1
|
Zhang X, Guo Z, Li Y, Xu Y. Splicing to orchestrate cell fate. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102416. [PMID: 39811494 PMCID: PMC11729663 DOI: 10.1016/j.omtn.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M. The review also examines AS in cell differentiation, highlighting its effects on mesenchymal stem cells and neurogenesis, and how it regulates differentiation into adipocytes, osteoblasts, and chondrocytes. Additionally, we discuss the role of AS in programmed cell death, including apoptosis and pyroptosis, and its contribution to cancer progression. Importantly, targeting aberrant splicing mechanisms presents promising therapeutic opportunities for restoring normal cellular function. By synthesizing recent findings, this review provides insights into how AS governs cellular fate and offers directions for future research into splicing regulatory networks.
Collapse
Affiliation(s)
- Xurui Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Zhonghao Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yachen Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| |
Collapse
|
2
|
Li C, Gou L. FOXA1 exacerbates LPS-induced vascular endothelial cell injury in sepsis by suppressing the transcription of NRP2. Cytotechnology 2024; 76:697-707. [PMID: 39435415 PMCID: PMC11490632 DOI: 10.1007/s10616-024-00647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/17/2024] [Indexed: 10/23/2024] Open
Abstract
Endothelial dysfunction plays a critical role in the pathogenesis of sepsis. This study aims to explore the effect and mechanism of forkhead box A1 (FOXA1) on vascular endothelial cell injury in sepsis. Human umbilical vein endothelial cells (HUVECs) were stimulated by lipopolysaccharide (LPS). Lactate dehydrogenase (LDH) release, cell viability, apoptosis, and inflammatory factors including IL-1β, TNF-α, and IL-6 were measured using LDH kits, CCK-8 assay, flow cytometry, and ELISA respectively. RT-qPCR or Western blot determined the expression of FOXA1 or neuropilin-2 (NRP2) in cells. The binding between FOXA1 and NRP2 was confirmed using ChIP and dual-luciferase assays. Functional rescue experiments were performed to verify the effect of FOXA1 siRNA or NRP2 siRNA on cell injury. LPS treatment induced endothelial cell injury in a concentration-dependent manner. FOXA1 expression was elevated after LPS treatment. FOXA1 silencing reduced LDH release, enhanced cell viability, suppressed apoptosis, and declined inflammation factors. Mechanistically, FOXA1 bound to the NRP2 promoter to suppress the transcription of NRP2. Functional rescue experiments revealed that knockdown of NRP2 offset the protective effect of knockdown of FOXA1 on cell injury. In conclusion, FOXA1 exacerbates LPS-insulted endothelial cell injury in sepsis by repressing the transcription of NRP2.
Collapse
Affiliation(s)
- Chun Li
- Department of Intensive Care Medicine, Gansu, Second People’s Hospital of Lanzhou City, No. 388, Jingyuan Road, Chengguan District, Lanzhou, 730030 China
| | - Likun Gou
- Department of Intensive Care Medicine, Gansu, Second People’s Hospital of Lanzhou City, No. 388, Jingyuan Road, Chengguan District, Lanzhou, 730030 China
| |
Collapse
|
3
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
4
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Konenkov VI, Nimaev VV, Shevchenko AV, Prokofiev VF. Polymorphism of angiogenesis regulation factor genes (VEGF/VEGFR), and extracellular matrix remodeling genes (MMP/TIMP), and the levels of their products in extracellular tissues of patients with primary and secondary lymphedema. Vavilovskii Zhurnal Genet Selektsii 2024; 28:433-442. [PMID: 39027126 PMCID: PMC11253019 DOI: 10.18699/vjgb-24-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 07/20/2024] Open
Abstract
Cells of various organs and systems perform their functions and intercellular interactions not in an inert environment, but in the microenvironment of tissue fluids. Violations of the normal drainage of tissue fluids accompany lymphedema. An important mechanism of angiogenesis and vasculogenesis regulation in tissue fluids is the production and reception of vascular endothelial growth factors in combination with the regulation of matrix metalloproteinases. The aim of the work was to perform: a comparative analysis of some polymorphisms of vascular endothelial growth factor and their receptors and the genes encoding matrix metalloproteinases in two forms of lymphedema; an analysis of the relationship of these genes' polymorphisms with the levels of vascular endothelial growth factor and matrix metalloproteinases and their inhibitors in serum and affected tissues. Polymorphism of VEGF (rs699947, rs3025039), KDR (rs10020464, rs11133360), NRP2 (rs849530, rs849563, rs16837641), matrix metalloproteinases MMP2 (rs2438650), MMP3 (rs3025058), MMP9 (rs3918242), Timp1 (rs6609533) and their combinations were analyzed by the Restriction Fragment Length Polymorphism method and TaqMan RT-PCR. The serum and tissue fluid levels were determined using the ELISA test system. Changes in the frequency distribution of MMP2 genotypes in primary and MMP3 in secondary lymphedema are shown. Significant frequency differences in NRP2 genotypes were revealed by comparing primary and secondary lymphedema. Features of the distribution of complex genotypes in primary and secondary lymphedema were revealed. The correlation analysis revealed the interdependence of the concentrations of the MMP, TIMP and VEGF products and differences in the structure of the correlation matrices of patients with both forms of lymphedema. It was shown that, in primary lymphedema, genotypes associated with low MMP2 and TIMP2 in serum and tissue fluid are detected, while in secondary lymphedema, other associations of the production levels with combined genetic traits are observed.
Collapse
Affiliation(s)
- V I Konenkov
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Nimaev
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Shevchenko
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V F Prokofiev
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
7
|
Manabile MA, Hull R, Khanyile R, Molefi T, Damane BP, Mongan NP, Bates DO, Dlamini Z. Alternative Splicing Events and Their Clinical Significance in Colorectal Cancer: Targeted Therapeutic Opportunities. Cancers (Basel) 2023; 15:3999. [PMID: 37568815 PMCID: PMC10417810 DOI: 10.3390/cancers15153999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) ranks as one of the top causes of cancer mortality worldwide and its incidence is on the rise, particularly in low-middle-income countries (LMICs). There are several factors that contribute to the development and progression of CRC. Alternative splicing (AS) was found to be one of the molecular mechanisms underlying the development and progression of CRC. With the advent of genome/transcriptome sequencing and large patient databases, the broad role of aberrant AS in cancer development and progression has become clear. AS affects cancer initiation, proliferation, invasion, and migration. These splicing changes activate oncogenes or deactivate tumor suppressor genes by producing altered amounts of normally functional or new proteins with different, even opposing, functions. Thus, identifying and characterizing CRC-specific alternative splicing events and variants might help in designing new therapeutic splicing disrupter drugs. CRC-specific splicing events can be used as diagnostic and prognostic biomarkers. In this review, alternatively spliced events and their role in CRC development will be discussed. The paper also reviews recent research on alternatively spliced events that might be exploited as prognostic, diagnostic, and targeted therapeutic indicators. Of particular interest is the targeting of protein arginine methyltransferase (PMRT) isoforms for the development of new treatments and diagnostic tools. The potential challenges and limitations in translating these discoveries into clinical practice will also be addressed.
Collapse
Affiliation(s)
- Mosebo Armstrong Manabile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa;
| | - Nigel Patrick Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| |
Collapse
|
8
|
Meza-Alvarado JC, Page RA, Mallard B, Bromhead C, Palmer BR. VEGF-A related SNPs: a cardiovascular context. Front Cardiovasc Med 2023; 10:1190513. [PMID: 37288254 PMCID: PMC10242119 DOI: 10.3389/fcvm.2023.1190513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Currently, cardiovascular disease risk algorithms play a role in primary prevention. However, this is complicated by a lack of powerfully predictive biomarkers that could be observed in individuals before the onset of overt symptoms. A key potential biomarker for heart disease is the vascular endothelial growth factor (VEGF-A), a molecule that plays a pivotal role in blood vessel formation. This molecule has a complex biological role in the cardiovascular system due to the processes it influences, and its production is impacted by various CVD risk factors. Research in different populations has shown single nucleotide polymorphisms (SNPs) may affect circulating VEGF-A plasma levels, with some variants associated with the development of CVDs, as well as CVD risk factors. This minireview aims to give an overview of the VEGF family, and of the SNPs reported to influence VEGF-A levels, cardiovascular disease, and other risk factors used in CVD risk assessments.
Collapse
Affiliation(s)
| | | | | | | | - B. R. Palmer
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
9
|
Domokos A, Varga Z, Jambrovics K, Caballero-Sánchez N, Szabo E, Nagy G, Scholtz B, Halasz L, Varadi E, Bene KP, Mazlo A, Bacsi A, Jeney V, Szebeni GJ, Nagy L, Czimmerer Z. The transcriptional control of the VEGFA-VEGFR1 (FLT1) axis in alternatively polarized murine and human macrophages. Front Immunol 2023; 14:1168635. [PMID: 37215144 PMCID: PMC10192733 DOI: 10.3389/fimmu.2023.1168635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Apolka Domokos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Zsofia Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
| | - Karoly Jambrovics
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Noemí Caballero-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Eniko Szabo
- Laboratory of Functional Genomics, Biological Research Centre Eotvos Lorand Research Network, Szeged, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beata Scholtz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Eszter Varadi
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Krisztian P. Bene
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anett Mazlo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Viktoria Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor J. Szebeni
- Laboratory of Functional Genomics, Biological Research Centre Eotvos Lorand Research Network, Szeged, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Guzmán A, Hernández-Coronado CG, Gutiérrez CG, Rosales-Torres AM. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth. Mol Reprod Dev 2023; 90:201-217. [PMID: 36966489 DOI: 10.1002/mrd.23683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.
Collapse
Affiliation(s)
- Adrian Guzmán
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Cyndi G Hernández-Coronado
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Rosales-Torres
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| |
Collapse
|
11
|
Babkina AS, Yadgarov MY, Ostrova IV, Zakharchenko VE, Kuzovlev AN, Grechko AV, Lyubomudrov MA, Golubev AM. Serum Levels of VEGF-A and Its Receptors in Patients in Different Phases of Hemorrhagic and Ischemic Strokes. Curr Issues Mol Biol 2022; 44:4888-4901. [PMID: 36286047 PMCID: PMC9601157 DOI: 10.3390/cimb44100332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are important regulators of angiogenesis, neuroprotection, and neurogenesis. Studies have indicated the association of VEGF dysregulation with the development of neurodegenerative and cerebrovascular diseases. We studied the changes in serum levels of VEGF-A, VEGFR-1, and VEGFR-2 in patients at various phases of ischemic and hemorrhagic strokes. Quantitative assessment of VEGF-A, VEGFR-1, and VEGFR-2 in serum of patients with hemorrhagic or ischemic stroke was performed by enzyme immunoassay in the hyper-acute (1−24 h from the onset), acute (up to 1−7 days), and early subacute (7 days to 3 months) phases of stroke, and then compared with the control group and each other. Results of our retrospective study demonstrated different levels of VEGF-A and its receptors at various phases of ischemic and hemorrhagic strokes. In ischemic stroke, increased VEGFR-2 level was found in the hyper-acute (p = 0.045) and acute phases (p = 0.024), while elevated VEGF-A and reduced VEGFR-1 levels were revealed in the early subacute phase (p = 0.048 and p = 0.012, respectively). In hemorrhagic stroke, no significant changes in levels of VEGF-A and its receptors were identified in the hyper-acute phase. In the acute and early subacute phases there was an increase in levels of VEGF-A (p < 0.001 and p = 0.006, respectively) and VEGFR-2 (p < 0.001 and p = 0.012, respectively). Serum levels of VEGF-A and its receptors in patients with hemorrhagic and ischemic stroke indicate different pathogenic pathways depending on the phase of the disease.
Collapse
|
12
|
Deng Z. A relatively low glucose promotes the proliferation of vascular endothelial cells by suppressing VEGFR2 O-GlcNAcylation and its proteasome degradation. Int Ophthalmol 2022; 43:899-914. [PMID: 36089631 DOI: 10.1007/s10792-022-02492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Vascular endothelial growth factor receptors (VEGFRs) have been demonstrated to play a critical role in ischemic retinal diseases, as VEGFRs mediate hypoxia-induced neovascularization. Not only hypoxia, ischemia also induces the deficiency of glucose, yet its effects on VEGFR signal and neovascularization have seldom been studied. Bioinformatics analysis predicted that VEGFRs may be regulated by O-GlcNAcylation, while glucose deficiency influences the O-GlcNAcylation. METHODS In this study, we treated human retinal microvascular endothelial cells with low glucose (LG) alone or in combination with low oxygen (oxygen and glucose deprivation, OGD). Cell viability and apoptosis rate were used to evaluate cell growth characters. RESULTS LG (2.8 mmol/L) treatment induced mRNA and protein levels of VEGFR1, 2, 3 even in the presence of the protein synthesis inhibitor, cycloheximide (CHX), suggesting that the increase in VEGFR proteins is partially associated with post-translational modifications. Immunoprecipitation analysis showed that O-GlcNAc level was decreased by LG in both VEGFR1, 2, but a de-O-GlcNAc glycosylase inhibitor restored the O-GlcNAc levels. This inhibitor also abolished the LG-induced increase in VEGFR2 protein, whereas this effect was not disappeared in the presence of the proteasome inhibitor, MG132. Similar results were also observed under OGD condition. VEGFR2 knockdown more significantly retarded the growth of hRMECs and HUVECs than VEGFR1, 3 knockdown under LG and OGD conditions. CONCLUSIONS A relatively low glucose suppressed O-GlcNAcylation in VEGFR2, whereby inhibiting its proteasome degradation; up-regulated VEGFR2 promoted the proliferation of vascular endothelial cells under ischemic condition.
Collapse
|
13
|
Su S, Zou P, Yang G, Wang Y, Liu L, Liu Y, Zhang J, Ding Y. Propranolol ameliorates retinopathy of prematurity in mice by downregulating HIF-1α via the PI3K/Akt/ERK pathway. Pediatr Res 2022; 93:1250-1257. [PMID: 35986147 DOI: 10.1038/s41390-022-02211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is the leading cause of blindness in infants, and elevation of HIF-1α through the PI3K/Akt and ERK pathways is implicated in ROP pathogenesis. The mechanism of action of propranolol in ROP remains controversial. We investigated the effect of propranolol on ROP and explored its potential mechanisms of action in an oxygen-induced retinopathy (OIR) mouse model. METHODS OIR mice were first treated with propranolol intraperitoneally, and the retina integrity was measured by FITC-dextran and hematoxylin-eosin staining. The expression of HIF-1α, VEGF, and key signaling pathway proteins was determined using real-time PCR and western blotting. RESULTS FITC-dextran staining showed that propranolol treatment reduced damage to retinal morphology in OIR mice. Mice treated with propranolol showed a reduced number of nuclei of vascular endothelial cells penetrating the inner limiting membrane of the retina, confirming the therapeutic effect of propranolol on ROP. Further analysis showed that HIF-1α and PI3K/Akt/ERK pathway protein levels were significantly elevated in OIR mice. In contrast, propranolol treatment downregulated the expression of these proteins, indicating that the PI3K/Akt/ERK/HIF-1α axis is associated with propranolol-induced ROP alleviation. CONCLUSIONS Propranolol has a therapeutic function against ROP, likely through the downregulation of HIF-1α via the PI3K/Akt/ERK pathway. IMPACT Propranolol can reduce the formation of abnormal retinal neovascularization in oxygen-induced retinopathy (OIR) models, and reduce leaking, tortuous, and abnormally expanding retinal blood vessels. Propranolol possibly improves OIR by inhibiting the activated ERK and HIF-1α pathways. Furthermore, propranolol may downregulate HIF-1α via the PI3K/Akt/ERK pathway to ameliorate retinopathy of prematurity. This study elucidated that the therapeutic effect of propranolol in OIR mice does not involve the VEGFR-2 pathway.
Collapse
Affiliation(s)
- Shaomin Su
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Neonatology, Shenzhen Children's Hospital, Shenzhen, China
| | - Peicen Zou
- Department of Neonatology, Capital Institute of Pediatrics, Beijing, China
| | - Guangran Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yajuan Wang
- Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China.
| | - Lei Liu
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Liu
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jinjing Zhang
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yijun Ding
- Department of Neonatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
14
|
Li X, Li Y, Wang Y, Liu F, Liu Y, Liang J, Zhan R, Wu Y, Ren H, Zhang X, Liu J. Sinensetin suppresses angiogenesis in liver cancer by targeting the VEGF/VEGFR2/AKT signaling pathway. Exp Ther Med 2022; 23:360. [PMID: 35493423 PMCID: PMC9019764 DOI: 10.3892/etm.2022.11287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Sinensetin (SIN) is a polymethoxy flavone primarily present in citrus fruits. This compound has demonstrated anticancer activity. However, the underlying mechanism of its action has not been fully understood. The present study investigated the impact of SIN on angiogenesis in a liver cancer model. In a murine xenograft tumor model, SIN inhibited the growth of HepG2/C3A human liver hepatoma cell-derived tumors and reduced the expression levels of platelet/endothelial cell adhesion molecule-1 and VEGF. In HepG2/C3A cells, SIN repressed VEGF expression by downregulating hypoxia-inducible factor expression. In cultured human umbilical vein endothelial cells, SIN increased apoptosis and repressed migration and tube formation. In addition, SIN decreased the phosphorylation of VEGFR2 and inhibited the AKT signaling pathway. Molecular docking demonstrated that the VEGFR2 core domain effectively combined with SIN at various important residues. Collectively, these data suggested that SIN inhibited liver cancer angiogenesis by regulating VEGF/VEGFR2/AKT signaling.
Collapse
Affiliation(s)
- Xiaο Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Yan Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Fuhong Liu
- Laboratory of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yanjun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Jiangjiu Liang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Rucai Zhan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Yue Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - He Ren
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Xiuyuan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Ju Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| |
Collapse
|
15
|
Zanjanchi P, Asghari SM, Mohabatkar H, Shourian M, Shafiee Ardestani M. Conjugation of VEGFR1/R2-targeting peptide with gold nanoparticles to enhance antiangiogenic and antitumoral activity. J Nanobiotechnology 2022; 20:7. [PMID: 34983556 PMCID: PMC8725421 DOI: 10.1186/s12951-021-01198-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inhibition of tumor angiogenesis through simultaneous targeting of vascular endothelial growth factor receptor (VEGFR)-1 and -2 is highly efficacious. An antagonist peptide of VEGFA/VEGFB, referred to as VGB3, can recognize and neutralize both VEGFR1 and VEGFR2 on the endothelial and tumoral cells, thereby inhibits angiogenesis and tumor growth. However, improved efficacy and extending injection intervals is required for its clinical translation. Given that gold nanoparticles (GNPs) can enhance the efficacy of biotherapeutics, we conjugated VGB3 to GNPs to enhance its efficacy and extends the intervals between treatments without adverse effects. RESULTS GNP-VGB3 bound to VEGFR1 and VEGFR2 in human umbilical vein endothelial (HUVE) and 4T1 mammary carcinoma cells. GNP-VGB3 induced cell cycle arrest, ROS overproduction and apoptosis and inhibited proliferation and migration of endothelial and tumor cells more effectively than unconjugated VGB3 or GNP. In a murine 4T1 mammary carcinoma tumor model, GNP-VGB3 more strongly than VGB3 and GNP inhibited tumor growth and metastasis, and increased animal survival without causing weight loss. The superior antitumor effects were associated with durable targeting of VEGFR1 and VEGFR2, thereby inhibiting signaling pathways of proliferation, migration, differentiation, epithelial-to-mesenchymal transition, and survival in tumor tissues. MicroCT imaging and inductively coupled plasma mass spectrometry showed that GNP-VGB3 specifically target tumors and exhibit greater accumulation within tumors than the free GNPs. CONCLUSION Conjugation to GNPs not only improved the efficacy of VGB3 peptide but also extended the intervals between treatments without adverse effects. These results suggest that GNP-VGB3 is a promising candidate for clinical translation.
Collapse
Affiliation(s)
- Pegah Zanjanchi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 8174673441, Iran
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 1417614411, Iran.
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 8174673441, Iran.
| | - Mostafa Shourian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, 4199613776, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Morbidelli L, Donnini S. Introduction. ANTIANGIOGENIC DRUGS AS CHEMOSENSITIZERS IN CANCER THERAPY 2022:1-28. [DOI: 10.1016/b978-0-323-90190-1.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Iguchi M, Wada H, Shinozaki T, Suzuki M, Ajiro Y, Matsuda M, Koike A, Koizumi T, Shimizu M, Ono Y, Takenaka T, Sakagami S, Morita Y, Fujimoto K, Yonezawa K, Yoshida K, Ninomiya A, Nakamura T, Funada J, Kajikawa Y, Oishi Y, Kato T, Kotani K, Abe M, Akao M, Hasegawa K. Soluble vascular endothelial growth factor receptor 2 and prognosis in patients with chronic heart failure. ESC Heart Fail 2021; 8:4187-4198. [PMID: 34387398 PMCID: PMC8497334 DOI: 10.1002/ehf2.13555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Aims Endothelial cell vascular endothelial growth factor receptor 2 (VEGFR‐2) plays a pivotal role in angiogenesis, which induces physiological cardiomyocyte hypertrophy via paracrine signalling between endothelial cells and cardiomyocytes. We investigated whether a decrease in circulating soluble VEGFR‐2 (sVEGFR‐2) levels is associated with poor prognosis in patients with chronic heart failure (HF). Methods and results We performed a multicentre prospective cohort study of 1024 consecutive patients with HF, who were admitted to hospitals due to acute decompensated HF and were stabilized after initial management. Serum levels of sVEGFR‐2 were measured at discharge. Patients were followed up over 2 years. The outcomes were cardiovascular death, all‐cause death, major adverse cardiovascular events (MACE) defined as a composite of cardiovascular death and HF hospitalization, and HF hospitalization. The mean age of the patients was 75.5 (standard deviation, 12.6) years, and 57% were male. Patients with lower sVEGFR‐2 levels were older and more likely to be female, and had greater proportions of atrial fibrillation and anaemia, and lower proportions of diabetes, dyslipidaemia, and HF with reduced ejection fraction (<40%). During the follow‐up, 113 cardiovascular deaths, 211 all‐cause deaths, 350 MACE, and 309 HF hospitalizations occurred. After adjustment for potential clinical confounders and established biomarkers [N‐terminal B‐type natriuretic peptide (NT‐proBNP), high‐sensitivity cardiac troponin I, and high‐sensitivity C‐reactive protein], a low sVEGFR‐2 level below the 25th percentile was significantly associated with cardiovascular death [hazard ratio (HR), 1.79; 95% confidence interval (CI), 1.16–2.74] and all‐cause death (HR, 1.43; 95% CI, 1.04–1.94), but not with MACE (HR, 1.11; 95% CI, 0.86–1.43) or HF hospitalization (HR, 1.03; 95% CI, 0.78–1.35). The stratified analyses revealed that a low sVEGFR‐2 level below the 25th percentile was significantly associated with cardiovascular death (HR, 1.76; 95% CI, 1.07–2.85) and all‐cause death (HR, 1.49; 95% CI, 1.03–2.15) in the high‐NT‐proBNP group (above the median), but not in the low‐NT‐proBNP group. Notably, the patients with high‐NT‐proBNP and low‐sVEGFR‐2 (below the 25th percentile) had a 2.96‐fold higher risk (95% CI, 1.56–5.85) for cardiovascular death and a 2.40‐fold higher risk (95% CI, 1.52–3.83) for all‐cause death compared with those with low‐NT‐proBNP and high‐sVEGFR‐2. Conclusions A low sVEGFR‐2 value was independently associated with cardiovascular death and all‐cause death in patients with chronic HF. These associations were pronounced in those with high NT‐proBNP levels.
Collapse
Affiliation(s)
- Moritake Iguchi
- Department of Cardiology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Hiromichi Wada
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tsuyoshi Shinozaki
- Department of Cardiology, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Masahiro Suzuki
- Department of Clinical Research, National Hospital Organization Saitama Hospital, Wako, Japan
| | - Yoichi Ajiro
- Division of Clinical Research, National Hospital Organization Yokohama Medical Center, Yokohama, Japan
| | - Morihiro Matsuda
- Division of Preventive Medicine Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Akihiro Koike
- Department of Cardiology, National Hospital Organization Fukuokahigashi Medical Center, Koga, Japan
| | - Tomomi Koizumi
- Department of Cardiology, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Masatoshi Shimizu
- Department of Cardiology, National Hospital Organization Kobe Medical Center, Kobe, Japan
| | - Yujiro Ono
- Department of Cardiology, National Hospital Organization Higashihiroshima Medical Center, Hiroshima, Japan
| | - Takashi Takenaka
- Department of Cardiology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Satoru Sakagami
- Institute for Clinical Research, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Yukiko Morita
- Department of Cardiology, National Hospital Organization Sagamihara Hospital, Sagamihara, Japan
| | - Kazuteru Fujimoto
- Department of Cardiology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Kazuya Yonezawa
- Division of Clinical Research, National Hospital Organization Hakodate Hospital, Hakodate, Japan
| | - Kazuro Yoshida
- Department of Cardiology, National Hospital Organization Nagasakikawadana Medical Center, Higashisonogi, Japan.,Department of Cardiology, National Hospital Organization Nagasaki Hospital, Nagasaki, Japan
| | - Akiyo Ninomiya
- Department of Cardiology, National Hospital Organization Nagasakikawadana Medical Center, Higashisonogi, Japan
| | - Toshihiro Nakamura
- Department of Cardiology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Junichi Funada
- Department of Cardiology, National Hospital Organization Ehime Medical Center, Toon, Japan
| | - Yutaka Kajikawa
- Department of Cardiology, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Yoshifumi Oishi
- Department of Cardiology, National Hospital Organization Higashitokushima Medical Center, Itano, Japan
| | - Toru Kato
- Department of Clinical Research, National Hospital Organization Tochigi Medical Center, Utsunomiya, Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Mitsuru Abe
- Department of Cardiology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Masaharu Akao
- Department of Cardiology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Koji Hasegawa
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | |
Collapse
|
18
|
Aloisio A, Nisticò N, Mimmi S, Maisano D, Vecchio E, Fiume G, Iaccino E, Quinto I. Phage-Displayed Peptides for Targeting Tyrosine Kinase Membrane Receptors in Cancer Therapy. Viruses 2021; 13:649. [PMID: 33918836 PMCID: PMC8070105 DOI: 10.3390/v13040649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate critical physiological processes, such as cell growth, survival, motility, and metabolism. Abnormal activation of RTKs and relative downstream signaling is implicated in cancer pathogenesis. Phage display allows the rapid selection of peptide ligands of membrane receptors. These peptides can target in vitro and in vivo tumor cells and represent a novel therapeutic approach for cancer therapy. Further, they are more convenient compared to antibodies, being less expensive and non-immunogenic. In this review, we describe the state-of-the-art of phage display for development of peptide ligands of tyrosine kinase membrane receptors and discuss their potential applications for tumor-targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ileana Quinto
- Correspondence: (A.A.); (I.Q.): Tel.: +39-0961-3694057 (I.Q.)
| |
Collapse
|
19
|
Xia S, Menden HL, Townley N, Mabry SM, Johnston J, Nyp MF, Heruth DP, Korfhagen T, Sampath V. Delta-like 4 is required for pulmonary vascular arborization and alveolarization in the developing lung. JCI Insight 2021; 6:134170. [PMID: 33830085 PMCID: PMC8119184 DOI: 10.1172/jci.insight.134170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2021] [Indexed: 11/23/2022] Open
Abstract
The molecular mechanisms by which endothelial cells (ECs) regulate pulmonary vascularization and contribute to alveolar epithelial cell development during lung morphogenesis remain unknown. We tested the hypothesis that delta-like 4 (DLL4), an EC Notch ligand, is critical for alveolarization by combining lung mapping and functional studies in human tissue and DLL4-haploinsufficient mice (Dll4+/lacz). DLL4 expressed in a PECAM-restricted manner in capillaries, arteries, and the alveolar septum from the canalicular to alveolar stage in mice and humans. Dll4 haploinsufficiency resulted in exuberant, nondirectional vascular patterning at E17.5 and P6, followed by smaller capillaries and fewer intermediate blood vessels at P14. Vascular defects coincided with polarization of lung EC expression toward JAG1-NICD-HES1 signature and decreased tip cell-like (Car4) markers. Dll4+/lacZ mice had impaired terminal bronchiole development at the canalicular stage and impaired alveolarization upon lung maturity. We discovered that alveolar type I cell (Aqp5) markers progressively decreased in Dll4+/lacZ mice after birth. Moreover, in human lung EC, DLL4 deficiency programmed a hypersprouting angiogenic phenotype cell autonomously. In conclusion, DLL4 is expressed from the canalicular to alveolar stage in mice and humans, and Dll4 haploinsufficiency programs dysmorphic microvascularization, impairing alveolarization. Our study reveals an obligate role for DLL4-regulated angiogenesis in distal lung morphogenesis.
Collapse
Affiliation(s)
- Sheng Xia
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Heather L. Menden
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Nick Townley
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Sherry M. Mabry
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Jeffrey Johnston
- Genomic Medicine Center, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Michael F. Nyp
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Daniel P. Heruth
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Thomas Korfhagen
- Division of Neonatology, Department of Pediatrics, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| |
Collapse
|
20
|
Zhou G, Li Z, Hu P, Wang J, Fu J, Wei B, Zhang Y. miR-219a suppresses human trophoblast cell invasion and proliferation by targeting vascular endothelial growth factor receptor 2 (VEGFR2). J Assist Reprod Genet 2021; 38:461-470. [PMID: 33405003 PMCID: PMC7884507 DOI: 10.1007/s10815-020-02022-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) plays a critical role in regulating trophoblast cell invasion and proliferation, involved in a variety of pregnancy complications, such as spontaneous abortion and pre-eclampsia. Numerous studies have revealed that microRNAs (miRNAs) are participated in a series of molecular processes that regulate cell function, such as cell invasion, proliferation, and apoptosis. Vascular endothelial growth factor receptor 2 (VEGFR2), a receptor of VEGF, has been shown to be involved in trophoblast function. However, the relation between miRNA and VEGFR2 and their role in trophoblast function remain to be elucidated. METHODS The effect of miR-219a on the trophoblast function has been explored using luciferase reporter, transwell, qRT-PCR, western blot, bromodeoxyuridine (BrdU), ELISA, immunofluorescent staining, and tube formation assays. RESULTS In the current study, we observed that through targeted inhibition of VEGFR2 expression by miR-219a, the function of VEGFR2 as well as the downstream PI3K/AKT/NF-κB signaling pathway were suppressed, leading to suppression of trophoblastic proliferation and invasion. Moreover, upregulation of VEGFR2 restored the miR-219a-inhibited cell proliferation, invasion, and tube formation. CONCLUSIONS These results revealed that miR-219a played crucial roles in negatively regulating trophoblastic proliferation and invasion by suppression of the PI3K/AKT/NF-κB signaling pathway by targeting VEGFR2, therefore serving as a potential treatment method for the complications of pregnancy caused by trophoblastic dysregulation.
Collapse
Affiliation(s)
- Guiju Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, 230000, Hefei, People's Republic of China
| | - Zhifang Li
- Anqing Municipal Hospital, Anhui Medical University, Anqing, China
| | - Pin Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, 230000, Hefei, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, 230000, Hefei, People's Republic of China
| | - Juanjuan Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, 230000, Hefei, People's Republic of China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, 230000, Hefei, People's Republic of China.
| | - Yu Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, 230000, Hefei, People's Republic of China.
| |
Collapse
|
21
|
Belviso I, Angelini F, Di Meglio F, Picchio V, Sacco AM, Nocella C, Romano V, Nurzynska D, Frati G, Maiello C, Messina E, Montagnani S, Pagano F, Castaldo C, Chimenti I. The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells. Int J Mol Sci 2020; 21:ijms21217903. [PMID: 33114386 PMCID: PMC7662394 DOI: 10.3390/ijms21217903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/20/2023] Open
Abstract
Cardiac adverse remodeling is characterized by biological changes that affect the composition and architecture of the extracellular matrix (ECM). The consequently disrupted signaling can interfere with the balance between cardiogenic and pro-fibrotic phenotype of resident cardiac stromal primitive cells (CPCs). The latter are important players in cardiac homeostasis and can be exploited as therapeutic cells in regenerative medicine. Our aim was to compare the effects of human decellularized native ECM from normal (dECM-NH) or failing hearts (dECM-PH) on human CPCs. CPCs were cultured on dECM sections and characterized for gene expression, immunofluorescence, and paracrine profiles. When cultured on dECM-NH, CPCs significantly upregulated cardiac commitment markers (CX43, NKX2.5), cardioprotective cytokines (bFGF, HGF), and the angiogenesis mediator, NO. When seeded on dECM-PH, instead, CPCs upregulated pro-remodeling cytokines (IGF-2, PDGF-AA, TGF-β) and the oxidative stress molecule H2O2. Interestingly, culture on dECM-PH was associated with impaired paracrine support to angiogenesis, and increased expression of the vascular endothelial growth factor (VEGF)-sequestering decoy isoform of the KDR/VEGFR2 receptor. Our results suggest that resident CPCs exposed to the pathological microenvironment of remodeling ECM partially lose their paracrine angiogenic properties and release more pro-fibrotic cytokines. These observations shed novel insights on the crosstalk between ECM and stromal CPCs, suggesting also a cautious use of non-healthy decellularized myocardium for cardiac tissue engineering approaches.
Collapse
Affiliation(s)
- Immacolata Belviso
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Francesco Angelini
- Experimental and Clinical Pharmacology Unit, CRO-National Cancer Institute, 33081 Aviano (PN), Italy;
| | - Franca Di Meglio
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
| | - Anna Maria Sacco
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, 00161 Rome, Italy;
| | - Veronica Romano
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Daria Nurzynska
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, 80131 Naples, Italy;
| | - Elisa Messina
- Department of Maternal Infantile and Urological Sciences, “Umberto I” Hospital, 00161 Rome, Italy;
| | - Stefania Montagnani
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), 00015 Monterotondo (RM), Italy;
| | - Clotilde Castaldo
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
- Correspondence: ; Tel.: +39-0773-1757-234
| |
Collapse
|
22
|
Sun M, Qiu S, Xiao Q, Wang T, Tian X, Chen C, Wang X, Han J, Zheng H, Shou Y, Chen K. Synergistic effects of multiple myeloma cells and tumor-associated macrophages on vascular endothelial cells in vitro. Med Oncol 2020; 37:99. [PMID: 33040185 DOI: 10.1007/s12032-020-01426-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is a prerequisite for multiple myeloma development. Tumor cells can stimulate angiogenesis by secreting vascular endothelial growth factor A (VEGFA), but we previously reported that tumor angiogenesis was not significantly reduced when VEGFA expression was inhibited in myeloma cells. Tumor-associated macrophages (TAMs) are important components of the tumor microenvironment and have been reported to be involved in the regulation of angiogenesis. In this study, we performed in vitro macrophage coculture studies and studies with RPMI 8226 and TAMs cell-conditioned media to explore their effects on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). Our results showed that M2 macrophages and RPMI 8226 cells could synergistically promote HUVEC proliferation, migration, and tube formation, and that VEGFA depletion in both cell types suppressed HUVEC tube formation ability. Conversely, M1 macrophages inhibited the tube formation in HUVECs. Mechanistically, M2 macrophage secretion of VEGFA may affect vascular endothelial growth factor receptor 1 signaling to regulate angiogenesis. In summary, our results suggest that macrophage clearance or inducing of transformation of M2 macrophages into M1 macrophages are potential treatment strategies for multiple myeloma.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Sen Qiu
- Department of Pathology, People's Hospital of Zhengzhou, No.33 Huanghe Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Qiankun Xiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Tong Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Xiangyu Tian
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Chao Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Xiaohui Wang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, No.88 Jiankang Road, XinXiang, 453000, Henan, People's Republic of China
| | - Junya Han
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Haina Zheng
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Yuwei Shou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, Henan, People's Republic of China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450000, Henan, People's Republic of China. .,Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, No.40 Daxue Road, Zhengzhou, 450003, Henan, People's Republic of China.
| |
Collapse
|
23
|
Song X, Hu Y, Li Y, Shao R, Liu F, Liu Y. Overview of current targeted therapy in gallbladder cancer. Signal Transduct Target Ther 2020; 5:230. [PMID: 33028805 PMCID: PMC7542154 DOI: 10.1038/s41392-020-00324-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/08/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC) is rare, but is the most malignant type of biliary tract tumor. Unfortunately, only a small population of cancer patients is acceptable for the surgical resection, the current effective regimen; thus, the high mortality rate has been static for decades. To substantially circumvent the stagnant scenario, a number of therapeutic approaches owing to the creation of advanced technologic measures (e.g., next-generation sequencing, transcriptomics, proteomics) have been intensively innovated, which include targeted therapy, immunotherapy, and nanoparticle-based delivery systems. In the current review, we primarily focus on the targeted therapy capable of specifically inhibiting individual key molecules that govern aberrant signaling cascades in GBC. Global clinical trials of targeted therapy in GBC are updated and may offer great value for novel pathologic and therapeutic insights of this deadly disease, ultimately improving the efficacy of treatment.
Collapse
Affiliation(s)
- Xiaoling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yongsheng Li
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Rong Shao
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Fatao Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Yingbin Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
24
|
Luo X, He JY, Xu J, Hu SY, Mo BH, Shu QX, Chen C, Gong YZ, Zhao XL, Xie GF, Yu ST. Vascular NRP2 triggers PNET angiogenesis by activating the SSH1-cofilin axis. Cell Biosci 2020; 10:113. [PMID: 32983407 PMCID: PMC7509939 DOI: 10.1186/s13578-020-00472-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Angiogenesis is a critical step in the growth of pancreatic neuroendocrine tumors (PNETs) and may be a selective target for PNET therapy. However, PNETs are robustly resistant to current anti-angiogenic therapies that primarily target the VEGFR pathway. Thus, the mechanism of PNET angiogenesis urgently needs to be clarified. Methods Dataset analysis was used to identify angiogenesis-related genes in PNETs. Immunohistochemistry was performed to determine the relationship among Neuropilin 2 (NRP2), VEGFR2 and CD31. Cell proliferation, wound-healing and tube formation assays were performed to clarify the function of NRP2 in angiogenesis. The mechanism involved in NRP2-induced angiogenesis was detected by constructing plasmids with mutant variants and performing Western blot, and immunofluorescence assays. A mouse model was used to evaluate the effect of the NRP2 antibody in vivo, and clinical data were collected from patient records to verify the association between NRP2 and patient prognosis. Results NRP2, a VEGFR2 co-receptor, was positively correlated with vascularity but not with VEGFR2 in PNET tissues. NRP2 promoted the migration of human umbilical vein endothelial cells (HUVECs) cultured in the presence of conditioned medium PNET cells via a VEGF/VEGFR2-independent pathway. Moreover, NRP2 induced F-actin polymerization by activating the actin-binding protein cofilin. Cofilin phosphatase slingshot-1 (SSH1) was highly expressed in NRP2-activating cofilin, and silencing SSH1 ameliorated NRP2-activated HUVEC migration and F-actin polymerization. Furthermore, blocking NRP2 in vivo suppressed PNET angiogenesis and tumor growth. Finally, elevated NRP2 expression was associated with poor prognosis in PNET patients. Conclusion Vascular NRP2 promotes PNET angiogenesis by activating the SSH1/cofilin/actin axis. Our findings demonstrate that NRP2 is an important regulator of angiogenesis and a potential therapeutic target of anti-angiogenesis therapy for PNET.
Collapse
Affiliation(s)
- Xi Luo
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jiang-Yi He
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jie Xu
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Shao-Yi Hu
- Nursing Division, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Bang-Hui Mo
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qiu-Xia Shu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Can Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yu-Zhu Gong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Xiao-Long Zhao
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Gan-Feng Xie
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Song-Tao Yu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| |
Collapse
|
25
|
Role of Arginine Methylation in Alternative Polyadenylation of VEGFR-1 (Flt-1) pre-mRNA. Int J Mol Sci 2020; 21:ijms21186460. [PMID: 32899690 PMCID: PMC7554721 DOI: 10.3390/ijms21186460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Mature mRNA is generated by the 3ʹ end cleavage and polyadenylation of its precursor pre-mRNA. Eukaryotic genes frequently have multiple polyadenylation sites, resulting in mRNA isoforms with different 3ʹ-UTR lengths that often encode different C-terminal amino acid sequences. It is well-known that this form of post-transcriptional modification, termed alternative polyadenylation, can affect mRNA stability, localization, translation, and nuclear export. We focus on the alternative polyadenylation of pre-mRNA for vascular endothelial growth factor receptor-1 (VEGFR-1), the receptor for VEGF. VEGFR-1 is a transmembrane protein with a tyrosine kinase in the intracellular region. Secreted forms of VEGFR-1 (sVEGFR-1) are also produced from the same gene by alternative polyadenylation, and sVEGFR-1 has a function opposite to that of VEGFR-1 because it acts as a decoy receptor for VEGF. However, the mechanism that regulates the production of sVEGFR-1 by alternative polyadenylation remains poorly understood. In this review, we introduce and discuss the mechanism of alternative polyadenylation of VEGFR-1 mediated by protein arginine methylation.
Collapse
|
26
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
27
|
Lee HP, Wang SW, Wu YC, Lin LW, Tsai FJ, Yang JS, Li TM, Tang CH. Soya-cerebroside inhibits VEGF-facilitated angiogenesis in endothelial progenitor cells. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1713055] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Wei Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|