1
|
Qin W, Xu S, Wei J, Li F, Zhang C, Zhang H, Liu Y. Deciphering chondrocyte diversity in diabetic osteoarthritis through single-cell transcriptomics. Comput Biol Chem 2025; 115:108356. [PMID: 39848169 DOI: 10.1016/j.compbiolchem.2025.108356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
The pathophysiological distinctions between osteoarthritis (OA) and diabetic osteoarthritis (DOA) are critical yet not well delineated. In this study, we employed single-cell RNA sequencing to clarify the unique cellular and molecular mechanisms underpinning the progression of both conditions. We identified a novel subpopulation of chondrocytes in DOA, termed 'Heat Shock' chondrocytes, marked by the expression of distinct molecular markers including HSPA1A, HSPA1B, HSPB1, and HSPA8. Our comprehensive gene expression analysis revealed a pronounced upregulation of inflammatory pathways associated with oxidative stress-namely the MAPK, NF-κB, and PI3K signaling pathways-in the effector and proliferating chondrocyte subpopulations, with a predominance in DOA. Further, our investigation into cell-cell communication demonstrated a significant diminution of intercellular signaling in DOA compared to OA. These insights not only elucidate distinct cellular heterogeneities and potential pathogenic mechanisms differentiating OA from DOA but also enhance our understanding of their molecular pathophysiology, offering novel avenues for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Wei Qin
- Medical College, Jiaying University, Meizhou 514031, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510000, China
| | - Shao Xu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510000, China
| | - Jiatian Wei
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510000, China
| | - Fuxi Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chuanxia Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Huantian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510000, China.
| | - Yuanxian Liu
- Department of Otolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| |
Collapse
|
2
|
Li H, Yuan S, Yue Z, Zhang L, Chen S, Qian Q, Fu Q, Chen Y. Suppressive effect of curcumin on apoptosis of articular chondrocytes via regulation on NF-κB pathway and NLRP3 inflammasome. Cytotechnology 2025; 77:52. [PMID: 39897107 PMCID: PMC11785841 DOI: 10.1007/s10616-024-00695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
Our study probed into how curcumin modulates NF-κB pathway to regulate articular chondrocytes. ATDC5 cells were exposed to varying concentrations of curcumin (0, 10, 20, 50, or 100 μM) for 48 h, followed by an assessment of curcumin's cytotoxicity. Cells were also treated with 10 ng/ml IL-1β, curcumin, 5 μg/L NF-κB inhibitor (PDTC), and 5 μM NLRP3 inflammasome inducer (nigericin) for 48 h, before cell viability, apoptosis, NF-κB pathway-related proteins, NLRP3 inflammasome-related proteins and inflammatory cytokines were detected. IL-1β treatment notably diminished chondrocyte viability and increased apoptosis, evidenced by elevated level of Bax and cleaved caspase-3, and reduced level of Bcl2, while such expression patterns were reversed by curcumin treatment in a concentration-dependent fashion. Additionally, NF-κB pathway and NLRP3 inflammasome in chondrocytes were activated by IL-1β treatment, but can also be suppressed following curcumin intervention. Furthermore, inhibition of NF-κB pathway curtailed the NLRP3 inflammasome activation and chondrocyte apoptosis, while activation of the NLRP3 inflammasome partially reversed the protective impacts of curcumin against chondrocyte apoptosis. Curcumin inhibits NF-κB pathway, thereby preventing the NLRP3 inflammasome activation and ameliorating IL-1β-induced apoptosis in articular chondrocytes.
Collapse
Affiliation(s)
- Haobo Li
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003 China
| | - Shuai Yuan
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003 China
| | - Zhipeng Yue
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003 China
| | - Lei Zhang
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003 China
| | - Shu Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003 China
| | - Qirong Qian
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003 China
| | - Qiwei Fu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003 China
| | - Yi Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003 China
| |
Collapse
|
3
|
Cheng J, Solomon T, Estee M, Cicuttini FM, Lim YZ. Effect of glucagon-like peptide-1 receptor agonists in osteoarthritis: A systematic review of pre-clinical and human studies. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100567. [PMID: 39995585 PMCID: PMC11849622 DOI: 10.1016/j.ocarto.2025.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/04/2025] [Indexed: 02/26/2025] Open
Abstract
Objective There is significant interest in the potential of glucagon-like peptide 1 receptor agonists (GLP-1A) to improve outcomes in osteoarthritis. We systematically reviewed the evidence from pre-clinical and human studies for effect of glucagon-like peptide 1 receptor agonists (GLP-1A) in osteoarthritis. Method Ovid Medline, Embase and CINAHL were searched (inception to November 2024) using MeSH terms and key words to identify studies examining the association between GLP-1A use and outcomes related to osteoarthritis. Risk of bias assessment and data extraction were conducted by three reviewers independently. Qualitative evidence synthesis was performed and prospectively registered on PROSPERO (CRD42024522782 and CRD42024522787). Results This systematic review included 11 (7 pre-clinical; 4 human studies) studies. In pre-clinical studies, GLP-1A was assessed for its effect on structural (n = 6); immunomodulation (n = 7); analgesia (n = 1) and molecular pathways in osteoarthritis (n = 5). For human studies, GLP-1A were assessed for structural (n = 1) and symptomatic (n = 4) effects in osteoarthritis. Pre-clinical studies consistently demonstrated favourable chondroprotective and immunomodulatory effects of GLP-1A in osteoarthritis, with a dose-dependent effect, primarily driven by inhibition of NF-κB pathway. Limited human studies supported these findings in osteoarthritis. Conclusion There are consistent signals across limited pre-clinical and human studies to support a potential favourable structural protective, immunomodulatory and analgesic effects of GLP-1A in osteoarthritis. With the growing burden of obesity, high-quality trials are needed to determine the role of GLP-1A in osteoarthritis.
Collapse
Affiliation(s)
| | - Tia Solomon
- Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Mahnuma Estee
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Flavia M. Cicuttini
- Alfred Hospital, Melbourne, VIC 3004, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuan Z. Lim
- Alfred Hospital, Melbourne, VIC 3004, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
4
|
Wu CH, Chou WC, Jou IM, Tu YK, Ma CH, Tsai KL. Cisplatin-induced oxidative stress, apoptosis, and pro-inflammatory responses in chondrocytes through modulating LOX-1. J Orthop Surg Res 2025; 20:206. [PMID: 40011998 DOI: 10.1186/s13018-025-05602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
Cisplatin is a potent and efficacious anticancer medication. In pediatric cancer, the height of the growth plate's proliferating layer is known to be reduced by cisplatin, but researchers have not yet determined the specific mechanism behind this phenomenon. Lectin-like oxidized low-density lipoprotein receptor-1 is known to be involved in the development of osteoarthritis and atherosclerosis. The equilibrium of cartilage is regulated by LOX-1, but the function of LOX-1 in cisplatin-induced chondrocyte impairment remains unknown. Positive regulation of LOX-1 leads to increased cellular oxidative stress and cell damage. Research has shown that blocking of LOX-1 can reduce the chondrocyte damage and oxidative stress in cells induced by oxidized LDL treatment. However, the role of LOX-1 in cisplatin-mediated chondrocyte damage is still unclear. This study found that cisplatin increased ROS concentration and p38, ERK phosphorylation. Cisplatin activated NF-κB in chondrocytes. In addition, LOX-1 small interfering RNA transfection mitigated cisplatin-induced apoptosis in TC28a2 cells. Phosphorylated extracellular signal-regulated kinase and p38 were dose-dependently increased by administration of cisplatin. Silencing LOX-1 or MAPK inhibition reduces cisplatin-caused apoptosis. The findings suggest that cisplatin-induced growth plate dysfunction operates through the LOX-1/p38/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chin-Hsien Wu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Wan-Ching Chou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Ching-Hou Ma
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC.
- School of Medicine, I-Shou University, Kaohsiung City, Taiwan, ROC.
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
5
|
Liu P, Zhou J, Cui H, Xu J, Ruan G, Ding C, Wang K. 1,25(OH) 2D 3 induces chondrocyte autophagy and reduces the loss of proteoglycans in osteoarthritis through inhibiting the NF-κB pathway. Clin Rheumatol 2025; 44:811-822. [PMID: 39775461 DOI: 10.1007/s10067-024-07281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE Nuclear transcription factor-κB (NF-κB) activation is a pivotal event in the pathogenesis of osteoarthritis (OA). OA patients frequently exhibit vitamin D (VD) deficiency, which is commonly associated with NF-κB activation. Our study aimed to investigate whether VD could protect against OA by modulating NF-κB pathway and to explore the underlying mechanisms. METHODS Proteins levels were assessed by western blot analysis, gene expression was quantified by quantitative real-time polymerase chain reaction (qRT‒PCR) in vivo and in vitro. The expression of phosphorylated-p65 (p-p65) in knee OA rats was detected by immunohistochemistry, and an NF-κB nuclear translocation assay was validated in chondrocytes. Immunoprecipitation was employed to detect the interaction between NF-κB and vitamin D receptor (VDR) in vivo and in vitro. Small interfering RNA (Si-NF-κB and Si-VDR) transfection was used to investigate the role of NF-κB and VDR signaling pathway in knee OA rats under VD influence. Cartilage changes were visualized of knee OA rats using hematoxylin and eosin as well as safranin-O/fast green of staining. RESULTS Our findings indicated that VD alleviates OA by inhibiting NF-κB pathway, which in turn reduces chondrocyte apoptosis and extracellular matrix (ECM) degradation. Further analysis revealed that VD primarily stabilizes NF-κB through the interaction of VDR and NF-κB, modulating the AMPK/mTOR signaling pathway to enhance autophagy and delay the progression of OA. CONCLUSION This study highlights the protective role of VD in OA by stabilization of NF-κB, mainly through the interaction between VDR and NF-κB. This interaction regulates the AMPK/mTOR signaling pathway, promoting autophagy and suggesting a potential therapeutic strategy for OA management. Key Points • VD confers a protective effect on OA by primarily stabilizing NF-κB through the interaction between VDR and NF-κB, which in turn inhibits NF-κB phosphorylation and nuclear translocation. • In chondrocytes, VD helps shield against OA by blocking NF-κB's entry into the nucleus, subsequently regulating autophagy via the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Pingping Liu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
- Department of Rheumatology and Immunology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Junxian Zhou
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Haigang Cui
- Zhaoke Pharmaceutical Hefei Co, Hefei, 230000, China
| | - Jianhua Xu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Kang Wang
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
6
|
Wang C, Lu J, Wu Y, Chu Y, Ho Y, Liu F, Peng Y. CN7:1h Alleviates Inflammation, Apoptosis and Extracellular Matrix Degradation in Osteoarthritis by Modulating the NF-κB and mTOR Pathways. J Cell Mol Med 2025; 29:e70368. [PMID: 39875323 PMCID: PMC11774621 DOI: 10.1111/jcmm.70368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with a complex aetiology, which includes inflammation, cellular growth dysregulation and extracellular matrix (ECM) degradation. This study investigated the therapeutic potential of a small-molecule compound, 2-amino-4-(3,4,5-trimethoxyphenyl)-4H-benzo[h]chromene-3-carbonitrile (CN7:1h) in modulating these critical biochemical pathways in OA. Cellular models and rat models of OA were used to explore the impact of CN7:1h on the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mechanistic target of rapamycin (mTOR) signalling pathways. Parameters such as autophagy, apoptosis and ECM preservation were evaluated. CN7:1h demonstrated a non-cytotoxic profile at a concentration as high as 140 μM as confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. At a concentration of 5 μM, CN7:1h was shown to inhibit the activation of NF-κB and mTOR pathways. CN7:1h was also shown to promote autophagy and reduce apoptosis in cellular models. In rat models, CN7:1h facilitated cartilage repair and demonstrating the therapeutic efficacy of this compound. In conclusion, CN7:1h is a promising bioactive compound for the modulation of key biochemical pathways with therapeutic benefits in degenerative conditions, such as OA. Its high bioavailability and lack of cytotoxicity make CN7:1h an excellent candidate for further research aimed at clinical applications.
Collapse
Affiliation(s)
- Chih‐Chien Wang
- Department of OrthopedicsTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Jeng‐Wei Lu
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ya‐Wun Wu
- Graduate Institute of Pathology and ParasitologyNational Defense Medical CenterTaipeiTaiwan
| | - You‐Hsiang Chu
- Graduate Institute of Pathology and ParasitologyNational Defense Medical CenterTaipeiTaiwan
| | - Yi‐Jung Ho
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan
- School of Pharmacy, National Defense Medical CenterTaipeiTaiwan
| | - Feng‐Cheng Liu
- Rheumatology/Immunology and Allergy, Department of MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Yi‐Jen Peng
- Department of PathologyTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
7
|
de Lima CL, Pohl PC, Villas-Boas IM, Pidde G, Tambourgi DV. Investigating the impact of Premolis semirufa caterpillar bristle toxins on human chondrocyte activation and inflammation. PLoS Negl Trop Dis 2025; 19:e0012816. [PMID: 39928679 PMCID: PMC11809898 DOI: 10.1371/journal.pntd.0012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND The caterpillar of Premolis semirufa, known as Pararama, is found in the Brazilian Amazon, primarily on rubber trees of the genus Hevea. Pararamosis is an inflammatory disease resulting from accidental contact with the caterpillar's bristles, leading to acute and chronic symptoms. Chronic exposure can cause significant osteoarticular deformities, similar to those seen in osteoarthritis and rheumatoid arthritis, due to cartilage degradation and synovial inflammation. Currently, there are no specific treatments for Pararamosis, and research on the molecular mechanisms of the caterpillar's venom and its role in disease pathogenesis is limited. The chronic changes in Pararamosis are thought to be linked to chondrocyte activation and the NF-κB signaling pathway, influenced by the toxic components in the bristles. Understanding these interactions is crucial for developing preventive measures and therapeutic strategies, especially for rubber tappers at risk in the Amazon region. METHODOLOGY/PRINCIPAL FINDINGS This study investigated the effects of P. semirufa bristle extracts on human chondrocytes, focusing on the activation mechanism of the NF-κB transcription factor and the expression of osteoarthritis markers. Cell viability tests indicated that the extracts did not significantly affect chondrocyte survival. However, supernatant analysis revealed a time- and dose-dependent increase in IL-6 and IL-8 levels. Additionally, the expression of NF-κB and its inhibitor, IκB, was assessed, showing higher levels of phosphorylated IκB, which induces its proteosomal degradation, compared to the negative control, while native IκB expression was greater in the control group. Furthermore, the gene expression profile of treated chondrocytes demonstrated modulation in matrix metalloproteinases (MMPs), aggrecan (ACAN), collagen type II (COL2A1), interleukins (IL6 and IL8), and complement system molecules. CONCLUSIONS/SIGNIFICANCE These findings highlight the significant impact of P. semirufa bristle extracts on human chondrocyte activation and the inflammatory processes associated with pararamosis.
Collapse
Affiliation(s)
| | - Paula C. Pohl
- Immunochemistry Laboratory, Instituto Butantan, São Paulo, Brazil
| | | | - Giselle Pidde
- Immunochemistry Laboratory, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
8
|
Shi H, Liu Q, He W, Ma X, Shen X, Zou Y. Triptolide attenuates LPS-induced chondrocyte inflammation by inhibiting inflammasome activation via the Wnt/β-catenin and NF-κB signaling pathways. Cytotechnology 2025; 77:13. [PMID: 39665044 PMCID: PMC11628479 DOI: 10.1007/s10616-024-00680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Osteoarthritis (OA) is a common form of arthritis characterized by subchondral bone proliferation and articular cartilage degeneration. Recently, the Nod-like receptor pyrin domain 3 (NLRP3) inflammasome has gained attention due to its association with synovial inflammation in OA. Triptolide (TP), known for its immunosuppressive and anti-inflammatory effects, has been studied in various diseases. However, the specific impact of TP on OA and its underlying mechanism remains largely unexplored. In this study, chondrocytes were treated with a specific concentration of TP, and subsequent analysis through Western blotting and immunofluorescence staining revealed decreased expression levels of MMP-13, NLRP3, Caspase-1, ASC, β-catenin, p-p65, and IκB compared to the model group. ELISA results demonstrated significantly lower levels of IL-1β, IL-18, and TNF-α in the TP treatment group compared to the model group. In addition, triptolide ameliorates the degradation of the extracellular matrix (ECM) by enhancing the expression of collagen-II. In conclusion, our findings suggest that TP exhibits anti-inflammatory effects on chondrocytes in the presence of LPS-induced inflammation by inhibiting the activation of the NLRP3 inflammasome via the Wnt/β-catenin and NF-κB pathway. These results contribute to a better understanding of TP's potential therapeutic benefits in managing OA.
Collapse
Affiliation(s)
- Hangchu Shi
- Department of Orthopedics, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Qiming Liu
- Department of Orthopedics Surgery, Fuyang Orthopedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wang He
- Department of Orthopedics, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Xuming Ma
- Department of Orthopedics, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Xiaoqiang Shen
- Department of Orthopedics, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Yang Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Pramanik R, Chattopadhyay S, Bishayi B. Dual neutralization of TGF-β and IL-21 regulates Th17/Treg balance by suppressing inflammatory signalling in the splenic lymphocytes of Staphylococcus aureus infection-induced septic arthritic mice. Immunol Res 2025; 73:38. [PMID: 39831928 DOI: 10.1007/s12026-024-09586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4+ T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis. A high Th17 could lead to autoimmunity, whereas an increase in Tregs indicates immunosuppression. Depending on the external cytokine milieu, naïve CD4+ T cells transform into either Th17 or Treg cell lineage. TGF-β in the presence of IL-21 produces Th17 cells and drives the inflammatory cascade of reactions. We studied the effects of in vivo neutralization of TGF-β and IL-21 in septic arthritic mice to control arthritic inflammation, which has not been studied before. The arthritic index showed maximum severity in the SA group which substantially reduced in the Ab-treated groups. Flow cytometric analyses of peripheral blood collected from mice at 9DPI revealed the highest Th17/Treg ratio in the SA group but least in the combined-antibody-treated group. TGF-β1 and IL-21 cytokine production from serum, spleen, and synovial tissue homogenates was significantly reduced in the dual Ab-treated group than in the untreated SA group. From the Western blot analyses obtained from splenic lymphocytes at 9 DPI, we elucidated the possible underlying mechanism of interplay in downstream signalling involving the interaction between different STAT proteins and SOCS, NF-κB, RANKL, mTOR, iNOS, and COX-2 in regulating inflammation and osteoclastogenesis. On endogenous blockade with TGF-β and IL-21, the Th17/Treg ratio and resultant arthritic inflammation in SA were found to be reduced. Therefore, maintaining the Th17/Treg balance is critical to eradicate infection as well as suppress excessive inflammation and neutralization of TGF-β and IL-21 could provide a novel therapeutic strategy to treat staphylococcal SA.
Collapse
Affiliation(s)
- Rochana Pramanik
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Sreya Chattopadhyay
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India.
| |
Collapse
|
10
|
Zou Z, Pan S, Sun C, Wei J, Xu Y, Xiao K, Zhao J, Gu R. AM1241 inhibits chondrocyte inflammation and ECM degradation through the Nrf2/HO-1 and NF-κB pathways and alleviates osteoarthritis in mice. Mol Med 2025; 31:9. [PMID: 39794700 PMCID: PMC11721480 DOI: 10.1186/s10020-024-01012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND This study aimed to investigate the impact of AM1241 on lipopolysaccharide (LPS)-induced chondrocyte inflammation in mice and its potential mechanism for improving osteoarthritis (OA). METHODS The OA mice model was established employing the refined Hulth method. The impact of different concentrations of AM1241 on mice chondrocyte activity was detected using CCK-8. Changes in the levels of LPS-induced inflammatory factors and cartilage extracellular matrix (ECM) degradation in chondrocytes were determined by western blot, RT-qPCR, ELISA, and immunofluorescence assays, respectively. The specific action modes and binding sites of AM1241 with NEMO/IκB kinases (IKKs) in the NF-κB pathway and Keap1 protein in the Nrf2 pathway were predicted via molecular docking and molecular dynamics simulation, and the NF-κB and Nrf2 pathways were detected using western blot and immunofluorescence. In vivo, the impact of AM1241 on OA mice was analyzed through safranin-fast green staining, IHC staining, Mankin score, and microCT. RESULTS AM1241 inhibited the levels of LPS-induced transforming growth factor-β (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), matrix metalloproteinase-13 (MMP-13), and a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5) and diminished the degradation of type II collagen and Aggrecan. For the mechanism, AM1241 regulated the NF-kB and Nrf2/HO-1 signaling pathways by binding to NEMO/IKKβ and Keap1 target proteins and suppressed the activation of the NF-κB signaling pathway by activating the Nrf2 in chondrocytes. In vivo, AM1241 inhibited bone anabolism, mitigated articular cartilage hyperplasia and wear, and reduced the Mankin score in mice, thereby hindering the development of OA. CONCLUSION AM1241 inhibited activation of the NF-κB signaling pathway via activating Nrf2. It suppressed the expression of inflammation factors and the degradation of ECM in vitro, and improved OA in mice in vivo, suggesting its potential as an effective drug candidate for the treatment of OA. The remarkable efficacy of AM1241 in alleviating murine OA positions it as a potential therapeutic strategy in the clinical management of OA diseases.
Collapse
Affiliation(s)
- Zhuan Zou
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Songmu Pan
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Changzheng Sun
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiyong Wei
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kaizhen Xiao
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Jinmin Zhao
- School of Basic Medical Sciences, Guangxi Medical University, No. 22, Shuangyou Road, Qingxiu District, Nanning, Guangxi, 530021, China.
| | - Ronghe Gu
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China.
- School of Basic Medical Sciences, Guangxi Medical University, No. 22, Shuangyou Road, Qingxiu District, Nanning, Guangxi, 530021, China.
| |
Collapse
|
11
|
Frusciante L, Geminiani M, Shabab B, Olmastroni T, Roncucci N, Mastroeni P, Salvini L, Lamponi S, Trezza A, Santucci A. Enhancing Industrial Hemp ( Cannabis sativa) Leaf By-Products: Bioactive Compounds, Anti-Inflammatory Properties, and Potential Health Applications. Int J Mol Sci 2025; 26:548. [PMID: 39859264 PMCID: PMC11765263 DOI: 10.3390/ijms26020548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The sustainable utilization of biomass-derived bioactives addresses the growing demand for natural health products and supports sustainable development goals by reducing reliance on synthetic chemicals in healthcare. Cannabis sativa biomass, in particular, has emerged as a valuable resource within this context. This study focuses on the hydroethanolic extract of C. sativa leaves (CSE), which exhibited significant levels of phenolic compounds contributing to robust antioxidant activity. Evaluation using potassium ferricyanide, ABTS, and DPPH methods revealed potent radical scavenging activity comparable to the Trolox standard. UPLC-MS/MS profiling identified cannabinoids as the predominant secondary metabolites in CSE, with flavonoids also present in substantial quantities. This study investigated the anti-inflammatory potential of CSE on RAW 264.7 macrophages and IL-1β-stimulated C-20/A4 immortalized human chondrocytes, demonstrating protective effects without cytotoxic or mutagenic effects. Mechanistically, CSE reduced inflammation by inhibiting the MAPK and NF-κB signaling pathways. In silico approaches showed the ability of CSE's main metabolites to bind and influence MAPK and NF-κB activity, confirming in vitro evidence. Incorporating C. sativa leaf extract into a hyaluronic acid-based formulation showed biotechnological promise for treating joint inflammation. Future research should aim to elucidate the molecular mechanisms underlying these effects and explore the potential of CSE-derived compounds in mitigating osteoarthritis progression. This approach highlights the significance of utilizing annually increasing biomass waste for sustainable bioactivity and environmental impact reduction.
Collapse
Affiliation(s)
- Luisa Frusciante
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Behnaz Shabab
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Tommaso Olmastroni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Neri Roncucci
- Tenuta di Mensanello, Località Mensanello, 34, 53034 Colle di Val d’Elsa, Italy;
| | - Pierfrancesco Mastroeni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy;
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy; (L.F.); (B.S.); (T.O.); (P.M.); (S.L.); (A.T.); (A.S.)
- SienabioACTIVE, University of Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
12
|
Ning P, Lin S, Shi Y, Liu T. Potential role of gut-related factors in the pathology of cartilage in osteoarthritis. Front Nutr 2025; 11:1515806. [PMID: 39845920 PMCID: PMC11753001 DOI: 10.3389/fnut.2024.1515806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Osteoarthritis (OA) is a common progressive degenerative disease. Gut microbiota (GM) and their metabolites have been closely associated with the onset, progression, and pathology of OA. GM and their metabolites may influence the cartilage directly, or indirectly by affecting the gut, the immune system, and the endocrine system. They function through classical pathways in cartilage metabolism and novel pathways that have recently been discovered. Some of them have been used as targets for the prevention and treatment of OA. The current study sought to describe the major pathological signaling pathways in OA chondrocytes and the potential role of gut-related factors in these pathways.
Collapse
Affiliation(s)
- Peng Ning
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuting Lin
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianjing Liu
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Ma Y, Yang X, Jiang M, Ye W, Qin H, Tan S. Alone or in combination, hyaluronic acid and chondroitin sulfate alleviate ECM degradation in osteoarthritis by inhibiting the NF-κB pathway. J Orthop Surg Res 2025; 20:11. [PMID: 39754163 PMCID: PMC11699666 DOI: 10.1186/s13018-024-05411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUNDS Osteoarthritis (OA) significantly impacts the elderly, leading to disability and decreased quality of life. While hyaluronic acid (HA) and chondroitin sulfate (CS) are recognized for their therapeutic potential in OA, their effects on extracellular matrix (ECM) degradation are not well understood. This study investigates the impact of HA and CS, individually and combined, on ECM degradation in OA and the underlying mechanisms. METHODS OA was modeled in rats through anterior cruciate ligament transection and in cells using IL-1β pretreatment. Treatments included HA and CS, alone or combined, with and without PMA (an NF-κB pathway activator). Cartilage tissue was analyzed using HE and Saffron O-fast green staining, with degradation assessed via the OARSI score. Inflammatory factors were measured by ELISA, and ECM-related proteins were detected by immunohistochemistry, immunofluorescence, and Western blotting. Chondrocyte viability was assessed using CCK8. RESULTS HA and CS treatments significantly reduced cartilage damage, decreased inflammatory factor release, alleviated ECM degradation, and inhibited NF-κB pathway activation compared to the OA group (P < 0.05). The combination of HA and CS further enhanced these therapeutic effects (P < 0.05). However, these benefits were reversed when PMA was introduced (P < 0.05). CONCLUSION HA and CS, whether used alone or in combination, mitigate ECM degradation in osteoarthritis by inhibiting the NF-κB pathway, offering potential therapeutic benefits for OA management.
Collapse
Affiliation(s)
- Yiran Ma
- Aunobel pty Ltd Nutrition and health research institute, Strathfield, 2135, NSW, Australia
| | - Xin Yang
- Aunobel pty Ltd Nutrition and health research institute, Strathfield, 2135, NSW, Australia
| | - Min Jiang
- Aunobel pty Ltd Nutrition and health research institute, Strathfield, 2135, NSW, Australia
| | - Wangjuan Ye
- Aunobel pty Ltd Nutrition and health research institute, Strathfield, 2135, NSW, Australia
| | - Hong Qin
- Aunobel pty Ltd Nutrition and health research institute, Strathfield, 2135, NSW, Australia.
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
14
|
Lu W, Feng W, Zhen H, Jiang S, Li Y, Liu S, Ru Q, Xiao W. Unlocking the therapeutic potential of WISP-1: A comprehensive exploration of its role in age-related musculoskeletal disorders. Int Immunopharmacol 2025; 145:113791. [PMID: 39667044 DOI: 10.1016/j.intimp.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases. Regulating WISP-1 expression holds promise as a therapeutic strategy for improving musculoskeletal function, potentially offering new avenues for treating age-related musculoskeletal diseases in clinical practice. This review highlights the signaling pathways associated with WISP-1, its physiological roles within the musculoskeletal system, and its therapeutic potential in treating age-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Haozu Zhen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710001, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
15
|
Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Cerri PS, Gil CD, de Jesus Simões M. Relationship between autophagy and NLRP3 inflammasome during articular cartilage degradation in oestrogen-deficient rats with streptozotocin-induced diabetes. Ann Anat 2025; 257:152318. [PMID: 39216675 DOI: 10.1016/j.aanat.2024.152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Estrogen deficiency and Diabetes mellitus (DM) cause joint tissue deterioration, although the mechanisms are uncertain. This study evaluated the immunoexpression of autophagy and NLRP3-inflammasome markers, in rat articular cartilage with estrogen deficiency and DM. METHODS Twenty rats were sham-operated (SHAM) or ovariectomized (OVX) and equally allocated into four groups: SHAM and OVX groups administered with vehicle solution; SHAM and OVX groups treated with 60 mg/kg/body weight of streptozotocin, intraperitoneally, to induce DM (SHAM-DM and OVX-DM groups). After seven weeks, the rats were euthanized, and their joint knees were processed for paraffin embedding. Sections were stained with haematoxylin-eosin, toluidine blue, safranin-O/fast-green or subjected to picrosirius-red-polarisation method; immunohistochemistry to detect beclin-1 and microtubule-associated protein 1B-light chain 3 (autophagy markers), NLRP3 and interleukin-1β (IL-1β) (inflammasome activation markers), along with matrix metalloproteinase-9 (MMP-9), Nuclear factor-kappa B (NFκB), and Vascular endothelial growth factor A (VEGF-A) were performed. RESULTS Deterioration of articular cartilage and subchondral bone were greater in SHAM-DM and OVX-DM groups. Higher percentages of immunolabeled chondrocytes to NLRP3, IL-1β, MMP-9, NFκB, and VEGF-A, as well as lower percentages of chondrocytes immunolabeled to autophagy markers, were noticed in estrogen-deficient and diabetic groups. These differences were greater in the OVX-DM group. Percentages of immunolabeled chondrocytes showed negative correlation between autophagy markers v.s IL-1β, NLRP-3, MMP-9, NFκB, and VEGF-A, along with positive correlation between VEGF-A vs. MMP-9, NFκB, IL-1β, and NLRP3, and MMP-9 vs. NFκB. CONCLUSIONS In conclusion, autophagy reduction and NLRP3 inflammasome activation in chondrocytes may be implicated in articular cartilage degradation, under estrogen-deficient and DM conditions. Moreover, the combination of estrogen deficiency and DM may potentiate those effects.
Collapse
Affiliation(s)
- Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil.
| | - Gisela Rodrigues da Silva Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Cristiane Damas Gil
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Cai N, Gao X, Jia L, Liu Y, Zhao J, Qu J, Zhou Y. 2-Trifluoromethyl-2H-chromene ethers: The dual triumph of anti-inflammation and analgesia with minimal ulcer threat. Bioorg Chem 2025; 154:108050. [PMID: 39675096 DOI: 10.1016/j.bioorg.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
In this report, we disclose the design and synthesis of a series of 2-trifluoromethyl-2H- chromene ethers as novel COX-2 inhibitors with low ulcerogenicity. Among them, 6-fluoro-3-(4-methoxyphenyl)-2-(2-(thiophen-3-yl)ethoxy)-2-(trifluoromethyl)-2H-chromene (E25) significantly suppressed LPS-induced release of NO and PGE2, expression of COX-2 and iNOS, and activation of NF-κB pathway. The inhibitory effect of E25 on human recombinant COX-2 (IC50 = 70.7 ± 4.7 nM) and molecular docking studies suggest that E25 functions as a COX-2 inhibitor. Moreover, the results of the cellular thermal shift assay also substantiate the interaction between E25 and COX-2. E25 manifests potent anti-inflammatory and analgesic efficacy on a par with or even superior to indomethacin in rodent models including carrageenan-induced paw edema, cotton pellet-induced granuloma, acetic acid-induced writhes, and adjuvant-induced arthritis. The possible mechanism of action of E25 might be to bind to COX-2 and suppress the NF-κB pathway as well as the expression of related proteins, thereby exerting anti-inflammatory and analgesic effects. Encouragingly, compared with indomethacin, E25 induces smaller areas and fewer ulcers, a lower level of inflammatory infiltration, a lower expression of MMP-9 and apoptosis of mucosal epithelial cells in rat gastric tissues. Overall, E25 and other analogues are promising candidates worthy of further investigation for the treatment of inflammation and pain, as well as other symptoms in which COX-2 and PGE2 play a role in their etiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
17
|
Ren G, Geng L, Ren D, Hou H, Yao S, Shi Z, Wang P. Chronic intermittent hypobaric hypoxia alleviates early-stage posttraumatic osteoarthritis via NF-κB/Nrf2 pathway in mice. J Orthop Surg Res 2024; 19:878. [PMID: 39726016 DOI: 10.1186/s13018-024-05376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Posttraumatic osteoarthritis (PTOA) is directly associated with early acute articular cartilage injury. Inhibition of cartilage destruction immediately following joint damage can effectively slow or prevent PTOA progression. Therefore, we sought to determine intervention targets and therapeutic strategies in the acute stage of cartilage injury. The benefits of chronic intermittent hypobaric hypoxia (CIHH) extend to various body tissues, but its impact on acute cartilage injury remains unclear. We selected PTOA initiation as the therapeutic window and administered CIHH treatment immediately following cartilage injury initiation to investigate its protective effect on cartilage and molecular mechanism changing with time-varying. METHODS The non-invasive PTOA mouse model was established by applying a single rapid specific impact force to the right knee's tibial plateau, initiating load-induced PTOA development, closely resembling the pathological changes in human diseases. Following loading, we inhibited cartilage destruction by treating mice immediately in a hypobaric chamber with a hypobaric hypoxia mimic at 5000 m altitude. Cohorts of mice subjected to distinct experimental conditions were monitored for 3, 7, 14 or 28 days. Safranin O-Fast Green staining, Immunohistochemistry, immunofluorescence, ELISA, and western blotting were performed to evaluate the therapeutic effects of CIHH on cartilage in vivo. The nuclear translocation of NF-κB p65 and Nrf2 were detected by immunofluorescence. RESULTS The results showed that inhibiting cartilage destruction using CIHH immediately following acute articular cartilage injury initiation delayed the progression of PTOA, decreased the Mankin score and suppressed the expression of proinflammatory factors, including iNOS, NO, TNF-α, and IL-1β. Meanwhile, immediate CIHH treatment reduced levels of the catabolic enzymes ADAMTS5 and MMP13 in the cartilage matrix, reversed degradation of Collagen II and COMP, and inhibited oxidative stress by decreasing ROS levels. Moreover, CIHH suppressed NF-κB signaling by activating the Nrf2 in vivo studies. CONCLUSION Our study demonstrated that immediate CIHH treatment following cartilage injury initiation can attenuate load-induced cartilage damage by activating Nrf2/HO-1 and inhibiting the NF-κB p65 signalling pathways to counteract oxidative stress and inflammatory reactions, enhance the metabolic balance of the cartilage matrix and delay cartilage degeneration. This treatment may represent a potential therapeutic strategy for limiting PTOA progression.
Collapse
Affiliation(s)
- Guowei Ren
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China
| | - Lindan Geng
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China
| | - Dong Ren
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China
| | - Haowei Hou
- Department of Scientific Research, Hebei Medical University Third Hospital, Shijiazhuang, Hebei Province, 050051, China
| | - Shuangquan Yao
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, 050051, China.
| | - Pengcheng Wang
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China.
| |
Collapse
|
18
|
Sun W, Yue J, Cui Y, Feng J, He Q, Liang J, You W, Shi H, Sun W, Yi Q. Wedelolactone alleviates inflammation and cartilage degeneration by suppressing the NF-κB signaling pathway in osteoarthritis. Int Immunopharmacol 2024; 143:113359. [PMID: 39388895 DOI: 10.1016/j.intimp.2024.113359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Inflammation and extracellular matrix (ECM) degradation are two major factors involved in the pathogenesis of osteoarthritis (OA). Wedelolactone, a natural compound classified as a coumestan, is isolated from the medicinal plants Eclipta alba and Wedelia calendulacea. In this study, we assessed the protective effects of Wedelolactone on chondrocytes in OA. Our findings show that pretreatment with Wedelolactone effectively inhibited the IL-1β-induced upregulation of COX‑2, iNOS, TNF-α, and IL6 in chondrocytes, contributing to inflammation suppression. Moreover, pretreatment with Wedelolactone followed by IL-1β treatment significantly increased the expression of Collagen II and SOX9, while decreasing the expression of Adamts5, MMP1, MMP3, and MMP13, thereby promoting ECM protection. Through Network pharmacology Analysis, we identified 14 key targets that link Wedelolactone and OA. GO and KEGG pathway analysis suggested that Wedelolactone primarily impacted OA by targeting inflammatory responses, particularly the NF-κB signaling pathway. Further studies demonstrated Wedelolactone prevented IL-1β-induced activation of NF-κB signaling pathway by inhibiting the translocation of p65 and the preventing the degradation of IκBα in human chondrocytes. Molecular docking studies also indicated that Wedelolactone can directly bind to the NF-κB complex, thereby inhibited the nuclear localization of p65. In vivo experiments demonstrated that Wedelolactone can alleviate cartilage damage in DMM mice model. In summary, Wedelolactone appears to mitigate inflammation and cartilage degeneration by suppressing the NF-κB signaling pathway, thereby alleviating OA progression. Our results suggested Wedelolactone may offer therapeutic advantages for OA treatment.
Collapse
Affiliation(s)
- Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China; The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Jiaji Yue
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Yinxing Cui
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Qifei He
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Wei You
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646099, China.
| |
Collapse
|
19
|
Wang D, Cao L, Zhang H, Wang X, You W. LncRNA NKILA attenuates the progression of osteoarthritis through the targeted inhibition of the NF-κB pathway. Int Immunopharmacol 2024; 143:113417. [PMID: 39447414 DOI: 10.1016/j.intimp.2024.113417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Interleukin-1β (IL-1β) plays a crucial role in cartilage degeneration by inducing inflammatory cascades in chondrocytes, impairing their normal biological functions. Long non-coding RNA NKILA (lncRNA NKILA) has been implicated in osteoarthritis (OA), but its specific molecular mechanisms remain unclear. This study aims to elucidate the function and molecular regulatory mechanism of lncRNA NKILA in articular chondrocytes under IL-1β stimulation. METHODS Primary human articular chondrocytes were cultured to investigate the effects of IL-1β on chondrocyte proliferation, apoptosis, and extracellular matrix metabolism. We employed Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR), western blot, flow cytometry, immunofluorescence, and nuclear mass separation assays to explore the interaction between lncRNA NKILA and the NFκB signaling pathway. Additionally, animal experiments were conducted to evaluate the therapeutic potential of modulating lncRNA NKILA expression in vivo. RESULTS IL-1β treatment led to decreased chondrocyte proliferation and increased apoptosis. Our study demonstrated that IL-1β downregulates lncRNA NKILA, which weakens its inhibitory effect on the NFκB (Nuclear Factor Kappa B) signaling pathway. This downregulation results in increased NFκB activity and exacerbates chondrocyte degeneration. Notably, the upregulation of lncRNA NKILA significantly alleviated OA symptoms, indicating that NKILA could be a promising therapeutic target. CONCLUSION IL-1β reduces lncRNA NKILA expression, weakening its inhibition of NFκB signaling and promoting articular chondrocyte degeneration. Enhancing lncRNA NKILA expression offers a promising approach to mitigating OA, suggesting that NKILA could serve as a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Lixin Cao
- Department of Orthopaedics, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Xuefeng Wang
- Department of Orthopaedics, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, China
| | - Weifu You
- Department of Orthopaedics, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, China.
| |
Collapse
|
20
|
Chen Q, Li X, Li P, Liu H, Zhang Q, He L, Tang Z, Song H. Integrative bioinformatics analysis reveals novel insights into osteoarthritis pathogenesis and diagnostic biomarkers. BMC Musculoskelet Disord 2024; 25:999. [PMID: 39639239 PMCID: PMC11619307 DOI: 10.1186/s12891-024-08124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent joint disorder characterized by degeneration and inflammation. Understanding its molecular mechanisms is crucial for diagnosis and treatment. METHODS We employed bioinformatics analyses to study OA using gene expression data. Differential expression analysis, weighted gene co-expression network analysis (WGCNA), and protein-protein interaction (PPI) network analysis were conducted. Enrichment analyses were performed to elucidate the biological significance of identified genes. Additionally, signature genes were identified using LASSO regression analysis, and a diagnostic nomogram was developed. qRT-PCR was conducted to confirm the expression levels of signature genes. RESULTS We identified 200 differentially expressed genes (DEGs) and a lightgreen module strongly correlated with OA. Within this module, 97 core genes were identified. Fifteen core lipopolysaccharide-related genes (LRGs) were found, enriched in immune and inflammatory pathways. Three hub genes (CCL3, ZFP36, and CCN1) emerged as potential biomarkers for OA diagnosis, with a nomogram showing high predictive accuracy, and validated by using clinical samples. Gene set enrichment analysis (GSEA) revealed distinct signaling pathways associated with the signature genes. Immunological analysis indicated altered immune profiles in OA, with the signature genes influencing immune cell infiltration and immune response pathways. CONCLUSION Our study provides insights into OA pathogenesis and identifies potential diagnostic biomarkers. The developed nomogram shows promise for accurate OA diagnosis. Furthermore, the signature genes play crucial roles in modulating the immune microenvironment in OA, suggesting their therapeutic potential. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Qipeng Chen
- Department of Orthopaedics and Traumatology III, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Xiaodong Li
- Department of Orthopaedics, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Pengfei Li
- Department of Orthopaedics and Traumatology I, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Hongpeng Liu
- Department of Orthopaedics and Traumatology I, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Qi Zhang
- Department of Orthopaedics and Traumatology III, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Linqin He
- Department of Orthopaedics and Traumatology III, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Zonghan Tang
- Department of Orthopaedics and Traumatology III, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Hanbing Song
- Department of Orthopaedics and Traumatology III, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
21
|
El-Haddad ME, El-Refaie WM, Hammad GO, El-Massik MA. Targeted non-invasive Metformin-Curcumin co-loaded nanohyaluosomes halt osteoarthritis progression and improve articular cartilage structure: A preclinical study. Int J Pharm 2024; 666:124845. [PMID: 39427700 DOI: 10.1016/j.ijpharm.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects the quality of life in elderly and young populations. Current therapies using corticosteroids and non-steroidal anti-inflammatory drugs via parenteral or oral routes show limited ability to retard progression of the disease and achieve long term effectiveness and safety. Herein, the potential of MT-Cur combinatorial nano-formulations in OA management was explored for the first time. MT-Cur loaded nanohyaluosomes (MT-Cur-HL1) were designed for topical administration of the combined therapy in OA. The optimized MT-Cur-HL1 showed particle size 247.7 ± 3.7 nm, zeta potential -37.3 ± 0.4 mV; and entrapment efficiency (%EE) 70.22 %±0.303 and 76.7 %±0.077 for MT and Cur, respectively. MT-Cur-HL1 exhibited sustained drug release over 24 h and were stable over 3 months at 4 °C in terms of P.S., ZP and %EE. A detailed preclinical study, using MIA-induced osteoarthritis rat model, revealed the most significant anti-arthritic effect and halted OA progression of MT-Cur-HL1. This was proved to be mainly through the potentiation of p-AMPK signaling that ultimately led to suppression of its downstream TLR4/ NF-κB signaling pathway with subsequent reduction in MMP13 and ADAMTS5 induced chondrocytes degeneration. This study proved that this trajectory effectively promotes a significant improvement in the articular cartilage structure and reinforcement of joint mobility with an efficient antinociceptive effect. In conclusion, the novel MT-Cur coloaded nanohyaluosomes offer a promising non-invasive approach for the local management of OA.
Collapse
Affiliation(s)
- Mennatallah E El-Haddad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Ghada O Hammad
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Magda A El-Massik
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
22
|
Salehi S, Brambilla S, Rasponi M, Lopa S, Moretti M. Development of a Microfluidic Vascularized Osteochondral Model as a Drug Testing Platform for Osteoarthritis. Adv Healthc Mater 2024; 13:e2402350. [PMID: 39370575 DOI: 10.1002/adhm.202402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/17/2024] [Indexed: 10/08/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by changes in cartilage and subchondral bone. To date, there are no available drugs that can counteract the progression of OA, partly due to the inadequacy of current models to recapitulate the relevant cellular complexity. In this study, an osteochondral microfluidic model is developed using human primary cells to mimic an OA-like microenvironment and this study validates it as a drug testing platform. In the model, the cartilage compartment is created by embedding articular chondrocytes in fibrin hydrogel while the bone compartment is obtained by embedding osteoblasts, osteoclasts, endothelial cells, and mesenchymal stem cells in a fibrin hydrogel enriched with calcium phosphate nanoparticles. After developing and characterizing the model, Interleukin-1β is applied to induce OA-like conditions. Subsequently, the model potential is evaluated as a drug testing platform by assessing the effect of two anti-inflammatory drugs (Interleukin-1 Receptor antagonist and Celecoxib) on the regulation of inflammation- and matrix degradation-related markers. The model responded to inflammation and demonstrated differences in drug efficacy. Finally, it compares the behavior of the "Cartilage" and "Cartilage+Bone" models, emphasizing the necessity of incorporating both cartilage and bone compartments to capture the complex pathophysiology of OA.
Collapse
Affiliation(s)
- Shima Salehi
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, Milan, 20157, Italy
| | - Stefania Brambilla
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, Milan, 20157, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, Milan, 20157, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, Milan, 20157, Italy
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research (LRT), Ente Ospedaliero Cantonale (EOC), Via Chiesa 5, Bellinzona, 6500, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Via Tesserete 46, Lugano, 6900, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Via Buffi 13, Lugano, 6900, Switzerland
| |
Collapse
|
23
|
Cai N, Gao X, Jia L, Liu Y, Zhou L, Zhao J, Qu J, Zhou Y. 3-(2-Trifluoromethyl-3-aryl-4H-chromen-4-yl)-1H-indoles: Mastering anti-inflammation and analgesia while mitigating gastrointestinal side effects. Bioorg Chem 2024; 153:107805. [PMID: 39255608 DOI: 10.1016/j.bioorg.2024.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
A series of 3-(2-trifluoromethyl-3-aryl-4H-chromen-4-yl)-1H-indoles (5-1 to 5-29) were developed and characterized. Most of compounds were found to be potent for inhibiting the production of NO in LPS-induced RAW264.7 cells, of which 3-(3-(4-chlorophenyl)-6-methoxy-2-(trifluoromethyl)-4H-chromen-4-yl)-1H-indole (5-25) was the most optimal (IC50 = 4.82 ± 0.34 μΜ) and was capable of significantly suppressing the release of PGE2. The inhibitory effect of 5-25 on human recombinant COX-2 (IC50 = 51.7 ± 1.3 nM) was measured and molecular docking was performed, determining 5-25 as a COX-2 inhibitor. Additionally, the interaction between 5-25 and COX-2 was determined by the CETSA technique. Then, 5-25 inhibited the degradation of IκB, the phosphorylation and nuclear translocation of NF-κB p65, and the expression of COX-2 and iNOS. Moreover, it was verified that 5-25 exhibited efficacy in rodent models of inflammation and pain, encompassing the paw edema, cotton pellet-induced granuloma, acid-induced writhing, and adjuvant-induced arthritis models. Therefore, the mechanism of 5-25 may be to bind to COX-2 and exert anti-inflammatory and analgesic effects in vitro and in vivo by suppressing the NF-κB pathway. Encouragingly, in comparison with indomethacin, 5-25 exhibited a lower ulcerative potential in rats, as manifested by generating smaller areas and fewer ulcers, less inflammatory infiltration, a lower expression of MMP-9, and less apoptosis. In conclusion, 5-25 is a candidate drug with high activity and low ulcerogenic potential, and it deserves further research for the treatment of inflammation, pain, and other symptoms in which COX-2 plays a role in their pathogenesis.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Lingwei Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
24
|
Zhao H, Wang C, Liu B, Weng Z, Shi Y, Zhang C. RIP1 inhibition reduces chondrocyte apoptosis through downregulating nuclear factor-kappa B signaling in a mouse osteoarthritis model. Mol Biol Rep 2024; 51:1132. [PMID: 39514126 DOI: 10.1007/s11033-024-10080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Excessive chondrocyte death is a critical player in the process of osteoarthritis (OA). The present study was aimed to study the role of receptor-interacting serine/threonine kinase (RIP) 1-mediated signaling for programmed cell death in OA. METHODS In the present study, RIP1 protein expression was evaluated in mouse OA cartilage and cultured primary murine chondrocytes exposed to tumor necrosis factor-alpha (TNF-α). Protein expression involved in necroptosis and apoptosis and chondrocyte-derived extracellular matrix were examined. Inhibition of RIP1 was conducted using the RNAi technique and pharmacological inhibition. Western blot, immunohistochemistry, and immunofluorescence examination were applied. RESULTS The protein presence of RIP1, but not RIP3, was increased in the mouse OA tissue and cultured chondrocytes exposed to TNF-α. Knockdown of RIP1 increased protein expression of collagen II and sex-determining region Y-box transcription factor 9, and reduced protein expression of matrix metallopeptidases 13 and a disintegrin and metalloproteinase with thrombospondin motifs 5. Inhibition of RIP1 reduced the phosphorylated NF-κB signals, decreased cell apoptosis, and restored extracellular matrix expression in cultured chondrocytes. Both RNAi and pharmacological inhibition of RIP1 decelerated the progress of OA in mice. CONCLUSION RIP1 regulates chondrocyte apoptosis through NF-κB signaling. Inhibition of RIP1 provides a novel therapeutic approach for OA therapy.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenzhong Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ziyu Weng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi Shi
- Department of Kidney Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chi Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Chuluunbat O, Ikemoto H, Okumo T, Adachi N, Hisamitsu T, Sunagawa M. Electroacupuncture Inhibits Cartilage Degeneration in a Rat Knee Osteoarthritis (KOA) Model by Suppressing ADAMTS5 Expression. Cureus 2024; 16:e73736. [PMID: 39677117 PMCID: PMC11646643 DOI: 10.7759/cureus.73736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Background Knee osteoarthritis (KOA) is characterized by cartilage degradation, osteophyte formation, and synovitis. Cartilage degradation in KOA begins with the loss of aggrecan, primarily due to A Disintegrin and Metalloproteinase with Thrombospondin Motif 5 (ADAMTS5), which is produced by chondrocytes and synovial cells and a key target for therapeutic intervention. Current treatments for KOA primarily focus on pain relief, as disease-modifying osteoarthritis drugs (DMOADs) remain unavailable. Electroacupuncture (EA), applying electrical stimulation to acupoints, has been investigated for its potential to alleviate KOA symptoms; however, the specific effects of different acupoint combinations remain unclear. This study investigates the effect of EA on pain and cartilage degeneration in a KOA rat model by examining ADAMTS5 expression in synovial tissue. Materials and methods Male Wistar rats were divided into five groups: control, sham-operated, KOA model, KOA treated with EA at ST36 (Zusanli)-LR8 (Ququan) (KOA+LR8), and KOA treated at ST36-Ex-LE2 (Heding) (KOA+Ex-LE2). The DMM (destabilization of the medial meniscus) procedure induced KOA, and EA was applied thrice weekly for four weeks. The rotarod test was used to assess motor coordination, and samples were collected for immunofluorescence, Western blot, and histological analysis. Pain was assessed via c-fos expression in the spinal cord, while Safranin O-Fast Green staining was used to evaluate cartilage degeneration via the Osteoarthritis Research Society International (OARSI) scoring system. Results The KOA group post-surgery showed reduced motor coordination, while EA at both ST36-LR8 and ST36-Ex-LE2 enhanced performance (day 28: control: 28.8 ± 0.6, sham: 28.4 ± 3.7, KOA: 19.7 ± 0.9, KOA+LR8: 24.8 ± 1.5, KOA+Ex-LE2: 26.9 ± 1.2). Expression of c-fos, elevated in the KOA group, was significantly suppressed by EA (control: 7.6 ± 0.9, sham: 13.6 ± 2.8, KOA: 24.5 ± 2.1, KOA+LR8: 12.8 ± 0.9, KOA+Ex-LE2: 17.0 ± 1.2). Histologically, KOA rats showed severe cartilage degradation and osteophyte formation, while EA at ST36-Ex-LE2 significantly reduced these changes (control: 0.2 ± 0.1, sham: 0.4 ± 0.2, KOA: 1.8 ± 0.4, KOA+LR8: 1.0 ± 0.2, KOA+Ex-LE2: 0.5 ± 0.2). The ST36-LR8 group also showed improvements, although less pronounced than the ST36-Ex-LE2 group. Western blotting revealed that DMM-induced ADAMTS5 expression was significantly inhibited by EA at ST36-Ex-LE2 but not at ST36-LR8 (control: 1.0 ± 0, sham: 1.2 ± 0.4, KOA: 3.0 ± 0.3, KOA+LR8: 2.1 ± 0.3, KOA+Ex-LE2: 1.4 ± 0.4). Conclusion EA at ST36-Ex-LE2 showed a remarkable protective effect on articular cartilage by inhibiting ADAMTS5 expression from synovium, suggesting that it can break the vicious cycle of synovitis and cartilage destruction. In contrast, EA at ST36-LR8 had a moderate effect on cartilage degeneration and ADAMTS5 expression. The difference in efficacy may be due to the anatomical differences between acupoints. ST36-Ex-LE2 coincides with an area rich in synovial fibroblasts and mast cells involved in inflammation and pain. This highlights the importance of acupoint selection to maximize the therapeutic effect of EA. The specificity of this acupoint combination provides a potential strategy for managing KOA and slowing the progression of the disease. Further studies are needed to elucidate the detailed mechanisms behind the effects of EA and explore its potential as an alternative or complementary treatment for KOA.
Collapse
Affiliation(s)
| | - Hideshi Ikemoto
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Takayuki Okumo
- Department of Orthopedic Surgery, Showa University Fujigaoka Hospital, Yokohama, JPN
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Naoki Adachi
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Tadashi Hisamitsu
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| | - Masataka Sunagawa
- Department of Physiology, Showa University Graduate School of Medicine, Tokyo, JPN
| |
Collapse
|
26
|
Sun L, Gang X, Li F, Guo W, Cui M, Wang G. Effects of Growth Hormone on Osteoarthritis Development. Horm Metab Res 2024; 56:761-769. [PMID: 39510098 DOI: 10.1055/a-2411-9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Osteoarthritis (OA), a chronic joint disease characterized by primary or secondary degeneration of articular cartilage and bone dysplasia, is associated with various risk factors and is the leading cause of musculoskeletal pain and disability, severely impacting the quality of life. Growth hormone (GH), secreted by the anterior pituitary gland, is essential in mediating the growth and development of bone and cartilage. Reportedly, osteoarthritis increases, and the growth hormone decreases with age. A negative correlation between GH and OA suggests that GH may be related to the occurrence and development of OA. Considering that abnormal growth hormone levels can lead to many diseases related to bone growth, we focus on the relationship between GH and OA. In this review, we will explain the effects of GH on the growth and deficiency of bone and cartilage based on the local pathological changes of osteoarthritis. In addition, the potential feasibility of treating OA with GH will be further explored and summarized.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Fei Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mengzhao Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Zou X, Xu H, Qian W. The role and current research status of resveratrol in the treatment of osteoarthritis and its mechanisms: a narrative review. Drug Metab Rev 2024; 56:399-412. [PMID: 39376171 DOI: 10.1080/03602532.2024.2402751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease caused by various factors such as aging, obesity, trauma, and genetics. It is a challenging condition faced by orthopedic doctors in clinical practice and places a heavy burden on patients and their families. Currently, the treatment of OA primarily focuses on symptomatic relief and lacks ideal therapeutic methods. Resveratrol is a natural polyphenolic compound with anti-inflammatory and antioxidant properties, and in recent years, it has gained attention as a candidate drug for OA treatment. This article provides an overview of the research status on the role and mechanisms of resveratrol in treating OA. It has been found that resveratrol can prevent the development of OA by inhibiting inflammatory responses, protecting chondrocytes, maintaining cartilage homeostasis, promoting autophagy, and has shown certain therapeutic effects. This process may be related to the regulation of signaling pathways such as nuclear factor-kappa B (NF-κB), Toll-like receptor 4 (TLR4), and silent information regulator 1 (SIRT1). We summarize the current molecular mechanisms of resveratrol in treating OA, hoping to provide a reference for further research and application of resveratrol in OA treatment.
Collapse
Affiliation(s)
- Xiongfei Zou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hongjun Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenwei Qian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
28
|
Ye X, Li X, Qiu J, Kuang Y, Hua B, Liu X. Alpha-ketoglutarate ameliorates age-related and surgery induced temporomandibular joint osteoarthritis via regulating IKK/NF-κB signaling. Aging Cell 2024; 23:e14269. [PMID: 38992995 PMCID: PMC11561675 DOI: 10.1111/acel.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Recent studies have shed light on the important role of aging in the pathogenesis of joint degenerative diseases and the anti-aging effect of alpha-ketoglutarate (αKG). However, whether αKG has any effect on temporomandibular joint osteoarthritis (TMJOA) is unknown. Here, we demonstrate that αKG administration improves condylar cartilage health of middle-aged/aged mice, and ameliorates pathological changes in a rat model of partial discectomy (PDE) induced TMJOA. In vitro, αKG reverses IL-1β-induced/H2O2-induced decrease of chondrogenic markers (Col2, Acan and Sox9), and inhibited IL-1β-induced/ H2O2-induced elevation of cartilage catabolic markers (ADAMTS5 and MMP13) in condylar chondrocytes. In addition, αKG downregulates senescence-associated (SA) hallmarks of aged chondrocytes, including the mRNA/protein level of SA genes (p16 and p53), markers of nuclear disorders (Lamin A/C) and SA-β-gal activities. Mechanically, αKG decreases the expressions of p-IKK and p-NF-κB, protecting TMJ from inflammation and senescence-related damage by regulating the NF-κB signaling. Collectively, our findings illuminate that αKG can ameliorate age-related TMJOA and PDE-induced TMJOA, maintain the homeostasis of cartilage matrix, and exert anti-aging effects in chondrocytes, with a promising therapeutic potential in TMJOA, especially age-related TMJOA.
Collapse
Affiliation(s)
- Xiaoping Ye
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Xinping Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Jin Qiu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Yiwen Kuang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Bingqiang Hua
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| | - Xianwen Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouChina
| |
Collapse
|
29
|
Arciero I, Buonvino S, Melino S. Slow H 2S-Releasing Donors and 3D Printable Arrays Cellular Models in Osteo-Differentiation of Mesenchymal Stem Cells for Personalized Therapies. Biomolecules 2024; 14:1380. [PMID: 39595557 PMCID: PMC11592188 DOI: 10.3390/biom14111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
The effects of the hydrogen sulfide (H2S) slow-releasing donor, named GSGa, a glutathione-conjugate water-soluble garlic extract, on human mesenchymal stem cells (hMSCs) in both bidimensional (2D) and three-dimensional (3D) cultures were investigated, demonstrating increased expression of the antioxidant enzyme HO-1 and decreased expression of the pro-inflammatory cytokine interleukin-6 (IL-6). The administration of the H2S donor can therefore increase the expression of antioxidant enzymes, which may have potential therapeutic applications in osteoarthritis (OA). Moreover, GSGa was able to promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), but not of cardiac mesenchymal stem cells (cMSCs) in a 2D culture system. This result highlights the varying sensitivity of hMSCs to the H2S donor GSGa, suggesting that the induction of osteogenic differentiation in stem cells by chemical factors is dependent on the tissue of origin. Additionally, a 3D-printable mesenchymal stem cells-bone matrix array (MSCBM), designed to closely mimic the stiffness of bone tissue, was developed to serve as a versatile tool for evaluating the effects of drugs and stem cells on bone repair in chronic diseases, such as OA. We demonstrated that the osteogenic differentiation process in cMSCs can be induced just by simulating bone stiffness in a 3D system. The expression of osteocalcin, RUNX2, and antioxidant enzymes was also assessed after treating MSCs with GSGa and/or increasing the stiffness of the culture environment. The printability of the array may enable better customization of the cavities, enabling an accurate replication of real bone defects. This could optimize the BM array to mimic bone defects not only in terms of stiffness, but also in terms of shape. This culture system may enable a rapid screening of antioxidant and anti-inflammatory compounds, facilitating a more personalized approach to regenerative therapy.
Collapse
Affiliation(s)
- Ilaria Arciero
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Silvia Buonvino
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Sonia Melino
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
30
|
Maouche A, Boumediene K, Baugé C. Bioactive Compounds in Osteoarthritis: Molecular Mechanisms and Therapeutic Roles. Int J Mol Sci 2024; 25:11656. [PMID: 39519204 PMCID: PMC11546619 DOI: 10.3390/ijms252111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is the most common and debilitating form of arthritis. Current therapies focus on pain relief and efforts to slow disease progression through a combination of drug and non-drug treatments. Bioactive compounds derived from plants show significant promise due to their anti-inflammatory, antioxidant, and tissue-protective properties. These natural compounds can help regulate the inflammatory processes and metabolic pathways involved in OA, thereby alleviating symptoms and potentially slowing disease progression. Investigating the efficacy of these natural agents in treating osteoarthritis addresses a growing demand for natural health solutions and creates new opportunities for managing this increasingly prevalent age-related condition. The aim of this review is to provide an overview of the use of some bioactive compounds from plants in modulating the progression of osteoarthritis and alleviating associated pain.
Collapse
Affiliation(s)
| | | | - Catherine Baugé
- UR7451 BIOCONNECT, Université de Caen Normandie, 14032 Caen, France; (A.M.); (K.B.)
| |
Collapse
|
31
|
Jiang P, Zhou X, Yang Y, Bai L. Pectolinarigenin targeting FGFR3 alleviates osteoarthritis progression by regulating the NF-κB/NLRP3 inflammasome pyroptotic pathway. Int Immunopharmacol 2024; 140:112741. [PMID: 39094365 DOI: 10.1016/j.intimp.2024.112741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a chronic degenerative disease characterized by cartilage degeneration, involving inflammation, pyroptosis, and degeneration of the extracellular matrix (ECM). Pectolinarigenin (PEC) is a natural flavonoid with antioxidant, anti-inflammatory and anti-tumor properties. This study aims to explore the potential of PEC in ameliorating OA progression and its underlying mechanisms. METHODS Chondrocytes were exposed to 10 ng/mL IL-1β to simulate OA-like changes. The effect of PEC on IL-1β-treated chondrocytes was assessed using ELISA, western blot, and immunofluorescence. The mRNA sequencing (mRNA-seq) was employed to explore the possible targets of PEC in delaying OA progression. The OA mouse model was induced through anterior cruciate ligament transection (ACLT) and divided into sham, ACLT, ACLT+5 mg/kg PEC, and ACLT+10 mg/kg PEC groups. Micro-computed tomography and histological analysis were conducted to confirm the beneficial effects of PEC on OA in vivo. RESULTS PEC mitigated chondrocyte pyroptosis, as evidenced by reduced levels of pyroptosis-related proteins. Additionally, PEC attenuated IL-1β-mediated chondrocyte ECM degradation and inflammation. Mechanistically, mRNA-seq showed that FGFR3 was a downstream target of PEC. FGFR3 silencing reversed the beneficial effects of PEC on IL-1β-exposed chondrocytes. PEC exerted anti-pyroptotic, anti-ECM degradative, and anti-inflammatory effects through upregulating FGFR3 to inhibit the NF-κB/NLRP3 pyroptosis-related pathway. Consistently, in vivo experiments demonstrated the chondroprotective effects of PEC in OA mice. CONCLUSION PEC alleviate OA progression by FGFR3/NF-κB/NLRP3 pathway mediated chondrocyte pyroptosis, ECM degradation and inflammation, suggesting the potential of PEC as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaonan Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
32
|
He F, Wu H, He B, Han Z, Chen J, Huang L. Antioxidant hydrogels for the treatment of osteoarthritis: mechanisms and recent advances. Front Pharmacol 2024; 15:1488036. [PMID: 39525636 PMCID: PMC11543442 DOI: 10.3389/fphar.2024.1488036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Articular cartilage has limited self-healing ability, resulting in injuries often evolving into osteoarthritis (OA), which poses a significant challenge in the medical field. Although some treatments exist to reduce pain and damage, there is a lack of effective means to promote cartilage regeneration. Reactive Oxygen Species (ROS) have been found to increase significantly in the OA micro-environment. They play a key role in biological systems by participating in cell signaling and maintaining cellular homeostasis. Abnormal ROS expression, caused by internal and external stimuli and tissue damage, leads to elevated levels of oxidative stress, inflammatory responses, cell damage, and impaired tissue repair. To prevent excessive ROS accumulation at injury sites, biological materials can be engineered to respond to the damaged microenvironment, release active components in an orderly manner, regulate ROS levels, reduce oxidative stress, and promote tissue regeneration. Hydrogels have garnered significant attention due to their excellent biocompatibility, tunable physicochemical properties, and drug delivery capabilities. Numerous antioxidant hydrogels have been developed and proven effective in alleviating oxidative stress. This paper discusses a comprehensive treatment strategy that combines antioxidant hydrogels with existing treatments for OA and explores the potential applications of antioxidant hydrogels in cartilage tissue engineering.
Collapse
Affiliation(s)
- Feng He
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Bin He
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Zun Han
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Jiayi Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Lei Huang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
33
|
Liang J, Hu J, Hong X, Zhou M, Xia G, Hu L, Luo S, Quan K, Yan J, Wang S, Fan S. Amentoflavone maintaining extracellular matrix homeostasis and inhibiting subchondral bone loss in osteoarthritis by inhibiting ERK, JNK and NF-κB signaling pathways. J Orthop Surg Res 2024; 19:662. [PMID: 39407273 PMCID: PMC11481797 DOI: 10.1186/s13018-024-05075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Amentoflavone (AF), a plant biflavone isolated from Selaginella sinensis ethanol extract, is characterized by anti-inflammatory and anti-oxidant properties. According to previous studies, inflammation and oxidative stress are closely related to the pathophysiology of osteoarthritis (OA). However, the effects and mechanisms of AF on OA have not been elucidated.To investigate the inhibitory effects and its molecular mechanism of AF on extracellular matrix (ECM) degradation stimulated by IL-1β as well as subchondral bone loss induced by RANKL in mice chondrocytes. Quantitative PCR was used to detect the mRNA expression of genes related to inflammation, ECM, and osteoclast differentiation. Protein expression level of iNOS, COX-2, MMP13, ADAMTS5, COL2A1, SOX9, NFATc1, c-fos, JNK, ERK, P65, IκBα was measured by western blotting. The levels of TNF-α and IL-6 in the supernatants were measured by ELISA. The amount of ECM in chondrocytes was measured using toluidine blue staining. The levels of Aggrecan and Col2a1 in chondrocytes were measured using immunofluorescence. Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and immunofluorescence were used to detect the effect of AF on osteoclast differentiation and bone resorption. The effect of AF on destabilization of the medial meniscus (DMM)-induced OA mice can be detected in hematoxylin-eosin (H&E) staining, Safranin O green staining and immunohistochemistry.AF might drastically attenuated IL-1β-stimulated inflammation and reduction of ECM formation by blocking ERK and NF-κB signaling pathways in chondrocytes. Meanwhile, AF suppressed the formation of osteoclasts and the resorption of bone function induced by RANKL. In vivo, AF played a protective role by stabilizing cartilage ECM and inhibiting subchondral bone loss in destabilization of the medial meniscus (DMM)-induced OA mice, further proving its protective effect in the development of OA. Our study show that AF alleviated OA by suppressing ERK, JNK and NF-κB signaling pathways in OA models in vitro and DMM-induced OA mice, suggesting that AF might be a potential therapeutic agent in the treatment of OA.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Jiawei Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Ming Zhou
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Guoming Xia
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Liangshen Hu
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Song Luo
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Kun Quan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Jianbin Yan
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China.
| | - Shaoyong Fan
- Department of Orthopedics, Nanchang Hongdu Hospital of TCM, Nanchang, China.
| |
Collapse
|
34
|
Sim YE, Kim CL, Kim DH, Hong JA, Lee IJ, Kwak JY, Kang LJ, Mo JS. Rosmarinic acid promotes cartilage regeneration through Sox9 induction via NF-κB pathway inhibition in mouse osteoarthritis progression. Heliyon 2024; 10:e38936. [PMID: 39444399 PMCID: PMC11497390 DOI: 10.1016/j.heliyon.2024.e38936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Background The natural polyphenolic compound known as Rosmarinic acid (RosA) can be found in various plants. Although its potential health benefits have been extensively studied, its effect on osteoarthritis (OA) progression and cartilage regeneration function still needs to be fully elucidated in OA animal models. This study elucidated the effect of RosA on OA progression and cartilage regeneration. Methods In vitro assessments were conducted using RT-PCR, qRT-PCR, Western blotting, and ELISA to measure the effects of RosA. The molecular mechanisms of RosA were determined by analyzing the translocation of p65 into the nucleus using immunocytochemistry (ICC). Histological analysis of cartilage explant was performed using alcian blue staining and immunohistochemistry (IHC). For in vivo analysis, the destabilization of the medial meniscus (DMM)-induced OA mouse model was utilized to evaluate cartilage destruction through Safranin-O staining. The expression of catabolic and anabolic factors in mice knee joints was quantified by immunohistochemistry. Results The expression of catabolic factors in chondrocytes was significantly impeded by RosA. It also suppressed the NF-κB signaling pathway by decreasing phosphorylation of p65 and reducing degradation of IκB protein. In ex vivo experiments, RosA protected sulfated proteoglycan erosion triggered by IL-1β and suppressed the catabolic factors in cartilage explant. RosA treatment in animal models resulted in preventing cartilage destruction and reducing catabolic factors in the cartilage. RosA was also found to promote the expression of Sox9, Col2a1, and Acan in vitro, ex vivo, and in vivo analyses. Conclusions RosA attenuated the OA progression by suppressing the catabolic factors expression. These effects were facilitated through the suppression of the NF-κB signaling pathway. Additionally, it promotes cartilage regeneration by inducing anabolic factors. Therefore, RosA shows potential as an effective therapeutic agent for treating OA.
Collapse
Affiliation(s)
- Ye Eun Sim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Cho-Long Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Ji-Ae Hong
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, 59338, South Korea
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
| | - Jong-Young Kwak
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Li-Jung Kang
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jung-Soon Mo
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| |
Collapse
|
35
|
Fu L, Wu J, Shi S, Zhang Z, Zheng Y, Li P, Yuan X, Ding Z, Ning C, Sui X, Liu S, Guo Q, Lin Y. A tetrahedral framework nucleic acids-based gene therapeutic nanococktail alleviates cartilage damage and protects against osteoarthritis progression. CHEMICAL ENGINEERING JOURNAL 2024; 498:155189. [DOI: 10.1016/j.cej.2024.155189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Niessink T, Stassen RHMJ, Kischkel B, Vuscan P, Emans PJ, van den Akker GGH, Janssen M, Joosten LAB, Otto C, Welting TJM, Jansen TL. Discovery of calcite as a new pro-inflammatory calcium-containing crystal in human osteoarthritic synovial fluid. Osteoarthritis Cartilage 2024; 32:1261-1272. [PMID: 38806070 DOI: 10.1016/j.joca.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE We aimed to characterize calcium-containing crystals present in synovial fluid from patients with knee osteoarthritis (OA) using Raman spectroscopy, and specifically investigate the biological effects of calcite crystals. DESIGN Thirty-two synovial fluid samples were collected pre-operatively from knee OA patients undergoing total joint arthroplasty. An integrated Raman polarized light microscope was used for identification of crystals in synovial fluid. Human peripheral blood mononuclear cells (PBMC's), human OA articular chondrocytes (HACs) and fibroblast-like synoviocytes (FLSs) were exposed to calcite crystals. Expression of relevant cytokines and inflammatory genes were measured using enzyme-linked immuno sorbent assay (ELISA) and real-time polymerase chain reaction (PCR). RESULTS Various calcium-containing crystals were identified, including calcium pyrophosphate (37.5 %) and basic calcium phosphate (21.8 %), but they were never found simultaneously in the same OA synovial fluid sample. For the first time, we discovered the presence of calcite crystals in 93.8 % of the samples, while dolomite was detected in 25 % of the cases. Characterization of the cellular response to calcite crystal exposure revealed increased production of innate immune-derived cytokines by PBMC's, when co-stimulated with lipopolysaccharide (LPS). Additionally, calcite crystal stimulation of HACs and FLSs resulted in enhanced secretion of pro-inflammatory molecules and alterations in the expression of extracellular matrix remodeling enzymes. CONCLUSIONS This study highlights the unique role of Raman spectroscopy in OA crystal research and identified calcite as a novel pro-inflammatory crystal type in OA synovial fluid. Understanding the role of specific crystal species in the OA joint may open new avenues for pharmacological interventions and personalized approaches to treating OA.
Collapse
Affiliation(s)
- Tom Niessink
- Department of Rheumatology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL Venlo, the Netherlands; Personalized Therapeutics and Diagnostics, Department of Bioengineering Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
| | - Roderick H M J Stassen
- Department of Experimental Orthopaedics, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine, Radboud University Medical Centre, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, the Netherlands
| | - Patricia Vuscan
- Department of Internal Medicine, Radboud University Medical Centre, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, the Netherlands
| | - Peter J Emans
- Department of Experimental Orthopaedics, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Guus G H van den Akker
- Department of Experimental Orthopaedics, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL Venlo, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Centre, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Str. Pasteur, Nr. 6, 400012 Cluj-Napoca, Romania
| | - Cees Otto
- Personalized Therapeutics and Diagnostics, Department of Bioengineering Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Tim J M Welting
- Department of Experimental Orthopaedics, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Tim L Jansen
- Department of Rheumatology, VieCuri Medical Centre, Tegelseweg 210, 5912 BL Venlo, the Netherlands
| |
Collapse
|
37
|
Sarkar A, Saquib M, Chakraborty D, Mann S, Malik S, Agnihotri P, Joshi L, Malhotra R, Biswas S. Clo-miR-14: a medicinally valued spice-derived miRNA with therapeutic implications in rheumatoid arthritis. Biosci Rep 2024; 44:BSR20240311. [PMID: 39193714 PMCID: PMC11392912 DOI: 10.1042/bsr20240311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Plant microRNAs (miRNA) are regularly consumed orally along with diet, gaining attention for their RNA-based drug potential because of their ability to regulate mammalian gene expression specifically at the post-transcriptional level. Medicinally valued plants are well known for their anti-inflammatory property; however, the contribution of their miRNA in managing inflammation has been less studied. We investigated miRNA from four medicinally valued regularly consumed spices, and validated one of the most potential miRNA 'Clo-miR-14' for its thermal stability, and absorption in the plasma samples of RA patient's by RT-PCR. In vitro and in vivo studies were performed to investigate the effect of Clo-miR-14 in ameliorating rheumatoid arthritis (RA) like symptoms. Our results suggest that 'Clo-miR-14,' an exogenous miRNA present in Curcuma longa, absorbed through regular diet, has robust thermal stability at 100°C in humans. It significantly reduced pro-inflammatory cytokines (TNF, IL-1β, IL-6) and RA-like symptoms, suggesting that plant-based miRNA could be a promising candidate as an RNA-based drug for RA pathogenesis.
Collapse
Affiliation(s)
- Ashish Sarkar
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mohd Saquib
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debolina Chakraborty
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sonia Mann
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
| | - Swati Malik
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Lovely Joshi
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rajesh Malhotra
- All India Institute of Medical Science (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
38
|
Ma Y, Pang Y, Cao R, Zheng Z, Zheng K, Tian Y, Peng X, Liu D, Du D, Du L, Zhong Z, Yao L, Zhang C, Gao J. Targeting Parkin-regulated metabolomic change in cartilage in the treatment of osteoarthritis. iScience 2024; 27:110597. [PMID: 39220257 PMCID: PMC11363567 DOI: 10.1016/j.isci.2024.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Articular cartilage degeneration may lead to osteoarthritis (OA) during the aging process, but its underlying mechanism remains unknown. Here, we found that chondrocytes exhibited an energy metabolism shift from glycolysis to oxidative phosphorylation (OXPHOS) during aging. Parkin regulates various cellular metabolic processes. Reprogrammed cartilage metabolism by Parkin ablation decreased OXPHOS and increased glycolysis, with ameliorated aging-related OA. Metabolomics analysis indicated that lauroyl-L-carnitine (LLC) was decreased in aged cartilage, but increased in Parkin-deficient cartilage. In vitro, LLC improved the cartilage matrix synthesis of aged chondrocytes. In vivo, intra-articular injection of LLC in mice with anterior cruciate ligament transaction (ACLT) ameliorated OA progression. These results suggest that metabolic changes are regulated by Parkin-impaired cartilage during aging, and targeting this metabolomic changes by supplementation with LLC is a promising treatment strategy for ameliorating OA.
Collapse
Affiliation(s)
- Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ruomu Cao
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi 710004, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kaiwen Zheng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaoyuan Peng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dajiang Du
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lin Du
- Orthopedics Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Sports Medicine Institute, Shantou University Medical College, Shantou 515041, China
| | - Zhigang Zhong
- Orthopedics Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Sports Medicine Institute, Shantou University Medical College, Shantou 515041, China
| | - Lufeng Yao
- Department of Orthopaedic Surgery, Ningbo No.6 Hospital, No.1059 East Zhongshan Road, Yinzhou District, Ningbo, Zhejiang 315040, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
39
|
Wang L, Shao T, Liu C, Han Z, Zhang S, Dong Y, Han T, Cheng B, Ren W. Liensinine inhibits IL-1β-stimulated inflammatory response in chondrocytes and attenuates papain-induced osteoarthritis in rats. Int Immunopharmacol 2024; 138:112601. [PMID: 38971106 DOI: 10.1016/j.intimp.2024.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a joint disease caused by inflammation of cartilage and synovial tissue. Suppressing the process of inflammatory reaction and the generation of oxidative stress is an effective strategy to alleviate the progression of OA. Liensinine is one of the main components of lotus seeds, which has anti-hypertensive and anti-arrhythmia activities. In this study, we aimed to determine the anti-inflammatory effect of liensinine in an OA. Here, we found that liensinine significantly inhibited the inflammatory response of SW1353 cells and primary chondrocytes by inhibiting the release of inflammatory cytokines and oxidative stress. Moreover, we showed that liensinine was able to inhibit the activation of the NF-κB signaling pathway in IL-1β-induced SW1353 cells. Lastly, we found that liensinine significantly ameliorated cartilage damage and inflammatory response in papain-induced rats. Our study demonstrated a significant protective effect of liensinine against OA, which might be by inhibiting the activation of the NF-κB signaling pathway, and provide a new insight for the treatment of OA using liensinine.
Collapse
Affiliation(s)
- Lei Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China; Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tianci Shao
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Chen Liu
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Ziyu Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shenghui Zhang
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yuqian Dong
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Binfeng Cheng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
40
|
Seo JH, Kim WK, Kang KW, Lee S, Kang BJ. Anti-inflammatory effects of polydeoxyribonucleotide and adipose tissue-derived mesenchymal stem cells in a canine cell model of osteoarthritis. J Vet Sci 2024; 25:e68. [PMID: 39363656 PMCID: PMC11450397 DOI: 10.4142/jvs.24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024] Open
Abstract
IMPORTANCE A relatively new therapeutic agent for osteoarthritis (OA), polydeoxyribonucleotide (PDRN), shows potential in treating human OA due to its regenerative and anti-inflammatory effects. However, studies on PDRN for canine OA are limited, and no study has investigated their use with mesenchymal stem cells (MSCs) conventionally used for OA treatment. OBJECTIVE This study aimed to evaluate the potential of PDRN and explore its combined effect with adipose tissue-derived MSCs (AdMSCs) in treating canine OA. METHODS To study the impact of PDRN, canine chondrocytes, synoviocytes, and AdMSCs were exposed to various PDRN concentrations, and viability was assessed using cell counting kit-8. The OA model was created by treating chondrocytes and synoviocytes with lipopolysaccharide, followed by treatment under three different conditions: PDRN alone, AdMSCs alone, and a combination of PDRN and AdMSCs. Using real-time quantitative polymerase chain reaction, the anti-inflammatory effects and mechanisms were investigated by quantitatively assessing pro-inflammatory cytokines, collagen degradation markers, adenosine A2a receptor (ADORA2A), and nuclear factor-kappa B. RESULTS PDRN alone and combined with AdMSCs significantly reduced the expression of pro-inflammatory cytokines and collagen degradation markers in an OA model. PDRN promoted AdMSC proliferation and upregulated ADORA2A expression. AdMSCs exhibited comprehensive anti-inflammatory effects through paracrine effects, and both substances reduced inflammatory gene expression through different mechanisms, potentially enhancing therapeutic effects. CONCLUSIONS AND RELEVANCE The results indicate that PDRN is a safe and effective anti-inflammatory material that can be used independently or as an adjuvant for AdMSCs. Although additional research is necessary, this study is significant because it provides a foundation for future research at the cellular level.
Collapse
Affiliation(s)
- Ju-Hui Seo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul 08826, Korea
| | - Kyu-Won Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Seoyun Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul 08826, Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
41
|
Zhao Q, Li Z, Liu Z, Zhao X, Fan Y, Dong P, Hou H. Preparation, typical structural characteristics and relieving effects on osteoarthritis of squid cartilage type II collagen peptides. Food Res Int 2024; 191:114697. [PMID: 39059951 DOI: 10.1016/j.foodres.2024.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
The promoting effects of collagen and its derivatives on bone health have been uncovered. However, the structure and effects of type II collagen peptides from squid cartilage (SCIIP) on osteoarthritis still need to be clarified. In this study, SCIIP was prepared from squid throat cartilage with pretreatment by 0.2 mol/L NaOH at a liquid-solid ratio of 10:1 for 18 h and hydrolyzation using alkaline protease and flavourzyme at 50 °C for 4 h. The structure of SCIIP was characterized as a molecular weight lower than 5 kDa (accounting for 87.7 %), a high glycine level of 35.0 %, typical FTIR and CD features of collagen peptides, and a repetitive sequence of Gly-X-Y. GP(Hyp)GPD and GPAGP(Hyp)GD were separated and identified from SCIIP, and their binding energies with TLR4/MD-2 were - 8.4 and - 8.0 kcal/mol, respectively. SCIIP effectively inhibited NO production in RAW264.7 macrophages and alleviated osteoarthritis in rats through the TLR4/NF-κB pathway. Therefore, SCIIP exhibited the potential for application as an anti-osteoarthritis supplement.
Collapse
Affiliation(s)
- Qianqian Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Zhaoxia Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Zeyu Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Xue Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Ping Dong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province, 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province, 266000, PR China.
| |
Collapse
|
42
|
Liu W, Li Q, Fang W, Cai L, Wang Z, Kou B, Zhou C, Zhou Y, Yao Z, Wei M, Zhang S. A 2AR regulate inflammation through PKA/NF-κB signaling pathways in intervertebral disc degeneration. Eur J Med Res 2024; 29:433. [PMID: 39192377 DOI: 10.1186/s40001-024-02028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Reduction of inflammatory damage and inhibition of nucleus pulposus (NP) apoptosis are considered to be the main effective therapy idea to reverse the intervertebral disc degeneration (IDD) and alleviate the chronic low back pain. The adenosine A2A receptor (A2AR), as a member of G protein-coupled receptor families, plays an important role in the anti-inflammation and relieving pain. So far, the impact of A2AR on IDD therapy is unclear. The aim of this study was to explore the role of Adenosine A2A receptor (A2AR) in the intervertebral disc degeneration (IDD) and clarify potential mechanism. MATERIALS AND METHODS IL-1β and acupuncture was used to establish IDD model rats. A2AR agonist CGS-21680 and A2AR antagonist SCH442416 were used to investigate the therapeutical effects for IDD. Histological examination, western blotting analysis and RT-PCR were employed to evaluate the the association between A2AR and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway. RESULTS A2AR activity of the intervertebral disc tissues was up-regulated in feedback way, and cAMP, PKA and CREB expression were also increased. But in general, IL-1β-induced IDD promoted the significant up-regulation the expression of inflammatory factors. The nucleus pulposus (NP) inflammation was exacerbated in result of MMP3 and Col-II decline through activating NF-κB signaling pathway. A2AR agonist CGS-21680 exhibited a disc protective effect through significantly increasing A2AR activity, then further activated cAMP/PKA signaling pathway with attenuating the release of TNF-α and IL-6 via down-regulating NF-κB. In contrast, SCH442416 inhibited A2AR activation, consistent with lower expression levels of cAMP and PKA, further leading to the acceleration of IDD. CONCLUSIONS The activation of A2AR can prevent inflammatory responses and mitigates degradation of IDD thus suggest a potential novel therapeutic strategy of IDD.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China.
| | - Qingbo Li
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Weizhi Fang
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Lei Cai
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Zhengkun Wang
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Bowen Kou
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Chuankun Zhou
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Yichi Zhou
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Zhi Yao
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Mengcheng Wei
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Shishuang Zhang
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| |
Collapse
|
43
|
Bashir U, Singh G, Bhatia A. Rheumatoid arthritis-recent advances in pathogenesis and the anti-inflammatory effect of plant-derived COX inhibitors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5363-5385. [PMID: 38358467 DOI: 10.1007/s00210-024-02982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The majority of people with autoimmune disorders, including those with rheumatoid arthritis, osteoarthritis, and tendonitis report pain, stiffness, and inflammation as major contributors to their worse quality of life in terms of overall health. Of all the available treatment options, COX inhibitors are the ones that are utilized most frequently to ease the symptoms. Various signaling cascades have been reported to be involved in the pathogenesis of rheumatoid arthritis which includes JAK/STAT, MAPK, and NF-kB signaling pathways, and several allopathic inhibitors (tofacitinib and baricitinib) have been reported to target the components of these cascades and have received approval for RA treatment. However, the prolonged use of these COX inhibitors and other allopathic drugs can pose serious health challenges due to their significant side effects. Therefore, searching for a more effective and side effect-free treatment for rheumatoid arthritis has unveiled phytochemicals as both productive and promising. Their therapeutic ability helps develop potent and safe drugs targeting immune-inflammatory diseases including RA. Various scientific databases were used for searching articles such as NCBI, SpringerLink, BioMed Central, ResearchGate, Google Scholar, Scopus, Nature, Wiley Online Library, and ScienceDirect. This review lists various phytochemicals and discusses their potential molecular targets in RA treatment, as demonstrated by various in vitro, in vivo (pre-clinical), and clinical studies. Several pre-clinical and clinical studies suggest that various phytochemicals can be an alternative promising intervention for attenuating and managing inflammation-associated pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ubaid Bashir
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gurjant Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
44
|
Kuang S, Liu Z, Liu L, Fu X, Sheng W, Hu Z, Lin C, He Q, Chen J, Gao S. Polygonatum sibiricum polysaccharides protect against knee osteoarthritis by inhibiting the TLR2/NF-κB signaling pathway in vivo and in vitro. Int J Biol Macromol 2024; 274:133137. [PMID: 38901508 DOI: 10.1016/j.ijbiomac.2024.133137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Polygonatum sibiricum polysaccharides (PSP), the primary constituent of Polygonatum sibiricum, have been shown to exhibit a wide range of pharmacological effects, but their impact on osteoarthritis (OA) remains unclear. The objective of this study was to investigate the protective effects of PSP against OA and to elucidate its underlying molecular mechanism. In our in vitro experiments, PSP not only inhibited the IL-1β-induced inflammatory responses and the nuclear factor kappa-B (NF-κB) signaling pathway in chondrocytes but also regulated the cartilage matrix metabolism. In addition, we detected 394 significantly differentially expressed genes through RNA-seq analysis on PSP-intervened chondrocytes, and the toll-like receptor 2 (TLR2) was identified as the most important feature by functional network analysis and qRT-PCR. It was also revealed that PSP treatment significantly reversed the IL-1-induced up-regulation of TLR2 expression in chondrocytes, while TLR2 overexpression partially inhibited the regulatory effects of PSP on inflammation, NF-κB signaling pathway and matrix metabolism. In our in vivo experiments, PSP treatment alleviated the development of destabilization of medial meniscus (DMM)-induced OA in mouse knee joints, inhibited the DMM-induced activation of the TLR2/NF-κB signaling pathway in mouse knee joint cartilage, and reduced the serum levels of inflammatory cytokines. In conclusion, PSP exerts its anti-inflammatory, matrix synthesis-promoting and matrix catabolism-suppressing effects in knee OA by inhibiting the TLR2/NF-κB signaling pathway, suggesting that PSP may be potentially targeted as a novel all-natural, low-toxicity drug for OA prevention and treatment.
Collapse
Affiliation(s)
- Shida Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhewen Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xinying Fu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Zongren Hu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Chengxiong Lin
- Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China.
| | - Jisong Chen
- Hunan University of Medicine, Huaihua, Hunan 418000, China.
| | - Shuguang Gao
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
45
|
Shao Y, Chen Y, Lan X, Lu J, Tang G, Tang S, Zhai R, Chen C, Xiong X, Shi J. Morin Regulates M1/M2 Microglial Polarization via NF-κB p65 to Alleviate Vincristine-Induced Neuropathic Pain. Drug Des Devel Ther 2024; 18:3143-3156. [PMID: 39071815 PMCID: PMC11278053 DOI: 10.2147/dddt.s459757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
Background Morin can alleviate vincristine-induced neuropathic pain via inhibiting neuroinflammation. Microglial cells play an important role in initiating and maintenance of pain and neuroinflammation. It remains unclear whether morin exerts antinociceptive properties through the regulation of microglial cells. This study aimed to elucidate the mechanisms of morin against neuropathic pain focusing on microglial cells. Methods The thermal withdrawal latency and mechanical withdrawal threshold were used as measures of pain behaviours. Histological abnormalities of the sciatic nerve were observed with transmission electron microscopy. The sciatic functional index and the sciatic nerve conduction velocity were used as measures of the functional deficits of the sciatic nerve. Inflammatory factors were detected using ELISA. The expression of M1/M2 polarization markers of microglia and nuclear factor κB (NF-κB) p65 were measured by immunofluorescence, real-time quantitative PCR and Western blotting. Results Morin alleviated vincristine-induced abnormal pain, sciatic nerve injury, and neuroinflammatory response in rats. Furthermore, morin decreased the expression of NF-κB P65 and M1 activation markers, increased the expression of M2 activation markers. Additionally, phorbol 12-myristate 13-acetate reversed the effects of morin on microglial polarization, the production of inflammatory factors and neuropathic pain, while ammonium pyrrolidine dithiocarbamate showed the opposite effects. Conclusion Our results demonstrate that morin inhibits neuroinflammation to alleviate vincristine-induced neuropathic pain via inhibiting the NF-κB signalling pathway to regulate M1/M2 microglial polarization.
Collapse
Affiliation(s)
- Yi Shao
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Yunfu Chen
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Xin Lan
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Jun Lu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Guangling Tang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Sijie Tang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Ruixue Zhai
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Chao Chen
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Xinglong Xiong
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Jing Shi
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| |
Collapse
|
46
|
Saleh AS, Abdel-Gabbar M, Gabr H, Shams A, Tamur S, Mahdi EA, Ahmed OM. Ameliorative effects of undifferentiated and differentiated BM-MSCs in MIA-induced osteoarthritic Wistar rats: roles of NF-κB and MMPs signaling pathways. Am J Transl Res 2024; 16:2793-2813. [PMID: 39114694 PMCID: PMC11301505 DOI: 10.62347/fghv2647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/15/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is a degenerative joint condition that is persistent. OA affects millions of people throughout the world. Both people and society are heavily economically burdened by osteoarthritis. There is currently no medication that can structurally alter the OA processes or stop the disease from progressing. Stem cells have the potential to revolutionize medicine due to their capacity to differentiate into chondrocytes, capacity to heal tissues and organs including osteoarthritic joints, and immunomodulatory capabilities. Therefore, the goal of the current investigation was to determine how bone marrow-derived mesenchymal stem cells (BM-MSCs) and chondrogenic differentiated mesenchymal stem cells (CD-MSCs) affected the treatment of OA in rats with monosodium iodoacetate (MIA)-induced osteoarthritis. METHODS Male Wistar rats were injected three times with MIA (1 mg)/100 µL isotonic saline to induce osteoarthritis in the ankle joint of the right hind leg. Following the MIA injection, the osteoarthritic rats were given weekly treatments of 1 × 106 BM-MSCs and CD-MSCs into the tail vein for three weeks. RESULTS The obtained results showed that in osteoarthritic rats, BM-MSCs and CD-MSCs dramatically decreased ankle diameter measurements, decreased oxidized glutathione (GSSG) level, and boosted glutathione peroxidase (GPx) and glutathione reductase (GR) activities. Additionally, in rats with MIA-induced OA, BM-MSCs and CD-MSCs dramatically boosted interleukin-10 (IL-10) serum levels while considerably decreasing serum anticitrullinated protein antibodies (ACPA), tumour necrosis factor-α (TNF-α), and interleukin-17 (IL-17) levels as well as ankle transforming growth factor-β1 (TGF-β1) expression. Analysis of histology, immunohistochemistry, and western blots in osteoarthritic joints showed that cartilage breakdown and joint inflammation gradually decreased over time. CONCLUSIONS It is possible to conclude from these results that BM-MSCs and CD-MSCs have anti-arthritic potential in MIA-induced OA, which may be mediated via inhibitory effects on oxidative stress, MMPs and inflammation through suppressing the NF-κB pathway. In osteoarthritis, using CD-MSCs as a treatment is more beneficial therapeutically than using BM-MSCs.
Collapse
Affiliation(s)
- Ablaa S Saleh
- Department of Biochemistry, Faculty of Science, Beni-Suef UniversityBeni-Suef 62521, Egypt
| | - Mohammed Abdel-Gabbar
- Department of Biochemistry, Faculty of Science, Beni-Suef UniversityBeni-Suef 62521, Egypt
| | - Hala Gabr
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo UniversityCairo 11435, Egypt
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif UniversityTaif 26432, Saudi Arabia
- High Altitude Research Center, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shadi Tamur
- Department of Pediatric, College of Medicine, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| | - Emad A Mahdi
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef UniversityBeni-Suef 62521, Egypt
| | - Osama M Ahmed
- Division of Physiology, Department of Zoology, Faculty of Science, Beni-Suef UniversityBeni-Suef 62521, Egypt
| |
Collapse
|
47
|
Wang H, Zhao X, Wu Z. Mechanism of drug-pairs Astragalus Mongholicus-Largehead Atractylodes on treating knee osteoarthritis investigated by GEO gene chip with network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e38699. [PMID: 38968529 PMCID: PMC11224889 DOI: 10.1097/md.0000000000038699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Investigations into the therapeutic potential of Astragalus Mongholicus (AM, huáng qí) and Largehead Atractylodes (LA, bái zhú) reveal significant efficacy in mitigating the onset and progression of knee osteoarthritis (KOA), albeit with an elusive mechanistic understanding. This study delineates the primary bioactive constituents and their molecular targets within the AM-LA synergy by harnessing the comprehensive Traditional Chinese Medicine (TCM) network databases, including TCMSP, TCMID, and ETCM. Furthermore, an analysis of 3 gene expression datasets, sourced from the gene expression omnibus database, facilitated the identification of differential genes associated with KOA. Integrating these findings with data from 5 predominant databases yielded a refined list of KOA-associated targets, which were subsequently aligned with the gene signatures corresponding to AM and LA treatment. Through this alignment, specific molecular targets pertinent to the AM-LA therapeutic axis were elucidated. The construction of a protein-protein interaction network, leveraging the shared genetic markers between KOA pathology and AM-LA intervention, enabled the identification of pivotal molecular targets via the topological analysis facilitated by CytoNCA plugins. Subsequent GO and KEGG enrichment analyses fostered the development of a holistic herbal-ingredient-target network and a core target-signal pathway network. Molecular docking techniques were employed to validate the interaction between 5 central molecular targets and their corresponding active compounds within the AM-LA complex. Our findings suggest that the AM-LA combination modulates key biological processes, including cellular activity, reactive oxygen species modification, metabolic regulation, and the activation of systemic immunity. By either augmenting or attenuating crucial signaling pathways, such as MAPK, calcium, and PI3K/AKT pathways, the AM-LA dyad orchestrates a comprehensive regulatory effect on immune-inflammatory responses, cellular proliferation, differentiation, apoptosis, and antioxidant defenses, offering a novel therapeutic avenue for KOA management. This study, underpinned by gene expression omnibus gene chip analyses and network pharmacology, advances our understanding of the molecular underpinnings governing the inhibitory effects of AM and LA on KOA progression, laying the groundwork for future explorations into the active components and mechanistic pathways of TCM in KOA treatment.
Collapse
Affiliation(s)
- Hui Wang
- Jinan Third People’s Hospital, Affiliated Jinan Third People’s Hospital of Jining Medical University, Jining, Shandong, China
| | - Xinyou Zhao
- Yanzhou People’s Hospital, Jining Medical University, Jining, Shandong, China
| | - Zixuan Wu
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
48
|
Lou C, Fang Y, Mei Y, Hu W, Sun L, Jin C, Chen H, Zheng W. Cucurbitacin B attenuates osteoarthritis development by inhibiting NLRP3 inflammasome activation and pyroptosis through activating Nrf2/HO-1 pathway. Phytother Res 2024; 38:3352-3369. [PMID: 38642047 DOI: 10.1002/ptr.8209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024]
Abstract
Osteoarthritis (OA) is a complicated joint disorder characterized by inflammation that causes joint destruction. Cucurbitacin B (CuB) is a naturally occurring triterpenoid compound derived from plants in the Cucurbitaceae family. The aim of this study is to investigate the potential role and mechanisms of CuB in a mouse model of OA. This study identified the key targets and potential pathways of CuB through network pharmacology analysis. In vivo and in vitro studies confirmed the potential mechanisms of CuB in OA. Through network pharmacology, 54 potential targets for CuB in treating OA were identified. The therapeutic potential of CuB is associated with the nod-like receptor pyrin domain 3 (NLRP3) inflammasome and pyroptosis. Molecular docking results indicate a strong binding affinity of CuB to nuclear factor erythroid 2-related factor 2 (Nrf2) and p65. In vitro experiments demonstrate that CuB effectively inhibits the expression of pro-inflammatory factors induced by interleukin-1β (IL-1β), including cyclooxygenase-2, inducible nitric oxide synthase, IL-1β, and IL-18. CuB inhibits the degradation of type II collagen and aggrecan in the extracellular matrix (ECM), as well as the expression of matrix metalloproteinase-13 and a disintegrin and metalloproteinase with thrombospondin motifs-5. CuB protects cells by activating the Nrf2/hemeoxygenase-1 (HO-1) pathway and inhibiting nuclear factor-κB (NF-κB)/NLRP3 inflammasome-mediated pyroptosis. Moreover, in vivo experiments show that CuB can slow down cartilage degradation in an OA mouse model. CuB effectively prevents the progression of OA by inhibiting inflammation in chondrocytes and ECM degradation. This action is further mediated through the activation of the Nrf2/HO-1 pathway to inhibit NF-κB/NLRP3 inflammasome activation. Thus, CuB is a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yifan Mei
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Chen Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| |
Collapse
|
49
|
Zhang W, Wei C, Wang L. Identification of Key lncRNAs, circRNAs, and mRNAs in Osteoarthritis via Bioinformatics Analysis. Mol Biotechnol 2024; 66:1660-1672. [PMID: 37382793 DOI: 10.1007/s12033-023-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
Osteoarthritis (OA) is a common degenerative joint disorder that adversely affects the quality of life of patients. Identification of novel diagnostic biomarkers is pivotal for the early detection and prevention of OA. Dataset GSE185059 was selected from Gene Expression Omnibus database to obtain differentially expressed lncRNAs (DE-lncRNAs), mRNAs (DE-mRNAs), and circRNAs (DE-circRNAs) between OA and normal samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses as well as protein-protein interaction (PPI) network construction of DE-mRNAs were conducted. Hub genes were identified from PPI networks and validated by RT-qPCR. starBase database was utilized for predicting miRNAs binding with hub genes, selected DE-lncRNAs and DE-circRNAs, respectively. The competing endogenous RNA (ceRNA) networks were constructed. A total of 818 DE-mRNAs, 191 DE-lncRNAs, and 2053 DE-circRNAs were identified. The DE-mRNAs were significantly enriched in several inflammation-related GO terms and KEGG pathways such as positive regulation of cell-cell adhesion, TNF-alpha signaling pathway and NF-kappa B signaling pathway. Thirteen hub genes were identified, which were CFTR, GART, SMAD2, NCK1, TJP1, UBE2D1, EFTUD2, PRKACB, IL10, SNRPG, CHD4, RPS24, and SRSF6. OA-related DE-lncRNA/circRNA-miRNA-hub gene networks were constructed. We identified 13 hub genes and constructed the ceRNA networks related to OA, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Rheumatic Immunity, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, 046099, Shanxi, China
| | - Chun Wei
- Department of Rheumatic Immunity, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, 046099, Shanxi, China
| | - Ling Wang
- Department of Rheumatic Immunity, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, 046099, Shanxi, China.
| |
Collapse
|
50
|
Bihlet AR, Byrjalsen I, Andersen JR, Reynolds A, Larkins N, Alexandersen P, Rovsing H, Moots R, Conaghan PG. The efficacy and safety of a fixed-dose combination of apocynin and paeonol, APPA, in symptomatic knee OA: A double-blind, randomized, placebo-controlled, clinical trial. Osteoarthritis Cartilage 2024; 32:952-962. [PMID: 38697511 DOI: 10.1016/j.joca.2024.02.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Apocynin (AP) and paeonol (PA) are low molecular weight phenolic compounds with a broad array of anti-inflammatory and immunoregulatory effects. This study assessed of a fixed-dose combination of APPA in people with symptomatic knee osteoarthritis (OA). METHODS A multi-center, randomized, placebo-controlled, double-blind phase 2a trial enrolled participants with radiographic knee OA (Kellgren-Lawrence, KL, grades 2-3) and pain ≥40/100 on WOMAC pain subscale, and evaluated the efficacy and safety of oral APPA over a 28-day period. APPA 800 mg or matching placebo was administered twice daily in a 1:1 ratio. Post-hoc analyses explored the response to APPA in sub-groups with more severe pain and structural severity. RESULTS The two groups were comparable at baseline; 152 subjects were enrolled and 148 completed the trial. There was no statistically significant difference between groups with respect to the primary outcome, WOMAC pain (mean difference between groups was -0.89, 95% CI: -5.62, 3.84, p = 0.71), nor WOMAC function or WOMAC total. However, predefined subgroup analyses of subjects with symptoms compatible with nociplastic/neuropathic pain features showed a statistically significant effect of APPA compared to placebo. Adverse events (mainly gastrointestinal) were mild to moderate. CONCLUSION Treatment with APPA 800 mg twice daily for 28 days in subjects with symptomatic knee OA was not associated with significant symptom improvement compared to placebo. The treatment was well-tolerated and safe. While the study was not powered for such analysis, pre-planned subgroup analyses showed a significant effect of APPA in subjects with nociplastic pain/severe OA, indicating that further research in the effects of APPA in appropriate patients is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Robert Moots
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, L39 4QP UK and Department of Rheumatology, Aintree University Hospital, Liverpool L9 7AL, UK
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|