CKD patient group and 10.29 cm/√kg in the diabetic patient group. Conclusion Our analysis demonstrated a significant inverse association between WWI and total BMD in adults aged 20-59.
Collapse
Affiliation(s)
- Meiqian Guo
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai'an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai’an, China
| | - Yi Lei
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai'an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai’an, China
| | - Xueqing Liu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai'an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai’an, China
| | - Xiang Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai'an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai’an, China
- Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yong Xu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai'an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai’an, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Key Laboratory for Chronic Kidney Disease of Xuzhou Medical University, Xuzhou Medical University, Huai’an, China
- Huai'an Key Laboratory of Chronic Kidney Disease, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai’an, China
| |
Collapse
|
12
|
Hu K, Deya Edelen E, Zhuo W, Khan A, Orbegoso J, Greenfield L, Rahi B, Griffin M, Ilich JZ, Kelly OJ. Understanding the Consequences of Fatty Bone and Fatty Muscle: How the Osteosarcopenic Adiposity Phenotype Uncovers the Deterioration of Body Composition. Metabolites 2023; 13:1056. [PMID: 37887382 PMCID: PMC10608812 DOI: 10.3390/metabo13101056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Adiposity is central to aging and several chronic diseases. Adiposity encompasses not just the excess adipose tissue but also body fat redistribution, fat infiltration, hypertrophy of adipocytes, and the shifting of mesenchymal stem cell commitment to adipogenesis. Bone marrow adipose tissue expansion, inflammatory adipokines, and adipocyte-derived extracellular vesicles are central to the development of osteopenic adiposity. Adipose tissue infiltration and local adipogenesis within the muscle are critical in developing sarcopenic adiposity and subsequent poorer functional outcomes. Ultimately, osteosarcopenic adiposity syndrome is the result of all the processes noted above: fat infiltration and adipocyte expansion and redistribution within the bone, muscle, and adipose tissues, resulting in bone loss, muscle mass/strength loss, deteriorated adipose tissue, and subsequent functional decline. Increased fat tissue, typically referred to as obesity and expressed by body mass index (the latter often used inadequately), is now occurring in younger age groups, suggesting people will live longer with the negative effects of adiposity. This review discusses the role of adiposity in the deterioration of bone and muscle, as well as adipose tissue itself. It reveals how considering and including adiposity in the definition and diagnosis of osteopenic adiposity, sarcopenic adiposity, and osteosarcopenic adiposity will help in better understanding the pathophysiology of each and accelerate possible therapies and prevention approaches for both relatively healthy individuals or those with chronic disease.
Collapse
Affiliation(s)
- Kelsey Hu
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Elizabeth Deya Edelen
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Wenqing Zhuo
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Aliya Khan
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Josselyne Orbegoso
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Lindsey Greenfield
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Berna Rahi
- Department of Human Sciences, Sam Houston State University College of Health Sciences, Huntsville, TX 77341, USA;
| | - Michael Griffin
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Jasminka Z. Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA;
| | - Owen J. Kelly
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| |
Collapse
|
13
|
Jamka M, Czochralska-Duszyńska A, Mądry E, Lisowska A, Jończyk-Potoczna K, Cielecka-Piontek J, Bogdański P, Walkowiak J. The Effect of Conjugated Linoleic Acid Supplementation on Densitometric Parameters in Overweight and Obese Women-A Randomised Controlled Trial. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1690. [PMID: 37763810 PMCID: PMC10537680 DOI: 10.3390/medicina59091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Conjugated linoleic acid (CLA) can improve bone health in animals, yet the effects on humans have not been consistent. Therefore, this parallel randomised controlled trial aimed to assess the effect of CLA supplementation on bone mineral density (BMD) and content (BMC) in overweight or obese women. Materials and Methods: The study population included 74 women who were divided into the CLA (n = 37) and control (n = 37) groups. The CLA group received six capsules per day containing approximately 3 g of cis-9, trans-11 and trans-10, cis-12 CLA isomers in a 50:50 ratio. The control group received the same number of placebo capsules that contained sunflower oil. BMC and BMD at total body, lumbar spine (L1-L4), and femoral neck were measured before and after a three-month intervention. Results: The comparison of BMC and BMD for the total body, lumbar spine (L1-L4), and femoral neck before and after the intervention showed no differences between the groups. However, a within-group analysis demonstrated a significant increase in BMC (p = 0.0100) and BMD (p = 0.0397) at lumbar spine (L1-L4) in the CLA group. Nevertheless, there were no significant differences between the CLA and placebo groups in changes in all analysed densitometric parameters. Conclusions: Altogether, three-month CLA supplementation in overweight and obese women did not improve bone health, although the short intervention period could have limited our findings, long-term intervention studies are needed. The study protocol was registered in the German Clinical Trials Register database (ID: DRKS00010462, date of registration: 4 May 2016).
Collapse
Affiliation(s)
- Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Agata Czochralska-Duszyńska
- Department of Physiology, Poznan University of Medical Sciences, Święcickiego Str. 6, 61-781 Poznań, Poland; (A.C.-D.); (E.M.)
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, Święcickiego Str. 6, 61-781 Poznań, Poland; (A.C.-D.); (E.M.)
| | - Aleksandra Lisowska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Katarzyna Jończyk-Potoczna
- Department of Pediatric Radiology, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka Str. 3, 60-806 Poznań, Poland;
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego Str. 84, 60-569 Poznań, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| |
Collapse
|
14
|
Wang X, Yang S, He G, Xie L. The association between weight-adjusted-waist index and total bone mineral density in adolescents: NHANES 2011-2018. Front Endocrinol (Lausanne) 2023; 14:1191501. [PMID: 37265707 PMCID: PMC10231032 DOI: 10.3389/fendo.2023.1191501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction The weight-adjusted waist index (WWI) serves as an innovative obesity measure, seemingly surpassing body mass index (BMI) and waist circumference (WC) in evaluating lean and fat mass. This study aimed to explore the relationship between WWI and total bone mineral density (BMD) in US adolescents. Methods This population-based study investigated adolescents aged 8-19 years with comprehensive WWI and total BMD data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. WWI was computed by dividing WC by the square root of body weight. Weighted multivariate linear regression and smoothed curve fitting were employed to examine linear and non-linear associations. Threshold effects were determined using a two-part linear regression model. Additionally, subgroup analyses and interaction tests were conducted. Results Multivariate linear regression analysis revealed a significant negative association between WWI and total BMD in 6,923 US adolescents aged 8-19 years [β = -0.03, 95% CI: (-0.03, -0.03)]. This negative correlation remained consistent across all subcategories, with the exception of age, encompassing gender,ethnicity, and diabetes status subgroups. Furthermore, a non-linear relationship and saturation effect between WWI and total BMD were identified, with an inflection point at 9.88 cm/√kg. Conclusions Our research demonstrated a notable negative relationship and saturation effect between WWI and total BMD among US adolescents.
Collapse
|