1
|
Li X, Zhu D. Role of disulfide death in cancer (Review). Oncol Lett 2025; 29:55. [PMID: 39606569 PMCID: PMC11600708 DOI: 10.3892/ol.2024.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
The research field of regulated cell death is growing extensively. Following the recognition of ferroptosis, other unique and distinct forms of regulated cell death, including cuproptosis and disulfide death, have been identified. Disulfide death occurs due to the abnormal accumulation of disulfides within cells in environments lacking glucose, leading to contraction of the actin cytoskeleton, which ultimately triggers various signaling pathways and cell death. The induction of disulfide death in the treatment of cancer may exhibit significant therapeutic potential. Therefore, in the present review, a comprehensive and critical analysis of the current understanding of the molecular mechanisms and regulatory networks of disulfide death is presented. In addition, the potential physiological functions of disulfide death in tumor suppression and immune surveillance as well as its pathological roles and therapeutic potential are described. The core focus areas for future research into this form of cell death are also explored. Given the current lack of extensive clinical findings and well-defined key concepts, these may be regarded as pivotal points of interest in future studies.
Collapse
Affiliation(s)
- Xue Li
- Oncology Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Danxia Zhu
- Oncology Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
2
|
Gedik D, Eraslan G. Evaluation of the efficacy of diosmin and chrysin against tau-fluvalinate exposure in rats. Food Chem Toxicol 2025; 195:115097. [PMID: 39522795 DOI: 10.1016/j.fct.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Tau-fluvalinate is a type 2 pyrethroid insecticide. Diosmin and chrysin are flavonoids with antioxidant and anti-apoptotic effects. Role of diosmin and chrysin against infavorable toxic effects caused by tau-fluvalinate and the underlying mechanisms of these effects were investigated. Six groups were formed and diosmin, chrysin, tau-fluvalinate, tau-fluvalinate + diosmin and tau-fluvalinate + chrysin were administered orally to rats at a dose of 20 mg/kg.bw except for the control group, once a day for 21 days, respectively. Tau-fluvalinate elevated MDA and NO levels while diminishing the activities of antioxidant enzymes (SOD, CAT, GSH-Px, GR, GST, G6PD) and GSH levels in the majority of the analyzed blood and tissues, statistically significant. Serum triglyceride, cholesterol, total protein and albumin levels as well as LDH and PChE activities decreased. Conversely, serum creatinine, AST, ALT and ALP levels/activities increased. Elevated protein levels of caspase 3, caspase 9, p53 and Bax and decreased protein levels of Bcl-2 were observed in the liver. There were negative changes in body/some organ weights. Diosmin and chrysin administration resulted in a marked recovery in tau-fluvalinate-induced toxic effects, but this improvement was not complete. These flavonoids may be considered as promising potential therapeutic options to alleviate the adverse effects associated with tau-fluvalinate intoxication.
Collapse
Affiliation(s)
- Didem Gedik
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
3
|
Kumari S, Gupta S, Jamil A, Tabatabaei D, Karakashev S. Exploring Metabolic Approaches for Epithelial Ovarian Cancer Therapy. J Cell Physiol 2024:e31495. [PMID: 39676338 DOI: 10.1002/jcp.31495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Epithelial ovarian cancer (EOC) has the highest mortality rate among malignant tumors of the female reproductive system and the lowest survival rate. This poor prognosis is due to the aggressive nature of EOC, its late-stage diagnosis, and the tumor's ability to adapt to stressors through metabolic reprogramming. EOC cells sustain their rapid proliferation by altering the uptake, utilization, and regulation of carbohydrates, lipids, and amino acids. These metabolic changes support tumor growth and contribute to metastasis, chemotherapy resistance, and immune evasion. Targeting these metabolic vulnerabilities has shown promise in preclinical studies, with some therapies advancing to clinical trials. However, challenges remain due to tumor heterogeneity, adaptive resistance mechanisms, and the influence of the tumor microenvironment. This review provides a comprehensive summary of metabolic targets for EOC treatment and offers an overview of the current landscape of clinical trials focusing on ovarian cancer metabolism. Future efforts should prioritize combination therapies that integrate metabolic inhibitors with immunotherapies or chemotherapy. Advances in precision medicine and multi-omics approaches will be crucial for identifying patient-specific metabolic dependencies and improving outcomes. By addressing these challenges, metabolism-based therapies can significantly transform the treatment of this devastating disease.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Shraddha Gupta
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Aisha Jamil
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Deyana Tabatabaei
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Sergey Karakashev
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Nanda S, Ganguly A, Mandi M, Das K, Rajak P. Unveiling the physical, behavioural, and biochemical effects of clothianidin on a non-target organism, Drosophila melanogaster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177198. [PMID: 39471953 DOI: 10.1016/j.scitotenv.2024.177198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Clothianidin is a novel neonicotinoid pesticide globally used in agriculture to enhance crop production. However, unintentional exposure to clothianidin via contaminated environmental matrices and food products can be detrimental to non-target organisms, including humans. Hence, to unravel the potential health risks at organismal and sub-organismal levels, first instar larvae of a non-target organism, Drosophila melanogaster, were exposed to sub-lethal concentrations (0.05 to 0.1 μg/mL) of clothianidin till their third instar stage (chronic exposure). Larvae from the control and clothianidin-exposed groups were examined for their body weight, physical activity, behaviour, and enzymatic activities using in vivo and molecular docking approaches. Results have suggested that clothianidin at sub-lethal concentrations reduces body weight and physical fitness of D. melanogaster. Interestingly, AChE activity in larvae was reduced by 35 % and 41.13 % following exposure to 0.07 and 0.1 μg/mL of clothianidin, respectively. Further, the activity of mitoferrin, a major importer of iron inside the mitochondrial matrix and malate dehydrogenase, an integral component of the TCA cycle, were down-regulated by 58 % and 45.93 %, respectively, at 0.1 μg/mL clothianidin. Additionally, the activities of glucose 6-phosphate dehydrogenase, a vital enzyme of the pentose phosphate pathway and angiotensin-converting enzyme, responsible for maintaining optimum body physiology, were significantly declined by 43.58 % and 57.63 % at 0.1 μg/mL concentration of clothianidin. Binding affinity analyses have revealed that clothianidin can potentially bind with these enzymes using varying numbers of hydrogen bonds and other hydrophobic interactions to subvert their catalytic functions. Therefore, results of the present study equivocally suggest that chronic exposure to clothianidin, even at low concentrations, can disturb the physical, behavioural, and enzymatic activities of non-target organisms.
Collapse
Affiliation(s)
- Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Kanchana Das
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
5
|
He X, Liu F, Gong Q. Identification of a senescence-related transcriptional signature to uncover molecular subtypes and key genes in hepatocellular carcinoma. PLoS One 2024; 19:e0311696. [PMID: 39383169 PMCID: PMC11463828 DOI: 10.1371/journal.pone.0311696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer caused by abnormal cell growth due to faulty signal transduction. Cells secrete tumor suppressor factors in response to potential carcinogenic signals, inducing cellular senescence (CS) as a countermeasure. However, accurately measuring CS levels in different types of tumors is challenging due to tumor heterogeneity and the lack of universal and specific CS markers. Machine learning has revealed unique molecular traits in HCC patients, leading to clinical advantages. More research is needed to understand senescence-related molecular features in these patients. In this study, the gene expression profile features of patients with HCC were analyzed by integrating single-cell RNA sequencing and bulk RNA-seq datasets from HCC samples. The analysis identified the senescence-related pathways exhibiting HCC specificity. Subsequently, genes from these pathways were used to identify senescence-related molecular subtypes in HCC, showing significant variations in biological and clinical attributes. An HCC-specific CS risk model developed in this study revealed substantial associations between the patients' CS scores and prognosis grouping, clinical staging, immune infiltration levels, immunotherapy response, and drug sensitivity levels. Within the constructed model, G6PD was identified as a key gene, potentially serving as a senescence-related target in liver cancer. Molecular biology experiments demonstrated that overexpression of G6PD effectively promotes the proliferative, invasive, and migration capacities of HepG2 and SK-HEP-1 cells. In conclusion, this analysis offers a valuable framework for understanding senescence in HCC and introduces a new biomarker. These findings improve our understanding of senescence in HCC and have potential for future research.
Collapse
Affiliation(s)
- Xiaorong He
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Fahui Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Qiming Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Education Department of Guangxi Zhuang Autonomous Region, Baise Key Laboratory for Metabolic Diseases (Youjiang Medical University for Nationalities), Baise, China
| |
Collapse
|
6
|
Fujii J. Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. Free Radic Res 2024; 58:606-629. [PMID: 39316831 DOI: 10.1080/10715762.2024.2407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
7
|
Vásquez Martínez IP, Pérez-Campos E, Pérez-Campos Mayoral L, Cruz Luis HI, Pina Canseco MDS, Zenteno E, Bazán Salinas IL, Martínez Cruz M, Pérez-Campos Mayoral E, Hernández-Huerta MT. O-GlcNAcylation: Crosstalk between Hemostasis, Inflammation, and Cancer. Int J Mol Sci 2024; 25:9896. [PMID: 39337387 PMCID: PMC11432004 DOI: 10.3390/ijms25189896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc, O-GlcNAcylation) is a post-translational modification of serine/threonine residues of proteins. Alterations in O-GlcNAcylation have been implicated in several types of cancer, regulation of tumor progression, inflammation, and thrombosis through its interaction with signaling pathways. We aim to explore the relationship between O-GlcNAcylation and hemostasis, inflammation, and cancer, which could serve as potential prognostic tools or clinical predictions for cancer patients' healthcare and as an approach to combat cancer. We found that cancer is characterized by high glucose demand and consumption, a chronic inflammatory state, a state of hypercoagulability, and platelet hyperaggregability that favors thrombosis; the latter is a major cause of death in these patients. Furthermore, we review transcription factors and pathways associated with O-GlcNAcylation, thrombosis, inflammation, and cancer, such as the PI3K/Akt/c-Myc pathway, the nuclear factor kappa B pathway, and the PI3K/AKT/mTOR pathway. We also review infectious agents associated with cancer and chronic inflammation and potential inhibitors of cancer cell development. We conclude that it is necessary to approach both the diagnosis and treatment of cancer as a network in which multiple signaling pathways are integrated, and to search for a combination of potential drugs that regulate this signaling network.
Collapse
Affiliation(s)
- Itzel Patricia Vásquez Martínez
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - Eduardo Pérez-Campos
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico
| | - Laura Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - Holanda Isabel Cruz Luis
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - María Del Socorro Pina Canseco
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - Edgar Zenteno
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Irma Leticia Bazán Salinas
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - Margarito Martínez Cruz
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico
| | - Eduardo Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - María Teresa Hernández-Huerta
- National Council of Humanities, Sciences and Technologies (CONAHCYT), Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
8
|
Tamir TY, Chaudhary S, Li AX, Trojan SE, Flower CT, Vo P, Cui Y, Davis JC, Mukkamala RS, Venditti FN, Hillis AL, Toker A, Vander Heiden MG, Spinelli JB, Kennedy NJ, Davis RJ, White FM. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-specific metabolic reprogramming in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609894. [PMID: 39257804 PMCID: PMC11383994 DOI: 10.1101/2024.08.28.609894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Coordination of adaptive metabolism through cellular signaling networks and metabolic response is essential for balanced flow of energy and homeostasis. Post-translational modifications such as phosphorylation offer a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Although numerous phosphorylation sites have been identified on metabolic enzymes, much remains unknown about their contribution to enzyme function and systemic metabolism. In this study, we stratify phosphorylation sites on metabolic enzymes based on their location with respect to functional and dimerization domains. Our analysis reveals that the majority of published phosphosites are on oxidoreductases, with particular enrichment of phosphotyrosine (pY) sites in proximity to binding domains for substrates, cofactors, active sites, or dimer interfaces. We identify phosphosites altered in obesity using a high fat diet (HFD) induced obesity model coupled to multiomics, and interrogate the functional impact of pY on hepatic metabolism. HFD induced dysregulation of redox homeostasis and reductive metabolism at the phosphoproteome and metabolome level in a sex-specific manner, which was reversed by supplementing with the antioxidant butylated hydroxyanisole (BHA). Partial least squares regression (PLSR) analysis identified pY sites that predict HFD or BHA induced changes of redox metabolites. We characterize predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPRi-rescue and stable isotope tracing. Our analysis revealed that sites on GSTP1 and UMPS inhibit enzyme activity while the pY site on IDH1 induces activity to promote reductive carboxylation. Overall, our approach provides insight into the convergence points where cellular signaling fine-tunes metabolism.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shreya Chaudhary
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annie X Li
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sonia E Trojan
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cameron T Flower
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paula Vo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yufei Cui
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey C Davis
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachit S Mukkamala
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francesca N Venditti
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alissandra L Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Liu DN, Zhang WF, Feng WD, Xu S, Feng DH, Song FH, Zhang HW, Fang LH, Du GH, Wang YH. Chrysomycin A Reshapes Metabolism and Increases Oxidative Stress to Hinder Glioblastoma Progression. Mar Drugs 2024; 22:391. [PMID: 39330272 PMCID: PMC11433325 DOI: 10.3390/md22090391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma represents the predominant and a highly aggressive primary neoplasm of the central nervous system that has an abnormal metabolism. Our previous study showed that chrysomycin A (Chr-A) curbed glioblastoma progression in vitro and in vivo. However, whether Chr-A could inhibit orthotopic glioblastoma and how it reshapes metabolism are still unclear. In this study, Chr-A markedly suppressed the development of intracranial U87 gliomas. The results from airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) indicated that Chr-A improved the abnormal metabolism of mice with glioblastoma. Key enzymes including glutaminase (GLS), glutamate dehydrogenases 1 (GDH1), hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD) were regulated by Chr-A. Chr-A further altered the level of nicotinamide adenine dinucleotide phosphate (NADPH), thus causing oxidative stress with the downregulation of Nrf-2 to inhibit glioblastoma. Our study offers a novel perspective for comprehending the anti-glioma mechanism of Chr-A, highlighting its potential as a promising chemotherapeutic agent for glioblastoma.
Collapse
Affiliation(s)
- Dong-Ni Liu
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Wen-Fang Zhang
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Wan-Di Feng
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Shuang Xu
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Dan-Hong Feng
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Fu-Hang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Lian-Hua Fang
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Guan-Hua Du
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Yue-Hua Wang
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| |
Collapse
|
10
|
Bardaweel SK, Al-salamat H, Hajjo R, Sabbah D, Almutairi S. Unveiling the Intricacies of Monoamine Oxidase-A (MAO-A) Inhibition in Colorectal Cancer: Computational Systems Biology, Expression Patterns, and the Anticancer Therapeutic Potential. ACS OMEGA 2024; 9:35703-35717. [PMID: 39184489 PMCID: PMC11339988 DOI: 10.1021/acsomega.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, necessitating a deeper understanding of its molecular intricacies for effective therapeutic interventions. Elevated monoamine oxidase-A (MAO-A) expression has been consistently observed in CRC tissues, correlating with advanced disease stages and a poorer prognosis. This research explores the systems biology effects of MAO-A inhibition with small molecule inhibitor clorgyline regarding CRC. The applied systems biology approach starts with a chemocentric informatics approach to derive high-confidence hypotheses regarding the antiproliferative effects of MAO-A inhibitors and ends with experimental validation. Our computational results emphasized the anticancer effects of MAO-A inhibition and the chemogenomics similarities between clorgyline and structurally diverse groups of apoptosis inducers in addition to highlighting apoptotic, DNA-damage, and microRNAs in cancer pathways. Experimental validation results revealed that MAO inhibition results in antiproliferative antimigratory activities in addition to synergistic effects with doxorubicin. Moreover, the results demonstrated a putative role of MAO-A inhibition in commencing CRC cellular death by potentially mediating the induction of apoptosis.
Collapse
Affiliation(s)
- Sanaa K. Bardaweel
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Husam Al-salamat
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| | - Rima Hajjo
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Board
Member, Jordan CDC, Amman - 11183, Jordan
| | - Dima Sabbah
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman - 11733, Jordan
| | - Shriefa Almutairi
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman - 11942, Jordan
| |
Collapse
|
11
|
Wu Q, Liu SP, Liu C, Chen X, Zhou H, Zhao H. Disulfidoptosis as a Novel Mechanism of Neuronal Death: Insights from Creutzfeldt-Jakob Disease. World Neurosurg 2024:S1878-8750(24)01439-6. [PMID: 39159675 DOI: 10.1016/j.wneu.2024.08.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Sporadic Creutzfeldt-Jakob Disease (SCJD) is a severe neurodegenerative disorder characterized by rapid progression and extensive neuronal loss. Disulfidptosis is an innovative type of programmed cell demise characterized by an accumulation of disulfide bonds within the cellular cytoplasm, subsequently triggering functional disruption and cell demise. METHODS Through literature review and analysis, we identified 18 candidate disulfidptosis-related genes (DRGs) involved in cellular processes. The dataset used for analysis, GSE124571, was obtained from the Gene Expression Omnibus database. Gene-gene and protein-protein interactions were analyzed using the GeneMANIA and STRING databases, respectively. We also performed enrichment analysis, differential expressed genes analysis, weighted gene correlation network analysis analysis, immune infiltration, consensus clustering, and matrix correlation. RESULTS The analysis showed that 12 out of 18 DRGs were significantly changed between SCJD and control groups. The DRGs had strong interactions such as physical interactions, co-expression and genetic interactions, and were enriched in biological processes and pathways related to actin cytoskeletal regulation. The study most notably identified 3 hub genes (WASF2, TLN1 and G6PD) important for SCJD and emphasized the functional significance of the identified hub genes. The role of the immune system in the pathogenesis of SCJD. The study found that the composition of immune cells in SCJD brain tissue is altered. Consensus clustering provided insights into immune infiltration and hub gene expression in SCJD subgroup. CONCLUSIONS Our study reveals the possible involvement of disulfidptosis in SCJD and highlights the significance of identified hub genes as potential biomarkers and therapeutic targets for SCJD.
Collapse
Affiliation(s)
- Qike Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shan-Peng Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Thakor P, Siddiqui MQ, Patel TR. Analysis of the interlink between glucose-6-phosphate dehydrogenase (G6PD) and lung cancer through multi-omics databases. Heliyon 2024; 10:e35158. [PMID: 39165939 PMCID: PMC11334843 DOI: 10.1016/j.heliyon.2024.e35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Glucose-6-Phosphate Dehydrogenase (G6PD) is a crucial enzyme that executes the pentose phosphate pathway. Due to its critical nodal position in the metabolic network, it is associated with different forms of cancer tumorigeneses and progression. Nonetheless, its functional role and molecular mechanism in lung cancer remain unknown. The present study provides intricate information associated with G6PD and Lung Cancer. Varieties of public datasets were retrieved by us, including UALCAN, TCGA, cBioPortal, and the UCSC Xena browser. The data obtained were used to assess the expression of G6PD, its clinical features, epigenetic regulation, relationship with tumour infiltration, tumour mutation burden, microsatellite instability, tumour microenvironment, immune checkpoint genes, genomic alteration, and patient's overall survival rate. The present study revealed that the G6PD expression was correlated with the clinical features of lung cancer including disease stage, race, sex, age, smoking habits, and lymph node metastasis. Moreover, the expression profile of G6PD also imparts epigenetic changes by modulating the DNA promoter methylation activity. Methylation of promoters changes the expression of various transcription factors, genes leading to an influence on the immune system. These events linked with G6PD-related mutational gene alterations (FAM3A, LAG3, p53, KRAS). The entire circumstance influences the patient's overall survival rate and poor prognosis. Functional investigation using STRING, GO, and KEGG found that G6PD primarily engages in hallmark functions (metabolism, immunological responses, proliferation, apoptosis, p53, HIF-1, FOXO, PI3K-AKT signaling). This work provides a wide knowledge of G6PD's function in lung cancer, as well as a theoretical foundation for possible prognostic therapeutic markers.
Collapse
Affiliation(s)
- Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - M. Quadir Siddiqui
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - Trushar R. Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
13
|
Ma H, Yu T, Li ZC, Zhang L, Chen RX, Ren ZG. An Oxidative Stress-Related Prognostic Signature Predicts Treatment Response and Outcomes for Hepatocellular Carcinoma After Transarterial Chemoembolization. J Hepatocell Carcinoma 2024; 11:1569-1580. [PMID: 39156675 PMCID: PMC11330244 DOI: 10.2147/jhc.s465592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose Oxidative stress plays a critical role in promoting tumor resistance to hypoxia and chemotherapeutic drugs. However, the prognostic role of oxidative stress-related genes (OSRGs) in hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) has not been fully explored. Methods We used transcriptome data from the GSE104580 cohort containing patients marked as responders or nonresponders to TACE therapy to identify differentially expressed OSRGs associated with TACE response (TR-OSRGs). We created a TR-OSRG prognostic signature based on TR-OSRGs using least absolute shrinkage and selection operator Cox and stepwise Cox regression analyses in a training cohort of patients with HCC (TCGA-LIHC). We verified this prognostic signature in two external cohorts of patients who received TACE for HCC (GSE14520-TACE and ZS-TACE-37). Finally, we constructed a prognostic nomogram model for predicting survival probability of patients with HCC based on Cox regression analysis. Results The TR-OSRG prognostic signature was created and shown to be a robust independent prognostic factor for treatment response and outcomes for HCC after TACE therapy. Risk scores based on this signature correlated with tumor stage and grade. Tumor samples from patients with higher risk scores exhibited more infiltration of immune cells and significantly increased expression of immune checkpoint genes. We also developed a nomogram for patients with HCC based on the TR-OSRG prognostic signature and clinical parameters; this nomogram was a useful quantitative analysis tool for predicting patient survival. Conclusion The TR-OSRGs signature exhibited good performance in predicting treatment response and outcomes in patients with HCC treated with TACE.
Collapse
Affiliation(s)
- Hui Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, People’s Republic of China
| | - Ting Yu
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zhong-Chen Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Lan Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, People’s Republic of China
| | - Rong-Xin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Israel A, Raz I, Vinker S, Magen E, Green I, Golan-Cohen A, Berkovitch M, Merzon E. Type 2 Diabetes in Patients with G6PD Deficiency. N Engl J Med 2024; 391:568-569. [PMID: 39115068 DOI: 10.1056/nejmc2406156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Affiliation(s)
| | - Itamar Raz
- Hadassah Medical Center, Jerusalem, Israel
| | | | - Eli Magen
- Assuta Ashdod University Medical Center, Ashdod, Israel
| | | | | | | | | |
Collapse
|
15
|
Uboveja A, Aird KM. Interplay between altered metabolism and DNA damage and repair in ovarian cancer. Bioessays 2024; 46:e2300166. [PMID: 38873912 DOI: 10.1002/bies.202300166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Ovarian cancer is the most lethal gynecological malignancy and is often associated with both DNA repair deficiency and extensive metabolic reprogramming. While still emerging, the interplay between these pathways can affect ovarian cancer phenotypes, including therapeutic resistance to the DNA damaging agents that are standard-of-care for this tumor type. In this review, we will discuss what is currently known about cellular metabolic rewiring in ovarian cancer that may impact DNA damage and repair in addition to highlighting how specific DNA repair proteins also promote metabolic changes. We will also discuss relevant data from other cancers that could be used to inform ovarian cancer therapeutic strategies. Changes in the choice of DNA repair mechanism adopted by ovarian cancer are a major factor in promoting therapeutic resistance. Therefore, the impact of metabolic reprogramming on DNA repair mechanisms in ovarian cancer has major clinical implications for targeted combination therapies for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Apoorva Uboveja
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katherine M Aird
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Huang HX, Zhong PY, Li P, Peng SJ, Ding XJ, Cai XL, Chen JH, Zhu X, Lu ZH, Tao XY, Liu YY, Chen L. Development and Validation of a Carbohydrate Metabolism-Related Model for Predicting Prognosis and Immune Landscape in Hepatocellular Carcinoma Patients. Curr Med Sci 2024; 44:771-788. [PMID: 39096475 DOI: 10.1007/s11596-024-2886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/30/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE The activities and products of carbohydrate metabolism are involved in key processes of cancer. However, its relationship with hepatocellular carcinoma (HCC) is unclear. METHODS The cancer genome atlas (TCGA)-HCC and ICGC-LIRI-JP datasets were acquired via public databases. Differentially expressed genes (DEGs) between HCC and control samples in the TCGA-HCC dataset were identified and overlapped with 355 carbohydrate metabolism-related genes (CRGs) to obtain differentially expressed CRGs (DE-CRGs). Then, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were applied to identify risk model genes, and HCC samples were divided into high/low-risk groups according to the median risk score. Next, gene set enrichment analysis (GSEA) was performed on the risk model genes. The sensitivity of the risk model to immunotherapy and chemotherapy was also explored. RESULTS A total of 8 risk model genes, namely, G6PD, PFKFB4, ACAT1, ALDH2, ACYP1, OGDHL, ACADS, and TKTL1, were identified. Moreover, the risk score, cancer status, age, and pathologic T stage were strongly associated with the prognosis of HCC patients. Both the stromal score and immune score had significant negative/positive correlations with the risk score, reflecting the important role of the risk model in immunotherapy sensitivity. Furthermore, the stromal and immune scores had significant negative/positive correlations with risk scores, reflecting the important role of the risk model in immunotherapy sensitivity. Eventually, we found that high-/low-risk patients were more sensitive to 102 drugs, suggesting that the risk model exhibited sensitivity to chemotherapy drugs. The results of the experiments in HCC tissue samples validated the expression of the risk model genes. CONCLUSION Through bioinformatic analysis, we constructed a carbohydrate metabolism-related risk model for HCC, contributing to the prognosis prediction and treatment of HCC patients.
Collapse
Affiliation(s)
- Hong-Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Pei-Yuan Zhong
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Ping Li
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Su-Juan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin-Jing Ding
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiang-Lian Cai
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jin-Hong Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xie Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhi-Hui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xing-Yu Tao
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yang-Yang Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
17
|
Nakamura M, Magara T, Yoshimitsu M, Kano S, Kato H, Yokota K, Okuda K, Morita A. Blockade of glucose-6-phosphate dehydrogenase induces immunogenic cell death and accelerates immunotherapy. J Immunother Cancer 2024; 12:e008441. [PMID: 39089738 PMCID: PMC11293396 DOI: 10.1136/jitc-2023-008441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Enhanced glucose metabolism has been reported in many cancers. Glucose-6-phosphate dehydrogenase (G6PD) is a rate-limiting enzyme involved in the pentose phosphate pathway, which maintains NADPH levels and protects cells from oxidative damage. We recently found that low G6PD expression correlates with active tumor immunity. However, the mechanism involving G6PD and tumor immunity remained unclear. METHODS We conducted in vitro studies using G6PD-knocked down malignant melanoma cells, pathway analysis using the GEO dataset, in vivo studies in combination with immune checkpoint inhibitors (ICIs) using a mouse melanoma model, and prognostic analysis in 42 melanoma patients and 30 lung cancer patients who were treated with ICIs. RESULTS Inhibition of G6PD, both chemically and genetically, has been shown to decrease the production of NADPH and reduce their oxidative stress tolerance. This leads to cell death, which is accompanied by the release of high mobility group box 1 and the translocation of calreticulin to the plasma membrane. These findings suggested that inhibiting G6PD can induce immunogenic cell death. In experiments with C57BL/6 mice transplanted with G6PD-knockdown B16 melanoma cells and treated with anti-PD-L1 antibody, a significant reduction in tumor size was observed. Interestingly, inhibiting G6PD in only a part of the lesions increased the sensitivity of other lesions to ICI. Additionally, out of 42 melanoma patients and 30 lung cancer patients treated with ICIs, those with low G6PD expression had a better prognosis than those with high G6PD expression (p=0.0473; melanoma, p=0.0287; lung cancer). CONCLUSION G6PD inhibition is a potent therapeutic strategy that triggers immunogenic cell death in tumors, significantly augmenting the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Maki Yoshimitsu
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Keisuke Yokota
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
18
|
Millichap L, Turton N, Damiani E, Marcheggiani F, Orlando P, Silvestri S, Tiano L, Hargreaves IP. The Effect of Neuronal CoQ 10 Deficiency and Mitochondrial Dysfunction on a Rotenone-Induced Neuronal Cell Model of Parkinson's Disease. Int J Mol Sci 2024; 25:6622. [PMID: 38928331 PMCID: PMC11204355 DOI: 10.3390/ijms25126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.
Collapse
Affiliation(s)
- Lauren Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| |
Collapse
|
19
|
Hu D, Shen X, Gao P, Mao T, Chen Y, Li X, Shen W, Zhuang Y, Ding J. Multi-omic profiling reveals potential biomarkers of hepatocellular carcinoma prognosis and therapy response among mitochondria-associated cell death genes in the context of 3P medicine. EPMA J 2024; 15:321-343. [PMID: 38841626 PMCID: PMC11147991 DOI: 10.1007/s13167-024-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Background Cancer cell growth, metastasis, and drug resistance are major challenges in treating liver hepatocellular carcinoma (LIHC). However, the lack of comprehensive and reliable models hamper the effectiveness of the predictive, preventive, and personalized medicine (PPPM/3PM) strategy in managing LIHC. Methods Leveraging seven distinct patterns of mitochondrial cell death (MCD), we conducted a multi-omic screening of MCD-related genes. A novel machine learning framework was developed, integrating 10 machine learning algorithms with 67 different combinations to establish a consensus mitochondrial cell death index (MCDI). This index underwent rigorous evaluation across training, validation, and in-house clinical cohorts. A comprehensive multi-omics analysis encompassing bulk, single-cell, and spatial transcriptomics was employed to achieve a deeper insight into the constructed signature. The response of risk subgroups to immunotherapy and targeted therapy was evaluated and validated. RT-qPCR, western blotting, and immunohistochemical staining were utilized for findings validation. Results Nine critical differentially expressed MCD-related genes were identified in LIHC. A consensus MCDI was constructed based on a 67-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. MCDI correlated with immune infiltration, Tumor Immune Dysfunction and Exclusion (TIDE) score and sorafenib sensitivity. Findings were validated experimentally. Moreover, we identified PAK1IP1 as the most important gene for predicting LIHC prognosis and validated its potential as an indicator of prognosis and sorafenib response in our in-house clinical cohorts. Conclusion This study developed a novel predictive model for LIHC, namely MCDI. Incorporating MCDI into the PPPM framework will enhance clinical decision-making processes and optimize individualized treatment strategies for LIHC patients. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00362-8.
Collapse
Affiliation(s)
- Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Xu Shen
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Peng Gao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Tiantian Mao
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072 China
| | - Yuan Chen
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
- University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Xiaofeng Li
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072 China
| | - Weifeng Shen
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yugang Zhuang
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072 China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| |
Collapse
|
20
|
Yao Y, Wang D, Zheng L, Zhao J, Tan M. Advances in prognostic models for osteosarcoma risk. Heliyon 2024; 10:e28493. [PMID: 38586328 PMCID: PMC10998144 DOI: 10.1016/j.heliyon.2024.e28493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.
Collapse
Affiliation(s)
- Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
21
|
Tan VWT, Salmi TM, Karamalakis AP, Gillespie A, Ong AJS, Balic JJ, Chan YC, Bladen CE, Brown KK, Dawson MA, Cox AG. SLAM-ITseq identifies that Nrf2 induces liver regeneration through the pentose phosphate pathway. Dev Cell 2024; 59:898-910.e6. [PMID: 38366599 DOI: 10.1016/j.devcel.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The liver exhibits a remarkable capacity to regenerate following injury. Despite this unique attribute, toxic injury is a leading cause of liver failure. The temporal processes by which the liver senses injury and initiates regeneration remain unclear. Here, we developed a transgenic zebrafish model wherein hepatocyte-specific expression of uracil phosphoribosyltransferase (UPRT) enabled the implementation of SLAM-ITseq to investigate the nascent transcriptome during initiation of liver injury and regeneration. Using this approach, we identified a rapid metabolic transition from the fed to the fasted state that was followed by induction of the nuclear erythroid 2-related factor (Nrf2) antioxidant program. We find that activation of Nrf2 in hepatocytes is required to induce the pentose phosphate pathway (PPP) and improve survival following liver injury. Mechanistically, we demonstrate that inhibition of the PPP disrupts nucleotide biosynthesis to prevent liver regeneration. Together, these studies provide fundamental insights into the mechanism by which early metabolic adaptation to injury facilitates tissue regeneration.
Collapse
Affiliation(s)
- Vicky W T Tan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Talhah M Salmi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony P Karamalakis
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Athena Jessica S Ong
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jesse J Balic
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cerys E Bladen
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristin K Brown
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Andrew G Cox
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
22
|
Thakkar AB, Subramanian RB, Thakkar SS, Thakkar VR, Thakor P. Biochanin A - A G6PD inhibitor: In silico and in vitro studies in non-small cell lung cancer cells (A549). Toxicol In Vitro 2024; 96:105785. [PMID: 38266663 DOI: 10.1016/j.tiv.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Secondary metabolites from medicinal plants have a well-established therapeutic potential, with many of these chemicals having specialized medical uses. Isoflavonoids, a type of secondary metabolite, have little cytotoxicity against healthy human cells, making them interesting candidates for cancer treatment. Extensive research has been conducted to investigate the chemo-preventive benefits of flavonoids in treating various cancers. Biochanin A (BA), an isoflavonoid abundant in plants such as red clover, soy, peanuts, and chickpeas, was the subject of our present study. This study aimed to determine how BA affected glucose-6-phosphate dehydrogenase (G6PD) in human lung cancer cells. The study provides meaningful insight and a significant impact of BA on the association between metastasis, inflammation, and G6PD inhibition in A549 cells. Comprehensive in vitro tests revealed that BA has anti-inflammatory effects. Molecular docking experiments shed light on BA's high binding affinity for the G6PD receptor. BA substantially decreased the expression of G6PD and other inflammatory and metastasis-related markers. In conclusion, our findings highlight the potential of BA as a therapeutic agent in cancer treatment, specifically by targeting G6PD and related pathways. BA's varied effects, which range from anti-inflammatory capabilities to metastasis reduction, make it an appealing option for future investigation in the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Anjali B Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India; P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Ramalingam B Subramanian
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Sampark S Thakkar
- AKASHGANGA, Shree Kamdhenu Electronics Pvt. Ltd., Vallabh Vidyanagar, Gujarat, India
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India.
| |
Collapse
|
23
|
Zhang X, Perry RJ. Metabolic underpinnings of cancer-related fatigue. Am J Physiol Endocrinol Metab 2024; 326:E290-E307. [PMID: 38294698 DOI: 10.1152/ajpendo.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Cancer-related fatigue (CRF) is one of the most prevalent and detrimental complications of cancer. Emerging evidence suggests that obesity and insulin resistance are associated with CRF occurrence and severity in cancer patients and survivors. In this narrative review, we analyzed recent studies including both preclinical and clinical research on the relationship between obesity and/or insulin resistance and CRF. We also describe potential mechanisms for these relationships, though with the caveat that because the mechanisms underlying CRF are incompletely understood, the mechanisms mediating the association between obesity/insulin resistance and CRF are similarly incompletely delineated. The data suggest that, in addition to their effects to worsen CRF by directly promoting tumor growth and metastasis, obesity and insulin resistance may also contribute to CRF by inducing chronic inflammation, neuroendocrinological disturbance, and metabolic alterations. Furthermore, studies suggest that patients with obesity and insulin resistance experience more cancer-induced pain and are at more risk of emotional and behavioral disruptions correlated with CRF. However, other studies implied a potentially paradoxical impact of obesity and insulin resistance to reduce CRF symptoms. Despite the need for further investigation utilizing interventions to directly elucidate the mechanisms of cancer-related fatigue, current evidence demonstrates a correlation between obesity and/or insulin resistance and CRF, and suggests potential therapeutics for CRF by targeting obesity and/or obesity-related mediators.
Collapse
Affiliation(s)
- Xinyi Zhang
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
24
|
Li S, Guo L. The role of Sirtuin 2 in liver - An extensive and complex biological process. Life Sci 2024; 339:122431. [PMID: 38242495 DOI: 10.1016/j.lfs.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Liver disease has become one of the main causes of health issue worldwide. Sirtuin (Sirt) 2 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, and is expressed in multiple organs including liver, which plays important and complex roles by interacting with various substrates. Physiologically, Sirt2 can improve metabolic homeostasis. Pathologically, Sirt2 can alleviate inflammation, endoplasmic reticulum (ER) stress, promote liver regeneration, maintain iron homeostasis, aggravate fibrogenesis and regulate oxidative stress in liver. In liver diseases, Sirt2 can mitigate fatty liver disease (FLD) including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), but aggravate hepatitis B (HBV) and liver ischemia-reperfusion injury (LIRI). The role of Sirt2 in liver cancer and aging-related liver diseases, however, has not been fully elucidated. In this review, these biological processes regulated by Sirt2 in liver are summarized, which aims to update the function of Sirt2 in liver and to explore the potential role of Sirt2 as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai 200438, China.
| |
Collapse
|
25
|
Wu Q, Ge XL, Geng ZK, Wu H, Yang JY, Cao SR, Yang AL. HuaChanSu suppresses the growth of hepatocellular carcinoma cells by interfering with pentose phosphate pathway through down-regulation of G6PD enzyme activity and expression. Heliyon 2024; 10:e25144. [PMID: 38322888 PMCID: PMC10844274 DOI: 10.1016/j.heliyon.2024.e25144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
HuaChanSu is active water extracts from the skin of Bufo bufo gargarizans Cantor. It has been already used to treat clinical cancers including HCC (Hepatocellular carcinoma, HCC), however, the molecular mechanisms under HuaChanSu's anti-cancer effects remain unclear. PPP (Pentose phosphate pathway, PPP), the major source of ribose and NADPH (Nicotinamide adenine dinucleotide phosphate, NADPH), is always over-activated and particularly critical for tumor cells growth. In this study, firstly, we illustrate that HuaChanSu restrains the growth of human hepatoma cells. More importantly, we demonstrate that the expression of G6PD (Glucose-6-phosphate dehydrogenase, G6PD), the first rate-limiting enzyme of the PPP, is restrained in human hepatoma cells after treatment with HuaChanSu. Additionally, our results show that G6PD enzyme activity and dimer formation are inhibited by HuaChanSu. Furthermore, we find that HuaChanSu could inhibit NADPH production and nucleotide level. In addition, we identify that expression of PLK1 (Polo-like kinase 1, PLK1) is also reduced in response to HuaChanSu, and knockdown of PLK1 restrains enzyme activity and dimer formation of G6PD, but has no effect on G6PD protein level. Subsequently, we demonstrate that inhibition of G6PD could restrain the proliferation of tumor cells and enhance the inhibitory effect of HuaChanSu on cell proliferation of human hepatoma cells. In conclusion, for the first time, our study reveals that HuaChanSu interferes with PPP via suppression of G6PD expression and enzyme activity to restrain growth of tumor cells, and these results provide a novel insight for the anti-hepatoma mechanisms of HuaChanSu and promote the innovation of the research model of TCM. Moreover, the development of drugs targeting abnormal tumor metabolism is currently a hot topic, our works provide theoretical support for further drug development from HuaChanSu, meanwhile, the revelation of the new molecular mechanism also provides a new perspective for the study of the pathogenesis of liver cancer. Short abstract HuaChanSu suppresses expression of G6PD, the first rate-limiting enzyme of the PPP, restrains G6PD enzyme activity and dimer formation via inhibition of PLK1, knockdown of G6PD could impair the growth of human hepatoma cells and increase the blocking effect of HuaChanSu on cell proliferation of cancer cells. In addition, HuaChanSu restrains NADPH production and nucleotide level, implying the suppression of PPP flux. Our study suggests that HuaChanSu interferes with PPP via G6PD inhibition to exert anti-hepatoma effects.
Collapse
Affiliation(s)
| | | | | | - Hao Wu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jing-yi Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shi-rong Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ai-lin Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
26
|
Wei J, Wang J, Chen X, Zhang L, Peng M. Novel application of the ferroptosis-related genes risk model associated with disulfidptosis in hepatocellular carcinoma prognosis and immune infiltration. PeerJ 2024; 12:e16819. [PMID: 38317842 PMCID: PMC10840499 DOI: 10.7717/peerj.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the prevailing manifestation of primary liver cancer and continues to pose a formidable challenge to human well-being and longevity, owing to its elevated incidence and mortality rates. Nevertheless, the quest for reliable predictive biomarkers for HCC remains ongoing. Recent research has demonstrated a close correlation between ferroptosis and disulfidptosis, two cellular processes, and cancer prognosis, suggesting their potential as predictive factors for HCC. In this study, we employed a combination of bioinformatics algorithms and machine learning techniques, leveraging RNA sequencing data, mutation profiles, and clinical data from HCC samples in The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the International Cancer Genome Consortium (ICGC) databases, to develop a risk prognosis model based on genes associated with ferroptosis and disulfidptosis. We conducted an unsupervised clustering analysis, calculating a risk score (RS) to predict the prognosis of HCC using these genes. Clustering analysis revealed two distinct HCC clusters, each characterized by significantly different prognostic and immune features. The median RS stratified HCC samples in the TCGA, GEO, and ICGC cohorts into high-and low-risk groups. Importantly, RS emerged as an independent prognostic factor in all three cohorts, with the high-risk group demonstrating poorer prognosis and a more active immunosuppressive microenvironment. Additionally, the high-risk group exhibited higher expression levels of tumor mutation burden (TMB), immune checkpoints (ICs), and human leukocyte antigen (HLA), suggesting a heightened responsiveness to immunotherapy. A cancer stem cell infiltration analysis revealed a higher similarity between tumor cells and stem cells in the high-risk group. Furthermore, drug sensitivity analysis highlighted significant differences in response to antitumor drugs between the two risk groups. In summary, our risk prognostic model, constructed based on ferroptosis-related genes associated with disulfidptosis, effectively predicts HCC prognosis. These findings hold potential implications for patient stratification and clinical decision-making, offering valuable theoretical insights in this field.
Collapse
Affiliation(s)
- Jiayan Wei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Zhang
- Basic Medical Sciences, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
27
|
An F, Chang W, Song J, Zhang J, Li Z, Gao P, Wang Y, Xiao Z, Yan C. Reprogramming of glucose metabolism: Metabolic alterations in the progression of osteosarcoma. J Bone Oncol 2024; 44:100521. [PMID: 38288377 PMCID: PMC10823108 DOI: 10.1016/j.jbo.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an adaptive response of tumour cells under hypoxia and low nutrition conditions. There is increasing evidence that glucose metabolism reprogramming can regulate the growth and metastasis of osteosarcoma (OS). Reprogramming in the progress of OS can bring opportunities for early diagnosis and treatment of OS. Previous research mainly focused on the glycolytic pathway of glucose metabolism, often neglecting the tricarboxylic acid cycle and pentose phosphate pathway. However, the tricarboxylic acid cycle and pentose phosphate pathway of glucose metabolism are also involved in the progression of OS and are closely related to this disease. The research on glucose metabolism in OS has not yet been summarized. In this review, we discuss the abnormal expression of key molecules related to glucose metabolism in OS and summarize the glucose metabolism related signaling pathways involved in the occurrence and development of OS. In addition, we discuss some of the targeted drugs that regulate glucose metabolism pathways, which can lead to effective strategies for targeted treatment of OS.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Zhonghong Li
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yujie Wang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Zhipan Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| |
Collapse
|
28
|
Li F, Wang B, Li H, Kong L, Zhu B. G6PD and machine learning algorithms as prognostic and diagnostic indicators of liver hepatocellular carcinoma. BMC Cancer 2024; 24:157. [PMID: 38297250 PMCID: PMC10829225 DOI: 10.1186/s12885-024-11887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Liver Hepatocellular carcinoma (LIHC) exhibits a high incidence of liver cancer with escalating mortality rates over time. Despite this, the underlying pathogenic mechanism of LIHC remains poorly understood. MATERIALS & METHODS To address this gap, we conducted a comprehensive investigation into the role of G6PD in LIHC using a combination of bioinformatics analysis with database data and rigorous cell experiments. LIHC samples were obtained from TCGA, ICGC and GEO databases, and the differences in G6PD expression in different tissues were investigated by differential expression analysis, followed by the establishment of Nomogram to determine the percentage of G6PD in causing LIHC by examining the relationship between G6PD and clinical features, and the subsequent validation of the effect of G6PD on the activity, migration, and invasive ability of hepatocellular carcinoma cells by using the low expression of LI-7 and SNU-449. Additionally, we employed machine learning to validate and compare the predictive capacity of four algorithms for LIHC patient prognosis. RESULTS Our findings revealed significantly elevated G6PD expression levels in liver cancer tissues as compared to normal tissues. Meanwhile, Nomogram and Adaboost, Catboost, and Gbdt Regression analyses showed that G6PD accounted for 46%, 31%, and 49% of the multiple factors leading to LIHC. Furthermore, we observed that G6PD knockdown in hepatocellular carcinoma cells led to reduced proliferation, migration, and invasion abilities. Remarkably, the Decision Tree C5.0 decision tree algorithm demonstrated superior discriminatory performance among the machine learning methods assessed. CONCLUSION The potential diagnostic utility of G6PD and Decision Tree C5.0 for LIHC opens up a novel avenue for early detection and improved treatment strategies for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, 210009, China
| | - Hao Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.
| | - Baoli Zhu
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, 210009, China.
- Jiangsu Preventive Medical Association, Nanjing, 210000, Jiangsu, China.
- Center for Global Health, Nanjing Medical University, Nanjing, 211112, China.
- Jiangsu Province Engineering Research Center of Public Health Emergency, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
29
|
Qu X, Meng LC, Lu X, Chen X, Li Y, Zhou R, Zhu YJ, Luo YC, Huang JT, Shi XL, Zhang HB. Prognostic and metabolic characteristics of a novel cuproptosis-related signature in patients with hepatocellular carcinoma. Heliyon 2024; 10:e23686. [PMID: 38259960 PMCID: PMC10801206 DOI: 10.1016/j.heliyon.2023.e23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/24/2024] Open
Abstract
Cuproptosis is a novel discovered mode of programmed cell death. To identify the molecular regulatory patterns related to cuproptosis, this study was designed for exploring the correlation between cuproptosis-related genes (CRGs) and the prognosis, metabolism, and treatment of hepatocellular carcinoma (HCC). Cancer Genome Atlas (TCGA) database was used to screen 363 HCC samples, which were categorized into 2 clusters based on the expression of CRGs. Survival analysis demonstrated that overall survival (OS) was better in Cluster 1 than Cluster 2 which might to be relevant to differences in metabolic based on functional analysis. With LASSO regression analysis and univariate COX regression, 8 prognosis-related genes were screened, a differently expressed genes (DEGs) were then constructed (HCC patients' DEGs)-based signature. The signature's stability was also validated in the 2 independent cohorts and test cohorts (GSE14520, HCC dataset in PCAWG). The 1-year, 3-year, and 5-year area under the curve (AUC) were 0.756, 0.706, and 0.722, respectively. The signature could also well predict the response to chemotherapy, targeted and transcatheter arterial chemoembolization (TACE) by providing a risk score. Moreover, the correlation was uncovered by the research between the metabolism and risk score. In conclusion, a unique cuproptosis-related signature that be capable of predicting patients' prognosis with HCC, and offered valuable insights into chemotherapy, TACE and targeted therapies for these patients has been developed.
Collapse
Affiliation(s)
- Xin Qu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Ling-cui Meng
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Xi Lu
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Xian Chen
- Guangzhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Yong Li
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Rui Zhou
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Yan-juan Zhu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yi-chang Luo
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| | - Jin-tao Huang
- Department of Oncology, Guangzhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Hospital of Traditional Chinese Medicine Affiliated to Guangzhou Medical University, Guangzhou, 510130, China
| | | | - Hai-Bo Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
30
|
Yang J, Li L, Wang L, Chen R, Yang X, Wu J, Feng G, Ding J, Diao L, Chen J, Yang J. Trophoblast-derived miR-410-5p induces M2 macrophage polarization and mediates immunotolerance at the fetal-maternal interface by targeting the STAT1 signaling pathway. J Transl Med 2024; 22:19. [PMID: 38178171 PMCID: PMC10768263 DOI: 10.1186/s12967-023-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Macrophages phenotypic deviation and immune imbalance play vital roles in pregnancy-associated diseases such as spontaneous miscarriage. Trophoblasts regulate phenotypic changes in macrophages, however, their underlying mechanism during pregnancy remains unclear. Therefore, this study aimed to elucidate the potential function of trophoblast-derived miRNAs (miR-410-5p) in macrophage polarization during pregnancy. METHODS Patient decidual macrophage tissue samples in spontaneous abortion group and normal pregnancy group (those who had induced abortion for non-medical reasons) were collected at the Reproductive Medicine Center of Renmin Hospital of Wuhan University from April to December 2021. Furthermore, placental villi and decidua tissue samples were collected from patients who had experienced a spontaneous miscarriage and normal pregnant women for validation and subsequent experiments at the Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), from March 2021 to September 2022. As an animal model, 36 female mice were randomly divided into six groups as follows: naive-control, lipopolysaccharide-model, agomir-negative control prevention, agomir-410-5p prevention, agomir-negative control treatment, and agomir-410-5p treatment groups. We analyzed the miR-410-5p expression in abortion tissue and plasma samples; and supplemented miR-410-5p to evaluate embryonic absorption in vivo. The main source of miR-410-5p at the maternal-fetal interface was analyzed, and the possible target gene, signal transducer and activator of transcription (STAT) 1, of miR-410-5p was predicted. The effect of miR-410-5p and STAT1 regulation on macrophage phenotype, oxidative metabolism, and mitochondrial membrane potential was analyzed in vitro. RESULTS MiR-410-5p levels were lower in the spontaneous abortion group compared with the normal pregnancy group, and plasma miR-410-5p levels could predict pregnancy and spontaneous abortion. Prophylactic supplementation of miR-410-5p in pregnant mice reduced lipopolysaccharide-mediated embryonic absorption and downregulated the decidual macrophage pro-inflammatory phenotype. MiR-410-5p were mainly distributed in villi, and trophoblasts secreted exosomes-miR-410-5p at the maternal-fetal interface. After macrophages captured exosomes, the cells shifted to the tolerance phenotype. STAT1 was a potential target gene of miR-410-5p. MiR-410-5p bound to STAT1 mRNA, and inhibited the expression of STAT1 protein. STAT1 can drive macrophages to mature to a pro-inflammatory phenotype. MiR-410-5p competitive silencing of STAT1 can avoid macrophage immune disorders. CONCLUSION MiR-410-5p promotes M2 macrophage polarization by inhibiting STAT1, thus ensuring a healthy pregnancy. These findings are of great significance for diagnosing and preventing spontaneous miscarriage, providing a new perspective for further research in this field.
Collapse
Affiliation(s)
- Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China
- Department of Gynecology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, People's Republic of China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China.
| | - Linlin Wang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Ruizhi Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Xiaobing Yang
- Department of Clinical Laboratory, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Juanhua Wu
- Department of Gynecology, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Gang Feng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
31
|
Ge H, Zhou H, Song L, Tao Y, Hu L. Mitochondrial dysfunction and disulfidptosis co-regulate neuronal cell in neuropathic pain based on bioinformatics analysis. Mol Pain 2024; 20:17448069241290114. [PMID: 39323309 PMCID: PMC11468000 DOI: 10.1177/17448069241290114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
Neuropathic pain (NP) affects approximately 6.9-10% of the world's population and necessitates the development of novel treatments. Mitochondria are essential in the regulation of cell death. Neuroimmune mechanisms are implicated in various forms of cell death associated with NP. However, the specific involvement of mitochondrial dysfunction and disulfidptosis in NP remains uncertain. Further research is required to gain a better understanding of their combined contribution. Our comprehensive study employs a variety of bioinformatic analysis methods, including differential gene analysis, weighted gene co-expression network analysis, machine learning, functional enrichment analysis, immune infiltration, sub-cluster analysis, single-cell dimensionality reduction and cell-cell communication to gain insight into the molecular mechanisms behind these processes. Our study rationally defines a list of key gene sets for mitochondrial dysfunction and disulfidptosis. 6 hub mitochondrial genes and 3 disulfidptosis-related genes (DRGs) were found to be associated with NP. The key genes were predominantly expressed in neurons and were lowly expressed in the NP group compared to SHAM. In addition, our macrophages used the APP (Amyloid precursor protein)-CD74 (MHC class II invariant chain) pathway to interact with neurons. These results suggest that NP is interconnected with the mechanistic processes of mitochondrial dysfunction and disulfidptosis, which may contribute to clinically targeted therapies.
Collapse
Affiliation(s)
- Hejia Ge
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Liuyi Song
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Yuqing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Li Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| |
Collapse
|
32
|
Yang H, Chen D, Wu Y, Zhou H, Diao W, Liu G, Li Q. A feedback loop of PPP and PI3K/AKT signal pathway drives regorafenib-resistance in HCC. Cancer Metab 2023; 11:27. [PMID: 38111012 PMCID: PMC10726576 DOI: 10.1186/s40170-023-00311-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/29/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a principal type of liver cancer with high incidence and mortality rates. Regorafenib is a novel oral multikinase inhibitor for second-line therapy for advanced HCC. However, resistance to regorafenib is gradually becoming a dilemma for HCC and the mechanism remains unclear. In this study, we aimed to reveal the metabolic profiles of regorafenib-resistant cells and the key role and mechanism of the most relevant metabolic pathway in regorafenib resistance. METHODS Metabolomics was performed to detect the metabolic alteration between drug-sensitive and regorafenib-resistant cells. Colony formation assay, CCK-8 assay and flow cytometry were applied to observe cell colony formation, cell proliferation and apoptosis, respectively. The protein and mRNA levels were detected by western blot and RT-qPCR. Cell lines of Glucose-6-phosphate dehydrogenase(G6PD) knockdown in regorafenib-resistant cells or G6PD overexpression in HCC cell lines were stably established by lentivirus infection technique. G6PD activity, NADPH level, NADPH/NADP+ ratio, the ratio of ROS positive cells, GSH level, and GSH/GSSG ratio were detected to evaluate the anti-oxidative stress ability of cells. Phosphorylation levels of NADK were evaluated by immunoprecipitation. RESULTS Metabonomics analysis revealed that pentose phosphate pathway (PPP) was the most relevant metabolic pathway in regorafenib resistance in HCC. Compared with drug-sensitive cells, G6PD enzyme activity, NADPH level and NADPH/NADP+ ratio were increased in regorafenib-resistant cells, but the ratio of ROS positive cells and the apoptosis rate under the conditions of oxidative stress were decreased. Furthermore, G6PD suppression using shRNA or an inhibitor, sensitized regorafenib-resistant cells to regorafenib. In contrast, G6PD overexpression blunted the effects of regorafenib to drug-sensitive cells. Mechanistically, G6PD, the rate-limiting enzyme of PPP, regulated the PI3K/AKT activation. Furthermore, PI3K/AKT inhibition decreased G6PD protein expression, G6PD enzymatic activity and the capacity of PPP to anti-oxidative stress possibly by inhibited the expression and phosphorylation of NADK. CONCLUSION Taken together, a feedback loop of PPP and PI3K/AKT signal pathway drives regorafenib-resistance in HCC and targeting the feedback loop could be a promising approach to overcome drug resistance.
Collapse
Affiliation(s)
- Huihua Yang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dahong Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Diao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gaolin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Ahamed A, Hosea R, Wu S, Kasim V. The Emerging Roles of the Metabolic Regulator G6PD in Human Cancers. Int J Mol Sci 2023; 24:17238. [PMID: 38139067 PMCID: PMC10743588 DOI: 10.3390/ijms242417238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic reprogramming, especially reprogrammed glucose metabolism, is a well-known cancer hallmark related to various characteristics of tumor cells, including proliferation, survival, metastasis, and drug resistance. Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway (PPP), a branch of glycolysis, that converts glucose-6-phosphate (G6P) into 6-phosphogluconolactone (6PGL). Furthermore, PPP produces ribose-5-phosphate (R5P), which provides sugar-phosphate backbones for nucleotide synthesis as well as nicotinamide adenine dinucleotide phosphate (NADPH), an important cellular reductant. Several studies have shown enhanced G6PD expression and PPP flux in various tumor cells, as well as their correlation with tumor progression through cancer hallmark regulation, especially reprogramming cellular metabolism, sustaining proliferative signaling, resisting cell death, and activating invasion and metastasis. Inhibiting G6PD could suppress tumor cell proliferation, promote cell death, reverse chemoresistance, and inhibit metastasis, suggesting the potential of G6PD as a target for anti-tumor therapeutic strategies. Indeed, while challenges-including side effects-still remain, small-molecule G6PD inhibitors showing potential anti-tumor effect either when used alone or in combination with other anti-tumor drugs have been developed. This review provides an overview of the structural significance of G6PD, its role in and regulation of tumor development and progression, and the strategies explored in relation to G6PD-targeted therapy.
Collapse
Affiliation(s)
- Alfar Ahamed
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rendy Hosea
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
34
|
Chanda M, Anuntasomboon P, Ruangritchankul K, Cheepsunthorn P, Cheepsunthorn CL. Inhibition of non-small cell lung cancer (NSCLC) proliferation through targeting G6PD. PeerJ 2023; 11:e16503. [PMID: 38077440 PMCID: PMC10704991 DOI: 10.7717/peerj.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Background Mounting evidence has linked cancer metabolic reprogramming with altered redox homeostasis. The pentose phosphate pathway (PPP) is one of the key metabolism-related pathways that has been enhanced to promote cancer growth. The glucose 6-phosphate dehydrogenase (G6PD) of this pathway generates reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is essential for controlling cellular redox homeostasis. Objective This research aimed to investigate the growth-promoting effects of G6PD in non-small cell lung cancer (NSCLC). Methods Clinical characteristics and G6PD expression levels in lung tissues of 64 patients diagnosed with lung cancer at the King Chulalongkorn Memorial Hospital (Bangkok, Thailand) during 2009-2014 were analyzed. G6PD activity in NSCLC cell lines, including NCI-H1975 and NCI-H292, was experimentally inhibited using DHEA and siG6PD to study cancer cell proliferation and migration. Results The positive expression of G6PD in NSCLC tissues was detected by immunohistochemical staining and was found to be associated with squamous cells. G6PD expression levels and activity also coincided with the proliferation rate of NSCLC cell lines. Suppression of G6PD-induced apoptosis in NSCLC cell lines by increasing Bax/Bcl-2 ratio expression. The addition of D-(-)-ribose, which is an end-product of the PPP, increased the survival of G6PD-deficient NSCLC cell lines. Conclusion Collectively, these findings demonstrated that G6PD might play an important role in the carcinogenesis of NSCLC. Inhibition of G6PD might provide a therapeutic strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Makamas Chanda
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Anuntasomboon
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
35
|
Bastin A, Abbasi F, Roustaei N, Abdesheikhi J, Karami H, Gholamnezhad M, Eftekhari M, Doustimotlagh A. Severity of oxidative stress as a hallmark in COVID-19 patients. Eur J Med Res 2023; 28:558. [PMID: 38049886 PMCID: PMC10696844 DOI: 10.1186/s40001-023-01401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/27/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Understanding the mechanisms and identifying effective treatments for the COVID-19 outbreak are imperative. Therefore, this study aimed to assess the antioxidant status and oxidative stress parameters as potential pivotal mechanisms in asymptomatic, non-severe, and severe COVID-19 patients. METHODS This study is a case-control study that was performed on patients referred to the Persian Gulf Martyrs Hospital of Bushehr University of Medical Sciences, Bushehr, Iran, from May 2021 to September 2021. A total of 600 COVID-19 patients (non-severe and severe group) and 150 healthy volunteers of the same age and sex were selected during the same period. On the first day of hospitalization, 10 ml of venous blood was taken from subjects. Then, hematological, biochemical, serological, antioxidant and oxidative stress parameters were determined. RESULTS Our results indicated that ESR, CRP, AST, ALT, and LDH significantly augmented in the severe group as compared to the non-severe and normal groups (P ≤ 0.05). It was observed that the levels of FRAP, G6PD activity, and SOD activity significantly reduced in the non-severe patients in comparison with the severe and normal groups (P ≤ 0.05). We found that MDA content and NO metabolite markedly increased in severe patients as compared to the non-severe group. CONCLUSIONS Taken together, it seems that the balance between antioxidants and oxidants was disturbed in COVID-19 patients in favor of oxidant markers. In addition, this situation caused more aggravation in severe patients as compared to the non-severe group.
Collapse
Affiliation(s)
- Alireza Bastin
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Abbasi
- Department of Infectious Disease, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Roustaei
- Department of Biostatistics and Epidemiology, School of Health, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Jahangir Abdesheikhi
- Department of Clinical Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Karami
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Gholamnezhad
- Department of Infectious Disease, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdieh Eftekhari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Amirhossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
36
|
Signoretti C, Gupte SA. G6PD Orchestrates Genome-Wide DNA Methylation and Gene Expression in the Vascular Wall. Int J Mol Sci 2023; 24:16727. [PMID: 38069050 PMCID: PMC10706803 DOI: 10.3390/ijms242316727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
37
|
Di Giacomo S, Percaccio E, Vitalone A, Ingallina C, Mannina L, Macone A, Di Sotto A. Characterization of the Chemopreventive Properties of Cannabis sativa L. Inflorescences from Monoecious Cultivars Grown in Central Italy. PLANTS (BASEL, SWITZERLAND) 2023; 12:3814. [PMID: 38005711 PMCID: PMC10675481 DOI: 10.3390/plants12223814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Hemp bioproducts hold great promise as valuable materials for nutraceutical and pharmaceutical applications due to their diverse bioactive compounds and potential health benefits. In line with this interest and in an attempt to valorize the Lazio Region crops, this present study investigated chemically characterized hydroalcoholic and organic extracts, obtained from the inflorescences of locally cultivated Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties. In order to highlight the possible chemopreventive power of the tested samples, a bioactivity screening was performed, which included studying the antimutagenic activity, radical scavenging power, cytotoxicity in human hepatoma HepG2 cells, leakage of lactate dehydrogenase (LDH) and modulation of the oxidative stress parameters and glucose-6-phosphate dehydrogenase (G6PDH) involved in the regulation of the cell transformation and cancer proliferation. Tolerability studies in noncancerous H69 cholangiocytes were performed, too. The organic extracts showed moderate to strong antimutagenic activities and a marked cytotoxicity in the HepG2 cells, associated with an increased oxidative stress and LDH release, and to a G6PDH modulation. The hydroalcoholic extracts mainly exhibited radical scavenging properties with weak or null activities in the other assays. The extracts were usually well-tolerated in H69 cells, except for the highest concentrations which impaired cell viability, likely due to an increased oxidative stress. The obtained results suggest a possibility in the inflorescences from the Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties as source of bioactive compounds endowed with genoprotective and chemopreventive properties that could be harnessed as preventive or adjuvant healing strategies.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| | - Annabella Vitalone
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| | - Cinzia Ingallina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.I.); (L.M.)
| | - Luisa Mannina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.I.); (L.M.)
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| |
Collapse
|
38
|
Salamanna F, Caravelli S, Marchese L, Carniato M, Vocale E, Gardini G, Puccetti G, Mosca M, Giavaresi G. Proprioception and Mechanoreceptors in Osteoarthritis: A Systematic Literature Review. J Clin Med 2023; 12:6623. [PMID: 37892761 PMCID: PMC10607296 DOI: 10.3390/jcm12206623] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Osteoarthritis (OA) is one of the most common chronic diseases in the world. It is frequently accompanied by high levels of persistent pain, as well as substantial impairments in function and functional capacity. This review aims to systematically analyze the changes in proprioception and related mechanoreceptors in OA patients. METHODS Studies from September 2013 to September 2023 were identified by conducting searches on the PubMed, Web of Science, and Scopus electronic databases following the PRISMA statement. One reviewer independently assessed and screened the literature, extracted the data, and graded the studies. The body of evidence underwent an evaluation and grading process using the ROBINS-I tool, which was specifically designed to assess the risk of bias in non-randomized studies of interventions. Results were summarized using descriptive methods. RESULTS A search through 37 studies yielded 14 clinical studies that were ultimately included. The primary focus of the studies was on the knee joint, particularly the posterior cruciate ligament (PCL). The studies found that PCL in OA patients had impaired proprioceptive accuracy, possibly due to changes in mechanoreceptors (Ruffini, Pacini, and Golgi Mazzoni corpuscles). This suggests that dysfunctional articular mechanoreceptors, especially in severe cases of OA, may contribute to reduced proprioception. Dynamic stabilometry also identified significant proprioceptive deficits in patients with knee articular cartilage lesions, underscoring the impact of such lesions on knee proprioception. CONCLUSIONS Literature data have shown that proprioceptive accuracy may play an important role in OA, particularly in the knee PCL and cartilage. However, the role of proprioception and related mechanoreceptors needs to be further clarified. Future studies focusing on the relationship between proprioception, OA disease, and symptoms, considering age and gender differences, and exploring OA joints other than the knee should be conducted to improve clinical and surgical outcomes in cases where proprioception and mechanoreceptors are impaired in OA patients.
Collapse
Affiliation(s)
- Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.M.); (M.C.); (G.G.)
| | - Silvio Caravelli
- IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (S.C.); (M.M.)
| | - Laura Marchese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.M.); (M.C.); (G.G.)
| | - Melania Carniato
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.M.); (M.C.); (G.G.)
| | - Emanuele Vocale
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (E.V.); (G.G.); (G.P.)
| | - Giammarco Gardini
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (E.V.); (G.G.); (G.P.)
| | - Giulia Puccetti
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (E.V.); (G.G.); (G.P.)
| | - Massimiliano Mosca
- IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy; (S.C.); (M.M.)
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.M.); (M.C.); (G.G.)
| |
Collapse
|
39
|
Temel Y. Effects of Arbutin on Potassium Bromate-Induced Erythrocyte Toxicity in Rats: Biochemical Evaluation of Some Metabolic Enzyme Activities In Vivo and In Vitro. ACS OMEGA 2023; 8:36581-36587. [PMID: 37810665 PMCID: PMC10552105 DOI: 10.1021/acsomega.3c06101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
In the present study, the inhibitory effect of potassium bromate on the pentose phosphate pathway and intracellular antioxidant systems enzymes (glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione S-transferase (GST), and thioredoxin reductase (TrxR)) and the role of arbutin in ameliorating this inhibition were investigated. In the in vivo phase of the study, Wistar Albino rats (28 male adults) were randomly divided into four groups. Control (n = 7): isotonic serum (0.5 mL, i.p), potassium bromate group (n = 7): potassium bromate (100 mg/kg), arbutin group (n = 7): arbutin (i.p.) (50 mg/kg/day), potassium bromate + arbutin, and Group (n = 7): potassium bromate (100 mg/kg) + arbutin (50 mg/kg/day) (i.p). The results of in vivo study showed that the activities of G6PD, 6PGD, GR, and TrxR enzymes were strongly inhibited in potassium bromate groups (p < 0.05). It was determined that GST enzyme activity decreased in the potassium bromate group, but this decrease was not statistically significant compared to the control group (p ⩾ 0.05). A statistically significant increase was found in G6PD, 6PGD, GST, and TrxR enzyme activities in the arbutin group compared to the control group (p < 0.05). The increase in GR enzyme activity was not statistically significant (p ⩾ 0.05). The potassium bromate + arbutin group's enzyme activity increased in comparison to the potassium bromate group and was discovered to be closer to the control group. It was found that potassium bromate inhibited the 6PGD enzyme obtained from rat erythrocyte tissues with IC50 = 346 μM value and Ki = 434.4 μM ± 6.1 value, and the inhibition was noncompetitive.
Collapse
Affiliation(s)
- Yusuf Temel
- Solhan
Health Services Vocational School, Bingöl
University, Bingöl12000, Turkey
- Faculty
of Arts and Sciences, Bingol University, Bingol12000, Turkiye
| |
Collapse
|
40
|
Ran M, Zhou Y, Guo Y, Huang D, Zhang SL, Tam KY. Cytosolic malic enzyme and glucose-6-phosphate dehydrogenase modulate redox balance in NSCLC with acquired drug resistance. FEBS J 2023; 290:4792-4809. [PMID: 37410361 DOI: 10.1111/febs.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
Lung cancer cells often show elevated levels of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH). However, the connections between deregulated redox homeostasis in different subtypes of lung cancer and acquired drug resistance in lung cancer have not yet been fully established. Herein, we analyzed different subtypes of lung cancer data reported in the Cancer Cell Line Encyclopedia (CCLE) database, the Cancer Genome Atlas program (TCGA), and the sequencing data obtained from a gefitinib-resistant non-small-cell lung cancer (NSCLC) cell line (H1975GR). Using flux balance analysis (FBA) model integrated with multiomics data and gene expression profiles, we identified cytosolic malic enzyme 1 (ME1) and glucose-6-phosphate dehydrogenase as the major contributors to the significantly upregulated NADPH flux in NSCLC tissues as compared with normal lung tissues, and gefitinib-resistant NSCLC cell line as compared with the parental cell line. Silencing the gene expression of either of these two enzymes in two osimertinib-resistant NSCLC cell lines (H1975OR and HCC827OR) exhibited strong antiproliferative effects. Our findings not only underscored the pivotal roles of cytosolic ME1 and glucose-6-phosphate dehydrogenase in regulating redox states in NSCLC cells but also provided novel insights into their potential roles in drug-resistant NSCLC cells with disturbed redox states.
Collapse
Affiliation(s)
- Maoxin Ran
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, China
| | - Yan Zhou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, China
| | - Yizhen Guo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, China
| | - Ding Huang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, China
| | - Kin Yip Tam
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, China
| |
Collapse
|
41
|
Bishayee K, Lee SH, Park YS. The Illustration of Altered Glucose Dependency in Drug-Resistant Cancer Cells. Int J Mol Sci 2023; 24:13928. [PMID: 37762231 PMCID: PMC10530558 DOI: 10.3390/ijms241813928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
A chemotherapeutic approach is crucial in malignancy management, which is often challenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with normal cells. However, the recent insights into the metabolic profiles of chemo-resistant cancer cells surprisingly illustrated the activation of distinct pathways compared with chemo-sensitive or primary cancer cells. These distinct metabolic dynamics are vital and contribute to the shift from chemo-sensitivity to chemo-resistance in cancer. This review will discuss the important metabolic alterations in cancer cells that lead to drug resistance.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | | | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
42
|
Duarte PRA, Franco RR, Vilela DD, Caixeta DC, de Souza AV, Deconte SR, Mendes-Rodrigues C, Fidale TM, Espindola FS, Teixeira RR, Resende ES. Effects of an L-Leucine-Rich Diet on Liver and Kidneys in a Doxorubicin Toxicity Model. Life (Basel) 2023; 13:1823. [PMID: 37763227 PMCID: PMC10532802 DOI: 10.3390/life13091823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023] Open
Abstract
Supplements and diets containing L-leucine, a branched-chain amino acid, have been considered beneficial for controlling oxidative stress and maintaining cardiac tissue in toxicity models using doxorubicin, a drug widely used in cancer treatment. However, there is a lack of studies in the literature that assess the effects of this diet on other organs and tissues, such as the liver and kidneys. Therefore, this study aimed to evaluate the effects of a leucine-rich diet on the liver and kidneys of healthy rats submitted to the doxorubicin toxicity model by analyzing biomarkers of oxidative stress and histological parameters. The animals were divided into four groups: naive, doxorubicin, L-leucine, and doxorubicin + L-leucine, and the diet was standardized with 5% L-leucine and a dose of 7.5 mg/kg of doxorubicin. We evaluated tissue injury parameters and biomarkers of oxidative stress, including enzymes, antioxidant profile, and oxidized molecules, in the liver and kidneys. Although some studies have indicated benefits of a diet rich in L-leucine for the muscle tissue of animals that received doxorubicin, our results showed that the liver was the most affected organ by the L-leucine-rich diet since the diet reduced its antioxidant defenses and increased the deposit of collagen and fat in the hepatic tissue. In the kidneys, the main alteration was the reduction in the number of glomeruli. These results contribute to the scientific literature and encourage further studies to evaluate the effects of an L-leucine-rich diet or its supplementation, alone or combined with doxorubicin using an animal model of cancer. Therefore, our study concludes that the leucine-rich diet itself was harmful and, when co-administered with doxorubicin, was not able to maintain the antioxidant defenses and tissue structure of the evaluated organs.
Collapse
Affiliation(s)
- Poliana Rodrigues Alves Duarte
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
| | - Rodrigo Rodrigues Franco
- Departamento de Medicina, Universidade Federal de Catalão, Catalão 75706-881, GO, Brazil;
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Danielle Diniz Vilela
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Douglas Carvalho Caixeta
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Adriele Vieira de Souza
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Simone Ramos Deconte
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
| | - Clesnan Mendes-Rodrigues
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
| | - Thiago Montes Fidale
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
- Departamento de Medicina, Universidade Federal de Catalão, Catalão 75706-881, GO, Brazil;
| | - Foued Salmen Espindola
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Renata Roland Teixeira
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Elmiro Santos Resende
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
| |
Collapse
|
43
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
44
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
45
|
Lu J, Ling X, Sun Y, Liu L, Liu L, Wang X, Lu C, Ren C, Han X, Yu Z. FDX1 enhances endometriosis cell cuproptosis via G6PD-mediated redox homeostasis. Apoptosis 2023; 28:1128-1140. [PMID: 37119432 DOI: 10.1007/s10495-023-01845-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 05/01/2023]
Abstract
Cuproptosis is a new form of programmed cell death, which is associated with the mitochondrial TCA (tricarboxylic acid) cycle. But the functions of cuproptosis in endometriosis progression are still unknown. Here, we find that cuproptosis suppresses the growth of endometriosis cells and the growth of ectopic endometrial tissues in a mouse model. FDX1 as a key regulator in cuproptosis pathway could promote cuproptosis in endometriosis cells. Interestingly, FDX1 interacts with G6PD, and reduces its protein stability, which predominantly affects the cellular redox-regulating systems. Then, the reduced G6PD activity enhances cuproptosis via down-regulating NADPH and GSH levels. Collectively, our study demonstrates that FDX1 mediates cuproptosis in endometriosis via G6PD pathway, resulting in repression of endometriosis cell proliferation and metastasis.
Collapse
Affiliation(s)
- Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Yonghong Sun
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Lan Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Xiaoyun Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| | - Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
46
|
Ortega MA, De Leon-Oliva D, García-Montero C, Fraile-Martinez O, Boaru DL, de Castro AV, Saez MA, Lopez-Gonzalez L, Bujan J, Alvarez-Mon MA, García-Honduvilla N, Diaz-Pedrero R, Alvarez-Mon M. Reframing the link between metabolism and NLRP3 inflammasome: therapeutic opportunities. Front Immunol 2023; 14:1232629. [PMID: 37545507 PMCID: PMC10402745 DOI: 10.3389/fimmu.2023.1232629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Inflammasomes are multiprotein signaling platforms in the cytosol that senses exogenous and endogenous danger signals and respond with the maturation and secretion of IL-1β and IL-18 and pyroptosis to induce inflammation and protect the host. The inflammasome best studied is the Nucleotide-binding oligomerization domain, leucine-rich repeat-containing family pyrin domain containing 3 (NLRP3) inflammasome. It is activated in a two-step process: the priming and the activation, leading to sensor NLRP3 oligomerization and recruitment of both adaptor ASC and executioner pro-caspase 1, which is activated by cleavage. Moreover, NLRP3 inflammasome activation is regulated by posttranslational modifications, including ubiquitination/deubiquitination, phosphorylation/dephosphorylation, acetylation/deacetylation, SUMOylation and nitrosylation, and interaction with NLPR3 protein binding partners. Moreover, the connection between it and metabolism is receiving increasing attention in this field. In this review, we present the structure, functions, activation, and regulation of NLRP3, with special emphasis on regulation by mitochondrial dysfunction-mtROS production and metabolic signals, i.e., metabolites as well as enzymes. By understanding the regulation of NLRP3 inflammasome activation, specific inhibitors can be rationally designed for the treatment and prevention of various immune- or metabolic-based diseases. Lastly, we review current NLRP3 inflammasome inhibitors and their mechanism of action.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Amador Velazquez de Castro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Department of General and Digestive Surgery, University Hospital Príncipe de Asturias, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Spain
| |
Collapse
|
47
|
Rodríguez-Ruiz M, Ramos MC, Campos MJ, Díaz-Sánchez I, Cautain B, Mackenzie TA, Vicente F, Corpas FJ, Palma JM. Pepper Fruit Extracts Show Anti-Proliferative Activity against Tumor Cells Altering Their NADPH-Generating Dehydrogenase and Catalase Profiles. Antioxidants (Basel) 2023; 12:1461. [PMID: 37507999 PMCID: PMC10376568 DOI: 10.3390/antiox12071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is considered one of the main causes of human death worldwide, being characterized by an alteration of the oxidative metabolism. Many natural compounds from plant origin with anti-tumor attributes have been described. Among them, capsaicin, which is the molecule responsible for the pungency in hot pepper fruits, has been reported to show antioxidant, anti-inflammatory, and analgesic activities, as well as anti-proliferative properties against cancer. Thus, in this work, the potential anti-proliferative activity of pepper (Capsicum annuum L.) fruits from diverse varieties with different capsaicin contents (California < Piquillo < Padrón < Alegría riojana) against several tumor cell lines (lung, melanoma, hepatoma, colon, breast, pancreas, and prostate) has been investigated. The results showed that the capsaicin content in pepper fruits did not correspond with their anti-proliferative activity against tumor cell lines. By contrast, the greatest activity was promoted by the pepper tissues which contained the lowest capsaicin amount. This indicates that other compounds different from capsaicin have this anti-tumor potentiality in pepper fruits. Based on this, green fruits from the Alegría riojana variety, which has negligible capsaicin levels, was used to study the effect on the oxidative and redox metabolism of tumor cell lines from liver (Hep-G2) and pancreas (MIA PaCa-2). Different parameters from both lines treated with crude pepper fruit extracts were determined including protein nitration and protein S-nitrosation (two post-translational modifications (PTMs) promoted by nitric oxide), the antioxidant capacity, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), among others. In addition, the activity of the NADPH-generating enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and NADP-isocitrate dehydrogenase (NADP-ICDH) was followed. Our data revealed that the treatment of both cell lines with pepper fruit extracts altered their antioxidant capacity, enhanced their catalase activity, and considerably reduced the activity of the NADPH-generating enzymes. As a consequence, less H2O2 and NADPH seem to be available to cells, thus avoiding cell proliferation and possibly triggering cell death in both cell lines.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - María C Ramos
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - María J Campos
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Inmaculada Díaz-Sánchez
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Bastien Cautain
- Evotec, University Paul Sabatier Toulouse III, 31100 Toulouse, France
| | - Thomas A Mackenzie
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisca Vicente
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| |
Collapse
|
48
|
Hu J, Song F, Kang W, Xia F, Song Z, Wang Y, Li J, Zhao Q. Integrative analysis of multi-omics data for discovery of ferroptosis-related gene signature predicting immune activity in neuroblastoma. Front Pharmacol 2023; 14:1162563. [PMID: 37521469 PMCID: PMC10373597 DOI: 10.3389/fphar.2023.1162563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 08/01/2023] Open
Abstract
Immunotherapy for neuroblastoma remains unsatisfactory due to heterogeneity and weak immunogenicity. Exploring powerful signatures for the evaluation of immunotherapy outcomes remain the primary purpose. We constructed a ferroptosis-related gene (FRG) signature by least absolute shrinkage and selection operator and Cox regression, identified 10 independent prognostic FRGs in a training cohort (GSE62564), and then verified them in an external validation cohort (TCGA). Associated with clinical factors, the signature accurately predicts overall survival of 3, 5, and 10 years. An independent prognostic nomogram, which included FRG risk, age, stage of the International Neuroblastoma Staging System, and an MYCN status, was constructed. The area under the curves showed satisfactory prognostic predicting performance. Through bulk RNA-seq and proteomics data, we revealed the relationship between hub genes and the key onco-promoter MYCN gene and then validated the results in MYCN-amplified and MYCN-non-amplified cell lines with qRT-PCR. The FRG signature significantly divided patients into high- and low-risk groups, and the differentially expressed genes between the two groups were enriched in immune actions, autophagy, and carcinogenesis behaviors. The low-risk group embodied higher positive immune component infiltration and a higher expression of immune checkpoints with a more favorable immune cytolytic activity (CYT). We verified the predictive power of this signature with data from melanoma patients undergoing immunotherapy, and the predictive power was satisfactory. Gene mutations were closely related to the signature and prognosis. AURKA and PRKAA2 were revealed to be nodal hub FRGs in the signature, and both were shown to have significantly different expressions between the INSS stage IV and other stages after immunohistochemical validation. With single-cell RNA-seq analysis, we found that genes related to T cells were enriched in TNFA signaling and interferon-γ hallmark. In conclusion, we constructed a ferroptosis-related gene signature that can predict the outcomes and work in evaluating the effects of immunotherapy.
Collapse
Affiliation(s)
- Jiajian Hu
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengju Song
- Key Laboratory of Molecular Cancer Epidemiology, Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjuan Kang
- Key Laboratory of Molecular Cancer Epidemiology, Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fantong Xia
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zi’an Song
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yangyang Wang
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jie Li
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
49
|
Qi C, Ma J, Sun J, Wu X, Ding J. The role of molecular subtypes and immune infiltration characteristics based on disulfidptosis-associated genes in lung adenocarcinoma. Aging (Albany NY) 2023; 15:204782. [PMID: 37315289 PMCID: PMC10292876 DOI: 10.18632/aging.204782] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer which accounts for about 40% of all lung cancers. Early detection, risk stratification and treatment are important for improving outcomes for LUAD. Recent studies have found that abnormal accumulation of cystine and other disulfide occurs in the cell under glucose starvation, which induces disulfide stress and increases the content of disulfide bond in actin cytoskeleton, resulting in cell death, which is defined as disulfidptosis. Because the study of disulfidptosis is in its infancy, its role in disease progression is still unclear. In this study, we detected the expression and mutation of disulfidptosis genes in LUAD using a public database. Clustering analysis based on disulfidptosis gene was performed and differential genes of disulfidptosis subtype were analyzed. 7 differential genes of disulfidptosis subtype were used to construct a prognostic risk model, and the causes of prognostic differences were investigated by immune-infiltration analysis, immune checkpoint analysis, and drug sensitivity analysis. qPCR was used to verify the expression of 7 key genes in lung cancer cell line (A549) and normal bronchial epithelial cell line (BEAS-2B). Since G6PD had the highest risk factor of lung cancer, we further verified the protein expression of G6PD in lung cancer cells by western blot, and confirmed through colony formation experiment that interference with G6PD was able to significantly inhibit the proliferation ability of lung cancer cells. Our results provide evidence for the role of disulfidptosis in LUAD and provide new ideas for individualized precision therapy of LUAD.
Collapse
Affiliation(s)
- Cui Qi
- Department of Respiratory Medicine, Qingdao Women’s and Children’s Hospital, Qingdao, China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinjin Sun
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jian Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
50
|
Quds R, Iqbal Z, Arif A, Mahmood R. Mancozeb-induced cytotoxicity in human erythrocytes: enhanced generation of reactive species, hemoglobin oxidation, diminished antioxidant power, membrane damage and morphological changes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105453. [PMID: 37248021 DOI: 10.1016/j.pestbp.2023.105453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Mancozeb is an ethylene bis-dithiocarbamate fungicide extensively used in agriculture to safeguard crops from various fungal diseases. The general population is exposed to mancozeb through consumption of contaminated food or water. Here, we have investigated the effect of mancozeb on isolated human erythrocytes under in vitro conditions. Erythrocytes were treated with different concentrations of mancozeb (0, 5, 10, 25, 50, 100 μM) and incubated for 24 h at 37 °C. Analysis of biochemical parameters and cell morphology showed dose-dependent toxicity of mancozeb in human erythrocytes. Mancozeb treatment caused hemoglobin oxidation and heme degradation. Protein and lipid oxidation were enhanced, while a significant decrease was seen in reduced glutathione and total sulfhydryl content. A significant increase in the generation of reactive oxygen and nitrogen species was detected in mancozeb-treated erythrocytes. The antioxidant capacity and the activity of key antioxidant enzymes were greatly diminished, while crucial metabolic pathways were inhibited in erythrocytes. Damage to the erythrocyte membrane on mancozeb treatment was apparent from increased cell lysis and osmotic fragility, along with the impairment of the plasma membrane redox system. Mancozeb also caused morphological alterations and transformed the normal discoid-shaped erythrocytes into echinocytes and stomatocytes. Thus, mancozeb induces oxidative stress in human erythrocytes, impairs the antioxidant defense system, oxidizes cellular components, that will adversely affect erythrocyte structure and function.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|