1
|
Artimani T, Asl SS, Amiri I, Pilehvari S, Yavangi M, Mohammadpour N, Moravej FG. Effect of Different Concentrations of PRP on the Expression of Factors Involved in the Endometrial Receptivity in the Human Endometrial Cells from RIF Patients Compared to the Controls. Reprod Sci 2024:10.1007/s43032-024-01744-z. [PMID: 39496922 DOI: 10.1007/s43032-024-01744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/26/2024] [Indexed: 11/06/2024]
Abstract
Platelet-rich plasma (PRP) has been suggested for the improvement of endometrial growth and receptivity in the patients with recurrent implantation failure (RIF). The aim of present study was to investigate the impact of different concentration of PRP on the expression of genes involved in the endometrial receptivity in the human endometrial cells from RIF and controls with thin and normal endometrium in vitro. In this cross-sectional study, endometrial biopsies were obtained from 14 healthy fertile women and 14 women with RIF. Endometrial cells from 4 different group (RIF and control with endometrial thickness < 7 mm and > 7 mm) were cultured with three different concentration of PRP 3%, 5% and 10%. Expression of leukemia inhibitory factor (LIF), COX2 and P53, estrogen receptors (ERs) and progesterone receptors (PRs) genes were measured using quantitative real-time polymerase chain reaction (PCR). Protein expression levels of LIF, COX2 and p53 were evaluated using Western Blot method (WB). There was a significant decrease in the expression of PROA/b, ER2/b, LIF/b, COX2/b and P53/b genes in the RIF groups compared to the controls. Treatment with 5% and 10% PRP caused a significant increase in the gene expression of PRs, ERs, LIF/b, COX2/b and p53 in the RIF groups. Moreover, protein expression of COX2/b, LIF/b and p53/b increased following treatment with PRP in the RIF group with the endometrium thickness < 7 mm. PRP enhances expression of LIF, COX2, p53, ERs and PRs in the RIF patients with thin endometrium which may improve endometrium receptivity.
Collapse
Affiliation(s)
- Tayebe Artimani
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sara Soleimani Asl
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shamim Pilehvari
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Mahnaz Yavangi
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Nooshin Mohammadpour
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Fahimeh Ghasemi Moravej
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Miao J, Gao L, Liu X, Cai W, Chen L, Chen M, Sun Y. Exploring the therapeutic mechanisms of Yikang decoction in polycystic ovary syndrome: an integration of GEO datasets, network pharmacology, and molecular dynamics simulations. Front Med (Lausanne) 2024; 11:1455964. [PMID: 39421869 PMCID: PMC11484630 DOI: 10.3389/fmed.2024.1455964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Objective The incidence of Polycystic Ovary Syndrome (PCOS) is increasing annually. This study aims to investigate the therapeutic mechanisms of Yikang Decoction (YKD) in the treatment of PCOS through the integration of GEO datasets, network pharmacology, and dynamic simulation. Methods Active ingredients of YKD and their targets were collected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform. Disease-relevant targets for PCOS were retrieved from several databases, including GeneCards, OMIM, PharmGKB, DrugBank, and GEO. The underlying pathways associated with the overlapping targets between YKD and PCOS were identified using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The mechanisms of interaction between the core targets and components were further explored through molecular docking and molecular dynamics simulations (MD). Results 139 potential active components and 315 targets of YKD were identified. A topological analysis of the PPI network revealed 10 core targets. These targets primarily participated in the regulation of biological processes, including cell metabolism, apoptosis, and cell proliferation. The pathways associated with treating PCOS encompassed PI3K-Akt signaling pathway, Lipid and atherosclerosis, MAPK signaling pathways, and Endocrine resistance signaling pathways. Moreover, molecular docking and MD have been shown to reveal a good binding capacity between active compounds and screening targets. Conclusion This study systematically investigates the multi-target mechanisms of YKD in the treatment of PCOS, with preliminary verification provided through molecular docking and MD. The findings offer compelling evidence supporting the efficacy of YKD in treating PCOS.
Collapse
Affiliation(s)
- Jiang Miao
- Department of Pharmacy, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - LiXuan Gao
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Xi Liu
- Wuyanling National Natural Reserve Administrative of Zhejiang, Wenzhou, China
| | - Wenpin Cai
- Department of Laboratory Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Lei Chen
- Department of Pharmacy, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Mojinzi Chen
- Department of Chinese Internal Medicine, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Yun Sun
- Department of Gynaecology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
3
|
Yu Z, Yang W, Zhang Q, Zheng M. Unveiling the impact of estrogen exposure on ovarian cancer: a comprehensive risk model and immune landscape analysis. Toxicol Mech Methods 2024:1-13. [PMID: 39252197 DOI: 10.1080/15376516.2024.2402865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
This study examines the impact of estrogenic compounds like bisphenol A (BPA), estradiol (E2), and zearalenone (ZEA) on human ovarian cancer, focusing on constructing a risk model, conducting gene set variation analysis (GSVA), and evaluating immune infiltration. Differential gene expression analysis identified 980 shared differentially expressed genes (DEGs) in human ovarian cells exposed to BPA, E2, and ZEA, indicating disruptions in ribosome biogenesis and RNA processing. Using the cancer genome atlas ovarian cancer (TCGA-OV) dataset, a least absolute shrinkage and selection operator (LASSO)-based risk model was developed incorporating prognostic genes 4-hydroxyphenylpyruvate dioxygenase like (HPDL), Thy-1 cell surface antigen (THY1), and peptidase inhibitor 3 (PI3). This model effectively stratified ovarian cancer patients into high-risk and low-risk categories, showing significant differences in overall survival, disease-specific survival, and progression-free survival. GSVA analysis linked HPDL expression to pathways related to the cell cycle, DNA damage, and repair, while THY1 and PI3 were associated with apoptosis, hypoxia, and proliferation pathways. Immune infiltration analysis revealed distinct immune cell profiles for high and low-expression groups of HPDL, THY1, and PI3, indicating their influence on the tumor microenvironment. The findings demonstrate that estrogenic compounds significantly alter gene expression and oncogenic pathways in ovarian cancer. The risk model integrating HPDL, THY1, and PI3 offers a strong prognostic tool, with GSVA and immune infiltration analyses providing insights into the interplay between these genes and the tumor microenvironment, suggesting potential targets for personalized therapies.
Collapse
Affiliation(s)
- Zhongna Yu
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Weili Yang
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qinwei Zhang
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Mengyu Zheng
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Guo B, Zhu H, Xiao C, Zhang J, Liu X, Fang Y, Wei B, Zhang J, Cao Y, Zhan L. NLRC5 exerts anti-endometriosis effects through inhibiting ERβ-mediated inflammatory response. BMC Med 2024; 22:351. [PMID: 39218863 PMCID: PMC11367751 DOI: 10.1186/s12916-024-03571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Endometriosis is well known as a chronic inflammatory disease. The development of endometriosis is heavily influenced by the estrogen receptor β (ERβ), while NOD-like receptors (NLRs) family CARD domain-containing 5 (NLRC5) exhibits anti-inflammatory properties during endometriosis. However, whether NLRC5-mediated anti-inflammation is involved in the ERβ-mediated endometriosis is still uncertain. This study aimed to assess that relation. METHODS Nine cases of eutopic endometrial tissue and ten cases of ectopic endometrial tissue were collected from patients with endometriosis, and endometrial samples from ten healthy fertile women were analyzed, and the expression levels of ERβ were quantified using immunohistochemistry (IHC). Subsequently, we constructed mouse model of endometriosis by intraperitoneal injection. We detected the expression of ERβ, NLRC5, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-10 and measured the volume of ectopic lesions in mice with endometriosis. In vitro, human endometrial stromal cells (hESCs) were transfected respectively with ERβ-overexpressing and NLRC5-overexpressing plasmids. We then assessed the expression of ERβ and NLRC5 using quantitative real-time PCR (qRT-PCR) and western blot analysis. Furthermore, we measured the concentrations of TNF-α, IL-6, and IL-10 in the cell culture supernatant through enzyme-linked immunosorbent assay (ELISA). Additionally, we evaluated the migration and invasion ability of hESCs using transwell and wound healing assays. RESULTS Inhibition of NLRC5 expression promotes the development of ectopic lesions in mice with endometriosis, upregulates the expression of pro-inflammatory factors TNF-α and IL-6, and downregulates the expression of anti-inflammatory factor IL-10. The high expression of NLRC5 in endometriosis depended on the ERβ overexpression. And ERβ promoted the migration of hESCs partially depend on inflammatory microenvironment. Lastly, NLRC5 overexpression inhibited ERβ-mediated development and inflammatory response of endometriosis. CONCLUSIONS Our results suggest that the innate immune molecule NLRC5-mediated anti-inflammation participates in ERβ-mediated endometriosis development, and partly clarifies the pathological mechanism of endometriosis, expanding our knowledge of the specific molecules related to the inflammatory response involved in endometriosis and potentially providing a new therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Haiqing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Chengwei Xiao
- Department of Obstetrics and Gynecology, Bengbu Hospital of Shanghai General Hospital, Bengbu, 233040, Anhui, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233040, Anhui, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Xiaojing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Yuan Fang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Junhui Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
5
|
Li P, Chen Y, Xiang Y, Guo R, Li X, Liu J, Zhou Y, Fu X. 17β-estradiol promotes myeloid-derived suppressor cells functions and alleviates inflammatory bowel disease by activation of Stat3 and NF-κB signalings. J Steroid Biochem Mol Biol 2024; 242:106540. [PMID: 38719162 DOI: 10.1016/j.jsbmb.2024.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
Inflammatory bowel disease (IBD) describes a group of clinically common autoimmune diseases characterized by chronic intestinal inflammation, with gender differences in prevalence. Estrogen has been previously shown to exert anti-inflammatory action in IBD development, however, the mechanisms remain obscure. Recent research has revealed that myeloid-derived suppressor cells (MDSCs) play a protective role in IBD pathogenesis. To investigate the molecular mechanisms of estrogen steroid 17β-estradiol (E2) in IBD progression, we established IBD mouse models (DNB-induced) with or without prior ovariectomy (OVX) and E2 implantation. We found that OVX led to worse IBD symptoms and reduced MDSCs frequency, whereas E2 significantly alleviated these effects in vivo. Moreover, in vitro experiments showed that E2 promoted the proliferation and immunosuppressive function of MDSCs through phosphorylation of Stat3 and p65. Mechanistically, E2-mediated Stat3/p65 phosphorylation depends on the interaction between HOTAIR, a long non-coding RNA that are well-known in MDSCs proliferation, and Stat3/p65 respectively. In conclusion, our study revealed that E2 promotes the expansion and immunosuppressive function of MDSCs, and thus diminished the occurrence and development of IBD.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China; Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, P.R. China
| | - Yiwen Chen
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yixiao Xiang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ruixin Guo
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaosa Li
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China.
| | - Yuting Zhou
- Department of Biotechnology, School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.
| | - Xiaodong Fu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China; Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China.
| |
Collapse
|
6
|
Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L. The role of estrogen in Alzheimer's disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 2024:10.1007/s11010-024-05071-4. [PMID: 39088186 DOI: 10.1007/s11010-024-05071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Estrogens are pivotal regulators of brain function throughout the lifespan, exerting profound effects from early embryonic development to aging. Extensive experimental evidence underscores the multifaceted protective roles of estrogens on neurons and neurotransmitter systems, particularly in the context of Alzheimer's disease (AD) pathogenesis. Studies have consistently revealed a greater risk of AD development in women compared to men, with postmenopausal women exhibiting heightened susceptibility. This connection between sex factors and long-term estrogen deprivation highlights the significance of estrogen signaling in AD progression. Estrogen's influence extends to key processes implicated in AD, including amyloid precursor protein (APP) processing and neuronal health maintenance mediated by brain-derived neurotrophic factor (BDNF). Reduced BDNF expression, often observed in AD, underscores estrogen's role in preserving neuronal integrity. Notably, hormone replacement therapy (HRT) has emerged as a sex-specific and time-dependent strategy for primary cardiovascular disease (CVD) prevention, offering an excellent risk profile against aging-related disorders like AD. Evidence suggests that HRT may mitigate AD onset and progression in postmenopausal women, further emphasizing the importance of estrogen signaling in AD pathophysiology. This review comprehensively examines the physiological and pathological changes associated with estrogen in AD, elucidating the therapeutic potential of estrogen-based interventions such as HRT. By synthesizing current knowledge, it aims to provide insights into the intricate interplay between estrogen signaling and AD pathogenesis, thereby informing future research directions and therapeutic strategies for this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Zhang N, Guo P, Zhao Y, Qiu X, Shao S, Liu Z, Gao Z. Pharmacological mechanisms of puerarin in the treatment of Parkinson's disease: An overview. Biomed Pharmacother 2024; 177:117101. [PMID: 39002442 DOI: 10.1016/j.biopha.2024.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Puerarin, a monomer of traditional Chinese medicine, is a key component of Pueraria radix. Both clinical and experimental researches demonstrated that puerarin has therapeutic effects on Parkinson's disease (PD). Puerarin's pharmacological mechanisms include: 1) Anti-apoptosis. Puerarin inhibits cell apoptosis through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) and c-Jun N-terminal kinase (JNK) signaling pathways. Puerarin also exerts a hormone-like effect against cell apoptosis; 2) Anti-oxidative stress injury. Puerarin inhibits the Nrf2 nuclear exclusion through the GSK-3β/Fyn pathway to promote the Nrf2 accumulation in the nucleus, and then promotes the antioxidant synthesis through the Nrf2/ARE signaling pathway to protect against oxidative stress; 3) Neuroprotective effects by intervening in the ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP). Puerarin significantly enhances the activity of chaperone-mediated autophagy (CMA), which downregulates the expression of α-synuclein, reduces its accumulation, and thus improves the function of damaged neurons. Additionally, puerarin increases proteasome activity and decreases ubiquitin-binding proteins, thereby preventing toxic accumulation of intracellular proteins; 4) Alleviating inflammatory response. Puerarin inhibits the conversion of microglia to the M1 phenotype while inducing the transition of microglia to the M2 phenotype. Furthermore, puerarin promotes the secretion of anti-inflammatory factor and inhibits the expression of pro-inflammatory factors; 5) Increasing the levels of dopamine and its metabolites. Puerarin could increase the levels of dopamine, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum; 6) Promoting neurotrophic factor expression and neuronal repair. Puerarin increases the expression of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), thereby exerting a neuroprotective effect. Moreover, the regulation of the gut microbiota by puerarin may be a potential mechanism for the treatment of PD. The current review discusses the molecular mechanisms of puerarin, which may provide insight into the active components of traditional Chinese medicine in the treatment of PD.
Collapse
Affiliation(s)
- Nianping Zhang
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Peng Guo
- Department of Neurology, Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Yan Zhao
- Department of Hand and Upper Limb Surgery, Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Xiao Qiu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Shuai Shao
- Department of reproductive medicine, Jingmen People's Hospital, Jingmen, Hubei 448000, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Zong Gao
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China.
| |
Collapse
|
8
|
Li X, Gao B, Gao B, Li X, Xia X. Transcriptome profiling reveals dysregulation of inflammatory and protein synthesis genes in PCOS. Sci Rep 2024; 14:16596. [PMID: 39025980 PMCID: PMC11258128 DOI: 10.1038/s41598-024-67461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
To analyze the differential expression genes of polycystic ovary syndrome (PCOS), clarify their functions and pathways, as well as the protein-protein interaction network, identify HUB genes, and explore the pathological mechanism. PCOS microarray datasets were screened from the GEO database. Common differentially expressed genes (co-DEGs) were obtained using GEO2R and Venn analysis. Enrichment and pathway analyses were conducted using the DAVID online tool, with results presented in bubble charts. Protein-protein interaction analysis was performed using the STRING tool. HUB genes were identified using Cytoscape software and further interpreted with the assistance of the GeneCards database. A total of two sets of co-DEGs (108 and 102), key proteins (15 and 55), and hub genes (10 and 10) were obtained. The co-DEGs: (1) regulated inflammatory responses and extracellular matrix, TNF, and IL-17 signaling pathways; (2) regulated ribosomes and protein translation, ribosome and immune pathways. The key proteins: (1) regulated inflammation, immunity, transcription, matrix metabolism, proliferation/differentiation, energy, and repair; (2) regulated ubiquitination, enzymes, companion proteins, respiratory chain components, and fusion proteins. The Hub genes: (1) encoded transcription factors and cytokines, playing vital roles in development and proliferation; (2) encoded ribosomes and protein synthesis, influencing hormone and protein synthesis, associated with development and infertility. The dysregulated expression of inflammation and protein synthesis genes in PCOS may be the key mechanism underlying its onset and progression.
Collapse
Affiliation(s)
- Xilian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Biao Gao
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China.
| | - Bingsi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xian Xia
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
9
|
Catalán-Salas V, Sagredo P, Melgarejo W, Donoso MV, Cárdenas JC, Zakarian A, Valdés D, Acuña-Castillo C, Huidobro-Toro JP. 17-β-estradiol and phytoestrogens elicit NO production and vasodilatation through PI3K, PKA and EGF receptors pathways, evidencing functional selectivity. Eur J Pharmacol 2024; 975:176636. [PMID: 38729417 DOI: 10.1016/j.ejphar.2024.176636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Endothelial cells express multiple receptors mediating estrogen responses; including the G protein-coupled estrogen receptor (GPER). Past studies on nitric oxide (NO) production elicited by estrogens raised the question whether 17-β-estradiol (E2) and natural phytoestrogens activate equivalent mechanisms. We hypothesized that E2 and phytoestrogens elicit NO production via coupling to distinct intracellular pathways signalling. To this aim, perfusion of E2 and phytoestrogens to the precontracted rat mesentery bed examined vasorelaxation, while fluorescence microscopy on primary endothelial cells cultures quantified single cell NO production determined following 4-amino-5-methylamino-2',7'-difluoroescein diacetate (DAF) incubation. Daidzein (DAI) and genistein (GEN) induced rapid vasodilatation associated to NO production. Multiple estrogen receptor activity was inferred based on the reduction of DAF-NO signals; G-36 (GPER antagonist) reduced 75 % of all estrogen responses, while fulvestrant (selective nuclear receptor antagonist) reduced significantly more the phytoestrogens responses than E2. The joint application of both antagonists abolished the E2 response but not the phytoestrogen-induced DAF-NO signals. Wortmannin or LY-294002 (PI3K inhibitors), reduced by 90% the E2-evoked signal while altering significantly less the DAI-induced response. In contrast, H-89 (PKA inhibitor), elicited a 23% reduction of the E2-induced signal while blocking 80% of the DAI-induced response. Desmethylxestospongin-B (IP3 receptor antagonist), decreased to equal extent the E2 or the DAI-induced signal. Epidermal growth factor (EGF) induced NO production, cell treatment with AG-1478, an EGF receptor kinase inhibitor reduced 90% DAI-induced response while only 53% the E2-induced signals; highlighting GPER induced EGF receptor trans-modulation. Receptor functional selectivity may explain distinct signalling pathways mediated by E2 and phytoestrogens.
Collapse
Affiliation(s)
- Vicente Catalán-Salas
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Pablo Sagredo
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Williams Melgarejo
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - M Verónica Donoso
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - J Cesar Cárdenas
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, 8580745, Chile; Buck Institute for Research on Aging, Novato, CA, 94945, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Daniel Valdés
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Claudio Acuña-Castillo
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - J Pablo Huidobro-Toro
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile; Unidad de Nanoseguridad, Centro de Nanociencia y Nanotecnología, CEDNNA, Santiago, Chile.
| |
Collapse
|
10
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Zhong HZ, Mo J, Li YX, Li MY, Wei SB. Changes in Rehmanniae Radix processing and their impact on ovarian hypofunction: potential mechanisms of action. Front Pharmacol 2024; 15:1426972. [PMID: 39035992 PMCID: PMC11258383 DOI: 10.3389/fphar.2024.1426972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Objective This study evaluates the research developments concerning Rehmanniae Radix in ovarian hypofunction diseases. It explores the processing methods of Rehmanniae Radix, the variations in its compounds before and after processing, the mechanism of Rehmanniae Radix and its active compounds in improving ovarian function, and the advancements in clinical applications of traditional Chinese medicine (TCM) compound that include Rehmanniae Radix. Methods Comprehensive literature search was conducted using databases such as China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database, National Science and Technology Library, the Pharmacopoeia of the People's Republic of China, Pubmed, and the Web of Science Database. The search utilized the following Medical Subject Headings (MeSH) and keywords: "Rehmanniae Radix," "Drying Rehmannia Root," "Rehmannia glutinosa," "Rehmanniae Radix Praeparata," "Traditional Chinese Medicine Processing," "Pharmacological Effects," "Ovarian Aging," "Diminished ovarian reserve," "Premature ovarian insufficiency," "Premature Ovarian Failure," "Ovarian hypofunction diseases". Results The ancient Chinese medical books document various processing techniques for Rehmanniae Radix. Contemporary research has identified changes in its compounds processing and the resultant diverse therapeutic effects. When processed into Rehmanniae Radix Praeparata, it is noted for its ability to invigorate the kidney. TCM compound containing Rehmanniae Radix is frequently used to treat ovarian hypofunction diseases, demonstrating significant clinical effectiveness. The key changes in its compounds processing include cyclic dilute ether terpene glycosides, phenylethanol glycosides, sugars, and 5-hydroxymethylfurfural. Its pharmacological action is primarily linked to the improvement of granulosa cell proliferation, antioxidative and anti-aging properties, and modulation of the immune and inflammatory microenvironment. Furthermore, Rehmanniae Radix also offers therapeutic benefits for cardiovascular and cerebrovascular diseases, osteoporosis and cognitive dysfunction caused by low estrogen levels. Thereby Rehmanniae Radix mitigates both the short-term and long-term health risks associated with ovarian hypofunction diseases. Conclusion Processed Rehmanniae Radix has shown potential to improve ovarian function, and its compound prescriptions have a definite effect on ovarian dysfunction diseases. Therefore Rehmanniae Radix was garnering interest for both basic and clinical research, with promising application prospects as a future therapeutic agent for ovarian hypofunction diseases. However, further studies on its toxicology and the design of standardized clinical trials are necessary to fully establish its efficacy and safety.
Collapse
Affiliation(s)
- Han-Zhi Zhong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Mo
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Xin Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao-Ya Li
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shao-Bin Wei
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Poordast T, Alborzi S, Kiani Z, Omidifar N, Askary E, Chamanara K, Shokripour M, Keshtvarz Hesam Abadi A. The role of progesterone and estrogen receptors in treatment choice after endometriosis surgery: A cross-sectional study. Int J Reprod Biomed 2024; 22:567-578. [PMID: 39355309 PMCID: PMC11441281 DOI: 10.18502/ijrm.v22i7.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Background The lack of improvement in some endometriotic people's pain after surgery even while using hormone treatment may suggest an inappropriate response to routine hormonal therapies. Objective This study aimed to determine a cut-off point for selecting the most appropriate treatment based on the hormone receptors of endometriotic lesions. Materials and Methods In this cross-sectional study, by reviewing the medical records of participants and testing their archive samples and phone interviews (if needed), 86 symptomatic women after endometriosis surgery who were operated into governmental hospitals, Shahid Faghihi and Hazrate Zeinab Shiraz Iran were enrolled between March 2017 and March 2019. Women were divided into 2 groups: responsiveness (n = 73 for dysmenorrhea, n = 60 for dyspareunia) to medical treatment and surgery, and unresponsiveness (n = 13, n = 7). We examined the pathological slides of 86 women to determine the amount of hormone receptors and the relationship between the type of medical treatment and the level of hormone receptors on pain relief within 1 yr after surgery. Results Based on the receiver operating characteristic curve, dysmenorrhea in the presence of tissue estrogen receptors > 60% (p = 0.1065), and dyspareunia in the presence of tissue progesterone receptors > 80% (p = 0.0001) responded well to medical treatment after surgery. In the presence of endometrioma-dysmenorrhea showed the best response to oral contraceptive pills (69.4%), while in deep infiltrative endometriosis-dyspareunia showed the best response to progesterone treatment (75%). Conclusion Prescribing an appropriate hormone therapy based on a specific immunohistochemistry staining pattern can improve the life quality of postoperative endometriosis individuals.
Collapse
Affiliation(s)
- Tahereh Poordast
- Department of Obstetrics and Gynecology, School of Medicine, Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Alborzi
- Department of Obstetrics and Gynecology, School of Medicine, Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ziba Kiani
- Department of Obstetrics and Gynecology, School of Medicine, Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Askary
- Department of Obstetrics and Gynecology, School of Medicine, Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kefayat Chamanara
- Department of Obstetrics and Gynecology, School of Medicine, Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Shokripour
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
13
|
Lu Y, Cherouveim P, Jiang V, Dimitriadis I, James KE, Bormann C, Souter I. The impact of clomiphene citrate on the endometrium in comparison to gonadotropins in intrauterine insemination cycles: is it thinner and does it matter? Front Endocrinol (Lausanne) 2024; 15:1414481. [PMID: 38978628 PMCID: PMC11228293 DOI: 10.3389/fendo.2024.1414481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Objective To determine whether endometrial thickness (EMT) differs between i) clomiphene citrate (CC) and gonadotropin (Gn) utilizing patients as their own controls, and ii) patients who conceived with CC and those who did not. Furthermore, to investigate the association between late-follicular EMT and pregnancy outcomes, in CC and Gn cycles. Methods Retrospective study. Three sets of analyses were conducted separately for the purpose of this study. In analysis 1, we included all cycles from women who initially underwent CC/IUI (CC1, n=1252), followed by Gn/IUI (Gn1, n=1307), to compare EMT differences between CC/IUI and Gn/IUI, utilizing women as their own controls. In analysis 2, we included all CC/IUI cycles (CC2, n=686) from women who eventually conceived with CC during the same study period, to evaluate EMT differences between patients who conceived with CC (CC2) and those who did not (CC1). In analysis 3, pregnancy outcomes among different EMT quartiles were evaluated in CC/IUI and Gn/IUI cycles, separately, to investigate the potential association between EMT and pregnancy outcomes. Results In analysis 1, when CC1 was compared to Gn1 cycles, EMT was noted to be significantly thinner [Median (IQR): 6.8 (5.5-8.0) vs. 8.3 (7.0-10.0) mm, p<0.001]. Within-patient, CC1 compared to Gn1 EMT was on average 1.7mm thinner. Generalized linear mixed models, adjusted for confounders, revealed similar results (coefficient: 1.69, 95% CI: 1.52-1.85, CC1 as ref.). In analysis 2, CC1 was compared to CC2 EMT, the former being thinner both before [Median (IQR): 6.8 (5.5-8.0) vs. 7.2 (6.0-8.9) mm, p<0.001] and after adjustment (coefficient: 0.59, 95%CI: 0.34-0.85, CC1 as ref.). In analysis 3, clinical pregnancy rates (CPRs) and ongoing pregnancy rates (OPRs) improved as EMT quartiles increased (Q1 to Q4) among CC cycles (p<0.001, p<0.001, respectively), while no such trend was observed among Gn cycles (p=0.94, p=0.68, respectively). Generalized estimating equations models, adjusted for confounders, suggested that EMT was positively associated with CPR and OPR in CC cycles, but not in Gn cycles. Conclusions Within-patient, CC generally resulted in thinner EMT compared to Gn. Thinner endometrium was associated with decreased OPR in CC cycles, while no such association was detected in Gn cycles.
Collapse
Affiliation(s)
- Yao Lu
- Massachusetts General Hospital Fertility Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Panagiotis Cherouveim
- Massachusetts General Hospital Fertility Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Victoria Jiang
- Massachusetts General Hospital Fertility Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Irene Dimitriadis
- Massachusetts General Hospital Fertility Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaitlyn E James
- Massachusetts General Hospital Fertility Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Charles Bormann
- Massachusetts General Hospital Fertility Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Irene Souter
- Massachusetts General Hospital Fertility Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Xu Y, Zhang Z, Wang R, Xue S, Ying Q, Jin L. Roles of estrogen and its receptors in polycystic ovary syndrome. Front Cell Dev Biol 2024; 12:1395331. [PMID: 38961865 PMCID: PMC11219844 DOI: 10.3389/fcell.2024.1395331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by abnormal steroid hormone levels in peripheral blood and poor-quality oocytes. In the ovary, androgen is produced by theca cells, and estrogen is produced by granulosa cells. Androgen is converted to estrogen in granulosa cells, with cytochrome P450 aromatase as the limiting enzyme during this process. Estrogen receptors (ER) include ER alpha, ER beta, and membrane receptor GPR30. Studies have demonstrated that the abnormal functions of estrogen and its receptors and estradiol synthesis-related enzymes are closely related to PCOS. In recent years, some estrogen-related drugs have made significant progress in clinical application for subfertility with PCOS, such as letrozole and clomiphene. This article will elaborate on the recent advances in PCOS caused by abnormal expression of estrogen and its receptors and the application of related targeted small molecule drugs in clinical research and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziyi Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Rongxiang Wang
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Songguo Xue
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Karoii DH, Azizi H, Skutella T. Whole transcriptome analysis to identify non-coding RNA regulators and hub genes in sperm of non-obstructive azoospermia by microarray, single-cell RNA sequencing, weighted gene co-expression network analysis, and mRNA-miRNA-lncRNA interaction analysis. BMC Genomics 2024; 25:583. [PMID: 38858625 PMCID: PMC11165898 DOI: 10.1186/s12864-024-10506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND The issue of male fertility is becoming increasingly common due to genetic differences inherited over generations. Gene expression and evaluation of non-coding RNA (ncRNA), crucial for sperm development, are significant factors. This gene expression can affect sperm motility and, consequently, fertility. Understanding the intricate protein interactions that play essential roles in sperm differentiation and development is vital. This knowledge could lead to more effective treatments and interventions for male infertility. MATERIALS AND METHODS Our research aim to identify new and key genes and ncRNA involved in non-obstructive azoospermia (NOA), improving genetic diagnosis and offering more accurate estimates for successful sperm extraction based on an individual's genotype. RESULTS We analyzed the transcript of three NOA patients who tested negative for genetic sperm issues, employing comprehensive genome-wide analysis of approximately 50,000 transcript sequences using microarray technology. This compared gene expression profiles between NOA sperm and normal sperm. We found significant gene expression differences: 150 genes were up-regulated, and 78 genes were down-regulated, along with 24 ncRNAs up-regulated and 13 ncRNAs down-regulated compared to normal conditions. By cross-referencing our results with a single-cell genomics database, we identified overexpressed biological process terms in differentially expressed genes, such as "protein localization to endosomes" and "xenobiotic transport." Overrepresented molecular function terms in up-regulated genes included "voltage-gated calcium channel activity," "growth hormone-releasing hormone receptor activity," and "sialic acid transmembrane transporter activity." Analysis revealed nine hub genes associated with NOA sperm: RPL34, CYB5B, GOL6A6, LSM1, ARL4A, DHX57, STARD9, HSP90B1, and VPS36. CONCLUSIONS These genes and their interacting proteins may play a role in the pathophysiology of germ cell abnormalities and infertility.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Xu R, Wen D, Yin L, Tang Y, Lu S, Gao Y, Pan MH, Han B, Ma B. Estrogen influences the transzonal projection assembly of cumulus-oocyte complexes through G protein-coupled estrogen receptor during goat follicle development. Mol Reprod Dev 2024; 91:e23763. [PMID: 38895803 DOI: 10.1002/mrd.23763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Estrogen is an important hormone that plays a role in regulating follicle development and oocyte maturation. Transzonal projections (TZPs) act as communication bridges between follicle somatic cells and oocytes, and their dynamic changes are critical for oocyte development and maturation. However, the roles and mechanisms of estrogen in regulating TZPs during follicular development are not yet understood. We found that the proportion of oocytes spontaneously resuming meiosis increases as the follicle grows, which is accompanied by rising estrogen levels in follicles and decreasing TZPs in cumulus-oocyte complex. To further explore the effect of elevated estrogen levels on TZP assembly, additional estrogen was added to the culture system. The increased estrogen level significantly decreased the mRNA and protein expression levels of TZP assembly-related genes. Subsequent research revealed that TZP regulation by estrogen was mediated by the membrane receptor GPER and downstream ERK1/2 signaling pathway. In summary, our study suggests that estrogen may regulate goat oocyte meiosis arrest by decreasing TZP numbers via estrogen-mediated GPER activation during follicle development.
Collapse
Affiliation(s)
- Rui Xu
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Dongxu Wen
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Lu Yin
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Yan Gao
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, China
| | - Meng-Hao Pan
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
17
|
Ng CW, Tsang YTM, Gershenson DM, Wong KK. The prognostic value of MEK pathway-associated estrogen receptor signaling activity for female cancers. Br J Cancer 2024; 130:1875-1884. [PMID: 38582811 PMCID: PMC11130254 DOI: 10.1038/s41416-024-02668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Other than for breast cancer, endocrine therapy has not been highly effective for gynecologic cancers. Endocrine therapy resistance in estrogen receptor positive gynecologic cancers is still poorly understood. In this retrospective study, we examined the estrogen receptor (ER) signaling pathway activities of breast, ovarian, endometrial, and cervical cancers to identify those that may predict endocrine therapy responsiveness. METHODS Clinical and genomic data of women with breast and gynecological cancers were downloaded from cBioPortal for Cancer Genomics. Estrogen receptor alpha (ESR1) expression level and sample-level pathway enrichment scores (EERES) were calculated to classify patients into four groups (low/high ESR1 and low/high EERES). Correlation between ESR1/EERES score and survival was further validated with RNAseq data from low-grade serous ovarian cancer. Pathway analyses were performed among different ESR1/EERES groups to identify genes that correlate with endocrine resistance, which are validated using Cancer Cell Line Encyclopedia gene expression and Genomics of Drug Sensitivity in Cancer data. RESULTS We identified a novel combined prognostic value of ESR1 expression and the corresponding estrogen response signaling (EERES score) for breast cancer. The combined prognostic value (ESR1/EERES) may be applicable to other gynecologic cancers. More importantly, we discovered that ER signaling can cross-regulate MEK pathway activation. We identified downstream genes in the MEK pathway (EPHA2, INAVA, MALL, MPZL2, PCDH1, and TNFRSF21) that are potential endocrine therapy response biomarkers. CONCLUSION This study demonstrated that targeting both the ER and the ER signaling activity related MEK pathway may aid the development of endocrine therapy strategies for personalized medicine.
Collapse
Affiliation(s)
- Chun Wai Ng
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yvonne T M Tsang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
18
|
Ding W, Shangguan L, Li H, Bao Y, Noor F, Haseeb A, Sun P, Zhang H, Yin W, Fan K, Yang H, Zhang Z, Sun N. Dietary supplementation of osthole and icariin improves the production performance of laying hens by promoting follicular development. Poult Sci 2024; 103:103579. [PMID: 38430778 PMCID: PMC10920958 DOI: 10.1016/j.psj.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Osthole (Ost) and icariin (Ica) are extracted from traditional Chinese medicine Cnidium monnieri and Epimedii Folium, respectively, and both exhibit estrogen-like biological activity. This study aimed to determine the efficacy and safety of combining Ost with Ica on the production performance of laying hens and to explore their possible mechanisms. The production performance, egg quality, residues of Ost and Ica in eggs, serum reproductive hormone levels, expression of ovarian reproductive hormone receptor, proliferation of granulosa cells in small yellow follicles (SYF), and progesterone secretion in large yellow follicles (LYF) related genes and proteins expression were detected. The results showed that adding 2 mg/kg Ost + 2 mg/kg Ica to the feed increased the laying rate, average egg weight, Haugh unit, and protein height of laying hens. Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and progesterone (P4) levels increased, and the expression of ovarian estrogen receptor (ER), follicle-stimulating hormone receptor (FSHR), and progesterone receptor (PGR) mRNA was up-regulated. Additionally, the mRNA and protein levels of steroidogenesis acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) increased in LYF. Furthermore, mRNA and protein levels of proliferating cell nuclear antigen (PCNA), cyclin E1, and cyclin A2 were up-regulated in SYF. The residues of Ost and Ica in egg samples were not detected by high-performance liquid chromatography (HPLC). In conclusion, dietary supplementation of Ost and Ica increased granulosa cells proliferation in SYF and increased P4 secretion in granulosa cells of LYF, ultimately improving the production performance of laying hens.
Collapse
Affiliation(s)
- Wenwen Ding
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Linhui Shangguan
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hongquan Li
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yinghui Bao
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Huanshan Group Co., Ltd, Qingdao 266000, Shandong, China
| | - Fida Noor
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Abdul Haseeb
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Panpan Sun
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hua Zhang
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Wei Yin
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kuohai Fan
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Huizhen Yang
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Zhenbiao Zhang
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Na Sun
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
19
|
Zahr T, Boda VK, Ge J, Yu L, Wu Z, Que J, Li W, Qiang L. Small molecule conjugates with selective estrogen receptor β agonism promote anti-aging benefits in metabolism and skin recovery. Acta Pharm Sin B 2024; 14:2137-2152. [PMID: 38799642 PMCID: PMC11119546 DOI: 10.1016/j.apsb.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Estrogen is imperative to mammalian reproductivity, metabolism, and aging. However, the hormone activating estrogen receptor (ERs) α can cause major safety concerns due to the enrichment of ERα in female tissues and certain malignancies. In contrast, ERβ is more broadly expressed in metabolic tissues and the skin. Thus, it is desirable to generate selective ERβ agonist conjugates for maximizing the therapeutic effects of ERs while minimizing the risks of ERα activation. Here, we report the design and production of small molecule conjugates containing selective non-steroid ERβ agonists Gtx878 or genistein. Treatment of aged mice with our synthesized conjugates improved aging-associated declines in insulin sensitivity, visceral adipose integrity, skeletal muscle function, and skin health, with validation in vitro. We further uncovered the benefits of ERβ conjugates in the skin using two inducible skin injury mouse models, showing increased skin basal cell proliferation, epidermal thickness, and wound healing. Therefore, our ERβ-selective agonist conjugates offer novel therapeutic potential to improve aging-associated conditions and aid in rejuvenating skin health.
Collapse
Affiliation(s)
- Tarik Zahr
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| | - Vijay K. Boda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jian Ge
- Division of Digestive and Liver Diseases, Columbia University, New York, NY 10032, USA
- Center for Human Development, Columbia University, New York, NY 10027, USA
| | - Lexiang Yu
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Columbia University, New York, NY 10032, USA
- Center for Human Development, Columbia University, New York, NY 10027, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
20
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
21
|
Chen W, Wang X, Wan S, Yang Y, Zhang Y, Xu Z, Zhao J, Mi C, Zhang H. Dichloroacetic acid and trichloroacetic acid as disinfection by-products in drinking water are endocrine-disrupting chemicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133035. [PMID: 38266585 DOI: 10.1016/j.jhazmat.2023.133035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 01/26/2024]
Abstract
Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) are two typical non-volatile disinfection by-products (DBPs) found in drinking water. Increasing evidence has demonstrated that they show reproductive toxicity. However, whether they might have endocrine disrupting properties remains largely unknown. To discover this, we treated male mice or pregnant mice with 0, 1-, 102-, 103-, 104-, or 5 × 104-fold maximal concentration level (MCL) of DCAA or TCAA in drinking water. In male mice, the levels of testosterone in serum and androgen receptor (AR) in testis were declined with ≥ 103-fold MCL of DCAA (26.4 mg/kg/d) or TCAA (52.7 mg/kg/d). In pregnant mice, miscarriage rates were increased with ≥ 104-fold MCL of DCAA (264 mg/kg/d) or ≥ 103-fold MCL of TCAA. The levels of FSH in serum were increased and those of estradiol and progesterone were reduced with ≥ 103-fold MCL of DCAA or TCAA. The protein levels of estrogen receptors (ERα and ERβ) in ovary were reduced with ≥ 102-fold MCL of DCAA (2.64 mg/kg/d) or TCAA (5.27 mg/kg/d). Exposure to some certain fold MCL of DCAA or TCAA also altered the protein levels of ERα and ERβ in uterus and placenta. Exposure to 5 × 104-fold MCL of both DCAA and TCAA showed the combined effects. Therefore, both DCAA and TCAA could be considered as novel reproductive endocrine disrupting chemicals, which might be helpful for further assessment of the toxicological effects of DCAA and TCAA and the awareness of reproductive endocrine disrupting properties caused by DCAA and TCAA in drinking water.
Collapse
Affiliation(s)
- Weina Chen
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaoqing Wang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Shukun Wan
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yang Yang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Ying Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
22
|
Kumari N, Kumari R, Dua A, Singh M, Kumar R, Singh P, Duyar-Ayerdi S, Pradeep S, Ojesina AI, Kumar R. From Gut to Hormones: Unraveling the Role of Gut Microbiota in (Phyto)Estrogen Modulation in Health and Disease. Mol Nutr Food Res 2024; 68:e2300688. [PMID: 38342595 DOI: 10.1002/mnfr.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like β-glucuronidases and β-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.
Collapse
Affiliation(s)
- Nikki Kumari
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Rashmi Kumari
- Department of Zoology, College of Commerce, Arts & Science, Patliputra University, Patna, Bihar, 800020, India
| | - Ankita Dua
- Department of Zoology, Shivaji College, University of Delhi, New Delhi, 110027, India
| | - Mona Singh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roushan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Poonam Singh
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Susan Duyar-Ayerdi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Akinyemi I Ojesina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
23
|
Yu M, Yang Z, Zhou Y, Guo W, Tian L, Zhang L, Li X, Chen J. Mode of action exploration of reproductive toxicity induced by bisphenol S using human normal ovarian epithelial cells through ERβ-MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116037. [PMID: 38301581 DOI: 10.1016/j.ecoenv.2024.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND In the plastics production sector, bisphenol S (BPS) has gained popularity as a replacement for bisphenol A (BPA). However, the mode of action (MOA) of female reproductive toxicity caused by BPS remains unclear and the safety of BPS is controversial. METHODS Human normal ovarian epithelial cell line, IOSE80, were exposed to BPS at human-relevant levels for short-term exposure at 24 h or 48 h, or for long-term exposure at 28 days, either alone or together with five signaling pathway inhibitors: ICI 18,2780 (estrogen receptor [ER] antagonist), G15 (GPR30 specific inhibitor), U0126 (extracellular regulated protein kinase [ERK] 1/2 inhibitor), SP600125 (c-Jun N-terminal kinase [JNK] inhibitor) or SB203580 (p38 mitogen‑activated protein kinase [p38MAPK] inhibitor). MOA through ERβ-MAPK signaling pathway interruption was explored, and potential thresholds were estimated by the benchmark dose method. RESULTS For short-term exposure, BPS exposure at human-relevant levels elevated the ESR2 and MAPK8 mRNA levels, along with the percentage of the G0/G1 phase. For long-term exposure, BPS raised the MAPK1 and EGFR mRNA levels, the ERβ, p-ERK, and p-JNK protein levels, and the percentage of the G0/G1 phase, which was partly suppressed by U0126. The benchmark dose lower confidence limit (BMDL) of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM. CONCLUSIONS The MOA of female reproductive toxicity caused by BPS at human-relevant levels might involve: molecular initiating event (MIE)-BPS binding to ERβ receptor, key event (KE)1-the interrupted expression of GnRH, KE2-the activation of JNK (for short-term exposure) and ERK pathway (for long-term exposure), KE3-cell cycle arrest (the increased percentage of the G0/G1 phase), and KE4-interruption of cell proliferation (only for short-term exposure). The BMDL of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM.
Collapse
Affiliation(s)
- Mengqi Yu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wanqing Guo
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
24
|
Yao H, Hu Y, Tong H, Shi S. Dimethylglycine Alleviates Metabolic Dysfunction-Associated Fatty Liver Disease by Improving the Circulating Estrogen Level via Gut Staphylococcus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2708-2717. [PMID: 38131116 DOI: 10.1021/acs.jafc.3c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Our previous study screened out dietary 0.1% dimethylglycine (DMG), which had beneficial effects on egg production and fat deposition in laying hens during the late laying period. In this paper, it was further found that dietary DMG alleviated fatty liver disease and enhanced lipid deposited into the yolk while promoting hepatic lipid transport. There are intestinal estrogen-metabolizing bacteria (EBM) having β-glucuronase (GUS) activity that regulates the content of circulating estrogen (E2) in mammals. There were 39 related bacteria found in laying hens, and DMG increased E2 in blood, Staphylococcus abundance among EBM and GUS activity in cecum chyme. Interfered in situ, Staphylococcus with GUS activity was proved the target bacteria for DMG. Furthermore, E2 could modify hepatic lipid deposition through promoting lipid transport by the steatosis LMH model. These perspectives confirm that DMG, mediated by Staphylococcus, alleviates the restriction of hepatic lipid transport due to reduced levels of E2 in laying hens.
Collapse
Affiliation(s)
- Hong Yao
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Yan Hu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Haibing Tong
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Shourong Shi
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| |
Collapse
|
25
|
Muccee F, Ashraf NM, Razak S, Afsar T, Hussain N, Husain FM, Shafique H. Exploring the association of ESR1 and ESR2 gene SNPs with polycystic ovary syndrome in human females: a comprehensive association study. J Ovarian Res 2024; 17:27. [PMID: 38281964 PMCID: PMC10823698 DOI: 10.1186/s13048-023-01335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) affects a significant proportion of human females worldwide and is characterized by hormonal, metabolic, and reproductive dysfunctions, including infertility, irregular menstrual cycles, acanthosis nigricans, and hirsutism. Mutations in the estrogen receptor genes ESR1 and ESR2, involved in normal follicular development and ovulation, can contribute to development of the PCOS. The present study focuses on investigating the potential correlation between single nucleotide polymorphisms (SNPs) of ESR1 and ESR2 genes and the incidence of this syndrome. METHODS For this study, SNPs in ESR1 and ESR2 genes were retrieved from the ENSEMBL database and analyzed for their effect on mutated proteins using different bioinformatics tools including SIFT, PolyPhen, CADD, REVEL, MetaLR, I-Mutant, CELLO2GO, ProtParam, SOPMA, SWISS-MODEL and HDDOCK. RESULTS All the SNPs documented in the present study were deleterious. All the SNPs except rs1583384537, rs1450198518, and rs78255744 decreased protein stability. Two variants rs1463893698 and rs766843910 in the ESR2 gene altered the localization of mutated proteins i.e. in addition to the nucleus, proteins were also found in mitochondria and extracellular, respectively. SNPs rs104893956 in ESR1 and rs140630557, rs140630557, rs1596423459, rs766843910, rs1596405923, rs762454979 and rs1384121511 in ESR2 gene significantly changed the secondary structure of proteins (2D). SNPs that markedly changed 3D configuration included rs1554259481, rs188957694 and rs755667747 in ESR1 gene and rs1463893698, rs140630557, rs1596423459, rs766843910, rs1596405923, rs762454979 and rs1384121511 in ESR2 gene. Variants rs1467954450 (ESR1) and rs140630557 (ESR2) were identified to reduce the binding tendency of ESRα and β receptors with estradiol as reflected by the docking scores i.e. -164.97 and -173.23, respectively. CONCLUSION Due to the significant impact on the encoded proteins, these variants might be proposed as biomarkers to predict the likelihood of developing PCOS in the future and for diagnostic purposes.
Collapse
Affiliation(s)
- Fatima Muccee
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, 52254, Pakistan.
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, 52254, Pakistan
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, 64141, Al Ain, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi Campus, P. O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Huma Shafique
- Institute of Cellular Medicine, Newcastle University Medical School, Newcastle University Newcastle Upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Hassan S, Thacharodi A, Priya A, Meenatchi R, Hegde TA, R T, Nguyen HT, Pugazhendhi A. Endocrine disruptors: Unravelling the link between chemical exposure and Women's reproductive health. ENVIRONMENTAL RESEARCH 2024; 241:117385. [PMID: 37838203 DOI: 10.1016/j.envres.2023.117385] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
An Endocrine Disrupting Chemical (EDC) is any compound that disrupts the function of the endocrine system in humans and is ubiquitous in the environment either as a result of natural events or through anthropogenic activities. Bisphenol A, phthalates, parabens, pesticides, triclosan, polychlorinated biphenyls, and heavy metals, which are frequently found in the pharmaceutical, cosmetic, and packaging sectors, are some of the major sources of EDC pollutants. EDCs have been identified to have a deteriorating effect on the female reproductive system, as evidenced by the increasing number of reproductive disorders such as endometriosis, uterine fibroids, polycystic ovary syndrome, premature ovarian failure, menstrual irregularity, menarche, and infertility. Studying EDCs in relation to women's health is essential for understanding the complex interactions between environmental factors and health outcomes. It enables the development of strategies to mitigate risks, protect reproductive and overall health, and inform public policy decisions to safeguard women's well-being. Healthcare professionals must know the possible dangers of EDC exposure and ask about environmental exposures while evaluating patients. This may result in more precise diagnosis and personalized treatment regimens. This review summarises the existing understanding of prevalent EDCs that impact women's health and involvement in female reproductive dysfunction and underscores the need for more research. Further insights on potential mechanisms of action of EDCs on female has been emphasized in the article. We also discuss the role of nutritional intervention in reducing the effect of EDCs on women's reproductive health. EDC pollution can be further reduced by adhering to strict regulations prohibiting the release of estrogenic substances into the environment.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Anshu Priya
- SRF-ICMR, CSIR-Institute of Genomics and Integrative Biology (IGIB), South Campus, New Delhi, 110025, India
| | - R Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Thanushree A Hegde
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Thangamani R
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - H T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
27
|
De los Reyes M, Dettleff P, Palomino J, Peralta OA, Vergara A. Dynamic Expression of Follicle-Stimulating Hormone and Estrogen mRNA Receptors Associated with microRNAs 34a and -let-7c in Canine Follicles during the Estrous Cycle. Animals (Basel) 2024; 14:214. [PMID: 38254383 PMCID: PMC10812696 DOI: 10.3390/ani14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The genes encoding for estrogen receptor (ESR2) and follicle-stimulating hormone receptor (FSHR) play crucial roles in ovarian follicular development. This study aimed to determine the expression levels of miRNAs predicted against FSHR and ESR2 mRNAs in follicular cells related to their target genes during the estrous cycle in canines. Antral follicles were dissected from 72 ovaries following ovariohysterectomies. MiRNAs regulating FSHR and ESR2 genes were selected from miRNA databases, and mature miRNA and mRNA expression profiling was performed using real-time polymerase chain reaction (PCR). The best miRNA for each target gene was selected considering the quantitative PCR (qPCR) performance and target prediction probability, selecting only miRNAs with a binding p-value of 1.0, and choosing cfa-miR-34a and cfa-let-7c for FSHR and ESR2, respectively. The expression levels comparing the different phases of the estrous cycle were evaluated using ANOVA. Pearson correlations between the expression pattern of each miRNA and their target genes were performed. Each miRNA and its target genes were expressed in the granulosa cells in all estrous phases. FSHR remained low in anestrus and proestrus, increased (p < 0.05) to the highest level in estrus, and decreased (p < 0.05) in diestrus. ESR2 showed the same trend as FSHR, with the highest (p < 0.05) expression in estrus and the lowest (p < 0.05) in anestrus and proestrus. A tendency for an inverse relationship was observed between the expression of miR-34a and FSHR only in the anestrus phase, while an inverse correlation (r = -0.8) was found between miRNA-7c and ESR2 (p < 0.01). The expression profile of miR-34a and miR-let-7c and their predicted target genes of dog ovarian follicles throughout the estrous cycle observed in this study suggest a role in the transcriptional regulation of FSHR and ESR2, which is the first evidence of the involvement of these miRNAs in the canine follicular function.
Collapse
Affiliation(s)
- Monica De los Reyes
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile;
| | - Phillip Dettleff
- School of Veterinary Medicine, Faculty of Agronomy and Natural Systems, Faculty of Biological Sciences and Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile; (P.D.); (O.A.P.)
| | - Jaime Palomino
- School of Veterinary Medicine, Faculty of Medical Sciences, Bernardo O’Higgins University, Santiago 8370993, Chile;
| | - Oscar A. Peralta
- School of Veterinary Medicine, Faculty of Agronomy and Natural Systems, Faculty of Biological Sciences and Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile; (P.D.); (O.A.P.)
| | - Ana Vergara
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago 8820000, Chile;
| |
Collapse
|
28
|
Choudhari RC, Kaur K, Das A, Jaitak V. Synthesis, and In-silico Studies of Indole-chalcone Derivatives Targeting Estrogen Receptor Alpha (ER-α) for Breast Cancer. Curr Comput Aided Drug Des 2024; 20:640-652. [PMID: 37888813 DOI: 10.2174/0115734099263650230926053750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Breast cancer is the prominent reason of death in women worldwide, and the cases are increasing day by day. There are many FDA-approved drugs for treating breast cancer. Due to drug resistance, and problems in selectivity, there is a need to develop more effective agents with few side effects. Indole derivatives have demonstrated significant pharmacological potential as anti-breast cancer agents. Further, chalcone derivatives incorporating heterocyclic scaffolds play a significant role in medicine. Indole-chalcone-based compounds offer the potential for improved biological activity and enhanced drug-like properties. It prompted us to explore the synthesis of Indole-Chalcone derivatives targeting estrogen receptor alpha (ER-α) to discover potent anti-breast cancer agents. OBJECTIVES To synthesize indole-chalcone derivatives and study their binding interactions for ER-α protein by molecular docking for breast cancer treatment. METHODS In this study, indole-chalcone derivatives have been synthesized using conventional heating. With the help of Schrodinger software, molecular interaction as well as ADME (Adsorption, Distribution, Metabolism, and Excretion) studies of the compounds were conducted. RESULTS Among all the synthesized compounds, four compounds (1, 2, 3, and 4) showed better docking scores (-10.24 kcal/mol, -10.15 kcal/mol, -9.40 kcal/mol, -9.29 kcal/mol, respectively) than the standard tamoxifen (-8.43 kcal/mol). CONCLUSION From In-silico studies, we can conclude that four compounds from the synthesized series fit into the active site of ER-α. ADME properties of synthesized derivatives were found in the acceptable range. In the future, these compounds can be further explored for biological activity.
Collapse
Affiliation(s)
- Rahul Charudatta Choudhari
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb), 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb), 151401, India
| | - Agnidipta Das
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb), 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb), 151401, India
| |
Collapse
|
29
|
Wu S, Xie J, Zhong T, Shen L, Zhao Y, Chen L, Gan M, Zhang S, Zhu L, Niu L. Genetic polymorphisms in ESR and FSHβ genes and their association with litter traits in Large White pigs. Anim Biotechnol 2023; 34:4713-4720. [PMID: 36927230 DOI: 10.1080/10495398.2023.2187405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The estrogen receptor (ESR) gene and follicle-stimulating hormone β (FSHβ) gene are responsible for litter traits. The present study aimed to verify the polymorphisms of ESR and FSHβ and assess their effects on the litter traits in 201 Large White pigs. Four SNPs (g.C669T, g.A1296G, g.C1665T and g.A1755G) were found in ESR. The TT genotype at g.C1665T locus and AA genotype at g.A1755G locus could significantly increase the total litter size of the first litter of American Large White pigs (p < 0.05). Eight SNPs were found in exon 3 of FSHβ. The AA genotype at g.A511G locus, AA and AG genotypes at g.A617G locus, CC and CT genotypes at g.C630T locus, CT and TT genotypes at g.C652T locus, CT and TT genotypes at g.C735T locus, AA and AG genotypes at g.A746G, AA and AG genotypes at g.A921G and CT genotype at g.C678T could significantly increase the litter size of different strains of Large White pigs (p < 0.05). Our study revealed that the genetic variations of ESR and FSHβ were closely related to the litter trait of Large White pigs. Therefore, ESR and FSHβ genes could be used as molecular markers for the genetic selection of Large White pigs.
Collapse
Affiliation(s)
- Shun Wu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jingjing Xie
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
Peinado FM, Olivas-Martínez A, Lendínez I, Iribarne-Durán LM, León J, Fernández MF, Sotelo R, Vela-Soria F, Olea N, Freire C, Ocón-Hernández O, Artacho-Cordón F. Expression Profiles of Genes Related to Development and Progression of Endometriosis and Their Association with Paraben and Benzophenone Exposure. Int J Mol Sci 2023; 24:16678. [PMID: 38069001 PMCID: PMC10706360 DOI: 10.3390/ijms242316678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Increasing evidence has been published over recent years on the implication of endocrine-disrupting chemicals (EDCs), including parabens and benzophenones in the pathogenesis and pathophysiology of endometriosis. However, to the best of our knowledge, no study has been published on the ways in which exposure to EDCs might affect cell-signaling pathways related to endometriosis. We aimed to describe the endometriotic tissue expression profile of a panel of 23 genes related to crucial cell-signaling pathways for the development and progression of endometriosis (cell adhesion, invasion/migration, inflammation, angiogenesis, and cell proliferation/hormone stimulation) and explore its relationship with the exposure of patients to parabens (PBs) and benzophenones (BPs). This cross-sectional study included a subsample of 33 women with endometriosis from the EndEA study, measuring their endometriotic tissue expressions of 23 genes, while urinary concentrations of methyl-, ethyl-, propyl-, butyl-paraben, benzophenone-1, benzophenone-3, and 4-hydroxybenzophenone were determined in 22 women. Spearman's correlations test and linear and logistic regression analyses were performed. The expression of 52.2% of studied genes was observed in >75% of endometriotic tissue samples and the expression of 17.4% (n = 4) of them in 50-75%. Exposure to certain PB and BP congeners was positively associated with the expression of key genes for the development and proliferation of endometriosis. Genes related to the development and progression of endometriosis were expressed in most endometriotic tissue samples studied, suggesting that exposure of women to PBs and BPs may be associated with the altered expression profile of genes related to cellular pathways involved in the development of endometriosis.
Collapse
Affiliation(s)
- Francisco M. Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alicia Olivas-Martínez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
| | | | - Luz M. Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Digestive Medicine Unit, San Cecilio University Hospital, 18012 Granada, Spain
- CIBER Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Mariana F. Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| | - Rafael Sotelo
- Gynecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
- Nuclear Medicine Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Legal Medicine, Toxicology and Physical Anthropology Department, University of Granada, 18071 Granada, Spain
| | - Olga Ocón-Hernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Gynecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| |
Collapse
|
31
|
Puche-Juarez M, Toledano JM, Moreno-Fernandez J, Gálvez-Ontiveros Y, Rivas A, Diaz-Castro J, Ochoa JJ. The Role of Endocrine Disrupting Chemicals in Gestation and Pregnancy Outcomes. Nutrients 2023; 15:4657. [PMID: 37960310 PMCID: PMC10648368 DOI: 10.3390/nu15214657] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances widely disseminated both in the environment and in daily-life products which can interfere with the regulation and function of the endocrine system. These substances have gradually entered the food chain, being frequently found in human blood and urine samples. This becomes a particularly serious issue when they reach vulnerable populations such as pregnant women, whose hormones are more unstable and vulnerable to EDCs. The proper formation and activity of the placenta, and therefore embryonic development, may get seriously affected by the presence of these chemicals, augmenting the risk of several pregnancy complications, including intrauterine growth restriction, preterm birth, preeclampsia, and gestational diabetes mellitus, among others. Additionally, some of them also exert a detrimental impact on fertility, thus hindering the reproductive process from the beginning. In several cases, EDCs even induce cross-generational effects, inherited by future generations through epigenetic mechanisms. These are the reasons why a proper understanding of the reproductive and gestational alterations derived from these substances is needed, along with efforts to establish regulations and preventive measures in order to avoid exposition (especially during this particular stage of life).
Collapse
Affiliation(s)
- Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Yolanda Gálvez-Ontiveros
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| |
Collapse
|
32
|
Ferreira CS, Ribeiro YM, Moreira DP, Paschoalini AL, Bazzoli N, Rizzo E. Reproductive toxicity induced by lead exposure: Effects on gametogenesis and sex steroid signaling in teleost fish. CHEMOSPHERE 2023; 340:139896. [PMID: 37604338 DOI: 10.1016/j.chemosphere.2023.139896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Lead (Pb) is an emerging contaminant widely distributed in aquatic environments, which has serious effects on human and animal health. In this study, we determined whether Pb exposure affects gametogenesis, sex steroids, estrogen (ERα and ERβ), and androgen (AR) receptors. Adult specimens of Astyanax bimaculatus were exposed in duplicate to 15, 50, and 100 μg/L of lead acetate, whereas the control group was not exposed. After 28 days of exposure, fish were euthanized and samples of the gonads, liver, and blood were collected for analysis. The results indicated a reduction in the gonadosomatic index as well as the diameters of the vitellogenic follicles and seminiferous tubules in the exposed groups. Morphometry of gametogenesis revealed inhibition of the secondary oocyte growth and a reduction in the number of spermatozoa in the 50 and 100 μg/L Pb-treated groups. In females, plasma 17β-estradiol (E2) increased following 15 and 50 μg/L Pb treatment, whereas males exhibited an increase in E2 and 11-ketotestosterone following treatment with 15 and 100 μg/L Pb, respectively. Vitellogenin was significantly reduced in females exposed to 100 μg/L Pb, but metallothionein levels were unchanged. ERα, ERβ, and AR were immunolocalized in the somatic and germ cells, with increased ovarian expression of ERα and Erβ in the 100 μg/L Pb-treated group, but no significant difference in AR among the groups. In males, only ERα increased in the 100 μg/L Pb-treated group. These results indicate that Pb exposure impairs gametogenesis, disrupts estrogen receptor signaling, and affects the expression of major reproductive biomarkers in A. bimaculatus.
Collapse
Affiliation(s)
- Camila Stephanie Ferreira
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Yves Moreira Ribeiro
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Davidson Peruci Moreira
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Alessandro Loureiro Paschoalini
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Elizete Rizzo
- Laboratório de Ictiohistologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Sang M, Yu Y, Zhou Z, Zhang Y, Chang H. Predictive value of serum anti-endometrium antibody level in infertile patients with polycystic ovary syndrome. Ir J Med Sci 2023; 192:2167-2172. [PMID: 36411377 DOI: 10.1007/s11845-022-03219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polycystic ovary syndrome is the most extensive type of reproductive endocrine disease in department of gynecology. AIMS This observation aimed to investigate the predictive value of anti-endometrial antibody (EMAb) level in polycystic ovary syndrome (PCOS) complicated with infertility. METHODS A total of 87 PCOS patients with infertility were selected as the research objects, and 86 healthy women who underwent pre-pregnancy physical examination were volunteers of the control group. The serum samples of the two groups were collected, and the serum EMAb level was detected by enzyme-linked immunosorbent assay (ELISA), and Pearson correlation was used to analyze the correlation between serum EMAb and sex hormone levels. ROC was drawn to analyze the predictive value of EMAb in PCOS complicated with infertility. Logistic regression was calculated to predict the risks of PCOS with infertility. RESULTS The levels of EMAb were significantly higher in infertile patients with PCOS. Serum EMAb was positively correlated with BMI, luteinizing hormone (LH), and testosterone and negatively correlated with estradiol and progesterone in PCOS complicated with infertility group. The AUC of serum EMAb in differentiating PCOS with infertility was 0.928. Serum EMAb, LH, testosterone, and estradiol were independent risks for infertility in PCOS. CONCLUSIONS Serum EMAb level in PCOS patients with infertility was significantly increased, and it was significantly correlated with sex hormone levels. Serum EMAb level could be used as a predictor of infertile patients with PCOS.
Collapse
Affiliation(s)
- Min Sang
- Reproductive Medicine Center, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), Huanggang, Hubei, 438000, People's Republic of China
| | - Ying Yu
- Reproductive Medicine Center, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), Huanggang, Hubei, 438000, People's Republic of China
| | - Zhi Zhou
- Reproductive Medicine Center, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), Huanggang, Hubei, 438000, People's Republic of China
| | - Yaqi Zhang
- Scientific Research and Teaching Department, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), Huanggang, Hubei, 438000, People's Republic of China
| | - Haiping Chang
- Department of Gynecology, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), No.126 Qi'an Avenue, Huangzhou District, Huanggang, Hubei, 438000, People's Republic of China.
| |
Collapse
|
34
|
Wong KY, Kong TH, Poon CCW, Yu W, Zhou L, Wong MS. Icariin, a phytoestrogen, exerts rapid estrogenic actions through crosstalk of estrogen receptors in osteoblasts. Phytother Res 2023; 37:4706-4721. [PMID: 37421324 DOI: 10.1002/ptr.7939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Icariin, a flavonoid glycoside derived from Epimedium brevicornum Maxim, exerts bone protective effects via estrogen receptors (ERs). This study aimed to investigate the role of ER-α66, ER-α36, and GPER in bone metabolism in osteoblasts following treatment with icariin. Human osteoblastic MG-63 cells and osteoblast-specific ER-α66 knockout mice were employed. The ERs crosstalk in the estrogenic action of icariin was evaluated in ER-α66-negative human embryonic kidney HEK293 cells. Icariin, like E2, regulated ER-α36 and GPER protein expression in osteoblasts by downregulating them and upregulating ER-α66. ER-α36 and GPER suppressed the actions of icariin and E2 in bone metabolism. However, the in vivo administration of E2 (2 mg/kg/day) or icariin (300 mg/kg/day) restored bone conditions in KO osteoblasts. ER-α36 and GPER expression increased significantly and rapidly activated and translocated in KO osteoblasts after treatment with E2 or icariin. ER-α36 overexpression in KO osteoblasts further promoted the OPG/RANKL ratio induced by E2 or icariin treatment. This study showed icariin and E2 elicit rapid estrogenic responses in bone through recruiting ER-α66, ER-α36, and GPER. Notably, in osteoblasts lacking ER-α66, ER-α36, and GPER mediate the estrogenic effects of icariin and E2, while in intact osteoblasts, ER-α36 and GPER act as negative regulators of ER-α66.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Tsz-Hung Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Christina Chui-Wa Poon
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Wenxuan Yu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Liping Zhou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Man-Sau Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
35
|
Lee H, Son K, Lee I, Lim H. Effects of Nutrition Education with Intervention Mapping on Cardiovascular Disease Risk Factors in Women with Borderline Dyslipidemia: Analysis According to Menopausal Status. J Obes Metab Syndr 2023; 32:269-278. [PMID: 37649144 PMCID: PMC10583769 DOI: 10.7570/jomes23013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023] Open
Abstract
Background Menopause causes hormonal, physical, and psychological changes that are associated with an increase in risk of cardiovascular disease (CVD). This study examined the effects of medical nutrition therapy (MNT) on CVD risk factors in pre- and post-menopausal women with borderline dyslipidemia in Korea. Methods In total, 76 participants were divided into the MNT and control groups. MNT was performed for 12 weeks using intervention mapping with consideration of weight, blood lipid levels, and dietary assessment results. Anthropometric and biochemical measurements and dietary intake were analyzed. Results The dietary energy and cholesterol intake, waist circumference (WC), blood triacylglycerol and very-low-density lipoprotein cholesterol levels, and atherogenic index (AI) of the pre-menopausal MNT group decreased significantly after the intervention. Moreover, dietary cholesterol intake, WC, waist-to-hip ratio, body fat percentage, total blood cholesterol, low-density lipoprotein to high-density lipoprotein ratio, and AI decreased significantly in the post-menopausal MNT group after the intervention. Conclusion MNT for 12 weeks is effective in decreasing risk factors associated with CVD in Korean women with borderline dyslipidemia, and the effects differ between pre- and post-menopausal women.
Collapse
Affiliation(s)
- Hansongyi Lee
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Kumhee Son
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul, Korea
| | - Inji Lee
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul, Korea
| |
Collapse
|
36
|
Wang D, Zhu Z, Fu Y, Zhang Q, Zhang Y, Wang T, Weng Y, Wen Y, Cao W, Tao G, Wang Y. Bromodomain-containing protein 4 activates androgen receptor transcription and promotes ovarian fibrosis in PCOS. Cell Rep 2023; 42:113090. [PMID: 37669164 DOI: 10.1016/j.celrep.2023.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and the main cause of anovulatory infertility, in which persistent activation of androgen receptor (AR) due to aberrant acetylation modifications of transcription is a potential trigger; however, the precise mechanisms of AR activation are poorly understood. In this study, AR activation in dehydroepiandrosterone- and letrozole-induced rat PCOS ovaries coincided with a marked increase of a chromatin acetylation "reader" BRD4. Further bioinformatic analysis showed that the AR promoter contained highly conserved binding motifs of BRD4 and HIF-1α. BRD4 and HIF-1α inducibly bound to the histone 3/4 acetylation-modified AR promoter, while administration of a BRD4-selective inhibitor JQ1 reduced the binding and AR transcription and improved the adverse expression of the core fibrotic mediators in PCOS ovaries and DHT-treated granulosa cells. Our data indicate that BRD4 upregulation and the resultant AR transcriptional activation constitute an important regulatory pathway that promotes ovarian fibrosis in PCOS.
Collapse
Affiliation(s)
- Daojuan Wang
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Department of Pain Management, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhengquan Zhu
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yu Fu
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Qiong Zhang
- Department of Obstetrics and Gynecology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yi Zhang
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Tingyu Wang
- Department of Pain Management, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yajing Weng
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yanting Wen
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Wangsen Cao
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Department of Nephrology, Yangzhou Precision Research Institute of Kidney Disease, Northern Jiangsu People's Hospital, Teaching Hospital of Nanjing University Medical School, Yangzhou 225009, China.
| | - Gaojian Tao
- Department of Pain Management, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yong Wang
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
37
|
Saber S, Al-Qawasmeh RA, Abu-Qatouseh L, Shtaiwi A, Khanfar MA, Al-Soud YA. Novel hybrid motifs of 4-nitroimidazole-piperazinyl tagged 1,2,3-triazoles: Synthesis, crystal structure, anticancer evaluations, and molecular docking study. Heliyon 2023; 9:e19327. [PMID: 37681149 PMCID: PMC10480608 DOI: 10.1016/j.heliyon.2023.e19327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
4-((4-(1-benzyl-2-methyl-4-nitro-1H-imidazole-5-yl)piperazine-1-yl)methyl)-1-substituted-1H-1,2,3-triazole motifs are designed and synthesized via click chemistry. The reaction of 1-(N1-benzyl- 2-methyl-4-nitro-1H-imidazole- 5-yl)-4-(prop-2-yn-1-yl) piperazine 5 as new scaffold with diverse primary azides to selectively produce 1,4-disubstituted-1,2,3-triazoles 9a-k, 10a-c and 11a-q. Physicochemical methods: when 1H NMR, 13C NMR, and HRMS are utilized to fully characterize all synthesized compounds. X-ray structural determination and analysis for compound 9a is also performed. The newly designed chromophores are assessed for their anti-proliferative potency against three selected human cancer cell lines (MCF-7, HepG2, and PC3), and one normal cell line (Dermal/Fibroblast). Compounds 9g and 9k have shown potent activities against the MCF-7 cell line with IC50 values of (2.00 ± 0.03 μM) and (5.00 ± 0.01 μM) respectively. ADMET studies and Molecular docking investigations are performed on the most active hybrid nitroimidazole derivatives 9g and 9k with 4-hydroxytamoxifen (4-OHT) at the human estrogen receptor alpha (hER) during binding active sites to study the ligand-protein interactions and free binding energies at atomic levels. The triazole ring in the 9g derivative forms a hydrogen bond with Asp58 with distance 3.2 Å. And it is found that polar contact with His231 amino acid residue. In silico assessment of the compounds showed very good pharmacokinetic properties based on their physicochemical values, also the ADMET criteria of the most active hybrid systems are within the acceptable range.
Collapse
Affiliation(s)
- SadeekahO.W. Saber
- Department of chemistry, School of Science, The University of Jordan, 11942, Amman, Jordan
- Faculty of Pharmacy, Jerash University, Amman-Irbid international highway, Jerash, 26150, Jordan
| | - Raed A. Al-Qawasmeh
- Department of chemistry, School of Science, The University of Jordan, 11942, Amman, Jordan
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | | | - Amneh Shtaiwi
- Faculty of Pharmacy, Middle East University, Queen Alia Airport Street, 11610, Amman, Jordan
| | - Monther A. Khanfar
- Department of chemistry, School of Science, The University of Jordan, 11942, Amman, Jordan
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Yaseen A. Al-Soud
- Chemistry Department, Faculty of Science, University of Al al-Bayt, Al-Mafraq, Jordan
| |
Collapse
|
38
|
Zhao X, Luo D, Liu T, Zhang H, Xie Y, Kong W. BIBR1532 Affects Endometrial Cell Proliferation, Migration, and Invasion in Endometriosis via Telomerase Inhibition and MAPK Signaling. Gynecol Obstet Invest 2023; 88:226-239. [PMID: 37429261 DOI: 10.1159/000530460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/27/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVES The effect of telomerase inhibitor BIBR1532 on endometriotic cells was investigated to explore the inhibitory effect of targeting telomerase on endometriosis. DESIGN In vitro primary cell culture study. Participants/Materials: Primary endometrial cells derived from eutopic and ectopic endometrium in patients with endometriosis. SETTING The study was conducted in the university hospital. METHODS Paired eutopic and ectopic endometrial cells were collected from 6 patients from January 2018 to July 2021. A TRAP assay was performed to detect the telomerase activity of the cells. MTT, cell cycle, apoptosis, migration, and invasion assays were performed to study the inhibitory effect of BIBR1532. Enrichment analysis was performed to identify the key pathways involved in endometriosis progression and telomerase action. Then, Western blotting was used to investigate the expression of related proteins. RESULTS BIBR1532 treatment significantly inhibited the growth of eutopic and ectopic endometrial cells, with apoptosis and cell cycle signaling involved. Migration and invasion, important characteristics for the establishment of ectopic lesions, were also inhibited by BIBR1532. The MAPK signaling cascade, related to telomerase and endometriosis, was decreased in eutopic and ectopic endometrial stromal cells with the treatment of BIBR1532. LIMITATIONS The severe side effects of telomerase inhibitors might be the main obstacle to clinical application, so it is necessary to find better drug delivery methods in vivo. CONCLUSIONS The telomerase inhibitor BIBR1532 affects endometrial cell proliferation, migration, and invasion in endometriosis.
Collapse
Affiliation(s)
- Xiaoling Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dan Luo
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tingting Liu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - He Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yunkai Xie
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
39
|
Beccacece L, Costa F, Pascali JP, Giorgi FM. Cross-Species Transcriptomics Analysis Highlights Conserved Molecular Responses to Per- and Polyfluoroalkyl Substances. TOXICS 2023; 11:567. [PMID: 37505532 PMCID: PMC10385990 DOI: 10.3390/toxics11070567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
In recent decades, per- and polyfluoroalkyl substances (PFASs) have garnered widespread public attention due to their persistence in the environment and detrimental effects on the health of living organisms, spurring the generation of several transcriptome-centered investigations to understand the biological basis of their mechanism. In this study, we collected 2144 publicly available samples from seven distinct animal species to examine the molecular responses to PFAS exposure and to determine if there are conserved responses. Our comparative transcriptional analysis revealed that exposure to PFAS is conserved across different tissues, molecules and species. We identified and reported several genes exhibiting consistent and evolutionarily conserved transcriptional response to PFASs, such as ESR1, HADHA and ID1, as well as several pathways including lipid metabolism, immune response and hormone pathways. This study provides the first evidence that distinct PFAS molecules induce comparable transcriptional changes and affect the same metabolic processes across inter-species borders. Our findings have significant implications for understanding the impact of PFAS exposure on living organisms and the environment. We believe that this study offers a novel perspective on the molecular responses to PFAS exposure and provides a foundation for future research into developing strategies for mitigating the detrimental effects of these substances in the ecosystem.
Collapse
Affiliation(s)
- Livia Beccacece
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Filippo Costa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Jennifer Paola Pascali
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy
| | | |
Collapse
|
40
|
Haddadi A, Farhadi P, Fatemi R, Mohamadynejad P, Moghanibashi M. Differential expression of KCNQ1 and ATP4A genes according to the sex and age in the stomach. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:1019-1027. [PMID: 37367232 DOI: 10.1080/15257770.2023.2228371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
We compared the expression of six genes in stomach tissue samples between healthy men and women in different age groups to study sexually dimorphic gene expression. Real-Time RT-PCR was used to compare gene expression between men and women. Our results showed that the expression of KCNQ1 (p = 0.01) was significantly higher in non-menopausal women compared to post-menopausal women. In addition, the expression level of the ATP4A gene in men under 35 years was significantly higher than in men above 50 (p = 0.026). Sexually and age dimorphic gene expression in some genes throughout life may affect gastric function.
Collapse
Affiliation(s)
- Azadeh Haddadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Pegah Farhadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Raziyeh Fatemi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
41
|
Choi SY, Kim JW, Oh SH, Cheon S, Yee J, Kim SJ, Gwak HS, Chung JE. Prediction of medication-related osteonecrosis of the jaws using machine learning methods from estrogen receptor 1 polymorphisms and clinical information. Front Med (Lausanne) 2023; 10:1140620. [PMID: 37415765 PMCID: PMC10321771 DOI: 10.3389/fmed.2023.1140620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Objective The purpose of this study was to evaluate the effect of estrogen receptor 1 (ESR1) polymorphisms on the development of medication-related osteonecrosis of the jaws (MRONJ) in women with osteoporosis. Methods A total of 125 patients taking bisphosphonates was evaluated the relationship between MRONJ occurrence and single nucleotide polymorphisms (SNPs) of ESR1. Clinical information was collected, including current age, treatment duration, and comorbidity. Univariate and Multivariable regression analyzes were performed to evaluate the independent predictive factors for MRONJ occurrence. Predictive models were constructed using machine learning methods such as Lasso regression, Random forest (RF), and Support vector machine (SVM). The area under the receiver-operating curve (AUROC) was used to evaluate the performance of a binary classifier. Result Two SNPs of ESR1 (rs4870056 and rs78177662) were significantly associated with MRONJ development. Patients with variant allele (A) of rs4870056 showed 2.45 times (95% CI, 1.03-5.87) the odds of MRONJ occurrence compared to those with wild-type homozygote (GG) after adjusting covariates. Additionally, carriers with variant allele (T) of rs78177662 had higher odds than those with wild-type homozygote (CC) (adjusted odds ratio (aOR), 2.64, 95% CI, 1.00-6.94). Among demographic variables, age ≥ 72 years (aOR, 3.98, 95% CI, 1.60-9.87) and bisphosphonate exposure ≥48 months (aOR, 3.16, 95% CI, 1.26-7.93) were also significant risk factors for MRONJ occurrence. AUROC values of machine learning methods ranged between 0.756-0.806 in the study. Conclusion Our study showed that the MRONJ occurrence was associated with ESR1 polymorphisms in osteoporotic women.
Collapse
Affiliation(s)
- Seo-Yong Choi
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jin-Woo Kim
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sang-Hyeon Oh
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seunghyun Cheon
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sun-Jong Kim
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jee-Eun Chung
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
42
|
Liang X, Du L, Fan Y. The potential of FCRL genes as targets for cancer treatment: insights from bioinformatics and immunology. Aging (Albany NY) 2023; 15:204766. [PMID: 37285836 PMCID: PMC10292877 DOI: 10.18632/aging.204766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Cancer is a prevalent and dangerous disease that requires a multifaceted approach to treatment. The FCRL family gene has been linked to immune function and tumor progression. Bioinformatics may help unravel their role in cancer treatment. We conducted a comprehensive analysis of the FCRL family genes in pan-cancer using publicly available databases and online tools. Specifically, we examined gene expression, prognostic significance, mutation profiles, drug resistance, as well as biological and immunomodulatory roles. Our data were sourced from The Cancer Genome Atlas, Genotype-Tissue Expression, cBioPortal, STRING, GSCALite, Cytoscape, and R software. The expression of FCRL genes varies significantly across different tumor types and normal tissues. While high expression of most FCRL genes is associated with a protective effect in many cancers, FCRLB appears to be a risk factor in several types of cancer. Alterations in FCRL family genes, particularly through amplification and mutation, are common in cancers. These genes are closely linked to classical cancer pathways such as apoptosis, epithelial-mesenchymal transition (EMT), estrogen receptor (ER) signaling, and DNA damage response. Enrichment analysis indicates that FCRL family genes are predominantly associated with immune cell activation and differentiation. Immunological assays demonstrate a strong positive correlation between FCRL family genes and tumor-infiltrating lymphocytes (TILs), immunostimulators, and immunoinhibitors. Furthermore, FCRL family genes can enhance the sensitivity of various anticancer drugs. The FCRL family genes are vital in cancer pathogenesis and progression. Targeting these genes in conjunction with immunotherapy could enhance cancer treatment efficacy. Further research is required to determine their potential as therapeutic targets.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
43
|
Shoorei H, Seify M, Talebi SF, Majidpoor J, Dehaghi YK, Shokoohi M. Different types of bisphenols alter ovarian steroidogenesis: Special attention to BPA. Heliyon 2023; 9:e16848. [PMID: 37303564 PMCID: PMC10250808 DOI: 10.1016/j.heliyon.2023.e16848] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Endocrine disruptors such as bisphenol A (BPA) and some of its analogues, including BPS, BPAF, and BPE, are used extensively in the manufacture of plastics. These synthetic chemicals could seriously alter the functionality of the female reproductive system. Although the number of studies conducted on other types of bisphenols is smaller than the number of studies on BPA, the purpose of this review study was to evaluate the effects of bisphenol compounds, particularly BPA, on hormone production and on genes involved in ovarian steroidogenesis in both in vitro (human and animal cell lines) and in vivo (animal models) studies. The current data show that exposure to bisphenol compounds has adverse effects on ovarian steroidogenesis. For example, BPA, BPS, and BPAF can alter the normal function of the hypothalamic-pituitary-gonadal (HPG) axis by targeting kisspeptin neurons involved in steroid feedback signals to gonadotropin-releasing hormone (GnRH) cells, resulting in abnormal production of LH and FSH. Exposure to BPA, BPS, BPF, and BPB had adverse effects on the release of some hormones, namely 17-β-estradiol (E2), progesterone (P4), and testosterone (T). BPA, BPE, BPS, BPF, and BPAF are also capable of negatively altering the transcription of a number of genes involved in ovarian steroidogenesis, such as the steroidogenic acute regulatory protein (StAR, involved in the transfer of cholesterol from the outer to the inner mitochondrial membrane, where the steroidogenesis process begins), cytochrome P450 family 17 subfamily A member 1 (Cyp17a1, which is involved in the biosynthesis of androgens such as testosterone), 3 beta-hydroxysteroid dehydrogenase enzyme (3β-HSD, involved in the biosynthesis of P4), and cytochrome P450 family 19 subfamily A member 1 (Cyp19a1, involved in the biosynthesis of E2). Exposure to BPA, BPB, BPF, and BPS at prenatal or prepubertal stages could decrease the number of antral follicles by activating apoptosis and autophagy pathways, resulting in decreased production of E2 and P4 by granulosa cells (GCs) and theca cells (TCs), respectively. BPA and BPS impair ovarian steroidogenesis by reducing the function of some important cell receptors such as estrogens (ERs, including ERα and ERβ), progesterone (PgR), the orphan estrogen receptor gamma (ERRγ), the androgen receptor (AR), the G protein-coupled estrogen receptor (GPER), the FSHR (follicle-stimulating hormone receptor), and the LHCGR (luteinizing hormone/choriogonadotropin receptor). In animal models, the effects of bisphenol compounds depend on the type of animals, their age, and the duration and dose of bisphenols, while in cell line studies the duration and doses of bisphenols are the matter.
Collapse
Affiliation(s)
- Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yeganeh Koohestani Dehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Shokoohi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Lissaman AC, Girling JE, Cree LM, Campbell RE, Ponnampalam AP. Androgen signalling in the ovaries and endometrium. Mol Hum Reprod 2023; 29:gaad017. [PMID: 37171897 PMCID: PMC10663053 DOI: 10.1093/molehr/gaad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/27/2023] [Indexed: 05/14/2023] Open
Abstract
Currently, our understanding of hormonal regulation within the female reproductive system is largely based on our knowledge of estrogen and progesterone signalling. However, while the important functions of androgens in male physiology are well known, it is also recognized that androgens play critical roles in the female reproductive system. Further, androgen signalling is altered in a variety of gynaecological conditions, including endometriosis and polycystic ovary syndrome, indicative of regulatory roles in endometrial and ovarian function. Co-regulatory mechanisms exist between different androgens, estrogens, and progesterone, resulting in a complex network of steroid hormone interactions. Evidence from animal knockout studies, in vitro experiments, and human data indicate that androgen receptor expression is cell-specific and menstrual cycle stage-dependent, with important regulatory roles in the menstrual cycle, endometrial biology, and follicular development in the ovaries. This review will discuss the expression and co-regulatory interactions of androgen receptors, highlighting the complexity of the androgen signalling pathway in the endometrium and ovaries, and the synthesis of androgens from additional alternative pathways previously disregarded as male-specific. Moreover, it will illustrate the challenges faced when studying androgens in female biology, and the need for a more in-depth, integrative view of androgen metabolism and signalling in the female reproductive system.
Collapse
Affiliation(s)
- Abbey C Lissaman
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jane E Girling
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lynsey M Cree
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Rebecca E Campbell
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Anna P Ponnampalam
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pūtahi Manawa-Healthy Hearts for Aotearoa New Zealand, Centre of Research Excellence, New Zealand
| |
Collapse
|
45
|
Sang M, Yu Y, Zhou Z, Zhang Y, Chang H. Differential expression of serum mir-363-3p in patients with polycystic ovary syndrome and its predictive value for their pregnancy. BMC Womens Health 2023; 23:264. [PMID: 37189071 DOI: 10.1186/s12905-023-02337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND This study aimed to investigate the expression of serum miR-363-3p in patients with polycystic ovary syndrome (PCOS) and its predictive value for pregnancy after ovulation induction therapy. METHODS The expression of serum miR-363-3p was detected by Reverse transcription quantitative polymerase chain reaction (RT-qPCR). PCOS patients were treated with ovulation induction therapy, and after the successful pregnancy was confirmed, they were followed up for 1 year in outpatient department to record the pregnancy outcomes of the patients. The Pearson correlation coefficient was used to evaluate the correlation between the expression level of miR-363-3p and biochemical indicators of PCOS patients. Logistic regression analysis was used to analyze the risk factors of pregnancy failure after ovulation induction therapy. RESULTS The serum level of miR-363-3p in PCOS group was significantly lower than that in control group. Compared with the control group, both pregnant and non-pregnant groups had lower miR-363-3p levels, while the non-pregnant group had a greater reduction in miR-363-3p levels than the pregnant group. Low levels of miR-363-3p showed high accuracy in distinguishing pregnant and non-pregnant patients. Logistic regression analysis showed that high levels of luteinizing hormone, testosterone (T), prolactin (PRL) and low level of miR-363-3p were independent risk factors for pregnancy failure after ovulation induction in PCOS patients. Additionally, compared with pregnancy outcomes of healthy women, the incidence of premature delivery, macrosomia, and gestational diabetes in PCOS patients increased. CONCLUSIONS The expression of miR-363-3p in PCOS patients was reduced and correlated with abnormal hormone levels, suggesting that miR-363-3p may be involved in the occurrence and development of PCOS.
Collapse
Affiliation(s)
- Min Sang
- Reproductive Medicine Center, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), Huanggang, 438000, Hubei, P.R. China
| | - Ying Yu
- Reproductive Medicine Center, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), Huanggang, 438000, Hubei, P.R. China
| | - Zhi Zhou
- Reproductive Medicine Center, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), Huanggang, 438000, Hubei, P.R. China
| | - Yaqi Zhang
- Scientific Research and Teaching Department, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), Huanggang, 438000, Hubei, P.R. China
| | - Haiping Chang
- Department of Gynecology, Huanggang Central Hospital of Yangtze University (Dabie Mountain Regional Medical Center), No.126 Qi'an Avenue, Huangzhou District, Huanggang, 438000, Hubei, P.R. China.
| |
Collapse
|
46
|
González-Gómez M, Reyes R, Damas-Hernández MDC, Plasencia-Cruz X, González-Marrero I, Alonso R, Bello AR. NTS, NTSR1 and ERs in the Pituitary-Gonadal Axis of Cycling and Postnatal Female Rats after BPA Treatment. Int J Mol Sci 2023; 24:ijms24087418. [PMID: 37108581 PMCID: PMC10138486 DOI: 10.3390/ijms24087418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The neuropeptide neurotensin (NTS) is involved in regulating the reproductive axis and is expressed at each level of this axis (hypothalamus-pituitary-gonads). This dependence on estrogen levels has been widely demonstrated in the hypothalamus and pituitary. We focused on confirming the relationship of NTS with estrogens and the gonadal axis, using a particularly important environmental estrogenic molecule, bisphenol-A (BPA). Based on the experimental models or in vitro cell studies, it has been shown that BPA can negatively affect reproductive function. We studied for the first time the action of an exogenous estrogenic substance on the expression of NTS and estrogen receptors in the pituitary-gonadal axis during prolonged in vivo exposure. The exposure to BPA at 0.5 and 2 mg/kg body weight per day during gestation and lactation was monitored through indirect immunohistochemical procedures applied to the pituitary and ovary sections. Our results demonstrate that BPA induces alterations in the reproductive axis of the offspring, mainly after the first postnatal week. The rat pups exposed to BPA exhibited accelerated sexual maturation to puberty. There was no effect on the number of rats born per litter, although the fewer primordial follicles suggest a shorter fertile life.
Collapse
Affiliation(s)
- Miriam González-Gómez
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| | | | - Xiomara Plasencia-Cruz
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ibrahim González-Marrero
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Rafael Alonso
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Área de Fisiología, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Aixa R Bello
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| |
Collapse
|
47
|
Sciarra F, Campolo F, Franceschini E, Carlomagno F, Venneri M. Gender-Specific Impact of Sex Hormones on the Immune System. Int J Mol Sci 2023; 24:ijms24076302. [PMID: 37047274 PMCID: PMC10094624 DOI: 10.3390/ijms24076302] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Sex hormones are key determinants of gender-related differences and regulate growth and development during puberty. They also exert a broad range modulation of immune cell functions, and a dichotomy exists in the immune response between the sexes. Both clinical and animal models have demonstrated that androgens, estrogens, and progestogens mediate many of the gender-specific differences in immune responses, from the susceptibility to infectious diseases to the prevalence of autoimmune disorders. Androgens and progestogens mainly promote immunosuppressive or immunomodulatory effects, whereas estrogens enhance humoral immunity both in men and in women. This study summarizes the available evidence regarding the physiological effects of sex hormones on human immune cell function and the underlying biological mechanisms, focusing on gender differences triggered by different amounts of androgens between males and females.
Collapse
|
48
|
Ruiz TFR, Grigio V, Ferrato LJ, de Souza LG, Colleta SJ, Amaro GM, Góes RM, Vilamaior PSL, Leonel ECR, Taboga SR. Impairment of steroidogenesis and follicle development after bisphenol A exposure during pregnancy and lactation in the ovaries of Mongolian gerbils aged females. Mol Cell Endocrinol 2023; 566-567:111892. [PMID: 36813021 DOI: 10.1016/j.mce.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
The ovaries regulate fertility and hormonal control in females, and aging is a crucial factor in this process, when ovarian function is drastically impacted. Exogenous endocrine disruptors may accelerate this process, acting as the main agents in decreased female fertility and hormonal imbalance, since they impact different features related to reproduction. In the present study, we demonstrate the implications of exposure of adult mothers to the endocrine disruptor bisphenol A (BPA) during pregnancy and lactation on their ovarian function during the transition to later in life (aging). The follicle population of BPA exposed ovaries showed impairment in the development of follicles to the mature stages, with growing follicles being halted in the early stages. Atretic and early-atretic follicles were also enhanced. Expression of estrogen and androgen receptors in the follicle population demonstrated impairment in signaling function: ERβ was highly expressed in follicles from BPA exposed females, which also showed a higher incidence of early atresia of developed follicles. ERβ1 wild-type isoform was also enhanced in BPA-exposed ovaries, compared to its variant isoforms. In addition, steroidogenesis was targeted by BPA exposure: aromatase and 17-β-HSD were reduced, whereas 5-α reductase was enhanced. This modulation was reflected in serum levels of estradiol and testosterone, which decreased in BPA-exposed females. Imbalances in steroidogenesis impair the development of follicles and play an important role in follicular atresia. Our study demonstrated that BPA exposure in two windows of susceptibility - gestation and lactation - had implications during aging, enhancing perimenopausal and infertile features.
Collapse
Affiliation(s)
- Thalles F R Ruiz
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Luara J Ferrato
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Lorena G de Souza
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Simone J Colleta
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Gustavo M Amaro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Rejane M Góes
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patrícia S L Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences (ICB III), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Sebastião R Taboga
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
49
|
Comparative Analysis of Transcriptomic Changes including mRNA and microRNA Expression Induced by the Xenoestrogens Zearalenone and Bisphenol A in Human Ovarian Cells. Toxins (Basel) 2023; 15:toxins15020140. [PMID: 36828454 PMCID: PMC9967916 DOI: 10.3390/toxins15020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Xenoestrogens are natural or synthetic compounds that mimic the effect of endogenous estrogens and might cause cancer. We aimed to compare the global transcriptomic response to zearalenone (ZEA; mycotoxin) and bisphenol A (BPA; plastic additive) with the effect of physiological estradiol (E2) in the PEO1 human ovarian cell line by mRNA and microRNA sequencing. Estrogen exposure induced remarkable transcriptomic changes: 308, 288 and 63 genes were upregulated (log2FC > 1); 292, 260 and 45 genes were downregulated (log2FC < -1) in response to E2 (10 nM), ZEA (10 nM) and BPA (100 nM), respectively. Furthermore, the expression of 13, 11 and 10 miRNAs changed significantly (log2FC > 1, or log2FC < -1) after exposure to E2, ZEA and BPA, respectively. Functional enrichment analysis of the significantly differentially expressed genes and miRNAs revealed several pathways related to the regulation of cell proliferation and migration. The effect of E2 and ZEA was highly comparable: 407 genes were coregulated by these molecules. We could identify 83 genes that were regulated by all three treatments that might have a significant role in the estrogen response of ovarian cells. Furthermore, the downregulation of several miRNAs (miR-501-5p, let-7a-2-3p, miR-26a-2-3p, miR-197-5p and miR-582-3p) was confirmed by qPCR, which might support the proliferative effect of estrogens in ovarian cells.
Collapse
|
50
|
Téteau O, Vitorino Carvalho A, Papillier P, Mandon-Pépin B, Jouneau L, Jarrier-Gaillard P, Desmarchais A, Lebachelier de la Riviere ME, Vignault C, Maillard V, Binet A, Uzbekova S, Elis S. Bisphenol A and bisphenol S both disrupt ovine granulosa cell steroidogenesis but through different molecular pathways. J Ovarian Res 2023; 16:30. [PMID: 36737804 PMCID: PMC9896735 DOI: 10.1186/s13048-023-01114-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ovarian granulosa cells (GC) are essential for the development and maturation of a proper oocyte. GC are sensitive to endocrine disruptors, including bisphenol A (BPA) and its analogue bisphenol S (BPS), plasticisers present in everyday consumer products. BPA exhibits greater binding affinity for the membrane oestrogen receptor (GPER) than for the nuclear oestrogen receptors (ERα and ERβ). Here, we analysed the effects of BPA and BPS on the steroidogenesis of ovine GC in vitro, as well as their early mechanisms of action, the ovine being a relevant model to study human reproductive impairment. Disruption of GC steroidogenesis might alter oocyte quality and consequently fertility rate. In addition, we compared the effects of a specific GPER agonist (G-1) and antagonist (G-15) to those of BPA and BPS. Ewe GC were cultured with BPA or BPS (10 or 50 µM) or G-1 (1 µM) and/or G-15 (10 µM) for 48 h to study steroidogenesis. RESULTS Both BPA and BPS (10 µM) altered the secretion of progesterone, however, only BPS (10 µM) affected oestradiol secretion. RNA-seq was performed on GC after 1 h of culture with BPA or BPS (50 µM) or G-1 (10 µM), followed by real-time PCR analyses of differentially expressed genes after 12, 24 and 48 h of culture. The absence of induced GPER target genes showed that BPA and BPS did not activate GPER in GC after 1 h of treatment. These molecules exhibited mainly independent early mechanisms of action. Gene ontology analysis showed that after 1 h of treatment, BPA mainly disrupted the expression of the genes involved in metabolism and transcription, while BPS had a smaller effect and impaired cellular communications. BPA had a transient effect on the expression of CHAC1 (NOTCH signalling and oxidative balance), JUN (linked to MAPK pathway), NR4A1 (oestradiol secretion inhibition), ARRDC4 (endocytose of GPCR) and KLF10 (cell growth, differentiation and apoptosis), while expression changes were maintained over time for the genes LSMEM1 (linked to MAPK pathway), TXNIP (oxidative stress) and LIF (cell cycle regulation) after 12 and 48 h, respectively. CONCLUSION In conclusion, although they exhibited similar effects, BPA and BPS impaired different molecular pathways in GC in vitro. New investigations will be necessary to follow the temporal changes of these genes over time, as well as the biological processes involved.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Luc Jouneau
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France
| | | | - Alice Desmarchais
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
- Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique Et Brûlés, CHRU de Tours, 37000, Tours, France
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|