1
|
Preto RM, Dos Santos VCT, Lordelo MVS, Pereira GHF, Leite LCDC, Gonçalves VM, Barazzone GC. Optimization of methods for isolation and purification of outer membrane vesicles (OMVs) from Neisseria lactamica. Appl Microbiol Biotechnol 2025; 109:82. [PMID: 40192813 DOI: 10.1007/s00253-025-13460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria during growth, mainly under stress conditions. OMV-based vaccines have played an important role in vaccination against Neisseria meningitidis serogroup B (MenB), stimulating research into novel approaches for developing more effective vaccines. OMVs released by the bacterium Neisseria lactamica have emerged as a promising platform for new vaccine development, especially as carriers in subunit vaccines. Despite their importance, some challenges remain in obtaining and purifying OMVs. The most commonly employed methods for OMV isolation and purification are ultracentrifugation (UC) and size exclusion chromatography (SEC). However, these techniques could present limitations for large-scale production and often result in low yields. This study investigated techniques such as tangential flow filtration (TFF), membrane chromatography, and mixed-mode (multimodal) chromatography as potential replacements for UC and SEC. Among the TFF methods evaluated, the sample obtained on the membrane with a 300-kDa cutoff showed a profile more similar to UC but with more than double the total protein recovery. Sartobind® Q membrane chromatography was ineffective for OMV purification, in the conditions evaluated, with a recovery of 8.7%. Conversely, multimodal Capto™ Adhere chromatography recovered 59.0%, while Capto™ Core 400 yielded a recovery of 72.0%, proving to be more effective for purification when analyzed by high-performance liquid chromatography (HPLC). Thus, combining TFF with a 300-kDa membrane followed by Capto™ Core 400 chromatography can be applied as strategy for large-scale applications offering high recovery and purity. KEY POINTS: • Evaluation of TFF, membrane and multimodal chromatography techniques for OMV purification. • Improved Neisseria lactamica OMV yields combining TFF and multimodal chromatography. • A process for OMV purification from a non-pathogenic organism feasible to scale up.
Collapse
Affiliation(s)
- Ronaldo Moraes Preto
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Vithória Carolyna Trindade Dos Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Vinicius Santos Lordelo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Getúlio Henrique Ferreira Pereira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
2
|
Pamulang YV, Oontawee S, Rodprasert W, Padeta I, Sa-Ard-Lam N, Mahanonda R, Osathanon T, Somparn P, Pisitkun T, Torsahakul C, Sawangmake C. Potential upscaling protocol establishment and wound healing bioactivity screening of exosomes isolated from canine adipose-derived mesenchymal stem cells. Sci Rep 2025; 15:10617. [PMID: 40148423 PMCID: PMC11950392 DOI: 10.1038/s41598-025-93219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stem cell-derived exosomes exhibit promising potential in tissue regeneration. Recent studies highlight its significant therapeutic potential in various stages of wound healing. However, the clinical translation of exosome-based therapy was hindered due to issues regarding low productivity and the lack of efficient production protocol to obtain a clinically relevant exosome quantity. Therefore, this study established a potential upscaling protocol to produce exosomes derived from canine adipose-derived mesenchymal stem cells (cAD-MSCs) and explored its potential for wound treatment. The potential upscaling protocol, termed VSCBIC-3-3D, was carried out using VSCBIC-3 in-house serum-free exosome-collecting solution in a three-dimensional (3D) culture system followed by the tangential flow filtration (TFF) isolation. Our findings suggest that culturing cAD-MSCs with VSCBIC-3 maintained cell morphology and viability. Compared to conventional two-dimensional (2D) protocols, The potential upscaling protocol increased exosome yield and concentration in conditioned medium by 2.4-fold and 3.2-fold, respectively. The quality assessment revealed enhanced purity and bioactivity of exosomes produced using the VSCBIC-3-3D protocol. In addition, the cAD-MSCs-derived exosomes were shown to significantly improve fibroblast migration, proliferation, and wound healing-related gene expression in vitro. This study collectively demonstrates that potential upscaling protocol establishment allowed robust production of exosomes from cAD-MSCs, which exhibit therapeutic potential for wound healing in vitro.
Collapse
Affiliation(s)
- Yudith Violetta Pamulang
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saranyou Oontawee
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Irma Padeta
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Noppadol Sa-Ard-Lam
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rangsini Mahanonda
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chutirat Torsahakul
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chenphop Sawangmake
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Gerlt M, Laurell T. Acoustofluidic Chromatography for Extracellular Vesicle Enrichment from 4 μL Blood Plasma Samples. Anal Chem 2025; 97:6049-6058. [PMID: 40079471 PMCID: PMC11948168 DOI: 10.1021/acs.analchem.4c06105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/13/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
We present a novel acoustofluidic chromatography platform for high-throughput nanoparticle trapping and enrichment, with a focus on extracellular vesicles (EVs) from blood plasma. The system features a packed bed of polystyrene beads inside a rectangular glass capillary, acoustically actuated by a piezoelectric element. Using fluorescent polystyrene nanoparticles as small as 25 nm, we characterized device performance across a frequency range of 0.45-4 MHz, demonstrating particle trapping at all tested frequencies. The platform achieved recoveries of up to 42.9 ± 3.2% at input powers as low as 55 mW and operated at high flow rates of up to 200 μL/min. Trapping capacity reached 6.7 × 109 ± 2.5 × 109 particles for 25 nm polystyrene beads. For EV isolation, processing just 4 μL of blood plasma yielded 2 × 108 washed EV-sized particles eluted in 100 μL within 8 min. Micro BCA analysis confirmed a plasma protein background below 2 μg/mL, enabling downstream mass spectrometry. This platform provides an efficient, high-throughput approach for nanoparticle trapping and EV enrichment with minimal sample volumes, offering potential applications in diagnostics and therapeutic development. Future work will focus on optimizing bead properties for EV subpopulation separation and scaling the system for clinical applications.
Collapse
Affiliation(s)
| | - Thomas Laurell
- Acoustofluidics
Group, Lund University, Lund 221 00, Sweden
| |
Collapse
|
4
|
Wiest EF, Zubair AC. Generation of Current Good Manufacturing Practices-Grade Mesenchymal Stromal Cell-Derived Extracellular Vesicles Using Automated Bioreactors. BIOLOGY 2025; 14:313. [PMID: 40136569 PMCID: PMC11940689 DOI: 10.3390/biology14030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Interest in Current Good Manufacturing Practices (cGMP)-grade extracellular vesicles (EVs) is expanding. Some obstacles in this new but rapidly growing field include a lack of standardization and scalability. This review focuses on automated biomanufacturing of EVs in conditioned media collected from cultured mesenchymal stromal cells (MSCs). Different automated cell culture systems are discussed, including factors affecting EV quantity and quality, isolating EVs manufactured in an automated system, and validations needed. The ultimate goal when manufacturing cGMP-grade EVs is to identify a specific application and characterize the EV population in detail. This is achieved by validating every step of the process, choosing appropriate release criteria, and assuring batch-to-batch consistency. Due to the lack of standards in the field, it is critical to ensure that the cGMP-grade EVs meet FDA standards pertaining to identity, reproducibility, sterility, safety, purity, and potency. A closed-system automated bioreactor can be a valuable tool to generate cGMP-EVs in a scalable, economical, and reproducible manner.
Collapse
Affiliation(s)
- Elani F. Wiest
- Department of Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Abba C. Zubair
- Department of Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL 32224, USA;
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
5
|
Odehnalová N, Šandriková V, Hromadka R, Skaličková M, Dytrych P, Hoskovec D, Kejík Z, Hajduch J, Vellieux F, Vašáková MK, Martásek P, Jakubek M. The potential of exosomes in regenerative medicine and in the diagnosis and therapies of neurodegenerative diseases and cancer. Front Med (Lausanne) 2025; 12:1539714. [PMID: 40182844 PMCID: PMC11966052 DOI: 10.3389/fmed.2025.1539714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025] Open
Abstract
Exosomes, nanosized extracellular vesicles released by various cell types, are intensively studied for the diagnosis and treatment of cancer and neurodegenerative diseases, and they also display high usability in regenerative medicine. Emphasizing their diagnostic potential, exosomes serve as carriers of disease-specific biomarkers, enabling non-invasive early detection and personalized medicine. The cargo loading of exosomes with therapeutic agents presents an innovative strategy for targeted drug delivery, minimizing off-target effects and optimizing therapeutic interventions. In regenerative medicine, exosomes play a crucial role in intercellular communication, facilitating tissue regeneration through the transmission of bioactive molecules. While acknowledging existing challenges in standardization and scalability, ongoing research efforts aim to refine methodologies and address regulatory considerations. In summary, this review underscores the transformative potential of exosomes in reshaping the landscape of medical interventions, with a particular emphasis on cancer, neurodegenerative diseases, and regenerative medicine.
Collapse
Affiliation(s)
- Nikola Odehnalová
- NEXARS Research and Development Center C2P s.r.o, Chlumec nad Cidlinou, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| | - Viera Šandriková
- NEXARS Research and Development Center C2P s.r.o, Chlumec nad Cidlinou, Czechia
| | - Róbert Hromadka
- NEXARS Research and Development Center C2P s.r.o, Chlumec nad Cidlinou, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Petr Dytrych
- Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - David Hoskovec
- Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- The Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Martina Koziar Vašáková
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
6
|
Ljungström M, Oltra E. Methods for Extracellular Vesicle Isolation: Relevance for Encapsulated miRNAs in Disease Diagnosis and Treatment. Genes (Basel) 2025; 16:330. [PMID: 40149481 PMCID: PMC11942051 DOI: 10.3390/genes16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles that facilitate intercellular communication by carrying essential biomolecules under physiological and pathological conditions including microRNAs (miRNAs). They are found in various body fluids, such as blood, urine, and saliva, and their levels fluctuate with disease progression, making them valuable diagnostic tools. However, isolating EVs is challenging due to their small size and biological complexity. Here, we summarize the principles behind the most common EV isolation methods including ultracentrifugation, precipitation, immunoaffinity, sorting, ultrafiltration, size exclusion chromatography, and microfluidics while highlighting protocol strengths and weaknesses. We also review the main strategies to identify and quantify circulating miRNAs with a particular focus on EV-encapsulated miRNAs. Since these miRNAs hold special clinical interest derived from their superior stability and therapeutic potential, the information provided here should provide valuable guidance for future research initiatives in the promising field of disease diagnostic and treatment based on EV-encapsulated miRNAs.
Collapse
Affiliation(s)
- Maria Ljungström
- Escuela de Doctorado, School of Health Sciences, Catholic University of Valencia, 46001 Valencia, Spain;
| | - Elisa Oltra
- Department of Pathology, School of Health Sciences, Catholic University of Valencia, 46001 Valencia, Spain
| |
Collapse
|
7
|
Saint-Pol J, Culot M. Minimum information for studies of extracellular vesicles (MISEV) as toolbox for rigorous, reproducible and homogeneous studies on extracellular vesicles. Toxicol In Vitro 2025; 106:106049. [PMID: 40074066 DOI: 10.1016/j.tiv.2025.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Studies based on extracellular vesicles (EVs) have been multiplying exponentially for almost two decades, since they were first identified as vectors of cell-cell communication. However, several of these studies display a lack of rigor in EVs characterization and isolation, without discriminating between the different EV populations, thus generating conflicting and unreproducible results. There is therefore a strong need for standardization and guidelines to conduct studies that are rigorous, transparent, reproducible and comply with certain nomenclatures concerning the type of EVs used. The International Society for Extracellular Vesicles (ISEV) published the Minimum Information for Studies of Extracellular Vesicles (MISEV) in 2014, updating it in 2018 and 2023 to reflect different study contexts and technical advancements. The primary objective of this review is to inform future authors about EVs, including their history, nomenclature, and technical recommendations for the for isolation and functionality analysis for conducing EV-based studies according to current standards. Additionally, it aims to inform reviewers about the key parameters required for characterizing EV preparations.
Collapse
Affiliation(s)
- Julien Saint-Pol
- Univ. Artois, UR 2465, Blood-Brain Barrier laboratory (LBHE), F-62300 Lens, France.
| | - Maxime Culot
- Univ. Artois, UR 2465, Blood-Brain Barrier laboratory (LBHE), F-62300 Lens, France
| |
Collapse
|
8
|
Patel AA, Shafie A, Mohamed AH, Ali SAJ, Tayeb FJ, Waggiallah HA, Ahmad I, Sheweita SA, Muzammil K, AlShahrani AM, Al Abdulmonem W. The promise of mesenchymal stromal/stem cells in erectile dysfunction treatment: a review of current insights and future directions. Stem Cell Res Ther 2025; 16:98. [PMID: 40012076 DOI: 10.1186/s13287-025-04221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
Erectile dysfunction is a common and multifactorial condition that significantly impacts men's quality of life. Traditional treatments, such as phosphodiesterase type 5 inhibitors (PDE5i), often fail to provide lasting benefits, particularly in patients with underlying health conditions. In recent years, regenerative medicine, particularly stem cell therapies, has emerged as a promising alternative for managing erectile dysfunction. This review explores the potential of mesenchymal stromal/stem cells (MSCs) and their paracrine effects, including extracellular vesicles (EVs), in the treatment of erectile dysfunction. MSCs have shown remarkable potential in promoting tissue repair, reducing inflammation, and regenerating smooth muscle cells, offering therapeutic benefits in models of erectile dysfunction. Clinical trials have demonstrated positive outcomes in improving erectile function and other clinical parameters. This review highlights the promise of MSC therapy for erectile dysfunction, discusses existing challenges, and emphasizes the need for continued research to refine these therapies and improve long-term patient outcomes.
Collapse
Affiliation(s)
- Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | | | - Faris J Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkarj, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Salah Ahmed Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, 62561, Abha, Saudi Arabia
| | - Abdullah M AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait, King Khalid University (KKU), 62561, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Kim S, Kim YK, Kim S, Choi YS, Lee I, Joo H, Kim J, Kwon M, Park S, Jo MK, Choi Y, D'Souza T, Jung JW, Zakhem E, Lenzini S, Woo J, Choi H, Park J, Park SY, Kim GB, Nam GH, Kim IS. Dual-mode action of scalable, high-quality engineered stem cell-derived SIRPα-extracellular vesicles for treating acute liver failure. Nat Commun 2025; 16:1903. [PMID: 39988725 PMCID: PMC11847939 DOI: 10.1038/s41467-025-57133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Acute liver failure (ALF) is a life-threatening condition caused by rapid hepatocyte death and impaired liver regeneration. Here we show that extracellular vesicles engineered to express Signal Regulatory Protein Alpha (SIRP-EVs), produced via a scalable 3D bioreactor process with high yield and purity, exhibit significant therapeutic potential by targeting damaged cells and promoting tissue repair. SIRP-EVs block CD47, a crucial inhibitory signal on necroptotic cells, to enhance macrophage-mediated clearance of dying hepatocytes. They also deliver regenerative cargo from mesenchymal stem cells, reprogramming macrophages to support liver regeneration. In male animal models, SIRP-EVs significantly reduce liver injury markers and improve survival, demonstrating their dual-function therapeutic efficacy. By integrating the resolution of necroptosis with regenerative macrophage reprogramming, SIRP-EVs represent a promising platform for restoring liver function. These findings support the development of EV-based in vivo macrophage reprogramming therapies for ALF and other inflammation-driven diseases, paving the way for the clinical application of engineered EV therapeutics.
Collapse
Grants
- This research was funded by National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant Number: RS-2017-NR022964).
- This research was supported by SHIFTBIO INC., Korean Fund for Regenerative Medicine funded by Ministry of Science and ICT, and Ministry of Health and Welfare (Grant Number: 23C0111L1), a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: RS-2023-KH136648), and a grant of the BIG3 Project, funded by the Ministry of SMEs and Startups, Republic of Korea (Grant Number: RS-2022-TI022422).
- This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: RS-2023-KH136648; RS-2023-KH140007).
Collapse
Affiliation(s)
| | | | | | | | - Inkyu Lee
- SHIFTBIO INC, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Hyemin Joo
- SHIFTBIO INC, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | | | - Minjeong Kwon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seryoung Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Kyoung Jo
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Portrai, Inc, Seoul, Republic of Korea
| | | | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | | | - Gi-Hoon Nam
- SHIFTBIO INC, Seoul, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| |
Collapse
|
10
|
Jiao Q, Liu J, Zhou L, McClements DJ, Liu W, Luo J, Peng S. Lactobacillus extracellular vesicles alleviate alcohol-induced liver injury in mice by regulating gut microbiota and activating the Nrf-2 signaling pathway. Food Funct 2025; 16:1284-1298. [PMID: 39865864 DOI: 10.1039/d4fo04364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Lactobacillus derived extracellular vesicles (LAB-EVs) are nanosized particles secreted from Lactobacillus during fermentation, and therefore exist universally in fermented foods such as yogurt, pickles, and fermented beverages. In this study, three LAB-EVs were prepared using a simple scalable method, and then their structures, compositions, and biosafety properties were characterized. The protective properties and potential mechanisms of action of the LAB-EVs against alcoholic liver disease were studied. All three LAB-EVs alleviated alcohol-induced liver injury. It was shown by reduction of liver index, histological damage, liver function impairment, inflammation, and liver oxidative status. The results showed that three LAB-EVs positively promoted the diversity of intestinal flora in mice. Additionally, the relative hepatic protein level of Nrf-2, HO-1, and CYP2E1 was also regulated by LAB-EVs. In summary, these facts suggest that the three LAB-EVs can alleviate alcohol-induced liver damage, by positively modulating the intestinal flora and activation of the Nrf-2 signaling pathway. These results may facilitate the understanding of the composition and function of Lactobacillus fermented food and also the development of Lactobacillus fermented functional food.
Collapse
Affiliation(s)
- Qianqian Jiao
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China.
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Jin Liu
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Jun Luo
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China.
| | - Shengfeng Peng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China.
| |
Collapse
|
11
|
Vasu S, Johnson V, M A, Reddy KA, Sukumar UK. Circulating Extracellular Vesicles as Promising Biomarkers for Precession Diagnostics: A Perspective on Lung Cancer. ACS Biomater Sci Eng 2025; 11:95-134. [PMID: 39636879 DOI: 10.1021/acsbiomaterials.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers in liquid biopsy, owing to their ubiquitous presence in bodily fluids and their ability to carry disease-related cargo. Recognizing their significance in disease diagnosis and treatment, substantial efforts have been dedicated to developing efficient methods for EV isolation, detection, and analysis. EVs, heterogeneous membrane-encapsulated vesicles secreted by all cells, contain bioactive substances capable of modulating recipient cell biology upon internalization, including proteins, lipids, DNA, and various RNAs. Their prevalence across bodily fluids has positioned them as pivotal mediators in physiological and pathological processes, notably in cancer, where they hold potential as straightforward tumor biomarkers. This review offers a comprehensive examination of advanced nanotechnology-based techniques for detecting lung cancer through EV analysis. It begins by providing a brief overview of exosomes and their role in lung cancer progression. Furthermore, this review explores the evolving landscape of EV isolation and cargo analysis, highlighting the importance of characterizing specific biomolecular signatures within EVs for improved diagnostic accuracy in lung cancer patients. Innovative strategies for enhancing the sensitivity and specificity of EV isolation and detection, including the integration of microfluidic platforms and multiplexed biosensing technologies are summarized. The discussion then extends to key challenges associated with EV-based liquid biopsies, such as the standardization of isolation and detection protocols and the establishment of robust analytical platforms for clinical translation. This review highlights the transformative impact of EV-based liquid biopsy in lung cancer diagnosis, heralding a new era of personalized medicine and improved patient care.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Archana M
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Uday Kumar Sukumar
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| |
Collapse
|
12
|
Liu W, Wang X, Chen Y, Yuan J, Zhang H, Jin X, Jiang Y, Cao J, Wang Z, Yang S, Wang B, Wu T, Li J. Distinct molecular properties and functions of small EV subpopulations isolated from human umbilical cord MSCs using tangential flow filtration combined with size exclusion chromatography. J Extracell Vesicles 2025; 14:e70029. [PMID: 39783889 PMCID: PMC11714183 DOI: 10.1002/jev2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
As functional derivatives of mesenchymal stem cells (MSCs), small extracellular vesicles (sEVs) have garnered significant attention and application in regenerative medicine. However, the technical limitations for large-scale isolation of sEVs and their heterogeneous nature have added complexity to their applications. It remains unclear if the heterogeneous sEVs represent different aspects of MSCs functions. Here, we provide a method for the large-scale production of sEVs subpopulations derived from human umbilical cord mesenchymal stem cells (HucMSCs), utilizing tangential flow filtration combined with size exclusion chromatography. The resulting subpopulations, S1-sEVs and S2-sEVs, exhibited stable variations in size, membrane-marked proteins, and carrying cargos, thereby displaying distinct functions both in vitro and in animal disease models. S1-sEVs, that highly expressed CD9, HRS and GPC1, demonstrated a greater immunomodulatory impact, while S2-sEVs with enriched expression of CD63 and FLOT1/2 possessed enhanced capacities in promoting cell proliferation and angiogenesis. These discrepancies are attributed to the specific proteins and miRNAs they contain. Further investigation revealed that the two distinct sEVs subpopulations corresponded to different biological processes: the ESCRT pathway (S1-sEVs) and the ESCRT-independent pathway represented by lipid rafts (S2-sEVs). Therefore, we propose the potential for large-scale isolation and purification of sEVs subpopulations from HucMSCs with distinct functions. This approach may provide advantages for targeted therapeutic interventions in various MSC indications.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Reproductive Medicine and offspring healthNanjing Medical UniversityNanjingChina
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinyu Wang
- State Key Laboratory of Reproductive Medicine and offspring healthNanjing Medical UniversityNanjingChina
| | - Yating Chen
- State Key Laboratory of Reproductive Medicine and offspring healthNanjing Medical UniversityNanjingChina
| | - Jiapei Yuan
- State Key Laboratory of Reproductive Medicine and offspring healthNanjing Medical UniversityNanjingChina
| | - Huiyu Zhang
- State Key Laboratory of Reproductive Medicine and offspring healthNanjing Medical UniversityNanjingChina
| | - Xin Jin
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxiChina
| | - Yuying Jiang
- State Key Laboratory of Reproductive Medicine and offspring healthNanjing Medical UniversityNanjingChina
| | - Junjing Cao
- State Key Laboratory of Reproductive Medicine and offspring healthNanjing Medical UniversityNanjingChina
| | - Zibin Wang
- Center for Analysis and TestingNanjing Medical UniversityNanjingChina
| | - Shuo Yang
- State Key Laboratory of Reproductive Medicine and offspring healthNanjing Medical UniversityNanjingChina
- Department of Immunology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityNanjingChina
| | - Bingwei Wang
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Tinghe Wu
- Kornelis Bio‐pharmaceutical Company LimitedNanjingChina
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and offspring healthNanjing Medical UniversityNanjingChina
- Innovation Center of Suzhou Nanjing Medical UniversitySuzhouChina
| |
Collapse
|
13
|
Leung LL, Qu X, Chen B, Chan JYK. Extracellular vesicles in liquid biopsies: there is hope for oral squamous cell carcinoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:639-659. [PMID: 39811735 PMCID: PMC11725428 DOI: 10.20517/evcna.2024.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/29/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Current approaches to oral cancer diagnosis primarily involve physical examination, tissue biopsy, and advanced computer-aided imaging techniques. However, despite these advances, patient survival rates have not significantly improved. Hence, there is a critical need to develop minimally invasive tools with high sensitivity and specificity to improve patient survival and quality of life. Liquid biopsy is a non-invasive, real-time method for predicting cancer status and potentially serves as a biomarker source for treatment response. Liquid biopsy includes rich biologically relevant components, such as circulating tumor cells, circulating tumor DNA, and extracellular vesicles (EVs). EVs are particularly intriguing due to their relatively high abundance in most biofluids, with the potential to identify specific cargo derived from circulating tumor EVs. Moreover, normal cells in lymph nodes can uptake EVs, fostering a pre-metastatic microenvironment that facilitates lymph node metastases - a common occurrence in oral cancers. This review encompasses English language publications over the last twenty years, focusing on methods for isolating EVs from saliva, blood, and lymphatic fluids, as well as the collection methods employed. Seventeen cases met the inclusion criteria according to ISEV guidelines, including 10 saliva cases, 6 blood cases, and 1 lymphatic fluid case. This review also highlighted research gaps in oral squamous cell carcinoma (OSCC) EVs, including a lack of multi-omics studies and the exploration of potential EV markers for drug resistance, as well as a notable underutilization of microfluidic technologies to translate liquid biopsy EV findings into clinical applications.
Collapse
Affiliation(s)
| | | | | | - Jason YK. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 00000, China
| |
Collapse
|
14
|
Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol 2024; 50:102121. [PMID: 39278189 PMCID: PMC11418158 DOI: 10.1016/j.tranon.2024.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Exosomes are small, round vesicles in the 30 and 120 nm diameter range released by all living cell types. Exosomes play many essential functions in intercellular communication and tissue crosstalk in the human body. They can potentially be used as strong biomarkers and therapeutic agents for early diagnosis, therapy response, and prognosis of different diseases. The main requirements for exosomal large-scale clinical practice application are rapid, easy, high-yield, high purity, characterization, safety, low cost, and therapeutic efficacy. Depending on the sample types, environmental insults, and exosome quantity, exosomes can be isolated from various sources, including body fluids, solid tissues, and cell culture medium using different procedures. This study comprehensively analyzed the current research progress in exosome isolation and characterization strategies along with their advantages and disadvantages. The provided information will make it easier to select exosome separation methods based on the types of biological samples available, and it will facilitate the use of exosomes in translational and clinical research, particularly in cancer. Lay abstract Exosomes have recently received much attention due to their potential to function as biomarkers and novel therapeutic agents for early diagnosis, therapeutic response, and prognosis in various diseases. This review summarizes many approaches for isolating and characterizing exosomes, focusing on developing technologies, and provides an in-depth comparison and analysis of each method, including its principles, advantages, and limitations.
Collapse
Affiliation(s)
- Nihat Dilsiz
- Experimental Medicine Application and Research Center (EMARC) Validebag Research Park, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
15
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Zeng YB, Deng X, Shen LS, Yang Y, Zhou X, Ye L, Chen S, Yang DJ, Chen GQ. Advances in plant-derived extracellular vesicles: isolation, composition, and biological functions. Food Funct 2024; 15:11319-11341. [PMID: 39523827 DOI: 10.1039/d4fo04321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Plant-derived extracellular vesicles (PDEVs) are nanoscale vesicles released from plant cells into the extracellular space. While similar in structure and function to mammalian-derived EVs, PDEVs are unique due to their origin and the specific metabolites they carry. PDEVs have gained significant attention in recent years, with numerous reports isolating different PDEVs from various plants, each exhibiting diverse biological functions. However, the field is still in its early stages, and many issues need further exploration. To better develop and utilize PDEVs, it is essential to have a comprehensive understanding of their characteristics. This review provides an overview of recent advances in PDEV research. It focuses on the methods and techniques for isolating and purifying PDEVs, comparing their respective advantages, limitations, and application scenarios. Furthermore, we discuss the latest discoveries regarding the composition of PDEVs, including lipids, proteins, nucleic acids, and various plant metabolites. Additionally, we detail advanced studies on the multiple biological functions of PDEVs. Our goal is to advance our understanding of PDEVs and encourage further exploration in PDEV-based science and technology, offering insights into their potential applications for human health.
Collapse
Affiliation(s)
- Yao-Bo Zeng
- Department of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 402760, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xun Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
- Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
- Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, China
| | - Xing Zhou
- Department of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| | - Da-Jian Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
- Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| |
Collapse
|
17
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Milk-Derived Extracellular Vesicles: A Novel Perspective on Comparative Therapeutics and Targeted Nanocarrier Application. Vaccines (Basel) 2024; 12:1282. [PMID: 39591185 PMCID: PMC11599128 DOI: 10.3390/vaccines12111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Milk-derived extracellular vesicles (mEVs) are emerging as promising therapeutic candidates due to their unique properties and versatile functions. These vesicles play a crucial role in immunomodulation by influencing macrophage differentiation and cytokine production, potentially aiding in the treatment of conditions such as bone loss, fibrosis, and cancer. mEVs also have the capacity to modulate gut microbiota composition, which may alleviate the symptoms of inflammatory bowel diseases and promote intestinal barrier integrity. Their potential as drug delivery vehicles is significant, enhancing the stability, solubility, and bioavailability of anticancer agents while supporting wound healing and reducing inflammation. Additionally, bovine mEVs exhibit anti-aging properties and protect skin cells from UV damage. As vaccine platforms, mEVs offer advantages including biocompatibility, antigen protection, and the ability to elicit robust immune responses through targeted delivery to specific immune cells. Despite these promising applications, challenges persist, including their complex roles in cancer, effective antigen loading, regulatory hurdles, and the need for standardized production methods. Achieving high targeting specificity and understanding the long-term effects of mEV-based therapies are essential for clinical translation. Ongoing research aims to optimize mEV production methods, enhance targeting capabilities, and conduct rigorous preclinical and clinical studies. By addressing these challenges, mEVs hold the potential to revolutionize vaccine development and targeted drug delivery, ultimately improving therapeutic outcomes across various medical fields.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
18
|
Zhang SH, Peng LL, Chen YF, Xu Y, Moradi V. Focusing on exosomes to overcome the existing bottlenecks of CAR-T cell therapy. Inflamm Regen 2024; 44:45. [PMID: 39490997 PMCID: PMC11533312 DOI: 10.1186/s41232-024-00358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Since chimeric antigen receptor T (CAR-T) cells were introduced three decades ago, the treatment using these cells has led to outstanding outcomes, and at the moment, CAR-T cell therapy is a well-established mainstay for treating CD19 + malignancies and multiple myeloma. Despite the astonishing results of CAR-T cell therapy in B-cell-derived malignancies, several bottlenecks must be overcome to promote its safety and efficacy and broaden its applicability. These bottlenecks include cumbersome production process, safety concerns of viral vectors, poor efficacy in treating solid tumors, life-threatening side effects, and dysfunctionality of infused CAR-T cells over time. Exosomes are nano-sized vesicles that are secreted by all living cells and play an essential role in cellular crosstalk by bridging between cells. In this review, we discuss how the existing bottlenecks of CAR-T cell therapy can be overcome by focusing on exosomes. First, we delve into the effect of tumor-derived exosomes on the CAR-T cell function and discuss how inhibiting their secretion can enhance the efficacy of CAR-T cell therapy. Afterward, the application of exosomes to the manufacturing of CAR-T cells in a non-viral approach is discussed. We also review the latest advancements in ex vivo activation and cultivation of CAR-T cells using exosomes, as well as the potential of engineered exosomes to in vivo induction or boost the in vivo proliferation of CAR-T cells. Finally, we discuss how CAR-engineered exosomes can be used as a versatile tool for the direct killing of tumor cells or delivering intended therapeutic payloads in a targeted manner.
Collapse
Affiliation(s)
- Si-Heng Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310000, China
| | - Ling-Long Peng
- Wuhu Hospital, East China Normal University (The Second People's Hospital of Wuhu), Wuhu, 241000, China
| | - Yi-Fei Chen
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Yan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310000, China.
| | - Vahid Moradi
- Hematology and Bood Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Rahnama M, Heidari M, Poursalehi Z, Golchin A. Global Trends of Exosomes Application in Clinical Trials: A Scoping Review. Stem Cell Rev Rep 2024; 20:2165-2193. [PMID: 39340738 DOI: 10.1007/s12015-024-10791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Exosomes, nano-sized extracellular vesicles, have emerged as a promising tool for the diagnosis and treatment of various intractable diseases, including chronic wounds and cancers. As our understanding of exosomes continues to grow, their potential as a powerful therapeutic modality in medicine is also expanding. This systematic review aims to examine the progress of exosome-based clinical trials and provide a comprehensive overview of the therapeutic perspectives of exosomes. METHODS This systematic review strictly follows PRISMA guidelines and has been registered in PROSPERO, the International Prospective Register of Systematic Reviews. It encompasses articles from January 2000 to January 2023, sourced from bibliographic databases, with targeted search terms targeting exosome applications in clinical trials. During the screening process, strict inclusion and exclusion criteria were applied, including a focus on clinical trials utilizing different cell-derived exosomes for therapeutic purposes. RESULTS Among the 522 publications initially identified, only 10 studies met the stringent eligibility criteria after meticulous screening. The selection process involved systematically excluding duplicates and irrelevant articles to provide a transparent overview. CONCLUSION According to our systematic review, exosomes have promising applications in a variety of medical fields, including cell-free therapies and drug delivery systems for treating a variety of diseases, especially cancers and chronic wounds. To ensure safety, potency, and broader clinical applications, further optimization of exosome extraction, loading, targeting, and administration is necessary. While cell-based therapeutics are increasingly utilizing exosomes, this field is still in its infancy, and ongoing clinical trials will provide valuable insights into the clinical utility of exosomes.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Heidari
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Poursalehi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
20
|
Ale Y, Nainwal N. Exosomes as nanocarrier for Neurotherapy: Journey from application to challenges. J Drug Deliv Sci Technol 2024; 101:106312. [DOI: 10.1016/j.jddst.2024.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Zhang Y, Wu D, Zhou C, Bai M, Wan Y, Zheng Q, Fan Z, Wang X, Yang C. Engineered extracellular vesicles for tissue repair and regeneration. BURNS & TRAUMA 2024; 12:tkae062. [PMID: 39439545 PMCID: PMC11495891 DOI: 10.1093/burnst/tkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-like vesicles secreted by living cells that are involved in many physiological and pathological processes and act as intermediaries of intercellular communication and molecular transfer. Recent studies have shown that EVs from specific sources regulate tissue repair and regeneration by delivering proteins, lipids, and nucleic acids to target cells as signaling molecules. Nanotechnology breakthroughs have facilitated the development and exploration of engineered EVs for tissue repair. Enhancements through gene editing, surface modification, and content modification have further improved their therapeutic efficacy. This review summarizes the potential of EVs in tissue repair and regeneration, their mechanisms of action, and their research progress in regenerative medicine. This review highlights their design logic through typical examples and explores the development prospects of EVs in tissue repair. The aim of this review is to provide new insights into the design of EVs for tissue repair and regeneration applications, thereby expanding their use in regenerative medicine.
Collapse
Affiliation(s)
- Yan Zhang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
- School of Public Health, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Dan Wu
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Chen Zhou
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025 Shennan Middle Road, Futian District, Shenzhen, China
| | - Muran Bai
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Yucheng Wan
- Hospital of Stomatology, Zunyi Medical University, No. 89, Wujiang East Road, Xinpu New District, Zunyi City, Guizhou Province, China
| | - Qing Zheng
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, No. 1168 Chunrong West Road, Yuhua Street, Chenggong District, Kunming City, Yunnan Province China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, No.81 Meishan Road, Shushan District, Hefei 230032, China
| | - Chun Yang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| |
Collapse
|
22
|
Gurriaran-Rodriguez U, De Repentigny Y, Kothary R, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography. Skelet Muscle 2024; 14:22. [PMID: 39394606 PMCID: PMC11468478 DOI: 10.1186/s13395-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain.
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
23
|
Tikhonov A, Kachanov A, Yudaeva A, Danilik O, Ponomareva N, Karandashov I, Kostyusheva A, Zamyatnin AA, Parodi A, Chulanov V, Brezgin S, Kostyushev D. Biomimetic Nanoparticles for Basic Drug Delivery. Pharmaceutics 2024; 16:1306. [PMID: 39458635 PMCID: PMC11510494 DOI: 10.3390/pharmaceutics16101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Biomimetic nanoparticles (BMNPs) are innovative nanovehicles that replicate the properties of naturally occurring extracellular vesicles, facilitating highly efficient drug delivery across biological barriers to target organs and tissues while ensuring maximal biocompatibility and minimal-to-no toxicity. BMNPs can be utilized for the delivery of therapeutic payloads and for imparting novel properties to other nanotechnologies based on organic and inorganic materials. The application of specifically modified biological membranes for coating organic and inorganic nanoparticles has the potential to enhance their therapeutic efficacy and biocompatibility, presenting a promising pathway for the advancement of drug delivery technologies. This manuscript is grounded in the fundamentals of biomimetic technologies, offering a comprehensive overview and analytical perspective on the preparation and functionalization of BMNPs, which include cell membrane-coated nanoparticles (CMCNPs), artificial cell-derived vesicles (ACDVs), and fully synthetic vesicles (fSVs). This review examines both "top-down" and "bottom-up" approaches for nanoparticle preparation, with a particular focus on techniques such as cell membrane coating, cargo loading, and microfluidic fabrication. Additionally, it addresses the technological challenges and potential solutions associated with the large-scale production and clinical application of BMNPs and related technologies.
Collapse
Affiliation(s)
- Andrey Tikhonov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
24
|
Wu J, Mao K, Zhang R, Fu Y. Extracellular vesicles in the pathogenesis of neurotropic viruses. Microb Pathog 2024; 195:106901. [PMID: 39218378 DOI: 10.1016/j.micpath.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Neurotropic viruses, characterized by their capacity to invade the central nervous system, present a considerable challenge to public health and are responsible for a diverse range of neurological disorders. This group includes a diverse array of viruses, such as herpes simplex virus, varicella zoster virus, poliovirus, enterovirus and Japanese encephalitis virus, among others. Some of these viruses exhibit high neuroinvasiveness and neurovirulence, while others demonstrate weaker neuroinvasive and neurovirulent properties. The clinical manifestations of infections caused by neurotropic viruses can vary significantly, ranging from mild symptoms to severe life-threatening conditions. Extracellular vesicles (EVs) have garnered considerable attention due to their pivotal role in intracellular communication, which modulates the biological activity of target cells via the transport of biomolecules in both health and disease. Investigating EVs in the context of virus infection is crucial for elucidating their potential role contribution to viral pathogenesis. This is because EVs derived from virus-infected cells frequently transfer viral components to uninfected cells. Importantly, EVs released by virus-infected cells have the capacity to traverse the blood-brain barrier (BBB), thereby impacting neuronal activity and inducing neuroinflammation. In this review, we explore the roles of EVs during neurotropic virus infections in either enhancing or inhibiting viral pathogenesis. We will delve into our current comprehension of the molecular mechanisms that underpin these roles, the potential implications for the infected host, and the prospective diagnostic applications that could arise from this understanding.
Collapse
Affiliation(s)
- Junyi Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Kedan Mao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
25
|
Louro AF, Meliciano A, Alves PM, Costa MHG, Serra M. A roadmap towards manufacturing extracellular vesicles for cardiac repair. Trends Biotechnol 2024; 42:1305-1322. [PMID: 38653588 DOI: 10.1016/j.tibtech.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
For the past two decades researchers have linked extracellular vesicle (EV)-mediated mechanisms to various physiological and pathological processes in the heart, such as immune response regulation, fibrosis, angiogenesis, and the survival and growth of cardiomyocytes. Although use of EVs has gathered momentum in the cardiac field, several obstacles in both upstream and downstream processes during EV manufacture need to be addressed before clinical success can be achieved. Low EV yields obtained in small-scale cultures deter clinical translation, as mass production is a prerequisite to meet therapeutic doses. Moreover, standardizing EV manufacture is critical given the inherent heterogeneity of EVs and the constraints of current isolation techniques. In this review, we discuss the critical steps for the large-scale manufacturing of high-potency EVs for cardiac therapies.
Collapse
Affiliation(s)
- Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Meliciano
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta H G Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
26
|
Brezgin S, Danilik O, Yudaeva A, Kachanov A, Kostyusheva A, Karandashov I, Ponomareva N, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. Basic Guide for Approaching Drug Delivery with Extracellular Vesicles. Int J Mol Sci 2024; 25:10401. [PMID: 39408730 PMCID: PMC11476574 DOI: 10.3390/ijms251910401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are natural carriers of biomolecules that play a crucial role in cell-to-cell communication and tissue homeostasis under normal and pathological conditions, including inflammatory diseases and cancer. Since the discovery of the pro-regenerative and immune-modulating properties of EVs, EV-based therapeutics have entered clinical trials for conditions such as myocardial infarction and autoimmune diseases, among others. Due to their unique advantages-such as superior bioavailability, substantial packaging capacity, and the ability to traverse biological barriers-EVs are regarded as a promising platform for targeted drug delivery. However, achieving a sufficient accumulation of therapeutic agents at the target site necessitates a larger quantity of EVs per dose compared to using EVs as standalone drugs. This challenge can be addressed by administering larger doses of EVs, increasing the drug dosage per administration, or enhancing the selective accumulation of EVs at target cells. In this review, we will discuss methods to improve the isolation and purification of EVs, approaches to enhance cargo packaging-including proteins, RNAs, and small-molecule drugs-and technologies for displaying targeting ligands on the surface of EVs to facilitate improved targeting. Ultimately, this guide can be applied to the development of novel classes of EV-based therapeutics and to overcoming existing technological challenges.
Collapse
Affiliation(s)
- Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
27
|
Wang KN, Li ZZ, Zhou K, Liu B, Rao L, Bu LL. Cell Membrane-Coated Nanoparticles for Dental, Oral, and Craniofacial Diseases. RESEARCH (WASHINGTON, D.C.) 2024; 7:0478. [PMID: 39296987 PMCID: PMC11409001 DOI: 10.34133/research.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024]
Abstract
Dental, oral, and craniofacial diseases can substantially impact the quality of human life, thereby posing a serious public health concern. Although conventional therapies such as surgery have solved these problems largely, the prognosis of patients is not always satisfactory. Cell membrane-coated nanoparticles (CMCNPs) carry nanodrugs with the help of natural cell membranes, therefore utilizing their remarkable ability to interface and interact with their surrounding environment. These nanoparticles have demonstrated substantial advantages in drug targeting, prolonging blood circulation time, penetrating biofilms, and immune escape. With the assistance of CMCNPs, the therapeutic effects of dental, oral, and craniofacial diseases can reach a higher level. CMCNPs have been applied for dental, oral, and craniofacial diseases for various conditions such as head and neck cancer, periodontal disease, and oral biosignal detection. For the therapies of head and neck cancer, CMCNPs have been widely utilized as a tool of chemotherapy, phototherapy, and immunotherapy, while yet to be exploited in imaging technique. In the end, we summarized the challenges and prospectives of CMCNPs for dental, oral, and craniofacial diseases: large-scale production with uniform standards and high quantity, extensive application directions in dental, oral, and craniofacial regions (implant, endodontics), and the promotion of its clinical application.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
28
|
Han Y, Ye S, Liu B. Roles of extracellular vesicles derived from healthy and obese adipose tissue in inter-organ crosstalk and potential clinical implication. Front Endocrinol (Lausanne) 2024; 15:1409000. [PMID: 39268243 PMCID: PMC11390393 DOI: 10.3389/fendo.2024.1409000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles containing bioactive molecules including proteins, nucleic acids and lipids that mediate intercellular and inter-organ communications, holding promise as potential therapeutics for multiple diseases. Adipose tissue (AT) serves as a dynamically distributed energy storage organ throughout the body, whose accumulation leads to obesity, a condition characterized by infiltration with abundant immune cells. Emerging evidence has illustrated that EVs secreted by AT are the novel class of adipokines that regulate the homeostasis between AT and peripheral organs. However, most of the studies focused on the investigations of EVs derived from adipocytes or adipose-derived stem cells (ADSCs), the summarization of functions in cellular and inter-organ crosstalk of EVs directly derived from adipose tissue (AT-EVs) are still limited. Here, we provide a systemic summary on the key components and functions of EVs derived from healthy adipose tissue, showing their significance on the tissue recovery and metabolic homeostasis regulation. Also, we discuss the harmful influences of EVs derived from obese adipose tissue on the distal organs. Furthermore, we elucidate the potential applications and constraints of EVs from healthy patients lipoaspirates as therapeutic agents, highlighting the potential of AT-EVs as a valuable biological material with broad prospects for future clinical use.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Life Sciences, Westlake University, Hangzhou, China
| |
Collapse
|
29
|
Hou G, Li Y, Cui X, Zhao B, Liu L, Zhang Y, Yuan H, Zhang L. Electric Field Assisted Tangential Flow Filtration Device for Highly Effective Isolation of Bioactive Small Extracellular Vesicles from Cell Culture Medium. Anal Chem 2024; 96:13345-13351. [PMID: 39120011 DOI: 10.1021/acs.analchem.4c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Small extracellular vesicles (sEVs) are proven to hold great promise for diverse therapeutic and diagnostic applications. However, batch preparation of sEVs with high purity and bioactivity is a prerequisite for their clinical translations. Herein, we present an electric field assisted tangential flow filtration system (E-TFF), which integrates size-based filtration with electrophoretic migration-based separation to synergistically achieve the isolation of high-quality sEVs from cell culture medium. Compared with the gold-standard ultracentrifugation (UC) method, E-TFF not only improved the purity of sEVs by 1.4 times but also increased the yield of sEVs by 15.8 times. Additionally, the entire isolation process of E-TFF was completed within 1 h, about one-fourth of the time taken by UC. Furthermore, the biological activity of sEVs isolated by E-TFF was verified by co-incubation of sEVs derived from human umbilical cord mesenchymal stem cells (hUCMSCs) with HT22 mouse hippocampal neuronal cells exposed to amyloid-β (Aβ). The results demonstrated that the sEVs isolated by E-TFF exhibited a significant neuroprotective effect. Overall, the E-TFF platform provides a promising and robust strategy for batch preparation of high-quality sEVs, opening up a broad range of opportunities for cell-free therapy and precision medicine.
Collapse
Affiliation(s)
- Guoshan Hou
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilan Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Technology, Analysis & Testing Center, Beijing 102488, China
| | - Xulian Cui
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning 110001, China
| | - Baofeng Zhao
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lukuan Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yukui Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiming Yuan
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Wei C, Zhang M, Cheng J, Tian J, Yang G, Jin Y. Plant-derived exosome-like nanoparticles - from Laboratory to factory, a landscape of application, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39127967 DOI: 10.1080/10408398.2024.2388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.
Collapse
Affiliation(s)
- Chaozhi Wei
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Mengyu Zhang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jintao Cheng
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jinzhong Tian
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Guiling Yang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
31
|
Xia Y, Zhang J, Liu G, Wolfram J. Immunogenicity of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403199. [PMID: 38932653 DOI: 10.1002/adma.202403199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) are promising next-generation therapeutics and drug delivery systems due to demonstrated safety and efficacy in preclinical models and early-stage clinical trials. There is an urgent need to address the immunogenicity of EVs (beyond the apparent lack of immunotoxicity) to advance clinical development. To date, few studies have assessed unintended immunological recognition of EVs. An in-depth understanding of EV-induced immunogenicity and clearance is necessary to develop effective therapeutic strategies, including approaches to mitigate immunological recognition when undesired. This article summarizes various factors involved in the potential immunogenicity of EVs and strategies to reduce immunological recognition for improved therapeutic benefit.
Collapse
Affiliation(s)
- Yutian Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
32
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
33
|
Han HS, Hwang S, Choi SY, Hitayezu E, Humphrey MA, Enkhbayar A, Song D, Kim M, Park J, Park Y, Park J, Cha KH, Choi KY. Roseburia intestinalis-derived extracellular vesicles ameliorate colitis by modulating intestinal barrier, microbiome, and inflammatory responses. J Extracell Vesicles 2024; 13:e12487. [PMID: 39166405 PMCID: PMC11336657 DOI: 10.1002/jev2.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 06/29/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder characterized by recurrent gastrointestinal inflammation, lacking a precise aetiology and definitive cure. The gut microbiome is vital in preventing and treating IBD due to its various physiological functions. In the interplay between the gut microbiome and human health, extracellular vesicles secreted by gut bacteria (BEVs) are key mediators. Herein, we explore the role of Roseburia intestinalis (R)-derived EVs (R-EVs) as potent anti-inflammatory mediators in treating dextran sulfate sodium-induced colitis. R was selected as an optimal BEV producer for IBD treatment through ANCOM analysis. R-EVs with a 76 nm diameter were isolated from R using a tangential flow filtration system. Orally administered R-EVs effectively accumulated in inflamed colonic tissues and increased the abundance of Bifidobacterium on microbial changes, inhibiting colonic inflammation and prompting intestinal recovery. Due to the presence of Ile-Pro-Ile in the vesicular structure, R-EVs reduced the DPP4 activity in inflamed colonic tissue and increased the active GLP-1, thereby downregulating the NFκB and STAT3 via the PI3K pathway. Our results shed light on the impact of BEVs on intestinal recovery and gut microbiome alteration in treating IBD.
Collapse
Affiliation(s)
- Hwa Seung Han
- Department of Marine Bio‐Food ScienceGangneung‐Wonju National UniversityGangneungRepublic of Korea
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Soonjae Hwang
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | | | - Emmanuel Hitayezu
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Mabwi A. Humphrey
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Altai Enkhbayar
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Dae‐Geun Song
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Myungsuk Kim
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | | | - Young‐Tae Park
- Natural Product Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Jin‐Soo Park
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Ki Young Choi
- Department of Marine Bio‐Food ScienceGangneung‐Wonju National UniversityGangneungRepublic of Korea
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
- NVience Inc.SeoulRepublic of Korea
| |
Collapse
|
34
|
Salerno S, Piscioneri A, Morelli S, Gori A, Provasi E, Gagni P, Barile L, Cretich M, Chiari M, De Bartolo L. Extracellular vesicles selective capture by peptide-functionalized hollow fiber membranes. J Colloid Interface Sci 2024; 667:338-349. [PMID: 38640653 DOI: 10.1016/j.jcis.2024.04.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Recently, membrane devices and processes have been applied for the separation and concentration of subcellular components such as extracellular vesicles (EVs), which play a diagnostic and therapeutic role in many pathological conditions. However, the separation and isolation of specific EV populations from other components found in biological fluids is still challenging. Here, we developed a peptide-functionalized hollow fiber (HF) membrane module to achieve the separation and enrichment of highly pure EVs derived from the culture media of human cardiac progenitor cells. The strategy is based on the functionalization of PSf HF membrane module with BPt, a peptide sequence able to bind nanovesicles characterized by highly curved membranes. HF membranes were modified by a nanometric coating with a copoly azide polymer to limit non-specific interactions and to enable the conjugation with peptide ligand by click chemistry reaction. The BPt-functionalized module was integrated into a TFF process to facilitate the design, rationalization, and optimization of EV isolation. This integration combined size-based transport of species with specific membrane sensing ligands. The TFF integrated BPt-functionalized membrane module demonstrated the ability to selectively capture EVs with diameter < 200 nm into the lumen of fibers while effectively removing contaminants such as albumin. The captured and released EVs contain the common markers including CD63, CD81, CD9 and syntenin-1. Moreover, they maintained a round shape morphology and structural integrity highlighting that this approach enables EVs concentration and purification with low shear stress. Additionally, it achieved the removal of contaminants such as albumin with high reliability and reproducibility, reaching a removal of 93%.
Collapse
Affiliation(s)
- Simona Salerno
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy
| | - Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy
| | - Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy
| | - Alessandro Gori
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Elena Provasi
- Lugano Cell Factory, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, via Tesserete 48, 6900 Lugano, Switzerland
| | - Paola Gagni
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa 5, 6500 Bellinzona, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Via Buffi 13, 6900 Lugano, Switzerland
| | - Marina Cretich
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Marcella Chiari
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council of Italy, SCITEC-CNR, Via Mario Bianco 9, 20131, Milan, Italy
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy.
| |
Collapse
|
35
|
Xu F, Luo S, Lu P, Cai C, Li W, Li C. Composition, functions, and applications of exosomal membrane proteins. Front Immunol 2024; 15:1408415. [PMID: 39148736 PMCID: PMC11324478 DOI: 10.3389/fimmu.2024.1408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Exosomes play a crucial role in various biological processes, such as human development, immune responses, and disease occurrence. The membrane proteins on exosomes are pivotal factors for their biological functionality. Currently, numerous membrane proteins have been identified on exosome membranes, participating in intercellular communication, mediating target cell recognition, and regulating immune processes. Furthermore, membrane proteins from exosomes derived from cancer cells can serve as relevant biomarkers for early cancer diagnosis. This article provides a comprehensive review of the composition of exosome membrane proteins and their diverse functions in the organism's biological processes. Through in-depth exploration of exosome membrane proteins, it is expected to offer essential foundations for the future development of novel biomedical diagnostics and therapies.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengpeng Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
You DG, Jung JM, Kim CH, An JY, Bui VD, Lee J, Um W, Jo DG, Cho YW, Lee DS, Balaj L, Lee H, Park JH. Stem Cell-Derived Extracellular Vesicle-Bearing Injectable Hydrogel for Collagen Generation in Dermis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37698-37706. [PMID: 38980897 DOI: 10.1021/acsami.4c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Despite the remarkable advances of dermal fillers that reduce wrinkles caused by dermis thickness reduction, they still lack effective hydrogel systems that stimulate collagen generation along with injection convenience. Here, we develop a stem cell-derived extracellular vesicle (EV)-bearing thermosensitive hydrogel (EVTS-Gel) for effective in vivo collagen generation. The TS-Gel undergoes sol-gel transition at 32.6 °C, as demonstrated by the storage and loss moduli crossover. Moreover, the TS-Gel and the EVTS-Gel have comparable rheological properties. Both hydrogels are injected in a sol state; hence, they require lower injection forces than conventional hydrogel-based dermal fillers. When locally administered to mouse skin, the TS-Gel extends the retention time of EVs by 2.23 times. Based on the nature of the controlled EV release, the EVTS-Gel significantly inhibits the dermis thickness reduction caused by aging compared to the bare EV treatment for 24 weeks. After a single treatment, the collagen layer thickness of the EVTS-Gel-treated dermis becomes 2.64-fold thicker than that of the bare EV-treated dermis. Notably, the collagen generation efficacy of the bare EV is poorer than that of the EVTS-Gel of a 10× lesser dose. Overall, the EVTS-Gel shows potential as an antiaging dermal filler for in vivo collagen generation.
Collapse
Affiliation(s)
- Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jae Min Jung
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jae Yoon An
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Van Dat Bui
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Dong-Gyu Jo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yong Woo Cho
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
37
|
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation. Biomedicines 2024; 12:1369. [PMID: 38927577 PMCID: PMC11201753 DOI: 10.3390/biomedicines12061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-β/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Collapse
Affiliation(s)
- Yu Ling Tan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Sue Ping Eng
- NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia;
| | - Mohamad Nasir Shafiee
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| |
Collapse
|
38
|
Kim J, Gao C, Guo P, Sheng J, Wang J. A novel approach to alleviate acetaminophen-induced hepatotoxicity with hybrid balloon flower root-derived exosome-like nanoparticles (BDEs) with silymarin via inhibition of hepatocyte MAPK pathway and apoptosis. Cell Commun Signal 2024; 22:334. [PMID: 38890646 PMCID: PMC11184736 DOI: 10.1186/s12964-024-01700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Balloon flower root-derived exosome-like nanoparticles (BDEs) have recently been proposed as physiologically active molecules with no cytotoxicity. However, the therapeutic effects of drug-induced hepatotoxicity of BDEs have not been elucidated. BDEs contain a large amount of platycodin D, which is widely known to be effective in regulating inflammation and ameliorating systemic toxicity. Thus, the main therapeutic activity of BDEs is attributed to inhibiting the inflammatory response and alleviating toxicity. In this study, we fabricated the hybrid BDEs fused with liposomes containing silymarin (SM) to enhance the synergistic effect on inhibition of acetaminophen-induced hepatotoxicity (APAP). OBJECTIVE Considering the potential therapeutic effects of BDEs, and the potential to achieve synergistic effects to improve therapeutic outcomes, we constructed hybrid BDEs with a soy lecithin-based liposome loaded with SM. Since liposomes can provide higher thermal stability and have greater structural integrity, these might be more resistant to clearance and enzymatic degradation of drug molecules. METHODS Hybrid BDEs with liposome-loaded SM (BDEs@lipo-SM) were fabricated by thin-film hydration and extrusion. BDEs@lipo-SM were characterized using dynamic light scattering and high-performance liquid chromatography. After confirmation of the physical properties of BDEs@lipo-SM, various therapeutic properties were evaluated. RESULTS BDEs@lipo-SM were internalized by hepatocytes and immune cells and significantly decreased mRNA expression of apoptosis and inflammation-relevant cytokines by inhibiting the hepatocyte MAPK pathway. BDEs@lipo-SM significantly induced an increase in glutathione levels and inhibited APAP-induced hepatotoxicity. CONCLUSION From this study, we know that BDEs are reliable and safe nanovesicles containing natural metabolites derived from balloon flower, and they can facilitate intercellular communication. BDEs are also easily modified to enhance drug loading capacity, targeting effects, and long-term accumulation in vivo. BDEs@lipo-SM have therapeutic benefits for acute liver injury and can alleviate cell death and toxicity. They can be efficiently delivered to the liver and effectively inhibit APAP-induced hepatotoxicity by inhibiting the MAPK signaling pathway and apoptosis, which accelerates liver recovery in the APAP-induced acute liver injury model. These findings highlight that BDEs represent an attractive delivery vehicle for drug delivery.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Chao Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pengcheng Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Jianyong Sheng
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China.
- Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
39
|
Guerricchio L, Barile L, Bollini S. Evolving Strategies for Extracellular Vesicles as Future Cardiac Therapeutics: From Macro- to Nano-Applications. Int J Mol Sci 2024; 25:6187. [PMID: 38892376 PMCID: PMC11173118 DOI: 10.3390/ijms25116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.
Collapse
Affiliation(s)
- Laura Guerricchio
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland;
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Sveva Bollini
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
40
|
Mao X, Li T, Qi W, Miao Z, Zhu L, Zhang C, Jin H, Pan H, Wang D. Advances in the study of plant-derived extracellular vesicles in the skeletal muscle system. Pharmacol Res 2024; 204:107202. [PMID: 38704110 DOI: 10.1016/j.phrs.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Plant-derived extracellular vesicles (PDEV) constitute nanoscale entities comprising lipids, proteins, nucleic acids and various components enveloped by the lipid bilayers of plant cells. These vesicles play a crucial role in facilitating substance and information transfer not only between plant cells but also across different species. Owing to its safety, stability, and the abundance of raw materials, this substance has found extensive utilization in recent years within research endeavors aimed at treating various diseases. This article provides an overview of the pathways and biological characteristics of PDEV, along with the prevalent methods employed for its isolation, purification, and storage. Furthermore, we comprehensively outline the therapeutic implications of diverse sources of PDEV in musculoskeletal system disorders. Additionally, we explore the utilization of PDEV as platforms for engineering drug carriers, aiming to delve deeper into the significance and potential contributions of PDEV in the realm of the musculoskeletal system.
Collapse
Affiliation(s)
- Xinning Mao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Tenghui Li
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Weihui Qi
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Li Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Chunchun Zhang
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, Zhejiang Province 310007, PR China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, Zhejiang Province 310021, PR China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, Zhejiang Province 310007, PR China.
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, Zhejiang Province 310021, PR China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, Zhejiang Province 310007, PR China.
| |
Collapse
|
41
|
Yadav K, Vijayalakshmi R, Kumar Sahu K, Sure P, Chahal K, Yadav R, Sucheta, Dubey A, Jha M, Pradhan M. Exosome-Based Macromolecular neurotherapeutic drug delivery approaches in overcoming the Blood-Brain barrier for treating brain disorders. Eur J Pharm Biopharm 2024; 199:114298. [PMID: 38642716 DOI: 10.1016/j.ejpb.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Delivering drugs to the brain is a complex challenge in medical research, particularly for disorders like Alzheimer's and Parkinson's. The blood-brain barrier restricts the entry of many therapeutic molecules, hindering their effectiveness. Nanoparticles, a potential solution, face issues like toxicity and limited approvals. A new avenue explores the use of small extracellular vesicles (sEVs), i.e., exosomes, as natural carriers for drug delivery. sEVs, tiny structures below 150 nm, show promise due to their minimal immune response and ability to precisely deliver drugs. This review focuses on the potential of sEVs-based drug delivery systems for treating neurological disorders, brain cancers, and other brain-related issues. Notably, bioengineered sEVs-carrying therapeutic compounds exhibit promise in early studies. The unique features of sEVs, such as their small size and natural properties, position them as candidates to overcome challenges in drug delivery to the brain. Ongoing clinical trials and research into sEVs behavior within the body further highlight their potential for revolutionizing drug delivery and addressing complex brain conditions.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP, 533296, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - Kavita Chahal
- Department of Botany, Government Model Science College Jabalpur, Madhya Pradesh, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru-575018, Karnataka, India
| | - Megha Jha
- Department of Life Science, Mansarovar Global University, Sehore, M.P., India
| | - Madhulika Pradhan
- Gracious College of Pharmacy, Abhanpur, Chhattisgarh, 493661, India.
| |
Collapse
|
42
|
Abdul-Rahman T, Roy P, Herrera-Calderón RE, Khidri FF, Omotesho QA, Rumide TS, Fatima M, Roy S, Wireko AA, Atallah O, Roy S, Amekpor F, Ghosh S, Agyigra IA, Horbas V, Teslyk T, Bumeister V, Papadakis M, Alexiou A. Extracellular vesicle-mediated drug delivery in breast cancer theranostics. Discov Oncol 2024; 15:181. [PMID: 38780753 PMCID: PMC11116322 DOI: 10.1007/s12672-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
Collapse
Affiliation(s)
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | - Ranferi Eduardo Herrera-Calderón
- Center for Research in Health Sciences (CICSA), Faculty of Medicine, Anahuac University North Campus, 52786, Huixquilucan, Mexico
| | | | | | | | | | - Sakshi Roy
- School of Medicine, Queens University Belfast, Northern Ireland, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Subham Roy
- Hull York Medical School, University of York, York, UK
| | - Felix Amekpor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India.
- Department of Research and Development, Funogen, 11741, Athens, Greece.
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria.
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
| |
Collapse
|
43
|
He S, Zhao Z. Genetically engineered cell-derived nanovesicles for cancer immunotherapy. NANOSCALE 2024; 16:8317-8334. [PMID: 38592744 PMCID: PMC11075450 DOI: 10.1039/d3nr06565k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The emergence of immunotherapy has marked a new epoch in cancer treatment, presenting substantial clinical benefits. Extracellular vesicles (EVs), as natural nanocarriers, can deliver biologically active agents in cancer therapy with their inherent biocompatibility and negligible immunogenicity. However, natural EVs have limitations such as inadequate targeting capability, low loading efficacy, and unpredictable side effects. Through progress in genetic engineering, EVs have been modified for enhanced delivery of immunomodulatory agents and antigen presentation with specific cancer targeting ability, deepening the role of EVs in cancer immunotherapy. This review briefly describes typical EV sources, isolation methods, and adjustable targeting of EVs. Furthermore, this review highlights the genetic engineering strategies developed for delivering immunomodulatory agents and antigen presentation in EV-based systems. The prospects and challenges of genetically engineered EVs as cancer immunotherapy in clinical translation are also discussed.
Collapse
Affiliation(s)
- Shan He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA.
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA.
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
44
|
Iannotta D, A A, Lai A, Nair S, Koifman N, Lappas M, Salomon C, Wolfram J. Chemically-Induced Lipoprotein Breakdown for Improved Extracellular Vesicle Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307240. [PMID: 38100284 DOI: 10.1002/smll.202307240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Na'ama Koifman
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Martha Lappas
- University of Melbourne, Department of Obstetrics and Gynaecology, Australia, and Mercy Hospital for Women, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
45
|
Vo N, Tran C, Tran NHB, Nguyen NT, Nguyen T, Ho DTK, Nguyen DDN, Pham T, Nguyen TA, Phan HTN, Nguyen H, Tu LN. A novel multi-stage enrichment workflow and comprehensive characterization for HEK293F-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12454. [PMID: 38760878 PMCID: PMC11101607 DOI: 10.1002/jev2.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Extracellular vesicles (EVs) are emerging as a promising drug delivery vehicle as they are biocompatible and capable of targeted delivery. However, clinical translation of EVs remains challenging due to the lack of standardized and scalable manufacturing protocols to consistently isolate small EVs (sEVs) with both high yield and high purity. The heterogenous nature of sEVs leading to unknown composition of biocargos causes further pushback due to safety concerns. In order to address these issues, we developed a robust quality-controlled multi-stage process to produce and isolate sEVs from human embryonic kidney HEK293F cells. We then compared different 2-step and 3-step workflows for eliminating protein impurities and cell-free nucleic acids to meet acceptable limits of regulatory authorities. Our results showed that sEV production was maximized when HEK293F cells were grown at high-density stationary phase in semi-continuous culture. The novel 3-step workflow combining tangential flow filtration, sucrose-cushion ultracentrifugation and bind-elute size-exclusion chromatography outperformed other methods in sEV purity while still preserved high yield and particle integrity. The purified HEK293F-derived sEVs were thoroughly characterized for identity including sub-population analysis, content profiling including proteomics and miRNA sequencing, and demonstrated excellent preclinical safety profile in both in-vitro and in-vivo testing. Our rigorous enrichment workflow and comprehensive characterization will help advance the development of EVs, particularly HEK293F-derived sEVs, to be safe and reliable drug carriers for therapeutic applications.
Collapse
Affiliation(s)
- Nhan Vo
- Medical Genetics InstituteHo Chi Minh CityVietnam
| | - Chau Tran
- Medical Genetics InstituteHo Chi Minh CityVietnam
| | | | | | - Thieu Nguyen
- Medical Genetics InstituteHo Chi Minh CityVietnam
| | | | | | - Tran Pham
- Medical Genetics InstituteHo Chi Minh CityVietnam
| | | | | | | | - Lan N. Tu
- Medical Genetics InstituteHo Chi Minh CityVietnam
| |
Collapse
|
46
|
Menasché P, Renault NK, Hagège A, Puscas T, Bellamy V, Humbert C, Le L, Blons H, Granier C, Benhamouda N, Bacher A, Churlaud G, Sabatier B, Larghero J. First-in-man use of a cardiovascular cell-derived secretome in heart failure. Case report. EBioMedicine 2024; 103:105145. [PMID: 38713924 PMCID: PMC11096705 DOI: 10.1016/j.ebiom.2024.105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND There is increased evidence that the effects of stem cells can mostly be duplicated by administration of their secretome which might streamline the translation towards the clinics. METHODS The 12-patient SECRET-HF phase 1 trial has thus been designed to determine the feasibility and safety of repeated intravenous injections of the extracellular vesicle (EV)-enriched secretome of cardiovascular progenitor cells differentiated from pluripotent stem cells in severely symptomatic patients with drug-refractory left ventricular (LV) dysfunction secondary to non-ischemic dilated cardiomyopathy. Here we report the case of the first treated patient (baseline NYHA class III; LV Ejection Fraction:25%) in whom a dose of 20 × 109 particles/kg was intravenously infused three times three weeks apart. FINDINGS In addition to demonstrating the feasibility of producing a cardiac cell secretome compliant with Good Manufacturing Practice standards, this case documents the excellent tolerance of its repeated delivery, without any adverse events during or after infusions. Six months after the procedure, the patient is in NYHA Class II with improved echo parameters, a reduced daily need for diuretics (from 240 mg to 160 mg), no firing from the previously implanted automatic internal defibrillator and no alloimmunization against the drug product, thereby supporting its lack of immunogenicity. INTERPRETATION The rationale underlying the intravenous route is that the infused EV-enriched secretome may act by rewiring endogenous immune cells, both circulating and in peripheral organs, to take on a reparative phenotype. These EV-modified immune cells could then traffic to the heart to effect tissue repair, including mitigation of inflammation which is a hallmark of cardiac failure. FUNDING This trial is funded by the French Ministry of Health (Programme Hospitalier de Recherche CliniqueAOM19330) and the "France 2030" National Strategy Program (ANR-20-F2II-0003). It is sponsored by Assistance Publique-Hôpitaux de Paris.
Collapse
Affiliation(s)
- Philippe Menasché
- AP-HP, Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France.
| | - Nisa K Renault
- FUJIFILM Cellular Dynamics, Inc (FCDI), Madison, WI, USA
| | - Albert Hagège
- Université Paris Cité, Inserm, PARCC, Paris, France; AP-HP, Department of Cardiology, Hôpital Européen Georges Pompidou, Paris, France
| | - Tania Puscas
- AP-HP, Department of Cardiology, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Camille Humbert
- AP-HP, Hôpital Saint-Louis, MEARY Centre for Cell and Gene Therapy, Paris, France
| | - Laetitia Le
- AP-HP, Department of Pharmacy, Hôpital Européen Georges Pompidou, Paris, France; UFR Pharmacie, Université Paris-Saclay, Lip(Sys)(2) Lipides, Systèmes Analytiques et Biologiques, Orsay, France
| | - Hélène Blons
- AP-HP, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Hôpital Européen Georges Pompidou, Paris, France
| | - Clémence Granier
- Université Paris Cité, Inserm, PARCC, Paris, France; Department of Immunology, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Nadine Benhamouda
- Université Paris Cité, Inserm, PARCC, Paris, France; Department of Immunology, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne Bacher
- AP-HP, Department of Cardiology, Hôpital Européen Georges Pompidou, Paris, France
| | - Guillaume Churlaud
- AP-HP, Hôpital Saint-Louis, MEARY Centre for Cell and Gene Therapy, Paris, France
| | - Brigitte Sabatier
- AP-HP, Pharmacy, Hôpital Européen Georges-Pompidou, Pharmacie, Paris, France; Université Paris-Saclay, Faculté de Pharmacie, Pharmacie Clinique, Orsay, France; HeKA Team, INRIA/INSERM U 1138, CRC/PSC, Paris, France
| | - Jérôme Larghero
- AP-HP, Hôpital Saint-Louis, MEARY Centre for Cell and Gene Therapy, Paris, France; Université Paris Cité, AP-HP, Hôpital Saint-Louis, Clinical Investigation Center in Biotherapies CIC-BT, INSERM, Paris, France
| |
Collapse
|
47
|
Xin WG, Li XD, Zhou HY, Li X, Liu WX, Lin LB, Wang F. Isolation, antibacterial characterization, and alternating tangential flow-based preparation of viable cells of Lacticaseibacillus paracasei XLK 401: Potential application in milk preservation. J Dairy Sci 2024; 107:1355-1369. [PMID: 37776999 DOI: 10.3168/jds.2023-23622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
It is desirable to obtain high levels of viable Lacticaseibacillus paracasei, a widely used food probiotic whose antibacterial activity and potential application in milk remain largely uninvestigated. Here, we isolated and purified the L. paracasei strain XLK 401 from food-grade blueberry ferments and found that it exhibited strong antibacterial activity against both gram-positive and gram-negative foodborne pathogens, including Staphylococcus aureus, Salmonella paratyphi B, Escherichia coli O157, and Shigella flexneri. Then, we applied alternating tangential flow (ATF) technology to produce viable L. paracasei XLK 401 cells and its cell-free supernatant (CFS). Compared with the conventional fed-batch method, 22 h of ATF-based processing markedly increased the number of viable cells of L. paracasei XLK 401 to 12.14 ± 0.13 log cfu/mL. Additionally, the CFS exhibited good thermal stability and pH tolerance, inhibiting biofilm formation in the abovementioned foodborne pathogens. According to liquid chromatography-mass spectrometry analysis, organic acids were the main antibacterial components of XLK 401 CFS, accounting for its inhibition activity. Moreover, the CFS of L. paracasei XLK 401 effectively inhibited the growth of multidrug-resistant gram-positive Staph. aureus and gram-negative E. coli O157 pathogens in milk, and caused a reduction in the pathogenic cell counts by 6 to 7 log cfu/mL compared with untreated control, thus considerably maintaining the safety of milk samples. For the first time to our knowledge, ATF-based technology was employed to obtain viable L. paracasei on a large scale, and its CFS could serve as a broad-spectrum biopreservative for potential application against foodborne pathogens in milk products.
Collapse
Affiliation(s)
- Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Huan-Yu Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Xin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Wei-Xin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China.
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China.
| |
Collapse
|
48
|
Wang W, Sun H, Duan H, Sheng G, Tian N, Liu D, Sun Z. Isolation and usage of exosomes in central nervous system diseases. CNS Neurosci Ther 2024; 30:e14677. [PMID: 38497529 PMCID: PMC10945885 DOI: 10.1111/cns.14677] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Exosomes are vesicles secreted by all types of mammalian cells. They are characterized by a double-layered lipid membrane structure. They serve as carriers for a plethora of signal molecules, including DNA, RNA, proteins, and lipids. Their unique capability of effortlessly crossing the blood-brain barrier underscores their critical role in the progression of various neurological disorders. This includes, but is not limited to, diseases such as Alzheimer's, Parkinson's, and ischemic stroke. Establishing stable and mature methods for isolating exosomes is a prerequisite for the study of exosomes and their biomedical significance. The extraction technologies of exosomes include differential centrifugation, density gradient centrifugation, size exclusion chromatography, ultrafiltration, polymer coprecipitation, immunoaffinity capture, microfluidic, and so forth. Each extraction technology has its own advantages and disadvantages, and the extraction standards of exosomes have not been unified internationally. AIMS This review aimed to showcase the recent advancements in exosome isolation techniques and thoroughly compare the advantages and disadvantages of different methods. Furthermore, the significant research progress made in using exosomes for diagnosing and treating central nervous system (CNS) diseases has been emphasized. CONCLUSION The varying isolation methods result in differences in the concentration, purity, and size of exosomes. The efficient separation of exosomes facilitates their widespread application, particularly in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Wenjing Wang
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Hong Sun
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Huijuan Duan
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Gang Sheng
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Na Tian
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Dingyi Liu
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Zhaogang Sun
- Beijing Chest Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
49
|
Gurriaran-Rodriguez U, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using Tangential Flow Filtration and Size Exclusion Chromatography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580358. [PMID: 38405765 PMCID: PMC10888854 DOI: 10.1101/2024.02.14.580358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
|
50
|
Lo KJ, Wang MH, Ho CT, Pan MH. Plant-Derived Extracellular Vesicles: A New Revolutionization of Modern Healthy Diets and Biomedical Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2853-2878. [PMID: 38300835 DOI: 10.1021/acs.jafc.3c06867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Plant-derived extracellular vesicles (PDEVs) have recently emerged as a promising area of research due to their potential health benefits and biomedical applications. Produced by various plant species, these EVs contain diverse bioactive molecules, including proteins, lipids, and nucleic acids. Increasing in vitro and in vivo studies have shown that PDEVs have inherent pharmacological activities that affect cellular processes, exerting anti-inflammatory, antioxidant, and anticancer activities, which can potentially contribute to disease therapy and improve human health. Additionally, PDEVs have shown potential as efficient and biocompatible drug delivery vehicles in treating various diseases. However, while PDEVs serve as a potential rising star in modern healthy diets and biomedical applications, further research is needed to address their underlying knowledge gaps, especially the lack of standardized protocols for their isolation, identification, and large-scale production. Furthermore, the safety and efficacy of PDEVs in clinical applications must be thoroughly evaluated. In this review, we concisely discuss current knowledge in the PDEV field, including their characteristics, biomedical applications, and isolation methods, to provide an overview of the current state of PDEV research. Finally, we discuss the challenges regarding the current and prospective issues for PDEVs. This review is expected to provide new insights into healthy diets and biomedical applications of vegetables and fruits, inspiring new advances in natural food-based science and technology.
Collapse
Affiliation(s)
- Kai-Jiun Lo
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Mu-Hui Wang
- Department of Medical Research, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|