1
|
Chen X, Bai Y, Lin Y, Liu H, Han F, Chang H, Li M, Liu Q. Genome-Wide Identification and Characterization of the PHT1 Gene Family and Its Response to Mycorrhizal Symbiosis in Salvia miltiorrhiza under Phosphate Stress. Genes (Basel) 2024; 15:589. [PMID: 38790218 PMCID: PMC11120713 DOI: 10.3390/genes15050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Phosphorus (P) is a vital nutrient element that is essential for plant growth and development, and arbuscular mycorrhizal fungi (AMF) can significantly enhance P absorption. The phosphate transporter protein 1 (PHT1) family mediates the uptake of P in plants. However, the PHT1 gene has not yet been characterized in Salvia miltiorrhiza. In this study, to gain insight into the functional divergence of PHT1 genes, nine SmPHT1 genes were identified in the S. miltiorrhiza genome database via bioinformatics tools. Phylogenetic analysis revealed that the PHT1 proteins of S. miltiorrhiza, Arabidopsis thaliana, and Oryza sativa could be divided into three groups. PHT1 in the same clade has a similar gene structure and motif, suggesting that the features of each clade are relatively conserved. Further tissue expression analysis revealed that SmPHT1 was expressed mainly in the roots and stems. In addition, phenotypic changes, P content, and PHT1 gene expression were analyzed in S. miltiorrhiza plants inoculated with AMF under different P conditions (0 mM, 0.1 mM, and 10 mM). P stress and AMF significantly affected the growth and P accumulation of S. miltiorrhiza. SmPHT1;6 was strongly expressed in the roots colonized by AMF, implying that SmPHT1;6 was a specific AMF-inducible PHT1. Taken together, these results provide new insights into the functional divergence and genetic redundancy of the PHT1 genes in response to P stress and AMF symbiosis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xue Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.C.); (Y.B.); (Y.L.); (F.H.); (M.L.)
| | - Yanhong Bai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.C.); (Y.B.); (Y.L.); (F.H.); (M.L.)
| | - Yanan Lin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.C.); (Y.B.); (Y.L.); (F.H.); (M.L.)
| | - Hongyan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Fengxia Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.C.); (Y.B.); (Y.L.); (F.H.); (M.L.)
| | - Hui Chang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Menglin Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.C.); (Y.B.); (Y.L.); (F.H.); (M.L.)
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.C.); (Y.B.); (Y.L.); (F.H.); (M.L.)
| |
Collapse
|
2
|
Hang T, Lin C, Asim M, Ramakrishnan M, Deng S, Yang P, Zhou M. Low phosphorus impact on Moso bamboo (Phyllostachys edulis) root morphological polymorphism and expression pattern of the related genes. TREE PHYSIOLOGY 2024; 44:tpad138. [PMID: 38035777 DOI: 10.1093/treephys/tpad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Moso bamboo typically grows in phosphorus (P)-deficient soil that limits its growth and development. In this study, 10 Moso bamboo genotypes (Ph-1 to Ph-10) were evaluated for their responses to P deficiency during the seedling stage by growing them in both P-sufficient and P-deficient conditions. Adaptive responses to low P (LP) conditions were observed in the majority of genotypes. Under P deficiency conditions, the total biomass decreased in several genotypes, but at the same time, the root-to-shoot ratio increased. Principal component analysis identified two main comprehensive traits (PC1 and PC2) related to the root volume and surface area and P concentration and accumulation. Based on the analysis, two genotypes (Ph-6 and Ph-10) were identified with significantly different levels of tolerance to P deficiency. The results revealed that the genotype Ph-10 responded to P deficiency by significantly increasing the root surface area and volume, while simultaneously reducing the number of root cortex cells when compared with the genotype Ph-6, which showed the lowest tolerance (intolerant). The genotype Ph-10 exhibited a robust response to external LP conditions, marked by elevated expression levels of PHOSPHATE TRANSPORTERs and SYG1/PHO81/XPR1s. In situ Polymerase Chain Reaction (PCR) analysis also revealed distinct tissue-specific expression patterns of the genes in the roots, particularly highlighting the differences between Ph-6 and Ph-10. The results provide a foundation for elucidating the mechanism of LP tolerance, thus potentially contributing to developing high P-use efficiency in Moso bamboo species.
Collapse
Affiliation(s)
- Tingting Hang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Chenjun Lin
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Muhammad Asim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shixin Deng
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
3
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
4
|
Yin Y, Li J, Zhu S, Chen Q, Chen C, Rui Y, Shang J. Effect of biochar application on rice, wheat, and corn seedlings in hydroponic culture. J Environ Sci (China) 2024; 135:379-390. [PMID: 37778812 DOI: 10.1016/j.jes.2023.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 10/03/2023]
Abstract
In recent years, biochar has attracted considerable attention for soil quality improvement and carbon sequestration due to its unique physicochemical properties. However, the mechanism by which biochar application negatively affects the growth of crop seedlings has not been fully investigated. In this study, a hydroponic experiment was conducted to evaluate the response of rice, wheat, and corn seedlings to biochar application (CK, 0 g/L; BC1, 0.5 g/L; and BC2, 1.0 g/L). Compared with the CK treatment, the BC1 and BC2 treatments decreased the fresh shoot and root weights of rice and corn seedlings (P < 0.05), but there was no significant effect on wheat seedlings (P > 0.05). For the contents of nutrient elements in seedlings, both BC1 and BC2 treatments hindered the roots from absorbing Fe and Cu and increased the uptake of Ca and Mn. Compared with the CK treatment, the translocation factor (TF) values of Ca, Mn, and Zn were significantly decreased especially in rice seedlings (35.3%-36.8%, 68.7%-76.5%, and 29.8%-22.0%, respectively) under the BC1 and BC2 treatments, while only Mn was significantly decreased in wheat and corn seedlings (P < 0.05). Transmission electron microscope (TEM) analysis of root cross-sections showed that nano-sized biochar particles (10∼23 nm) were found in the root cells under BC2 treatment conditions. Our findings reveal that a large amount of biochar application can reduce nutrient absorption and translocation, and hinder rice, wheat, and corn seedlings, particularly rice seedling, in hydroponic system.
Collapse
Affiliation(s)
- Yingjie Yin
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jikai Li
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Sihang Zhu
- Agricultural Management Institute, Ministry of Agriculture and Rural Affairs, Beijing 102208, China
| | - Qing Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Beijing 100193, China
| | - Chong Chen
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yukui Rui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Beijing 100193, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, and Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
5
|
Naveenarani M, Swamy HKM, Surya Krishna S, Mahadevaiah C, Valarmathi R, Manickavasagam M, Arun M, Hemaprabha G, Appunu C. Isolation and Characterization of Erianthus arundinaceus Phosphate Transporter 1 (PHT1) Gene Promoter and 5' Deletion Analysis of Transcriptional Regulation Regions under Phosphate Stress in Transgenic Tobacco. PLANTS (BASEL, SWITZERLAND) 2023; 12:3760. [PMID: 37960116 PMCID: PMC10650210 DOI: 10.3390/plants12213760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Phosphorus deficiency highly interferes with plant growth and development. Plants respond to persistent P deficiency by coordinating the expression of genes involved in the alleviation of stress. Promoters of phosphate transporter genes are a great choice for the development of genetically modified plants with enhanced phosphate uptake abilities, which improve crop yields in phosphate-deficient soils. In our previous study, the sugarcane phosphate transporter PHT1;2 gene showed a significantly high expression under salinity stress. In this study, the Erianthus arundinaceus EaPHT1;2 gene was isolated and characterized using various in silico tools. The deduced 542 amino acid residues have 10 transmembrane domains, with a molecular weight and isoelectric point of 58.9 kDa and 9.80, respectively. They displayed 71-96% similarity with Arabidopsis thaliana, Zea mays, and the Saccharum hybrid. To elucidate the function of the 5' regulatory region, the 1.1 kb promoter was isolated and validated in tobacco transgenics under Pi stress. The EaPHT1;2 promoter activity was detected using a β-glucuronidase (GUS) assay. The EaPHT1;2 promoter showed 3- to 4.2-fold higher expression than the most widely used CaMV35S promoter. The 5' deletion analysis with and without 5' UTRs revealed a small-sized 374 bp fragment with the highest promoter activity among 5' truncated fragments, which was 2.7 and 4.2 times higher than the well-used CaMV35S promoter under normal and Pi deprivation conditions, respectively. The strong and short promoter of EaPHT1;2 with 374 bp showed significant expression in low-Pi-stress conditions and it could be a valuable source for the development of stress-tolerant transgenic crops.
Collapse
Affiliation(s)
- Murugan Naveenarani
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
- Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Huskur Kumaraswamy Mahadeva Swamy
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| | - Sakthivel Surya Krishna
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| | - Channappa Mahadevaiah
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
- Division of Vegetable Crops, Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India
| | - Ramanathan Valarmathi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| | - Markandan Manickavasagam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India;
| | - Govindakurup Hemaprabha
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| | - Chinnaswamy Appunu
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India; (M.N.); (H.K.M.S.); (S.S.K.); (C.M.); (R.V.); (G.H.)
| |
Collapse
|
6
|
Rui W, Ma J, Wei N, Zhu X, Li Z. Genome-Wide Analysis of the PHT Gene Family and Its Response to Mycorrhizal Symbiosis in Tomatoes under Phosphate Starvation Conditions. Int J Mol Sci 2023; 24:10246. [PMID: 37373390 DOI: 10.3390/ijms241210246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phosphate is one of the essential mineral nutrients. Phosphate transporter genes (PHTs) play an important role in Pi acquisition and homeostasis in tomato plants. However, basic biological information on PHT genes and their responses of symbiosis with arbuscular mycorrhizal in the genome remains largely unknown. We analyzed the physiological changes and PHT gene expression in tomatoes (Micro-Tom) inoculated with arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae) under different phosphate conditions (P1: 0 µM, P2: 25 µM, and P3: 200 µM Pi). Twenty-three PHT genes were identified in the tomato genomics database. Protein sequence alignment further divided the 23 PHT genes into three groups, with similar classifications of exons and introns. Good colonization of plants was observed under low phosphate conditions (25 µM Pi), and Pi stress and AM fungi significantly affected P and N accumulation and root morphological plasticity. Moreover, gene expression data showed that genes in the SlPHT1 (SlPT3, SlPT4, and SlPT5) gene family were upregulated by Funneliformis mosseae under all conditions, which indicated that these gene levels were significantly increased with AM fungi inoculation. None of the analyzed SlPHT genes in the SlPH2, SlPHT3, SlPHT4, and SlPHO gene families were changed at any Pi concentration. Our results indicate that inoculation with AM fungi mainly altered the expression of the PHT1 gene family. These results will lay a foundation for better understanding the molecular mechanisms of inorganic phosphate transport under AM fungi inoculation.
Collapse
Affiliation(s)
- Wenjing Rui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| | - Jing Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| | - Ning Wei
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| | - Xiaoya Zhu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| | - Zhifang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Yuanmingyuan Xilu 2, Haidian District, Beijing 100193, China
| |
Collapse
|
7
|
Ma Z, Yang K, Wang J, Ma J, Yao L, Si E, Li B, Ma X, Shang X, Meng Y, Wang H. Exogenous Melatonin Enhances the Low Phosphorus Tolerance of Barley Roots of Different Genotypes. Cells 2023; 12:1397. [PMID: 37408231 PMCID: PMC10217165 DOI: 10.3390/cells12101397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 07/07/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 μM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.
Collapse
Affiliation(s)
- Zengke Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ke Yang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Juncheng Wang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingwei Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Huajun Wang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
An L, Yao X, Yao Y, Cui Y, Bai Y, Li X, Wu K. Cloning, subcellular localization and expression of phosphate transporter gene HvPT6 of hulless barley. Open Life Sci 2023; 18:20220543. [PMID: 37179786 PMCID: PMC10170964 DOI: 10.1515/biol-2022-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 05/15/2023] Open
Abstract
Deficiency of phosphate (Pi) is one of the main growth-limiting factors for crops. Generally, phosphate transporters play a key role in the uptake of P in the crops. However, current knowledge regarding the molecular mechanism underlying Pi transport is still limited. In this study, a phosphate transporter (PT) gene, designated HvPT6, was isolated from a cDNA library constructed from hulless barley "Kunlun 14." The promoter of HvPT6 showed a large number of elements related to plant hormones. The expression pattern also indicated that HvPT6 was highly induced by low phosphorus, drought, abscisic acid, methyl jasmonate and gibberellin. Phylogenetic tree analysis revealed that HvPT6 belongs to the same subfamily of the major facilitator superfamily as OsPT6 from Oryza sativa. Subcellular localization of HvPT6:GFP using transient expression of Agrobacterium tumefaciens showed the green fluorescent protein signal in the membrane and nucleus of the Nicotiana benthamiana leaves. Overexpressing HvPT6 led to a longer and higher lateral root length and dry matter yield in the transgenic Arabidopsis lines under low Pi conditions, indicating that HvPT6 improves plant tolerance under Pi-deficient conditions. This study will lay a molecular basis for phosphate absorption mechanism in barley and breeding barley with high-efficient phosphate uptake.
Collapse
Affiliation(s)
- Likun An
- College of Agriculture and Forestry Sciences, Qinghai University, Xining810016, P.R. China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining810016, P.R. China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining810016, P.R. China
| | - Xiaohua Yao
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining810016, P.R. China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining810016, P.R. China
| | - Youhua Yao
- College of Agriculture and Forestry Sciences, Qinghai University, Xining810016, P.R. China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining810016, P.R. China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining810016, P.R. China
| | - Yongmei Cui
- College of Agriculture and Forestry Sciences, Qinghai University, Xining810016, P.R. China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining810016, P.R. China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining810016, P.R. China
| | - Yixiong Bai
- College of Agriculture and Forestry Sciences, Qinghai University, Xining810016, P.R. China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining810016, P.R. China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining810016, P.R. China
| | - Xin Li
- College of Agriculture and Forestry Sciences, Qinghai University, Xining810016, P.R. China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining810016, P.R. China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining810016, P.R. China
| | - Kunlun Wu
- College of Agriculture and Forestry Sciences, Qinghai University, Xining810016, P.R. China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining810016, P.R. China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining810016, P.R. China
| |
Collapse
|
9
|
Zhang J, Shen Y, Chen W, Bai B, Ji X, Chi Y. Systematic Identification and Expression Analysis of the Sorghum Pht1 Gene Family Reveals Several New Members Encoding High-Affinity Phosphate Transporters. Int J Mol Sci 2022; 23:ijms232213855. [PMID: 36430345 PMCID: PMC9698377 DOI: 10.3390/ijms232213855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Sorghum (Sorghum bicolor) is known to have a more robust capability of phosphorus uptake than many other cereal plants, which could be attributed to its phosphate transporter 1 (Pht1) that has a high phosphorus affinity. There are eleven SbPht1 genes in the sorghum genome, nine of which are expressed in sorghum roots or shoots in response to phosphorus deficiency (low-P). The molecular features of these nine genes were investigated by gene expression analysis, subcellular localization, and a yeast mutant complementation growth assay. They were found to be induced in response to low-P stress in root or shoot. All these SbPht1 proteins were found to be localized on the cell membrane, and SbPht1;8 was also detected in the endoplasmic reticulum. These SbPht1s were able to complement the yeast mutant EY917 that lacks all the functional phosphate transporters, and, among them, SbPht1;5, SbPht1;6 and SbPht1;8 could partially complement the yeast mutant strain EY917 in low-P conditions. Overall, these findings demonstrate that SbPht1;5, SbPht1;6, and SbPht1;8 are high-affinity phosphate transporters. SbPht1;5, in particular, is specifically involved in phosphorus uptake in the roots, whilst SbPht1;6 and SbPht1;8 are key players in both P uptake and P transport in response to low-P stress in sorghum.
Collapse
|
10
|
Thangaraj K, Li J, Mei H, Hu S, Han R, Zhao Z, Chen X, Li X, Kamatchi Reddiar D. Mycorrhizal Colonization Enhanced Sorghum bicolor Tolerance under Soil Water Deficit Conditions by Coordination of Proline and Reduced Glutathione (GSH). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4243-4255. [PMID: 35377636 DOI: 10.1021/acs.jafc.1c07184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Drought stress is an important limiting factor in crop production. Arbuscular mycorrhizal fungi (AMF) enhance plant drought tolerance through antioxidant activities. However, the coordination of nonenzymatic antioxidants against drought remains unclear. Here, we investigated the AMF symbiosis in drought tolerance of Sorghum bicolor by increasing proline and reducing glutathione (GSH). Glomus mosseae inoculation increased grain yield, biochemical content, and bioactivities of millets. Under drought conditions, seedlings inoculated with G. mosseae had higher SOD, POD, CAT, PPO, proline, and GSH activities compared to noninoculated controls. Meanwhile, a lower accumulation of MDA and H2O2 was observed in the G. mosseae seedlings. Furthermore, genes attributed to nonenzymatic antioxidants, such as GST29, P5CS2, FD3, GST, and GAD, were significantly up-regulated by G. mosseae under drought conditions. In conclusion, G. mosseae inoculation enhanced the drought tolerance of S. bicolor by improving reactive oxygen species (ROS) scavengers, including proline and GSH, that regulate ROS production and prevent oxidative damage.
Collapse
Affiliation(s)
- Kuberan Thangaraj
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjie Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiling Mei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunkai Hu
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Han
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhao
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
11
|
Wang P, Li G, Li G, Yuan S, Wang C, Xie Y, Guo T, Kang G, Wang D. TaPHT1;9-4B and its transcriptional regulator TaMYB4-7D contribute to phosphate uptake and plant growth in bread wheat. THE NEW PHYTOLOGIST 2021; 231:1968-1983. [PMID: 34096624 PMCID: PMC8489284 DOI: 10.1111/nph.17534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 05/19/2023]
Abstract
Efficient phosphate (Pi) uptake and utilisation are essential for promoting crop yield. However, the underlying molecular mechanism is still poorly understood in complex crop species such as hexaploid wheat. Here we report that TaPHT1;9-4B and its transcriptional regulator TaMYB4-7D function in Pi acquisition, translocation and plant growth in bread wheat. TaPHT1;9-4B, a high-affinity Pi transporter highly upregulated in roots by Pi deficiency, was identified using quantitative proteomics. Disruption of TaPHT1;9-4B function by BSMV-VIGS or CRISPR editing impaired wheat tolerance to Pi deprivation, whereas transgenic expression of TaPHT1;9-4B in rice improved Pi uptake and plant growth. Using yeast-one-hybrid assay, we isolated TaMYB4-7D, a R2R3 MYB transcription factor that could activate TaPHT1;9-4B expression by binding to its promoter. Silencing TaMYB4-7D decreased TaPHT1;9-4B expression, Pi uptake and plant growth. Four promoter haplotypes were identified for TaPHT1;9-4B, with Hap3 showing significant positive associations with TaPHT1;9-4B transcript level, growth performance and phosphorus (P) content in wheat plants. A functional marker was therefore developed for tagging Hap3. Collectively, our data shed new light on the molecular mechanism controlling Pi acquisition and utilisation in bread wheat. TaPHT1;9-4B and TaMYB4-7D may aid further research towards the development of P efficient crop cultivars.
Collapse
Affiliation(s)
- Pengfei Wang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, 450046, China
| | - Gezi Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guangwei Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shasha Yuan
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, 450046, China
| | - Chenyang Wang
- The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yingxin Xie
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, 450046, China
| | - Tiancai Guo
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, 450046, China
| | - Guozhang Kang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, 450046, China
- The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Daowen Wang
- The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
12
|
Alzate Zuluaga MY, Martinez de Oliveira AL, Valentinuzzi F, Tiziani R, Pii Y, Mimmo T, Cesco S. Can Inoculation With the Bacterial Biostimulant Enterobacter sp. Strain 15S Be an Approach for the Smarter P Fertilization of Maize and Cucumber Plants? FRONTIERS IN PLANT SCIENCE 2021; 12:719873. [PMID: 34504509 PMCID: PMC8421861 DOI: 10.3389/fpls.2021.719873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) is an essential nutrient for plants. The use of plant growth-promoting bacteria (PGPB) may also improve plant development and enhance nutrient availability, thus providing a promising alternative or supplement to chemical fertilizers. This study aimed to evaluate the effectiveness of Enterobacter sp. strain 15S in improving the growth and P acquisition of maize (monocot) and cucumber (dicot) plants under P-deficient hydroponic conditions, either by itself or by solubilizing an external source of inorganic phosphate (Pi) [Ca3(PO4)2]. The inoculation with Enterobacter 15S elicited different effects on the root architecture and biomass of cucumber and maize depending on the P supply. Under sufficient P, the bacterium induced a positive effect on the whole root system architecture of both plants. However, under P deficiency, the bacterium in combination with Ca3(PO4)2 induced a more remarkable effect on cucumber, while the bacterium alone was better in improving the root system of maize compared to non-inoculated plants. In P-deficient plants, bacterial inoculation also led to a chlorophyll content [soil-plant analysis development (SPAD) index] like that in P-sufficient plants (p < 0.05). Regarding P nutrition, the ionomic analysis indicated that inoculation with Enterobacter 15S increased the allocation of P in roots (+31%) and shoots (+53%) of cucumber plants grown in a P-free nutrient solution (NS) supplemented with the external insoluble phosphate, whereas maize plants inoculated with the bacterium alone showed a higher content of P only in roots (36%) but not in shoots. Furthermore, in P-deficient cucumber plants, all Pi transporter genes (CsPT1.3, CsPT1.4, CsPT1.9, and Cucsa383630.1) were upregulated by the bacterium inoculation, whereas, in P-deficient maize plants, the expression of ZmPT1 and ZmPT5 was downregulated by the bacterial inoculation. Taken together, these results suggest that, in its interaction with P-deficient cucumber plants, Enterobacter strain 15S might have solubilized the Ca3(PO4)2 to help the plants overcome P deficiency, while the association of maize plants with the bacterium might have triggered a different mechanism affecting plant metabolism. Thus, the mechanisms by which Enterobacter 15S improves plant growth and P nutrition are dependent on crop and nutrient status.
Collapse
Affiliation(s)
- Mónica Yorlady Alzate Zuluaga
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
- Department of Biochemistry and Biotechnology, State University of Londrina, Londrina, Brazil
| | | | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Raphael Tiziani
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| |
Collapse
|
13
|
Cai J, Cai W, Huang X, Yang S, Wen J, Xia X, Yang F, Shi Y, Guan D, He S. Ca14-3-3 Interacts With CaWRKY58 to Positively Modulate Pepper Response to Low-Phosphorus Starvation. FRONTIERS IN PLANT SCIENCE 2021; 11:607878. [PMID: 33519860 PMCID: PMC7840522 DOI: 10.3389/fpls.2020.607878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Low-phosphorus stress (LPS) and pathogen attack are two important stresses frequently experienced by plants in their natural habitats, but how plant respond to them coordinately remains under-investigated. Here, we demonstrate that CaWRKY58, a known negative regulator of the pepper (Capsicum annuum) response to attack by Ralstonia solanacearum, is upregulated by LPS. Virus-induced gene silencing (VIGS) and overexpression of CaWRKY58 in Nicotiana benthamiana plants in combination with chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA) demonstrated that CaWRKY58 positively regulates the response of pepper to LPS by directly targeting and regulating genes related to phosphorus-deficiency tolerance, including PHOSPHATE STARVATION RESPONSE1 (PHR1). Yeast two-hybrid assays revealed that CaWRKY58 interacts with a 14-3-3 protein (Ca14-3-3); this interaction was confirmed by pull-down, bimolecular fluorescence complementation (BiFC), and microscale thermophoresis (MST) assays. The interaction between Ca14-3-3 and CaWRKY58 enhanced the activation of PHR1 expression by CaWRKY58, but did not affect the expression of the immunity-related genes CaNPR1 and CaDEF1, which are negatively regulated by CaWRKY58 in pepper upon Ralstonia solanacearum inoculation. Collectively, our data indicate that CaWRKY58 negatively regulates immunity against Ralstonia solanacearum, but positively regulates tolerance to LPS and that Ca14-3-3 transcriptionally activates CaWRKY58 in response to LPS.
Collapse
Affiliation(s)
- Jinsen Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueying Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayu Wen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Xia
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Shi
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Ma Z, Wang J, Li C, Ren P, Yao L, Li B, Meng Y, Ma X, Si E, Yang K, Shang X, Wang H. Global Profiling of Phosphorylation Reveals the Barley Roots Response to Phosphorus Starvation and Resupply. FRONTIERS IN PLANT SCIENCE 2021; 12:676432. [PMID: 34335649 PMCID: PMC8317692 DOI: 10.3389/fpls.2021.676432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/09/2021] [Indexed: 05/04/2023]
Abstract
Phosphorus (P) deficiency is a major threat to the crop production, and for understanding the response mechanism of plant roots, P stress may facilitate the development of crops with increased tolerance. Phosphorylation plays a critical role in the regulation of proteins for plant responses to biotic and abiotic stress; however, its functions in P starvation/resupply are largely unknown for barley (Hordeum vulgare) growth. Here, we performed a global review of phosphorylation in barley roots treated by P starvation/resupply. We identified 7,710 phosphorylation sites on 3,373 proteins, of which 76 types of conserved motifs were extracted from 10,428 phosphorylated peptides. Most phosphorylated proteins were located in the nucleus (36%) and chloroplast (32%). Compared with the control, 186 and 131 phosphorylated proteins under P starvation condition and 156 and 111 phosphorylated proteins under P resupply condition showed significant differences at 6 and 48 h, respectively. These proteins mainly participated in carbohydrate metabolism, phytohormones, signal transduction, cell wall stress, and oxidases stress. Moreover, the pathways of the ribosome, RNA binding, protein transport, and metal binding were significantly enriched under P starvation, and only two pathways of ribosome and RNA binding were greatly enriched under Pi resupply according to the protein-protein interaction analysis. The results suggested that the phosphorylation proteins might play important roles in the metabolic processes of barley roots in response to Pi deficiency/resupply. The data not only provide unique access to phosphorylation reprogramming of plant roots under deficiency/resupply but also demonstrate the close cooperation between these phosphorylation proteins and key metabolic functions.
Collapse
Affiliation(s)
- Zengke Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Huajun Wang
| |
Collapse
|
15
|
Casarrubias-Castillo K, Montero-Vargas JM, Dabdoub-González N, Winkler R, Martinez-Gallardo NA, Zañudo-Hernández J, Avilés-Arnaut H, Délano-Frier JP. Distinct gene expression and secondary metabolite profiles in suppressor of prosystemin-mediated responses2 (spr2) tomato mutants having impaired mycorrhizal colonization. PeerJ 2020; 8:e8888. [PMID: 32337100 PMCID: PMC7167247 DOI: 10.7717/peerj.8888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/11/2020] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) colonization, sampled at 32-50 days post-inoculation (dpi), was significantly reduced in suppressor of prosystemin-mediated responses2 (spr2) mutant tomato plants impaired in the ω-3 FATTY ACID DESATURASE7 (FAD7) gene that limits the generation of linolenic acid and, consequently, the wound-responsive jasmonic acid (JA) burst. Contrary to wild-type (WT) plants, JA levels in root and leaves of spr2 mutants remained unchanged in response to AMF colonization, further supporting its regulatory role in the AM symbiosis. Decreased AMF colonization in spr2 plants was also linked to alterations associated with a disrupted FAD7 function, such as enhanced salicylic acid (SA) levels and SA-related defense gene expression and a reduction in fatty acid content in both mycorrhizal spr2 roots and leaves. Transcriptomic data revealed that lower mycorrhizal colonization efficiency in spr2 mutants coincided with the modified expression of key genes controlling gibberellin and ethylene signaling, brassinosteroid, ethylene, apocarotenoid and phenylpropanoid synthesis, and the wound response. Targeted metabolomic analysis, performed at 45 dpi, revealed augmented contents of L-threonic acid and DL-malic acid in colonized spr2 roots which suggested unfavorable conditions for AMF colonization. Additionally, time- and genotype-dependent changes in root steroid glycoalkaloid levels, including tomatine, suggested that these metabolites might positively regulate the AM symbiosis in tomato. Untargeted metabolomic analysis demonstrated that the tomato root metabolomes were distinctly affected by genotype, mycorrhizal colonization and colonization time. In conclusion, reduced AMF colonization efficiency in spr2 mutants is probably caused by multiple and interconnected JA-dependent and independent gene expression and metabolomic alterations.
Collapse
Affiliation(s)
- Kena Casarrubias-Castillo
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Josaphat M. Montero-Vargas
- Departamento de Investigación en Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Nicole Dabdoub-González
- Instituto de Biotecnología de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nicolas de los Garza, Nuevo Leon, Mexico
| | - Robert Winkler
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Norma A. Martinez-Gallardo
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Julia Zañudo-Hernández
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Hamlet Avilés-Arnaut
- Instituto de Biotecnología de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nicolas de los Garza, Nuevo Leon, Mexico
| | - John P. Délano-Frier
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
16
|
Li B, Fan R, Yang Q, Hu C, Sheng O, Deng G, Dong T, Li C, Peng X, Bi F, Yi G. Genome-Wide Identification and Characterization of the NAC Transcription Factor Family in Musa Acuminata and Expression Analysis during Fruit Ripening. Int J Mol Sci 2020; 21:ijms21020634. [PMID: 31963632 PMCID: PMC7013864 DOI: 10.3390/ijms21020634] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
Banana (Musa acuminata, AAA group) is a representative climacteric fruit with essential nutrients and pleasant flavors. Control of its ripening determines both the fruit quality and the shelf life. NAC (NAM, ATAF, CUC2) proteins, as one of the largest superfamilies of transcription factors, play crucial roles in various functions, especially developmental processes. Thus, it is important to conduct a comprehensive identification and characterization of the NAC transcription factor family at the genomic level in M. acuminata. In this article, a total of 181 banana NAC genes were identified. Phylogenetic analysis indicated that NAC genes in M. acuminata, Arabidopsis, and rice were clustered into 18 groups (S1–S18), and MCScanX analysis disclosed that the evolution of MaNAC genes was promoted by segmental duplication events. Expression patterns of NAC genes during banana fruit ripening induced by ethylene were investigated using RNA-Seq data, and 10 MaNAC genes were identified as related to fruit ripening. A subcellular localization assay of selected MaNACs revealed that they were all localized to the nucleus. These results lay a good foundation for the investigation of NAC genes in banana toward the biological functions and evolution.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (B.L.); (X.P.)
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ruiyi Fan
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiaosong Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chunhua Hu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ou Sheng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guiming Deng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tao Dong
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (B.L.); (X.P.)
| | - Fangcheng Bi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (F.B.); (G.Y.)
| | - Ganjun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (F.B.); (G.Y.)
| |
Collapse
|