1
|
Wang X, Xu L, Wu Z, Lou L, Xia C, Miao H, Dai J, Fei W, Wang J. Exosomes of stem cells: a potential frontier in the treatment of osteoarthritis. PRECISION CLINICAL MEDICINE 2025; 8:pbae032. [PMID: 39781279 PMCID: PMC11705996 DOI: 10.1093/pcmedi/pbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025] Open
Abstract
The aging population has led to a global issue of osteoarthritis (OA), which not only impacts the quality of life for patients but also poses a significant economic burden on society. While biotherapy offers hope for OA treatment, currently available treatments are unable to delay or prevent the onset or progression of OA. Recent studies have shown that as nanoscale bioactive substances that mediate cell communication, exosomes from stem cell sources have led to some breakthroughs in the treatment of OA and have important clinical significance. This paper summarizes the mechanism and function of stem cell exosomes in delaying OA and looks forward to the development prospects and challenges of exosomes.
Collapse
Affiliation(s)
- Xiaofei Wang
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Lei Xu
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Zhimin Wu
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Linbing Lou
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Cunyi Xia
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Haixiang Miao
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Wenyong Fei
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
2
|
Felippe TVD, Toro DM, de Carvalho JCS, Nobre-Azevedo P, Rodrigues LFM, Oliveira BTM, da Silva-Neto PV, Vilela AFL, Almeida F, Faccioli LH, Sorgi CA. High-resolution targeted mass spectrometry for comprehensive quantification of sphingolipids: clinical applications and characterization of extracellular vesicles. Anal Biochem 2025; 698:115732. [PMID: 39622401 DOI: 10.1016/j.ab.2024.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Sphingolipids (SL), a class of membrane lipids, play important roles in numerous biological processes. Their significant structural diversity poses challenges for accurate quantification. To address this, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for sphingolipidomics, capable of profiling these lipids comprehensively. In this study, we utilized LC-MS/MS with high-resolution mass spectrometry (MRMHR) to develop a targeted method for the identification and quantification of various SL species. This method, based on validated parameters such as precursor/fragment ions (m/z) and retention time, demonstrated high sensitivity and accuracy, successfully identifying SL species across 12 distinct classes. Its open-panel design also facilitates the analysis of new SL-species targets. Notably, using this approach, we identified 40 SL species in plasma samples from COVID-19 patients, and we determined the influence of matrix metalloproteinase-3 (MMP-3) expression on the positive downstream of SL metabolism. Beyond plasma analysis, this method has potential applications in other biomedical contexts, such as extracellular vesicles (EVs), describing the cargo of sphingosine-1-phosphate (S1P) on macrophage-derived EVs. The establishment of this targeted workflow enabling precise quantification of a wide range of SL species, holds promise for identifying novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thiago V D Felippe
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Diana M Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Jonatan C S de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Pedro Nobre-Azevedo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Luiz F M Rodrigues
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Bianca T M Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Pedro V da Silva-Neto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Adriana F L Vilela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Carlos A Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil.
| |
Collapse
|
3
|
Liu YJ, Kyne M, Kang C, Wang C. Raman spectroscopy in extracellular vesicles analysis: Techniques, applications and advancements. Biosens Bioelectron 2025; 270:116970. [PMID: 39603214 DOI: 10.1016/j.bios.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Raman spectroscopy provides a robust approach for detailed analysis of the chemical and molecular profiles of extracellular vesicles (EVs). Recent advancements in Raman techniques have significantly enhanced the sensitivity and accuracy of EV characterization, enabling precise detection and profiling of molecular components within EV samples. This review introduces and compares various Raman-based techniques for EV characterization. These include Raman spectroscopy (RS), which provides fundamental molecular information; Raman trapping analysis (RTA), which combines optical trapping with Raman scattering for the manipulation and analysis of individual EVs; surface-enhanced Raman spectroscopy (SERS), which enhances the Raman signal through the use of metallic nanostructures, significantly improving sensitivity; and microfluidic SERS, which integrates SERS with microfluidic platforms to allow high-throughput, label-free analysis of EVs in biological fluids. In addition to comparing various Raman techniques, this review provides a comprehensive analysis that includes comparisons of machine learning methods, EV isolation techniques, and characterization strategies. By integrating these approaches, the review presents a holistic perspective on Raman-based EV analysis, covering profiling, purity, heterogeneity and size analysis as well as imaging. The combined assessment of Raman technologies with advanced computational and experimental methodologies supports the development of more robust diagnostic and therapeutic applications involving EVs.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Michelle Kyne
- School of Chemistry, National University of Ireland, Galway, Galway, H91 CF50, Ireland
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| | - Cheng Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
4
|
Manzini V, Cappelletti P, Orefice NS, Brentari I, Rigby MJ, Lo Giudice M, Feligioni M, Rivabene R, Crestini A, Manfredi F, Talarico G, Bruno G, Corbo M, Puglielli L, Denti MA, Piscopo P. miR-92a-3p and miR-320a are Upregulated in Plasma Neuron-Derived Extracellular Vesicles of Patients with Frontotemporal Dementia. Mol Neurobiol 2025; 62:2573-2586. [PMID: 39138758 PMCID: PMC11772464 DOI: 10.1007/s12035-024-04386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Despite the efforts to identify fluid biomarkers to improve diagnosis of Frontotemporal dementia (FTD), only a few candidates have been described in recent years. In a previous study, we identified three circulating miRNAs (miR-92a-3p, miR-320a and miR-320b) differentially expressed in FTD patients with respect to healthy controls and/or Alzheimer's disease (AD) patients. Now, we investigated whether those changes could be due to miRNAs contained in neuron-derived extracellular vesicles (NDEVs). We also evaluated miRNAs content in total plasma EVs and in CSF samples. The analysis of plasma NDEVs carried out on 40 subjects including controls (n = 13), FTD (n = 13) and AD (n = 14) patients, showed that both miR-92a-3p and miR-320a levels were triplicated in the FTD group if compared with CT and AD patients. Increased levels of the same miRNAs were found also in CSF derived from FTD group compared to CTs. No differences were observed in expression levels of miR-320b among the three groups. Worthy of note, all miRNAs analysed were increased in an FTD cell model, MAPT IVS10 + 16 neurons. Our results suggest that miR-92a and miR-320a in NDEVs could be proposed as FTD biomarkers.
Collapse
Affiliation(s)
- Valeria Manzini
- Department of Neuroscience, Istituto Superiore Di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
- Department of Biology and Biotechnology Charles Darwin, University of Rome "Sapienza", Rome, Italy
| | - Pamela Cappelletti
- Department of Neurorehabilitation Sciences, Casa Cura Igea, Milan, Italy
| | - Nicola S Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Feinberg School of Medicine, Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Ilaria Brentari
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Maria Lo Giudice
- Need Institute, Foundation for Cure and Rehabilitation of Neurological Diseases, Milan, Italy
| | - Marco Feligioni
- Department of Neurorehabilitation Sciences, Casa Cura Igea, Milan, Italy
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Roberto Rivabene
- Department of Neuroscience, Istituto Superiore Di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore Di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Francesco Manfredi
- National Center for Global Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome "Sapienza", Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome "Sapienza", Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Igea, Milan, Italy
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, 53705, USA
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore Di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
5
|
Li Y, He W, Zhou Y, Chen H, You P, Mu D, Ma Y, Gao Y, Xu K, Dong H, Cheng X. Advances in laboratory diagnosis of Sjogren's disease in children. Clin Chim Acta 2025; 567:120095. [PMID: 39681228 DOI: 10.1016/j.cca.2024.120095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Sjogren's disease (SjD) in children is a rare chronic autoimmune disease not fully recognized due to clinical manifestations different from adults. As such, new objective indicators are needed to supplement existing markers and assist in diagnosis. This review summarizes pathogenesis of SjD in children, current diagnostic criteria and research progress in laboratory diagnosis including serologic testing, saliva and tear analysis, histopathological examination as well as emerging markers of interest.
Collapse
Affiliation(s)
- Yuemeng Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Wenxiu He
- Department of Stomatology, Peking Union Medical College Hospital, Peking Union Medical College&Chinese Academy of Medical Science, Beijing 100730, China
| | - Yu Zhou
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Haotian Chen
- Department of Stomatology, Peking Union Medical College Hospital, Peking Union Medical College&Chinese Academy of Medical Science, Beijing 100730, China
| | - Pengyue You
- Department of Stomatology, Peking Union Medical College Hospital, Peking Union Medical College&Chinese Academy of Medical Science, Beijing 100730, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Yichen Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Yumeng Gao
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Kaiduo Xu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology & Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Haitao Dong
- Department of Stomatology, Peking Union Medical College Hospital, Peking Union Medical College&Chinese Academy of Medical Science, Beijing 100730, China.
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China.
| |
Collapse
|
6
|
Li T, Xing HM, Qian HD, Gao Q, Xu SL, Ma H, Chi ZL. Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury. Neural Regen Res 2025; 20:587-597. [PMID: 38819069 PMCID: PMC11317950 DOI: 10.4103/nrr.nrr-d-23-01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00034/figure1/v/2024-05-28T214302Z/r/image-tiff Several studies have found that transplantation of neural progenitor cells (NPCs) promotes the survival of injured neurons. However, a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application. Small extracellular vesicles (sEVs) contain bioactive molecules for neuronal protection and regeneration. Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases. In this study, we intravitreally transplanted sEVs derived from human induced pluripotent stem cells (hiPSCs) and hiPSCs-differentiated NPCs (hiPSC-NPC) in a mouse model of optic nerve crush. Our results show that these intravitreally injected sEVs were ingested by retinal cells, especially those localized in the ganglion cell layer. Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration, and regulated the retinal microenvironment by inhibiting excessive activation of microglia. Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells, which had protective effects on RGCs after optic nerve injury. These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hui-Min Xing
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hai-Dong Qian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiao Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sheng-Lan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hua Ma
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Karimi N, Dinçsoy AB. The Role of Mesenchymal Stem Cell-Derived Exosomes in Skin Regeneration, Tissue Repair, and the Regulation of Hair Follicle Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 39841379 DOI: 10.1007/5584_2024_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes. Exosomes, emerging as a promising cell-free therapy in tissue engineering, hold substantial potential due to their ability to influence various biological functions. This review explores the mechanisms by which MSC-derived exosomes facilitate skin regeneration and repair, and hair growth, their therapeutic applications, and the future research directions in this emerging field.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Adnan Berk Dinçsoy
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
8
|
Khristov V, Weber SR, Caton-Darby M, Campbell G, Sundstrom JM. Diagnostic and Therapeutic Utility of Extracellular Vesicles in Ocular Disease. Int J Mol Sci 2025; 26:836. [PMID: 39859553 PMCID: PMC11765869 DOI: 10.3390/ijms26020836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer particles released by virtually all cells, with prominent roles in both physiological and pathological processes. The size, number, and molecular composition of released EVs correlate to the cells of origin, modulated by the cell's environment and pathologic state. The proteins, DNA, RNA, and protein cargo carried by EVs are protected by degradation, with a prominent role in targeted intercellular signaling. These properties make EVs salient targets as both carriers of biomarkers and potential therapeutic delivery vehicles. The majority of EV research has focused on blood, urine, saliva, and cerebrospinal fluid due to easy accessibility. EVs have also been identified and studied in all ocular biofluids, including the vitreous humor, the aqueous humor, and the tear film, and the study of EVs in ocular disease is a new, promising, and underexplored direction with unique challenges and considerations. This review covers recent advances in the diagnostic and therapeutic use of ocular EVs, with a focus on human applications and key preceding in vitro and in vivo animal studies. We also discuss future directions based on the study of EVs in other organ systems and disease sates.
Collapse
Affiliation(s)
- Vladimir Khristov
- Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.K.); (G.C.)
| | - Sarah R. Weber
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| | - Mireille Caton-Darby
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| | - Gregory Campbell
- Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.K.); (G.C.)
| | - Jeffrey M. Sundstrom
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| |
Collapse
|
9
|
Shieh TM, Lin NC, Shen YW, Lan WC, Shih YH. Epithelium-derived exosomal dipeptidyl peptidase-4 involved in arecoline-induced oral submucous fibrosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167683. [PMID: 39837428 DOI: 10.1016/j.bbadis.2025.167683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Dipeptidyl peptidase-4 is known to be involved in the progression of several fibrogenic diseases, but its association with oral submucous fibrosis remains unclear. This study aims to ascertain whether dipeptidyl peptidase-4 plays a role in the pathogenesis of arecoline-induced oral submucous fibrosis. METHODS We assessed the expression of dipeptidyl peptidase-4 in arecoline-treated epithelial cells and the exosomes derived from cells. We cocultured the fibroblast and exosomes derived from epithelium cells and assessed fibrogenic activity by measuring collagen secretion, α-SMA expression, and gel contraction capability. An animal study was conducted to confirm the fibrogenic activity of exosomes derived from arecoline-treated epithelial cells. Additionally, we employed a dipeptidyl peptidase-4 inhibitor to assess its efficacy in mitigating fibrogenesis. RESULTS Following arecoline treatment, an increase dipeptidyl peptidase-4 expression was observed in exosomes from the treated epithelium cells. When these exosomes cocultured with fibroblast, fibrogenic gene α-SMA was upregulated, increased collagen secretion, and enhanced gel contraction capability. In a mouse model, the administration of arecoline-treated epithelium-derived exosomes induced oral submucous fibrosis phenotype, characterized by a reduction in incisal distance and epithelial atrophy. CONCLUSIONS These findings offer valuable insights into clinical strategies for combating oral fibrotic disease and contribute to the foundation of future research in this field.
Collapse
Affiliation(s)
- Tzong-Ming Shieh
- School of Dentistry, China Medical University, 404332 Taichung, Taiwan.
| | - Nan-Chin Lin
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, 500 Changhua, Taiwan
| | - Yen-Wen Shen
- Department of Dentistry, China Medical University Hospital, 404332 Taichung City, Taiwan.
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, 40454 Taichung, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, 40454 Taichung, Taiwan.
| |
Collapse
|
10
|
Wang J, Sun Y, Yang Y, Zhang C, Zheng W, Wang C, Zhang W, Zhou L, Yu H, Li J. Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407432. [PMID: 39792780 DOI: 10.1002/advs.202407432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles. Image sequences are recorded by the state-of-the-art plasmonic microscopy during single nanoparticle collision onto the sensor surface. Deep-SM can enhance signal detection and suppresses noise by leveraging spatio-temporal correlations of the unique signal and noise characteristics in plasmonic microscopy image sequences. Deep-SM can provide significant scattering signal enhancement and noise reduction in dynamic imaging of biological nanoparticles as small as 10 nm, as well as the collision detection of metallic nanoparticle electrochemistry and quantum coupling with plasmonic microscopy. The high sensitivity and simplicity make this approach promising for routine use in nanoparticle analysis across diverse scientific fields.
Collapse
Affiliation(s)
- Jingan Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yi Sun
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuting Yang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Cheng Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weiqiang Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wei Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Lianqun Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Hui Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Chen Y, Liu H, He Y, Yang B, Lu W, Dai Z. Roles for Exosomes in the Pathogenesis, Drug Delivery and Therapy of Psoriasis. Pharmaceutics 2025; 17:51. [PMID: 39861699 PMCID: PMC11768235 DOI: 10.3390/pharmaceutics17010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Psoriasis is a chronic, recurrent and inflammatory skin disease. Although conventional immunosuppressants can ameliorate psoriatic symptoms, it tends to relapse over time. Previous studies have shown that exosomes from both immune and non-immune cells participate in psoriatic immunopathology. The biologically active cargoes in exosomes accelerate psoriasis progression by altering gene profiles and signaling pathways of neighboring cells. On the other hand, exosomes can be utilized as drug delivery platforms for psoriasis treatment. Especially, engineered exosomes may serve as drug delivery systems for effective delivery of proteins, nucleic acids or other drugs due to their low immunogenicity, good stability and ability to fuse with target cells. Therefore, investigation into the mechanisms underlying intercellular communications mediated by exosomes in skin lesions likely helps design drugs for therapy of psoriasis. In this review, we have summarized recent advances in the biogenesis of exosomes and their potential roles in the pathogenesis and treatment of psoriasis and further discussed their challenges and future directions in psoriasis treatment. In particular, this review highlights the immunoregulatory function of exosomes derived from immune or non-immune cells and exosome-based therapeutic applications in psoriasis, including their drug delivery systems. Thus, this review may help accelerate applications of exosomes for drug delivery and treatment of psoriasis.
Collapse
Affiliation(s)
- Yuchao Chen
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuming He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK
| | - Weihui Lu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
12
|
Rana R, Devi SN, Bhardwaj AK, Yashavarddhan MH, Bohra D, Ganguly NK. Exosomes as nature's nano carriers: Promising drug delivery tools and targeted therapy for glioma. Biomed Pharmacother 2025; 182:117754. [PMID: 39731936 DOI: 10.1016/j.biopha.2024.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Exosomes, minute vesicles originating from diverse cell types, exhibit considerable potential as carriers for drug delivery in glioma therapy. These naturally occurring nanocarriers facilitate the transfer of proteins, RNAs, and lipids between cells, offering advantages such as biocompatibility, efficient cellular absorption, and the capability to traverse the blood-brain barrier (BBB). In the realm of cancer, particularly gliomas, exosomes play pivotal roles in modulating tumor growth, regulating immunity, and combating drug resistance. Moreover, exosomes serve as valuable biomarkers for diagnosing diseases and assessing prognosis. This review aims to elucidate the therapeutic and diagnostic promise of exosomes in glioma treatment, highlighting the innovative advances in exosome engineering that enable precise drug loading and targeting. By circumventing challenges associated with current glioma treatments, exosome-mediated drug delivery strategies can enhance the efficacy of chemotherapy drugs like temozolomide and overcome drug resistance mechanisms. This review underscores the multifaceted roles of exosomes in glioma pathogenesis and therapy, underscoring their potential as natural nanocarriers for targeted therapy and heralding a new era of hope for glioma treatment.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| | | | - Amit Kumar Bhardwaj
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - M H Yashavarddhan
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Deepika Bohra
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
13
|
Sergazy S, Seydahmetova R, Gulyayev A, Shulgau Z, Aljofan M. The Role of Exosomes in Cancer Progression and Therapy. BIOLOGY 2025; 14:27. [PMID: 39857258 PMCID: PMC11763171 DOI: 10.3390/biology14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are small extracellular vesicles and are crucial in intercellular communication. Interestingly, tumor-derived exosomes carry oncogenic molecules, such as proteins and microRNAs, which can reprogram recipient cells, promote angiogenesis, and stimulate cancer pre-metastatic niche, supporting cancer growth and metastasis. On the other hand, their biocompatibility, stability, and ability to cross biological barriers make them attractive candidates for drug delivery. Recent advances have shown the potential for exosomes to be used in early disease detection and in targeted drug therapy by delivering therapeutic agents specifically to tumor sites. Despite the promising applications, a number of challenges remain, including exosome isolation and characterization, as well as their inherent heterogeneity. Thus, the current review aims to describe the roles of exosomes in health and disease, and discuss the challenges that hinder their development into becoming useful medical tools.
Collapse
Affiliation(s)
- Shynggys Sergazy
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Roza Seydahmetova
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
| | - Alexandr Gulyayev
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zarina Shulgau
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Mohamad Aljofan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
14
|
Tan TT, Lai RC, Sim WK, Zhang B, Lim SK. Enhancing EV-cell communication through "External Modulation of Cell by EV" (EMCEV). Cytotherapy 2025; 27:1-6. [PMID: 39177523 DOI: 10.1016/j.jcyt.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Mesenchymal stem/stromal cells (MSC) have displayed promising therapeutic potential. Nonetheless, no United States Food and Drug Administration (FDA)-approved MSC product exists due largely to the absence of a reliable potency assay based on the mechanisms of action to ensure consistent efficacy. MSCs are now thought to exert their effects primarily by releasing small extracellular vesicles (sEVs) of 50-200 nm. While non-living MSC-sEV drugs offer distinct advantages over larger, living MSC drugs, elucidating their mechanism of action to develop robust potency assays remains a challenge. A pivotal prelude to elucidating the mechanism of action for MSC-sEVs is how extracellular vesicles (EVs) engage their primary target cells. Given the inherent inefficiencies of processes such as endocytosis, endosomal escape and EV uncoating during cellular internalization, we propose an alternative EV-cell engagement: EMCEV (Extracellular Modulation of Cells by EV). This approach involves extracellular modulation by EV attributes to generate signaling/inhibitory molecules that have the potential to affect many cells within the vicinity, thereby eliciting a more widespread tissue response.
Collapse
Affiliation(s)
| | | | | | - Bin Zhang
- Paracrine Therapeutics Pte. Ltd., Singapore
| | - Sai Kiang Lim
- Paracrine Therapeutics Pte. Ltd., Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Republic of Singapore.
| |
Collapse
|
15
|
Dai Z, Cai R, Zeng H, Zhu H, Dou Y, Sun S. Exosome may be the next generation of promising cell-free vaccines. Hum Vaccin Immunother 2024; 20:2345940. [PMID: 38714324 PMCID: PMC11086043 DOI: 10.1080/21645515.2024.2345940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/09/2024] Open
Abstract
Traditional vaccines have limits against some persistent infections and pathogens. The development of novel vaccine technologies is particularly critical for the future. Exosomes play an important role in physiological and pathological processes. Exosomes present many advantages, such as inherent capacity being biocompatible, non-toxic, which make them a more desirable candidate for vaccines. However, research on exosomes are in their infancy and the barriers of low yield, low purity, and weak targeting of exosomes limit their applications in vaccines. Accordingly, further exploration is necessary to improve these problems and subsequently facilitate the functional studies of exosomes. In this study, we reviewed the origin, classification, functions, modifications, separation and purification, and characterization methods of exosomes. Meanwhile, we focused on the role and mechanism of exosomes for cancer and COVID-19 vaccines.
Collapse
Affiliation(s)
- Zelan Dai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Ruiru Cai
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hong Zeng
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hailian Zhu
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Youwei Dou
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
16
|
Wang S, Wu R, Chen Q, Liu T, Li L. Exosomes derived from TNF-α-treated bone marrow mesenchymal stem cells ameliorate myocardial infarction injury in mice. Organogenesis 2024; 20:2356341. [PMID: 38766777 PMCID: PMC11110693 DOI: 10.1080/15476278.2024.2356341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) exhibit considerable therapeutic potential for myocardial regeneration. In our investigation, we delved into their impact on various aspects of myocardial infarction (MI), including cardiac function, tissue damage, inflammation, and macrophage polarization in a murine model. We meticulously isolated the exosomes from TNF-α-treated BMSCs and evaluated their therapeutic efficacy in a mouse MI model induced by coronary artery ligation surgery. Our comprehensive analysis, incorporating ultrasound, serum assessment, Western blot, and qRT-PCR, revealed that exosomes from TNF-α-treated BMSCs demonstrated significant therapeutic potential in reducing MI-induced injury. Treatment with these exosomes resulted in improved cardiac function, reduced infarct area, and increased left ventricular wall thickness in MI mice. On a mechanistic level, exosome treatment fostered M2 macrophage polarization while concurrently suppressing M1 polarization. Hence, exosomes derived from TNF-α-treated BMSCs emerge as a promising therapeutic strategy for alleviating MI injury in a mouse model.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiovascular Medicine, Hebei Medical University of Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Rubin Wu
- Department of Cardiovascular Medicine, Hebei Medical University of Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Qincong Chen
- Department of Cardiovascular Medicine, Hebei Medical University of Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Tao Liu
- Department of Cardiovascular Medicine, Hebei Medical University Second Hospital, Shijiazhuang, Hebei, China
| | - Liu Li
- Department of Cardiovascular Medicine, Hebei Medical University First Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
José Sánchez M, Leivar P, Borrós S, Fornaguera C, Lecina M. Enhanced quantification and cell tracking of dual fluorescent labeled extracellular vesicles. Int J Pharm 2024; 667:124921. [PMID: 39521157 DOI: 10.1016/j.ijpharm.2024.124921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Extracellular Vesicles (EVs) are nanosized particles with significant role in disease pathogenesis and as therapeutic potential. However, the lack of reliable and efficient methods for the characterization, quantification and tracking of EVs, combined with the limitations of detection techniques in differentiating specific EVs subtypes with beneficial properties, makes these process complex and time-consuming. To address this challenge, EVs were engineered using a tricistronic plasmid that encodes fluorescent proteins fused to tetraspanins (eGFP-CD63 and mCherry-CD9), with both fluorophores localized within the luminal space. Double fluorescently labelled small EVs (sEVs) were then produced in a stably transfected HEK293SF-3F6 cell line. The fluorescently labelled sEVs were characterized using a variety of techniques. Protein expression analysis showed that the fused proteins were efficiently produced and incorporated in sEVs, as evidenced by clear fluorescence signal detected. Comparisons of the size distribution and concentration of modified sEVs with controls indicated that sEVs engineering did not affect their biogenesis and morphology. Fluorescently labelled sEVs were then quantified by flow cytometry, allowing to distinguish sEVs from other EVs subtypes or sample particles. The values were then compared to fluorometry measurements, obtaining a linear correlation what enabled a novel sEVs quantification method. The functionality of engineered sEVs was assessed by monitoring their uptake and trafficking in recipient cells, obtaining an efficient internalisation by target cells. Overall, these results demonstrate that the implementation of dual fluorescent methodology is feasible for sEVs characterization, quantification, for in vitro study of EVs interaction with cells, and intercellular communication, as well as a valuable tool in the in vitro development of targeted therapeutic EVs delivery systems.
Collapse
Affiliation(s)
- Maria José Sánchez
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain
| | - Pablo Leivar
- Laboratory of Biochemistry, Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona 08017, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain
| | - Martí Lecina
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona 08017, Spain.
| |
Collapse
|
18
|
Saleem M, Shahzad KA, Marryum M, Singh S, Zhou Q, Du S, Wang S, Shao C, Shaikh II. Exosome-based therapies for inflammatory disorders: a review of recent advances. Stem Cell Res Ther 2024; 15:477. [PMID: 39695750 DOI: 10.1186/s13287-024-04107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Exosomes, small extracellular vesicles secreted by cells, have emerged as focal mediators in intercellular communication and therapeutic interventions across diverse biomedical fields. Inflammatory disorders, including inflammatory bowel disease, acute liver injury, lung injury, neuroinflammation, and myocardial infarction, are complex conditions that require innovative therapeutic approaches. This review summarizes recent advances in exosome-based therapies for inflammatory disorders, highlighting their potential as diagnostic biomarkers and therapeutic agents. Exosomes have shown promise in reducing inflammation, promoting tissue repair, and improving functional outcomes in preclinical models of inflammatory disorders. However, further research is needed to overcome the challenges associated with exosome isolation, characterization, and delivery, as well as to fully understand their mechanisms of action. Current limitations and future directions in exosome research underscore the need for enhanced isolation techniques and deeper mechanistic insights to harness exosomes' full therapeutic potential in clinical applications. Despite these challenges, exosome-based therapies hold great potential for the treatment of inflammatory disorders and may offer a new paradigm for personalized medication.
Collapse
Affiliation(s)
- Mavra Saleem
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Munazzah Marryum
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shekhar Singh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Quan Zhou
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Siting Du
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Shuanghu Wang
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Chuxiao Shao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Imran Ibrahim Shaikh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
19
|
Liu Q, Lu X, Liao G, Yan F, Wu M, Bai Z, Tang H, Liu X. Prenatal Triphenyl Phosphate Exposure and Hyperlipidemia in Offspring: Role of Trophoblast-Derived Extracellular Vesicle PPARγ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39688536 DOI: 10.1021/acs.est.4c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphate flame retardant, the health risks of TPhP are a global concern. In this study, we found that prenatal TPhP exposure at human relevant concentration induced hyperlipidemia in male offspring, it increased serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol. Placental trophoblast-derived extracellular vesicles (T-EVs) could transport to the fetus through maternal-fetal circulation. TPhP significantly upregulated the protein level of peroxisome proliferator activated receptor γ (PPARγ) in T-EVs. Similar to TPhP, gestational exposure to T-EVs isolated from TPhP exposed mice placentae induced the same effects. While, gestational intervention with GW9662 (PPARγ inhibitor) or GW4869 (EVs secretion inhibitor) would alleviate the disturbed lipid metabolism induced by TPhP. Meanwhile, in vitro experiments verified that TPhP upregulated PPARγ in HTR8/SVneo cells derived EVs, and these EVs promoted adipogenesis in preadipocyte 3T3-L1 cells. Knock down of PPARγ in HTR8/SVneo could alleviate the adipogenensis effects of EVs derived from TPhP exposed HTR8/SVneo cells. These results demonstrate that TPhP exposure induces hyperlipidemia in male offspring by upregulating PPARγ in T-EVs. Our study provides new insights into the metabolic disruptive effects of TPhP, and emphasizes the mediating effects of placental T-EVs on gestational environmental stress in fetal development.
Collapse
Affiliation(s)
- Qian Liu
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xiaoxun Lu
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Ganzhong Liao
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Fuhui Yan
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Miaoliang Wu
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Zhi Bai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huanwen Tang
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xiaoshan Liu
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| |
Collapse
|
20
|
Fang J, Rao X, Wang C, Wang Y, Wu C, Zhou R. Role of exosomes in modulating non-small cell lung cancer radiosensitivity. Front Pharmacol 2024; 15:1471476. [PMID: 39737074 PMCID: PMC11683128 DOI: 10.3389/fphar.2024.1471476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes a significant proportion of lung cancer cases, and despite advancements in treatment modalities, radiotherapy resistance remains a substantial hurdle in effective cancer management. Exosomes, which are small vesicles secreted by cells, have emerged as pivotal players in intercellular communication and influence various biological processes, including cancer progression and the response to therapy. This review discusses the intricate role of exosomes in the modulation of NSCLC radiosensitivity. The paper focuses on NSCLC and highlights how tumor-derived exosomes contribute to radioresistance by enhancing DNA repair, modulating immune responses, and altering the tumor microenvironment. We further explore the potential of mesenchymal stem cell-derived exosomes to overcome radiotherapy resistance and their potential as biomarkers for predicting therapeutic outcomes. Understanding the mechanisms by which exosomes affect radiotherapy can provide new avenues for enhancing treatment efficacy and improving the survival rates of patients with NSCLC.
Collapse
Affiliation(s)
- Jincheng Fang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Changjian Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangchenxi Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| |
Collapse
|
21
|
Tang B, Bi Y, Zheng X, Yang Y, Huang X, Yang K, Zhong H, Han L, Lu C, Chen H. The Role of Extracellular Vesicles in the Development and Treatment of Psoriasis: Narrative Review. Pharmaceutics 2024; 16:1586. [PMID: 39771564 PMCID: PMC11677080 DOI: 10.3390/pharmaceutics16121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Psoriasis is a chronic inflammatory polygenic disease with significant impacts on skin and joints, leading to substantial treatment challenges and healthcare costs. The quest for novel therapeutic avenues has recently highlighted extracellular vesicles (EVs) due to their potential as biomarkers and therapeutic agents in autoimmune diseases, including psoriasis. EVs are nano-sized, lipid membrane-bound particles secreted by cells that have emerged as promising tools for targeted drug delivery, owing to their unique structure. This review delves into how EVs, either as mediators of cell communication or via their cargo (such as miRNA), directly participate in the pathology of psoriasis, influencing processes such as immune regulation, cell proliferation, and differentiation. Furthermore, this review explores the innovative application of EVs in psoriasis treatment, both as direct therapeutic agents and as vehicles for drug delivery, offering a novel approach to overcoming the current treatment limitations.
Collapse
Affiliation(s)
- Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xuwei Zheng
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiaobing Huang
- Hospital of Osteopathy The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, China
| | - Kexin Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haixin Zhong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
22
|
Jia X, Zhang G, Yu D. Application of extracellular vesicles in diabetic osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1466775. [PMID: 39720256 PMCID: PMC11666354 DOI: 10.3389/fendo.2024.1466775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024] Open
Abstract
As the population ages, the occurrence of osteoporosis is becoming more common. Diabetes mellitus is one of the factors in the development of osteoporosis. Compared with the general population, the incidence of osteoporosis is significantly higher in diabetic patients. Diabetic osteoporosis (DOP) is a metabolic bone disease characterized by abnormal bone tissue structure due to hyperglycemia and insulin resistance, reduced bone strength and increased risk of fractures. This is a complex mechanism that occurs at the cellular level due to factors such as blood vessels, inflammation, and hyperglycemia and insulin resistance. Although the application of some drugs in clinical practice can reduce the occurrence of DOP, the incidence of fractures caused by DOP is still very high. Extracellular vesicles (EVs) are a new communication mode between cells, which can transfer miRNAs and proteins from mother cells to target cells through membrane fusion, thereby regulating the function of target cells. In recent years, the role of EVs in the pathogenesis of DOP has been widely demonstrated. In this article, we first describe the changes in the bone microenvironment of osteoporosis. Second, we describe the pathogenesis of DOP. Finally, we summarize the research progress and challenges of EVs in DOP.
Collapse
Affiliation(s)
- Xiaopeng Jia
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Gongzi Zhang
- Department of Rehabilitation Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Deshui Yu
- Trauma Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
23
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
24
|
Yang C, Han J, Liu H, He Y, Zhang Z, Liu X, Waqas F, Zhang L, Duan H, He J, Dong L. Storage of plasma-derived exosomes: evaluation of anticoagulant use and preserving temperatures. Platelets 2024; 35:2337255. [PMID: 38630028 DOI: 10.1080/09537104.2024.2337255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Exosomes carry large cargo of proteins, lipids, and nucleic acids, serving as versatile biomarkers for disease diagnosis and vehicles for drug delivery. However, up to date, no well recognized standard procedures for exosome storage were available for clinical application. This study aimed to determine the optimal storage conditions and the anticoagulants for plasma-derived exosome isolation. Fresh whole blood samples were collected from healthy participants and preserved in four different anticoagulants including sodium citrate (SC1/4), sodium citrate (SC1/9), lithium heparin (LH), or Ethylenediamine tetraacetic acid (EDTA), respectively. Exosomes were extracted from the plasma by differential ultracentrifugation and stored at three different temperatures, 4°C, -20°C or - 80°C for a duration ranging from one week to six months. All plasma samples for storage conditions comparison were pretreated with LH anticoagulant. Exosome features including morphological characteristics, pariticles size diameter, and surface protein profiles (TSG101, CD63, CD81, CD9, CALNEXIN) were assessed by transmission electron microscopy, Nanoparticle Tracking Analysis, and Western Blotting, respectively. Exosomes preserved in LH and SC1/4 group tended to remain intact microstructure with highly abundant protein biomarkers. Exosomes stored at 4°C for short time were prone to be more stable compared to thos at -80°C. Exosomes stored in plasma were superior in terms of ultrastructure, size diameter and surface protein expression to those stored in PBS. In conclusion, plasma-dervied exosome characteristics strictly depend on the anticoagulants and storage temperature and duration.
Collapse
Affiliation(s)
- Caiting Yang
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education and Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jie Han
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hai Liu
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education and Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yuyu He
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education and Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Zhenhua Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Farooq Waqas
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education and Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Lizhong Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Huiping Duan
- Tuberculosis Department, The Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Jing He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Dong
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education and Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
25
|
Taravat M, Asadpour R, Jafari Jozani R, Fattahi A, Khordadmehr M, Hajipour H. Engineered exosome as a biological nanoplatform for drug delivery of Rosmarinic acid to improve implantation in mice with induced endometritis. Syst Biol Reprod Med 2024; 70:3-19. [PMID: 38323586 DOI: 10.1080/19396368.2024.2306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/06/2024] [Indexed: 02/08/2024]
Abstract
Endometritis is an inflammatory and histopathologic disease in uterine tissues that interferes with the proper decidualization and implantation of the embryo. In this study, rosmarinic acid (RA) is used as an anti-inflammatory agent that encapsulates in exosomes and is used to attenuate lipopolysaccharide (LPS)-induced endometritis and improve implantation. For this purpose, exosomes were loaded with RA and then administrated into the animal groups, including RA, exosome, RA plus exosome (RA + Exo), and RA-loaded exosomes (RALExo) groups. The concentrations of RA or exosomes used in this study were 10 mg/kg, and the compounds were injected into the uterine horn 24 h following the induction of endometritis. Upon the presence of inflammation detected by the histopathological method, the most proper groups were mated with male mice. The effect of the treatment group on the implantation rate, progesterone levels, and gene expressions were assessed by Chicago Blue staining, enzyme-linked immunosorbent assay (ELISA), and Quantitative PCR (qPCR), respectively. Results showed RALExo10 and RA10 + Exo10 groups improved pathological alterations, enhanced progesterone levels, increased implantation rate, as well as heightened expression levels of Leukemia inhibitory factor (LIF) and Mucin-16 (MUC-16) genes. Besides, the expression levels of inflammatory cytokines, including Transforming growth factor-β (TGF-β), Interlukine-10 (IL-10), Interlukine-15 (IL-15), and Interlukine-18 (IL-18), were regulated. Our findings indicated that the expression of LIF, Muc-16 genes as well as IL-18, were significantly correlated with serum progesterone concentrations and the implantation rate in the treatment groups. The RALExo10 and RA10 + Exo10 groups showed ameliorated implantation rates in experimental groups.
Collapse
Affiliation(s)
- Morteza Taravat
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Razi Jafari Jozani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Hajipour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
Vučemilović A. Exosomes: intriguing mediators of intercellular communication in the organism's response to noxious agents. Arh Hig Rada Toksikol 2024; 75:228-239. [PMID: 39718095 PMCID: PMC11667715 DOI: 10.2478/aiht-2024-75-3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/01/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Exosomes are small extracellular vesicles that range from 30 to 150 nm in size and are formed through cellular endocytosis. They consist of proteins, lipids, and nucleic acids at varying ratios and quantities. The composition and spatiotemporal dynamics of exosomes suggest that they play a crucial role in intercellular communication. The information conveyed by exosomes significantly impacts the regulation of health and disease states in the organism. The term "noxious" refers to all harmful environmental agents and conditions that can disrupt the physiological equilibrium and induce pathological states, regardless whether of radiological, biological, or chemical origin. This review comprehensively examines the presence of such noxious agents within the organism in relation to exosome formation and function. Furthermore, it explores the cause-effect relationship between noxious agents and exosomes, aiming to restore physiological homeostasis and prepare the organism for defence against harmful agents. Regardless of the specific bioinformatic content associated with each noxious agent, synthesis of data on the interactions between various types of noxious agents and exosomes reveals that an organized defence against these agents is unachievable without the support of exosomes. Consequently, exosomes are identified as the primary communication and information system within an organism, with their content being pivotal in maintaining the health-disease balance.
Collapse
|
27
|
Ma H, Jiang B, Ren Q, Sun Y, Wang M, Xia S, Wang D, Zhang W. Exosomal miR-20b-5p Induces EMT and Enhances Progression in Non-Small Cell Lung Cancer Via TGFBR2 Downregulation. J Biochem Mol Toxicol 2024; 38:e70080. [PMID: 39635830 DOI: 10.1002/jbt.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The mechanism by which specific miRNAs in NSCLC exosomes regulate NSCLC progression remains unclear. First, exosomes were isolated and identified. Exosomes were labeled with PKH26 for cell tracking studies. Subsequently, BEAS-2B cells and BEAS-2B cell exosomes were transfected with miR-20b-5p mimics or miR-20b-5p inhibitors, and cell proliferation was measured by EdU and CCK-8. cell migration and invasion were detected by wound healing tests and Transwell. The potential target of miR-20b-5p was predicted and verified by luciferase assay. Relative expression levels of miR-20b-5p and TGFBR2 were detected by qRT-PCR. Protein expression level was detected by Western blot. In addition, A549 cell exosomes were injected into mice through the tail vein and the pathological changes of lung tissue were detected by HE staining. Expression levels of E-cadherin and Vimentin in lung tissues were detected by immunohistochemistry. Our results also showed that high levels of miR-20b-5p in exosomes generated from NSCLC cells conceivably enter the cytoplasm of their own cells and by downregulating TGFBR2, accelerate NSCLC invasion, migration and EMT while promoting NSCLC cell proliferation. Exosome analysis using clinical plasma specimens revealed that miR-20b-5p expression was considerably improved in exosomes from NSCLC patients compared with those from healthy controls. In vitro and in vivo, exosomes with high levels of miR-20b-5p were linked to the progression of NSCLC. Our data suggest that exosomes with high levels of miR-20b-5p can increase development and metastasis of NSCLC cells by downregulating TGFBR2, which would serve as a predictive and diagnostic marker for NSCLC.
Collapse
Affiliation(s)
- Hui Ma
- Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Jiang
- Department of Sports Medicine, The First Affiliated Hospital of NingBo University, Ningbo, China
| | - Qiu Ren
- Department of Respiratory Medicine, Heilongjiang Province Hospital, Harbin, China
| | - Yajiao Sun
- Department of Respiratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengyao Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siyu Xia
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Alvarado-Vasquez N, Rangel-Escareño C, de Jesús Ramos-Abundis J, Becerril C, Negrete-García MC. The possible role of hypoxia-induced exosomes on the fibroblast metabolism in idiopathic pulmonary fibrosis. Biomed Pharmacother 2024; 181:117680. [PMID: 39549361 DOI: 10.1016/j.biopha.2024.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has a high incidence and prevalence among patients over 65 years old. While its exact etiology remains unknown, several risk factors have recently been identified. Hypoxia is associated with IPF due to the abnormal architecture of lung parenchyma and the accumulation of extracellular matrix produced by activated fibroblasts. Exosomes play a crucial role in intercellular communication during both physiological and pathological processes, including hypoxic diseases like IPF. Recent findings suggest that a hypoxic microenvironment influences the content of exosomes in various diseases, thereby altering cellular metabolism. Although the role of exosomes in IPF is an emerging area of research, the significance of hypoxic exosomes as inducers of metabolic reprogramming in fibroblasts is still underexplored. In this study, we analyze and discuss the relationship between hypoxia, exosomal cargo, and the metabolic reprogramming of fibroblasts in the progression of IPF.
Collapse
Affiliation(s)
- Noé Alvarado-Vasquez
- Department of Molecular Biomedicine and Translational Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Claudia Rangel-Escareño
- Computational Genomics, National Institute of Genomic Medicine, Mexico City 14610, Mexico; School of Engineering and Sciences, Tecnologico de Monterrey, NL 64700, Mexico
| | | | - Carina Becerril
- Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico.
| |
Collapse
|
29
|
Zhao X, Yu Z, Wang X, Li X, Liu Y, Wang L. The administration of human amniotic epithelial cells in premature ovarian insufficiency: From preclinical to clinical. Gynecol Endocrinol 2024; 40:2382818. [PMID: 39039858 DOI: 10.1080/09513590.2024.2382818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Premature ovarian insufficiency (POI) or premature ovarian failure (POF) is a multifactorial disorder occurring in reproductive-age women, characterized by elevated levels of follicle-stimulating hormone (FSH) and irregular or absent menstrual cycles, often accompanied by perimenopausal symptoms and infertility. While assisted reproductive technology can address the reproductive aspirations of some POI-affected women, it is hindered by issues such as exorbitant expenses, substantial risks, and poor rates of conception. Encouragingly, extensive research is exploring novel approaches to enhance fertility, particularly in the realm of stem cell therapy, showcasing both feasibility and significant potential. Human amniotic epithelial cells (hAECs) from discarded placental tissues are crucial in regenerative medicine for their pluripotency, low immunogenicity, non-tumorigenicity, accessibility, and minimal ethical concerns. Preclinical studies highlight the underlying mechanisms and therapeutic effects of hAECs in POI treatment, and current research is focusing on innovative interventions to augment hAECs' efficacy. However, despite these strides, overcoming application challenges is essential for successful clinical translation. This paper conducted a comprehensive analysis of the aforementioned issues, examining the prospects and challenges of hAECs in POI, with the aim of providing some insights for future research and clinical practice.
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongna Yu
- Department of Gynecology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liang Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Li J, Song J, Jia L, Wang M, Ji X, Meng R, Zhou D. Exosomes in Central Nervous System Diseases: A Comprehensive Review of Emerging Research and Clinical Frontiers. Biomolecules 2024; 14:1519. [PMID: 39766226 PMCID: PMC11673277 DOI: 10.3390/biom14121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes, nano-sized lipid bilayer vesicles, have garnered significant attention as mediators of cell communication, particularly within the central nervous system (CNS). Their unique properties, including high stability, low immunogenicity, and the ability to traverse the blood-brain barrier (BBB), position them as promising tools for understanding and addressing CNS diseases. This comprehensive review delves into the biogenesis, properties, composition, functions, and isolation of exosomes, with a particular focus on their roles in cerebrovascular diseases, neurodegenerative disorders, and CNS tumors. Exosomes are involved in key pathophysiological processes in the CNS, including angiogenesis, inflammation, apoptosis, and cellular microenvironment modification. They demonstrate promise in mitigating ischemic injury, regulating inflammatory responses, and providing neuroprotection across various CNS conditions. Furthermore, exosomes carry distinct biomolecules, offering a novel method for the early diagnosis and monitoring of CNS diseases. Despite their potential, challenges such as complex extraction processes, the heterogeneity of exosomal contents, and targeted delivery limitations hinder their clinical application. Nevertheless, exosomes hold significant promise for advancing our understanding of CNS diseases and developing novel therapeutic strategies. This manuscript significantly contributes to the field by highlighting exosomes' potential in advancing our understanding of CNS diseases, underscoring their unique value in developing novel therapeutic strategies and mediating cellular communication.
Collapse
Affiliation(s)
- Jingrun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
31
|
Yang D, Ma X, Zhong S, Guo J, Cheng D, Chen X, Huang T, Huang L, Qiao Y, Pengsakul T. Mucosal Exosome Proteomics of Hybrid Grouper Epinephelus fuscoguttatus♀ × E. lanceolatus♂ Infected by Pseudomonas plecoglossicida. Animals (Basel) 2024; 14:3401. [PMID: 39682367 DOI: 10.3390/ani14233401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Pseudomonas plecoglossicida infection, which causes visceral white spot disease, is a significant and economically devastating disease in aquaculture. In this study, we investigated the impact of bacterial infection on the protein composition of exosomes derived from the surface mucus of the hybrid grouper Epinephelus fuscoguttatus♀ × E. lanceolatus♂. Two hundred healthy fish were randomly separated into challenge and control groups. Fish from the challenge group received 103 CFU/g of the bacterial pathogen P. plecoglossicida via intraperitoneal injection, while sterile PBS was used as a negative control. After injection, the mucus was collected and the exosomes were extracted for proteomic analysis. The results of proteomic analysis revealed that P. plecoglossicida infection significantly increased the levels of innate immune proteins, including lysosomal and peroxisomal proteins, within the exosomes. Furthermore, the CAD protein was found to play a pivotal role in the protein interaction networks involved in the response to P. plecoglossicida infection. Intriguingly, we also observed a significant increase in the levels of metal-binding proteins within the exosomes, providing important evidence of nutritional immunity on the surfaces of the fish hosts. Notably, several proteins, such as plasma kallikrein, Annexin A5, eukaryotic translation initiation factor 3 subunit M, and S-methyl-5-thioadenosine phosphorylase, exhibited a remarkable increase in abundance in exosomes after infection. These proteins show promising potential as noninvasive biomarkers for the diagnosis of visceral white spot disease. The study contributes to the understanding of the host response to P. plecoglossicida infection and may aid policymakers in implementing appropriate intervention measures for effective risk management of this devastating disease.
Collapse
Affiliation(s)
- Dong Yang
- Guangxi University, Nanning 530200, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xiaowan Ma
- Guangxi University, Nanning 530200, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Shengping Zhong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiasen Guo
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Dewei Cheng
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Teng Huang
- Guangxi University, Nanning 530200, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen 361000, China
| | - Ying Qiao
- Guangxi University, Nanning 530200, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Theerakamol Pengsakul
- Health and Environmental Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
32
|
Lee K, Gwon H, Kim JY, Shim JJ, Lee JH. Exosomes from Limosilactobacillus fermentum Ameliorate Benzalkonium Chloride-Induced Inflammation in Conjunctival Cells. Int J Mol Sci 2024; 25:12282. [PMID: 39596346 PMCID: PMC11595052 DOI: 10.3390/ijms252212282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Dry eye is characterized by persistent instability and decreased tear production, which are accompanied by epithelial lesions and inflammation on the surface of the eye. In our previous paper, we reported that supplementation with Limosilactobacillus fermentum HY7302 (HY7302) could inhibit corneal damage in a benzalkonium chloride (BAC)-induced mouse model of dry eye, through its effects in gut microbiome regulation. The aim of this study was to determine what functional extracellular substances can alter the inflammatory response of conjunctival cells. We isolated exosomes from HY7302 probiotic culture supernatant, analyzed their morphological characteristics, and found that their average size was 143.8 ± 1.1 nm, which was smaller than the exosomes from the L. fermentum KCTC 3112 strain. In addition, HY7302-derived exosomes significantly reduced the levels of genes encoding pro-inflammatory cytokines, including interleukin (IL)-20, IL-8, IL-6, and IL-1B, in BAC-treated human conjunctival cells. Moreover, HY7302-derived exosomes significantly increased the levels of genes encoding tight junction proteins, including TJP1, TJP2, and occludin-1, in Caco-2 cells. Lastly, the HY7302 exosomes reduced mRNA expression levels of IL1B, IL20, IL6, IL8, and NFAT5 in a transwell coculture system. Our findings indicate that HY7302 exosomes have potential for use in the treatment of ocular inflammation-related dry eye disease, through gut-eye axis communication via exosomes.
Collapse
Affiliation(s)
| | | | - Joo Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.G.); (J.J.S.); (J.H.L.)
| | | | | |
Collapse
|
33
|
Ma YN, Hu X, Karako K, Song P, Tang W, Xia Y. Exploring the multiple therapeutic mechanisms and challenges of mesenchymal stem cell-derived exosomes in Alzheimer's disease. Biosci Trends 2024; 18:413-430. [PMID: 39401895 DOI: 10.5582/bst.2024.01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder, and the current treatment options are limited. Mesenchymal stem cell-derived exosomes (MSC-Exos) have garnered significant attention due to their unique biological properties, showcasing tremendous potential as an acellular alternative therapy for AD. MSC-Exos exhibit excellent biocompatibility and low immunogenicity, enabling them to effectively cross the blood-brain barrier (BBB) and deliver therapeutic molecules directly to target cells. They are highly efficacious in delivering nucleic acid-based drugs. Moreover, the production process of MSC-Exos benefits from a high proliferation capacity and multilineage differentiation potential, allowing for production while maintaining a stable composition. Despite the significant theoretical advantages of MSC-Exos, their clinical use still faces multiple challenges, including cross-contamination during isolation and purification processes, the complexity of their components, and the presence of potential adverse paracrine factors. Future research needs to focus on optimizing separation and purification techniques, enhancing delivery methods to improve therapeutic efficacy, and performing detailed analyses of the components of MSC-Exos. In summary, MSC-Exos hold promise as an effective option for the treatment of AD and other neurodegenerative diseases, driving their clinical research and use in related fields.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Kenji Karako
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peipei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
34
|
Yao Y, Qian R, Gao H, Dai Y, Shi Y, An P, Xin B, Liu Z, Zhang N, Wan Y, He Y, Hu X. LSD1 deficiency in breast cancer cells promotes the formation of pre-metastatic niches. NPJ Precis Oncol 2024; 8:260. [PMID: 39528717 PMCID: PMC11555121 DOI: 10.1038/s41698-024-00751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Lysine-specific demethylase 1 (LSD1), a histone demethylating enzyme, plays a crucial role in cancer metastasis. Studies show LSD1 knockout promotes breast cancer lung metastasis, but it's unknown if it alters the lung microenvironment for metastasis. In this study, we investigated the effects of exosomes from LSD1-knockdown (LSD1 KD) breast cancer cells on pre-metastatic niche formation. Injecting exosomes from LSD1 KD cells in mice resulted in a substantial increase in lung colonization by breast cancer cells, while treatment with exosomes derived from LSD1 KD cells decreased the expression of the ZO-1 and occludin, leading to increased vascular permeability. The LSD1 KD reduced the expression of circDOCK1, which augmented the levels of miR-1270 in exosomes. And miR-1270 inhibited ZO-1 expression in human endothelial cells, which enhanced their permeability. Our study uncovered a novel mechanism in which the LSD1 promotes the formation of pre-metastatic niches via the regulation of exosomal miRNA.
Collapse
Affiliation(s)
- Yutong Yao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Rui Qian
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Hanwei Gao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yonghao Dai
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yueru Shi
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Peipei An
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Benkai Xin
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Ziyu Liu
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Nan Zhang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Xin Hu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
35
|
Chen W, Huang F, Chen B, Lin H, Luo G, Zhang W, Zhang X, Zheng B, Wang Z, Wei S, He J, Liu C. BMSC Derived Exosomes Attenuate Apoptosis of Temporomandibular Joint Disc Chondrocytes in TMJOA via PI3K/AKT Pathway. Stem Cell Rev Rep 2024:10.1007/s12015-024-10810-7. [PMID: 39531197 DOI: 10.1007/s12015-024-10810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) are crucial means of intercellular communication and can regulate a range of biological processes by reducing inflammation, decreasing apoptosis and promoting tissue repair. We treated temporomandibular joint (TMJ) disc chondrocytes with TNF-α and performed local injection of sodium iodoacetate (MIA) in the TMJ of rats to establish in vitro and in vivo models of TMJ osteoarthritis (TMJOA). BMSC-Exos were isolated and extracted to evaluate their proliferation and trilineage differentiation abilities, and their antiapoptotic and chondroprotective effects were assessed. This study revealed that BMSC-Exos can be endocytosed by TMJ disc chondrocytes in vitro and that BMSC-Exos pretreatment strongly attenuated the inhibitory effect of TNF-α on the proliferative and chondrogenic potential of TMJ disc chondrocytes. The administration of BMSC-Exos significantly suppressed TNF-α-induced apoptosis in TMJ disc chondrocytes by increasing the phosphorylation level of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) pathway-related proteins, whereas the PI3K inhibitor LY294002 neutralized this antiapoptotic effect. Intradiscal injection of BMSC-Exos alleviated the degeneration and inflammation of TMJ discs in a rat model of TMJOA. Our study revealed that BMSC-Exos can attenuate the apoptosis of TMJ disc chondrocytes and destruction of TMJ discs partially by inhibiting the apoptotic pathway and activating the PI3K/AKT pathway, thereby providing a promising treatment strategy for the regeneration of damaged TMJ discs.
Collapse
Affiliation(s)
- Wenjun Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Futing Huang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
- ShunDe Hospital GuangZhou University of Chinese Medicine, Foshan, China
| | - Baoyi Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Huiyi Lin
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
- Department of Orthodontics, Jiangmen Municipal Stomatology Hospital, Jiangmen, China
| | - Guan Luo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Weijun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Xiaoyu Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Beining Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Ziyi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Shiting Wei
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Jiaxin He
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Chang Liu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China.
| |
Collapse
|
36
|
Deng L, Liu Y, Wu Q, Lai S, Yang Q, Mu Y, Dong M. Exosomes to exosome-functionalized scaffolds: a novel approach to stimulate bone regeneration. Stem Cell Res Ther 2024; 15:407. [PMID: 39521993 PMCID: PMC11550564 DOI: 10.1186/s13287-024-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bone regeneration is a complex biological process that relies on the orchestrated interplay of various cellular and molecular events. Bone tissue engineering is currently the most promising method for treating bone regeneration. However, the immunogenicity, stable and cell quantity of seed cells limited their application. Recently, exosomes, which are small extracellular vesicles released by cells, have been found to effectively address these problems and better induce bone regeneration. Meanwhile, a growing line of research has shown the cargos of exosomes may provide effective therapeutic and biomarker tools for bone repair, including miRNA, lncRNA, and proteins. Moreover, engineered scaffolds loaded with exosomes can offer a cell-free bone repair strategy, addressing immunogenicity concerns and providing a more stable functional performance. Herein, we provide a comprehensive summary of the role played by scaffolds loaded with exosomes in bone regeneration, drawing on a systematic analysis of relevant literature available on PubMed, Scopus, and Google Scholar database.
Collapse
Affiliation(s)
- Li Deng
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yang Liu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Qian Wu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China.
| |
Collapse
|
37
|
De A, Chakraborty D, Agarwal I, Sarda A. Present and Future Use of Exosomes in Dermatology. Indian J Dermatol 2024; 69:461-470. [PMID: 39678744 PMCID: PMC11642453 DOI: 10.4103/ijd.ijd_491_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/01/2023] [Indexed: 12/17/2024] Open
Abstract
Exposure to external environmental stimuli can lead to skin aging, pigmentation, hair loss, and various immune-mediated as well as connective tissue diseases. Although conventional treatments are routinely used and favoured, they fail to achieve an adequate balance between clinical and cosmetic outcomes. Exosomes are vesicles with a lipid bilayer released by several cell types. These bioactive vesicles play a crucial role in intercellular communication and in several other physiological and pathological processes. They serve as vehicles for bioactive substances including lipids, nucleic acids, and proteins, making them appealing as cell-free treatments. According to studies, exosomes play a vital role in preventing scarring, and senescence, and promoting wound healing. Moreover, research on the biology of exosomes is growing, which has enabled the creation of specific guidelines and quality control methodologies to support their potential implementation in the future. In this review, we have mainly focused on the role of exosomes in various dermatological diseases, their clinical applications, and the potential for further research pertaining to this.
Collapse
Affiliation(s)
- Abhishek De
- From the Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Disha Chakraborty
- From the Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Ishad Agarwal
- Department of Dermatology, Wizderm Specialty Skin and Hair Clinic, Kolkata, West Bengal, India
| | - Aarti Sarda
- Department of Dermatology, Wizderm Specialty Skin and Hair Clinic, Kolkata, West Bengal, India
| |
Collapse
|
38
|
Ale Y, Nainwal N. Exosomes as nanocarrier for Neurotherapy: Journey from application to challenges. J Drug Deliv Sci Technol 2024; 101:106312. [DOI: 10.1016/j.jddst.2024.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Chu CH, Lee RP, Wu WT, Chen IH, Yeh KT, Wang CC. Advancing Osteoarthritis Treatment: The Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes and Biomaterial Integration. Biomedicines 2024; 12:2478. [PMID: 39595044 PMCID: PMC11591758 DOI: 10.3390/biomedicines12112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Osteoarthritis (OA) is a prevalent and debilitating joint disorder characterized by progressive cartilage degradation and inflammation, for which traditional treatments offer only symptomatic relief without halting disease progression. Exosomes, cell-free vesicles derived from mesenchymal stem cells, have emerged as a promising alternative therapy owing to their regenerative and anti-inflammatory properties. METHODS This review synthesizes findings from recent studies (2017-2023) on the therapeutic potential of exosomes in OA treatment, highlighting their ability to modulate the joint microenvironment, reduce inflammation, and promote cartilage repair by delivering bioactive molecules such as cytokines, growth factors, and regulatory ribonucleic acids. RESULTS We explore the integration of exosomes with biomaterials, such as hydrogels and scaffolds, to enhance their delivery and therapeutic efficacy, and we address the critical challenges associated with their clinical application, including standardization of isolation and characterization methods, scalability of production, mechanistic understanding, and long-term safety. Despite these challenges, exosome-based therapies offer several advantages over traditional and cell-based treatments, including lower immunogenicity, ease of handling, and targeted delivery of therapeutic agents to damaged tissues. CONCLUSIONS We provide an analytical perspective on the current state of exosome research in OA, emphasizing the need for standardized production methods, deeper mechanistic insights, and rigorous long-term safety assessments. Future directions should focus on optimizing delivery systems, exploring personalized medicine approaches, and conducting comparative effectiveness studies to fully realize the potential of exosome therapies for OA treatment. Addressing these gaps will be crucial for translating exosome therapies from bench to bedside and achieving a transformative impact on OA management.
Collapse
Affiliation(s)
- Chung-Hua Chu
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; (R.-P.L.); (W.-T.W.)
| | - Wen-Tien Wu
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; (R.-P.L.); (W.-T.W.)
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Kuang-Ting Yeh
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; (R.-P.L.); (W.-T.W.)
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien 970374, Taiwan
| | - Chen-Chie Wang
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
40
|
Kim T, Choodinatha HK, Kim KS, Shin K, Kim HJ, Park JY, Hong JW, Lee LP. Understanding the role of soluble proteins and exosomes in non-invasive urine-based diagnosis of preeclampsia. Sci Rep 2024; 14:24117. [PMID: 39406891 PMCID: PMC11482518 DOI: 10.1038/s41598-024-75080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that can lead to stillbirth and preterm birth if not treated promptly. Currently, the diagnosis of preeclampsia relies on clinical symptoms such as hypertension and proteinuria, along with invasive blood tests. Here, we investigate the role of soluble proteins and exosomes in noninvasive diagnosing preeclampsia non-invasively using maternal urine and urine-derived exosomes. We quantified the levels of particles and the presence of TSG101 and CD63 in urine and urinary exosomes via the biologically intact exosome separation technology (BEST) platform. Then, we obtained higher levels of soluble proteins such as fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) from urine as it was than urinary exosomes. Compared to commercial blood tests, the sensitivity of the sFlt-1/PlGF ratio was found to be 4.0 times higher in urine tests and 1.5 times higher in tests utilizing urine-derived exosomes. Our findings offer promising possibilities for the early and non-invasive identification of high-risk individuals at risk of preeclampsia, allowing for comprehensive preventive management.
Collapse
Affiliation(s)
- Taewoon Kim
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea
| | - Harshitha Kallubhavi Choodinatha
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwang Sik Kim
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea
| | - Kyusoon Shin
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea
| | - Hyeon Ji Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea.
- Seoul National University, Seoul, Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Jong Wook Hong
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea.
- Department of Medical and Digital Engineering, Graduate School, Hanyang University, Seoul, 04763, Korea.
- Department of Bionanoengineering, Hanyang University, 15588, Ansan, Gyeonggi-do, Korea.
| | - Luke P Lee
- Harvard Medical School, Department of Medicine, Harvard University, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA.
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
41
|
Navarro-Hernandez IC, Reyes-Huerta RF, Cañez-Hernández M, Torres-Ruiz J, Carrillo-Vázquez DA, Whittall-García LP, Meza-Sánchez DE, Juárez-Vega G, Gómez-Martin D, Hernández-Hernández JM, Maravillas-Montero JL. Urine Extracellular Vesicles Size Subsets as Lupus Nephritis Biomarkers. Diagnostics (Basel) 2024; 14:2271. [PMID: 39451594 PMCID: PMC11507223 DOI: 10.3390/diagnostics14202271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that often leads to kidney injury, known as lupus nephritis (LN). Although renal biopsy is the primary way to diagnose LN, it is invasive and not practical for regular monitoring. As an alternative, several groups have proposed urinary extracellular vesicles (uEVs) as potential biomarkers for LN, as recent studies have shown their significance in reflecting kidney-related diseases. As a result, we developed a flow cytometry approach that allowed us to determine that LN patients exhibited a significantly higher total uEV concentration compared to SLE patients without kidney involvement. Additionally, an analysis of different-sized uEV subsets revealed that microvesicles ranging from 0.3 to 0.5 μm showed the most promise for distinguishing LN. These findings indicate that evaluating uEV concentration and size distribution could be a valuable diagnostic and monitoring tool for LN, pending further validation in more comprehensive studies.
Collapse
Affiliation(s)
- Itze C. Navarro-Hernandez
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Raúl F. Reyes-Huerta
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mariana Cañez-Hernández
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
| | - Jiram Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Daniel A. Carrillo-Vázquez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Laura P. Whittall-García
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - David E. Meza-Sánchez
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Diana Gómez-Martin
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - José M. Hernández-Hernández
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - José L. Maravillas-Montero
- B Cell Immunology Laboratory, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.C.N.-H.); (D.E.M.-S.)
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán y Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
42
|
Lu Y, Zheng J, Lin P, Lin Y, Zheng Y, Mai Z, Chen X, Xia T, Zhao X, Cui L. Tumor Microenvironment-Derived Exosomes: A Double-Edged Sword for Advanced T Cell-Based Immunotherapy. ACS NANO 2024; 18:27230-27260. [PMID: 39319751 DOI: 10.1021/acsnano.4c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and immune evasion, partially mediated by the activity of the TME-derived exosomes. These extracellular vesicles are pivotal in shaping immune responses through the transfer of proteins, lipids, and nucleic acids between cells, facilitating a complex interplay that promotes tumor growth and metastasis. This review delves into the dual roles of exosomes in the TME, highlighting both their immunosuppressive functions and their emerging therapeutic potential. Exosomes can inhibit T cell function and promote tumor immune escape by carrying immune-modulatory molecules, such as PD-L1, yet they also hold promise for cancer therapy as vehicles for delivering tumor antigens and costimulatory signals. Additionally, the review discusses the intricate crosstalk mediated by exosomes among various cell types within the TME, influencing both cancer progression and responses to immunotherapies. Moreover, this highlights current challenges and future directions. Collectively, elucidating the detailed mechanisms by which TME-derived exosomes mediate T cell function offers a promising avenue for revolutionizing cancer treatment. Understanding these interactions allows for the development of targeted therapies that manipulate exosomal pathways to enhance the immune system's response to tumors.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
43
|
Sani F, Shafiei F, Dehghani F, Mohammadi Y, Khorraminejad‐Shirazi M, Anvari‐Yazdi AF, Moayedfard Z, Azarpira N, Sani M. Unveiling exosomes: Cutting-edge isolation techniques and their therapeutic potential. J Cell Mol Med 2024; 28:e70139. [PMID: 39431552 PMCID: PMC11492151 DOI: 10.1111/jcmm.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Exosomes are one type of nanosized membrane vesicles with an endocytic origin. They are secreted by almost all cell types and play diverse functional roles. It is essential for research purposes to differentiate exosomes from microvesicles and isolate them from other components in a fluid sample or cell culture medium. Exosomes are important mediators in cell-cell communication. They deliver their cargos, such as mRNA transcripts, microRNA, lipids, cytosolic and membrane proteins and enzymes, to target cells with or without physical connections between cells. They are highly heterogeneous in size, and their biological functions can vary depending on the cell type, their ability to interact with recipient cells and transport their contents, and the environment in which they are produced. This review summarized the recent progress in exosome isolation and characterization techniques. Moreover, we review the therapeutic approaches, biological functions of exosomes in disease progression, tumour metastasis regulation, immune regulation and some ongoing clinical trials.
Collapse
Affiliation(s)
- Farnaz Sani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Faezeh Shafiei
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Farshad Dehghani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Yasaman Mohammadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical ScienceShirazIran
| | - Mohammadhossein Khorraminejad‐Shirazi
- Department of Pathology, School of MedicineShiraz University of Medical SciencesShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Department of Pathology, School of MedicineJahrom University of Medical SciencesJahromIran
| | | | - Zahra Moayedfard
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
44
|
Qin M, Hu J, Li X, Liu J, Jiang R, Shi Y, Wang Z, Zhang L, Zhao Y, Gao H, Zhang Q, Zhao H, Li M, Huang C. Exosomal membrane proteins analysis using a silicon nanowire field effect transistor biosensor. Talanta 2024; 278:126534. [PMID: 39002259 DOI: 10.1016/j.talanta.2024.126534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are of great significance in clinical diagnosis, due to their high homology with parental generation, which can reflect the pathophysiological status. However, the quantitative and classification detection of exosomes is still faced with the challenges of low sensitivity and complex operation. In this study, we develop an electrical and label-free method to directly detect exosomes with high sensitivity based on a Silicon nanowire field effect transistor biosensor (Si-NW Bio-FET). First, the impact of Debye length on Si-NW Bio-FET detection was investigated through simulation. The simulation results demonstrated that as the Debye length increased, the electrical response to Si-NW produced by charged particle at a certain distance from the surface of Si-NW was greater. A Si-NW Bio-FET modified with specific antibody CD81 on the nanowire was fabricated then used for detection of cell line-derived exosomes, which achieved a low limit of detection (LOD) of 1078 particles/mL in 0.01 × PBS. Furthermore, the Si-NW Bio-FETs modified with specific antibody CD9, CD81 and CD63 respectively, were employed to distinguish exosomes derived from human promyelocytic leukemia (HL-60) cell line in three different states (control group, lipopolysaccharide (LPS) inflammation group, and LPS + Romidepsin (FK228) drug treatment group), which was consistent with nano-flow cytometry. This study provides a highly sensitive method of directly quantifying exosomes without labeling, indicating its potential as a tool for disease surveillance and medication instruction.
Collapse
Affiliation(s)
- Meiyan Qin
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiawei Hu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; North China University of Technology, Beijing 100144, China
| | - Xue Li
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jinlong Liu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Jiang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yimin Shi
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizhen Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Hang Gao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Qingzhu Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China.
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
45
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
El Assaad N, Chebly A, Salame R, Achkar R, Bou Atme N, Akouch K, Rafoul P, Hanna C, Abou Zeid S, Ghosn M, Khalil C. Anti-aging based on stem cell therapy: A scoping review. World J Exp Med 2024; 14:97233. [PMID: 39312703 PMCID: PMC11372738 DOI: 10.5493/wjem.v14.i3.97233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Stem cells are present in the tissues and organs and remain in a quiescent and undifferentiated state until it is physiologically necessary to produce new descendant cells. Due to their multipotency property, mesenchymal stem cells have attracted considerable attention worldwide due to their immunomodulation and therapeutic function in tissue regeneration. Stem cells secrete components such as paracrine factors, extracellular vesicles, and exosomes which have been shown to have anti-inflammatory, anti-aging, reconstruction and wound healing potentials in many in vitro and in vivo models. The pluripotency and immunomodulatory features of stem cells could potentially be an effective tool in cell therapy and tissue repair. Aging affects the capacity for self-renewal and differentiation of stem cells, decreasing the potential for regeneration and the loss of optimal functions in organisms over time. Current progress in the field of cellular therapy and regenerative medicine has facilitated the evolution of particular guidelines and quality control approaches, which eventually lead to clinical trials. Cell therapy could potentially be one of the most promising therapies to control aging due to the fact that single stem cell transplantation can regenerate or substitute the injured tissue. To understand the involvement of stem cells not only in tissue maintenance and disease but also in the control of aging it is important to know and identify their properties, functions, and regulation in vivo, which are addressed in this review.
Collapse
Affiliation(s)
- Nassar El Assaad
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Alain Chebly
- Centre Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut 961, Lebanon
| | - Rawad Salame
- Stem Cell Therapy Lab, Reviva Regenerative Medicine Center, Beirut 961, Lebanon
| | - Robert Achkar
- Poz Pozan University of Medical Sciences, Pozan 034, Poland
| | - Nour Bou Atme
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Khalil Akouch
- Stem Cell Therapy Lab, Reviva Regenerative Medicine Center, Beirut 961, Lebanon
| | - Paul Rafoul
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Lebanese University, Beirut 961, Lebanon
| | - Colette Hanna
- School of Medicine, Lebanese American University, Beirut 961, Lebanon
| | - Samer Abou Zeid
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Marwan Ghosn
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Charbel Khalil
- Stem Cell Therapy Lab, Reviva Regenerative Medicine Center, Beirut 961, Lebanon
- School of Medicine, Lebanese American University, Beirut 961, Lebanon
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi 999041, United Arab Emirates
| |
Collapse
|
47
|
Zhuang X, Shi X, Zhao H, Shang S, Xu X, Wang X, Zheng X, He J. The expression and clinical significance of syncytin-1 in serum exosomes of hepatocellular carcinoma patients. Open Life Sci 2024; 19:20220930. [PMID: 39310811 PMCID: PMC11416070 DOI: 10.1515/biol-2022-0930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 09/25/2024] Open
Abstract
This study aimed to investigate the expression and clinical significance of syncytin-1 in the serum exosomes of hepatocellular carcinoma (HCC) patients. Serum samples were collected from 61 patients with newly diagnosed HCC and 61 healthy individuals. Exosomes were extracted from serum samples and identified using transmission electron microscopy and Western blot. The relative expression levels of syncytin-1 in exosomes were determined by real-time quantitative PCR. The protein expression levels of alpha-fetoprotein and syncytin-1 in HCC patients were detected using enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed to evaluate the sensitivity and specificity of serum exosomal syncytin-1 in diagnosing HCC. The relationships between syncytin-1 expression and clinical pathological features were analyzed using receiver operating characteristic curve analysis. The results showed that the expression level of syncytin-1 in the serum of patients with newly diagnosed HCC was significantly higher than that in the normal control group (P < 0.0001). Using pathological diagnosis as the gold standard, the sensitivity and specificity of syncytin-1 for the auxiliary diagnosis of HCC were 91.3% and 75.5%, respectively, which were significantly higher than those of alpha-fetoprotein (P < 0.0001). The relative expression level of serum exosomal syncytin-1 was significantly associated with lymph node metastasis, degree of differentiation, and CNLC staging of HCC patients (P < 0.05). In conclusion, syncytin-1 in serum exosomes has high sensitivity and specificity for diagnosing HCC and can serve as a novel tumor marker for early screening, detection, and staging of HCC.
Collapse
Affiliation(s)
- Xuewei Zhuang
- The Third Provincial Hospital Affiliated to Shandong University, 250000, Jinan, Shandong, China
| | - Xiao Shi
- Tai’an Municipal Hospital, 271000, Tai’an, Shandong, China
| | - Hui Zhao
- Tai’an Municipal Hospital, 271000, Tai’an, Shandong, China
| | - Shuai Shang
- Tai’an Municipal Hospital, 271000, Tai’an, Shandong, China
| | - Xinyu Xu
- Tai’an Municipal Hospital, 271000, Tai’an, Shandong, China
| | - Xiaomin Wang
- Dezhou Hospital of Traditional Chinese, 250000, Dezhou, Shandong, China
| | - Xin Zheng
- The Third Provincial Hospital Affiliated to Shandong University, 250000, Jinan, Shandong, China
| | - Jing He
- The Third Provincial Hospital Affiliated to Shandong University, 250000, Jinan, Shandong, China
| |
Collapse
|
48
|
Zhang N, Chen Z, Xin B, Shi Y, Yao Y, Yang J, Wang X, Hu X. LSD1 inhibits the invasion and migration of breast cancer through exosomes. Sci Rep 2024; 14:20817. [PMID: 39242625 PMCID: PMC11379686 DOI: 10.1038/s41598-024-71353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Metastasis accounts for almost 90% of breast cancer-related fatalities, making it frequent malignancy and the main reason of tumor mortality globally among women. LSD1 is a histone demethylase, which plays an important role in breast cancer. In order to explore the effect of LSD1 on invasion and migration of breast cancer, we treated breast cancer cells with MCF7 and T47D exosomes knocked down by LSD1, and the invasion and migration of breast cancer cells were significantly enhanced. This phenomenon indicates that LSD1 can inhibit the invasion and migration of breast cancer cells. miR-1290 expression was downregulated in LSD1 knockdown MCF7 exosomes. By analyzing the database of miR-1290 target gene NAT1, we verified that miR-1290 could regulate the expression of NAT1. These data provide fresh insights into the biology of breast cancer therapy by demonstrating how the epigenetic factor LSD1 stimulates the breast cancer cells' invasion and migration via controlling exosomal miRNA.
Collapse
Affiliation(s)
- Nan Zhang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China
| | - Zhongyu Chen
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China
| | - Benkai Xin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China
| | - Yueru Shi
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China
| | - Yutong Yao
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China
| | - Jingtong Yang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China
| | - Xiaoyu Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
49
|
Nian Q, Liu R, Zeng J. Unraveling the pathogenesis of myelosuppression and therapeutic potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155810. [PMID: 38905848 DOI: 10.1016/j.phymed.2024.155810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Myelosuppression is a serious and common complication of radiotherapy and chemotherapy in cancer patients and is characterized by a reduction of peripheral blood cells. This condition not only compromises the efficacy of treatment but also increases the risk of patient death. Natural products are emerging as promising adjuvant therapies due to their antioxidant properties, ability to modulate immune responses, and capacity to stimulate haematopoietic stem cell proliferation. These therapies demonstrate significant potential in ameliorating myelosuppression. METHODS A systematic review of the literature was performed utilizing the search terms "natural products," "traditional Chinese medicine," and "myelosuppression" across prominent databases, including Google Scholar, PubMed, and Web of Science. All pertinent literature was meticulously analysed and summarized. The objective of this study was to perform a pertinent analysis to elucidate the mechanisms underlying myelosuppression and to categorize and synthesize information on natural products and traditional Chinese medicines employed for the therapeutic management of myelosuppression. RESULTS Myelosuppression resulting from drug and radiation exposure, viral infections, and exosomes is characterized by multiple underlying mechanisms involving immune factors, target genes, and the activation of diverse signalling pathways, including the (TGF-β)/Smad pathway. Recently, traditional Chinese medicine monomers and compounds, including more than twenty natural products, such as Astragalus and Angelica, have shown promising potential as therapeutics for ameliorating myelosuppression. These natural products exert their effects by modulating haematopoietic stem cells, immune factors, and critical signalling pathways. CONCLUSIONS Understanding the various mechanisms of myelosuppression facilitates the exploration of natural product therapies and biological target identification for evaluating herbal medicine efficacy. This study aimed to establish a foundation for the clinical application of natural products and provide methodologies and technical support for exploring additional treatments for myelosuppression.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
50
|
Yu J, Huang D, Liu H, Cai H. Optimizing Conditions of Polyethylene Glycol Precipitation for Exosomes Isolation From MSCs Culture Media for Regenerative Treatment. Biotechnol J 2024; 19:e202400374. [PMID: 39295548 DOI: 10.1002/biot.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
Mesenchymal stem cell (MSC)-derived exosomes, as a cell-free alternative to MSCs, offer enhanced safety and significant potential in regenerative medicine. However, isolating these exosomes poses a challenge, complicating their broader application. Commonly used methods like ultracentrifugation (UC) and tangential flow filtration are often impractical due to the requirement for costly instruments and ultrafiltration membranes. Additionally, the high cost of commercial kits limits their use in processing large sample volumes. Polyethylene glycol (PEG) precipitation offers a more convenient and cost-effective alternative, but there is a critical need for optimized and standardized isolation protocols using PEG precipitation across different cell types and fluids to ensure consistent quality and yield. In this work, we optimized the PEG precipitation method for exosomes isolation and compared its effectiveness to two commonly used methods: UC and commercial exosome isolation kits (ExoQuick). The recovery rate of the optimized PEG method (about 61.74%) was comparable to that of the commercial ExoQuick kit (about 62.19%), which was significantly higher than UC (about 45.80%). Exosome cargo analysis validated no significant differences in miRNA and protein profiles associated with the proliferation and migration of exosomes isolated by UC and PEG precipitation, which was confirmed by gap closure and CCK8 assays. These findings suggest that PEG-based exosomes isolation could be a highly efficient and high-quality method and may facilitate the development of exosome-based therapies for regenerative medicine.
Collapse
Affiliation(s)
- Junjun Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Daqiang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Hanwen Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|