1
|
Xiao Y, Gao Y, Hu Y, Zhang X, Wang L, Li H, Yu L, Ma Q, Dai J, Ning Z, Liu J, Zhang L, Yang Y, Xiong H, Dong G. FASN contributes to the pathogenesis of lupus by promoting TLR-mediated activation of macrophages and dendritic cells. Int Immunopharmacol 2024; 142:113136. [PMID: 39293316 DOI: 10.1016/j.intimp.2024.113136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Hyper-activations of monocytes/macrophages and dendritic cells (DCs) contribute to the pathogenesis of various autoimmune diseases, such as systemic lupus erythematosus (SLE). Fatty acid synthase (FASN) is essential for the de novo synthesis of long-chain fatty acids, which play a key role in controlling the activation, differentiation, and function of immune cells. However, the role of FASN in regulating the activations of monocytes/macrophages and DCs has not been studied. In this study, we investigated the involvement of the FASN in modulating the activations of macrophages and DCs, as well as the pathogenesis of SLE. Importantly, we observed a significant upregulation of FASN expression in monocytes and DCs from patients with SLE. This increase is strongly correlated with disease severity and activation status of the immune cells. Furthermore, overexpression of FASN significantly boosts the TLR4/7/9-mediated activation of macrophages and DCs, while knockdown of FASN markedly inhibits this activation. Notably, knockdown of FASN alleviates TLR7 agonist imiquimod (IMQ)-induced lupus in mice and the activation of macrophages and DCs. It makes more sense that pharmaceutical targeting of FASN by using TVB-2640 significantly alleviates IMQ-induced lupus in mice and the activation of macrophages and DCs, as well as in spontaneous lupus MRL/lpr mice. Thus, FASN contributes to the TLRs-mediated activation of macrophages and DCs, as well as the pathogenesis of SLE. More importantly, FASN inhibitor TVB-2640 is expected to be an effective drug in the treatment of SLE.
Collapse
Affiliation(s)
- Yucai Xiao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Haochen Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lu Yu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Jiakun Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China
| | - Lili Zhang
- Department of Rheumatology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Shandong 272067, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Wang A, Fairhurst AM, Liu K, Wakeland B, Barnes S, Malladi VS, Viswanathan K, Arana C, Dozmorov I, Singhar A, Du Y, Imam M, Moses A, Chen C, Sunkavalli A, Casco J, Rakheja D, Li QZ, Mohan C, Clayberger C, Wakeland EK, Khan S. KLF13 promotes SLE pathogenesis by modifying chromatin accessibility of key proinflammatory cytokine genes. Commun Biol 2024; 7:1446. [PMID: 39506084 PMCID: PMC11541912 DOI: 10.1038/s42003-024-07099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Although significant progress has been achieved in elucidating the genetic architecture of systemic lupus erythematosus (SLE), identifying genes underlying the pathogenesis has been challenging. The NZM2410-derived lupus susceptibility Sle3 locus is associated with T cell hyperactivity and activated myeloid cells. However, candidate genes associated with these phenotypes have not been identified. Here, we narrow the Sle3 locus to a smaller genomic segment (Sle3k) and show that mice carrying Sle3k and Sle1 loci developed lupus nephritis. We identify Klf13 as the primary candidate gene that is associated with genome-wide transcription changes resulting in higher levels of proinflammatory cytokines, enhanced T cell activation, and hyperresponsiveness of myeloid cells. Correspondingly, Klf13 -/- mice display repression of genes involved in mediating immune activation, including key proinflammatory cytokines/chemokines in T cells and dysregulation in cytokine signaling pathways in myeloid cells in response to toll receptor ligands. Klf13 upregulation is associated with increased production of RANTES, a key chemokine in lupus nephritis, in activated T cells and the kidneys of lupus-prone mice. In sum, our findings reveal Klf13 as a key gene in the Sle3 interval in mediating lupus pathogenesis that may have implications in the rational design of new therapies for SLE.
Collapse
Affiliation(s)
- Andrew Wang
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Immunobiology, Yale School of Medicine, North Haven, CT, USA
| | - Anna-Marie Fairhurst
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Singapore Immunology Network (SIgN), Singapore, Singapore
| | - Kui Liu
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Albert Einstein College of Medicine, New York, Seattle, WA, USA
| | - Benjamin Wakeland
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Barnes
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Venkat S Malladi
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kasthuribai Viswanathan
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos Arana
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Igor Dozmorov
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amrita Singhar
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Du
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Marjaan Imam
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angela Moses
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christian Chen
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwini Sunkavalli
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose Casco
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dinesh Rakheja
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Quan-Zhen Li
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Carol Clayberger
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edward K Wakeland
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shaheen Khan
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Zhang Y, Cai M, Huang X, Zhang L, Wen L, Zhu Z, Gao J, Sheng Y. ELF1 serves as a potential biomarker for the disease activity and renal involvement in systemic lupus erythematosus. Sci Rep 2024; 14:26590. [PMID: 39496744 PMCID: PMC11535329 DOI: 10.1038/s41598-024-78593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs, yet its underlying mechanisms remain unclear, and precise biomarkers are lacking. In this study, we employed Mendelian randomization and HEIDI tools to comprehensively analyze large-scale Genome-Wide Association Study (GWAS) and expression Quantitative Trait Loci (eQTL) data, leading to the identification of seven novel potential functional genes associated with SLE, including BLK, ELF1, STIM1, B3GALT6, APOLD1, INPP5B, and FHL3. Subsequent investigations revealed a significant downregulation of ELF1 gene expression in CD4+ T cells of SLE patients compared to healthy controls. Moreover, within various SLE subgroups, such as those with decreased serum complement C3 levels, positive urinary protein, new-onset skin rashes, and SLE Disease Activity Index (SLEDAI) scores ≥ 5, ELF1 expression displayed a consistent decreasing trend. Notably, ROC curve analysis highlighted the diagnostic potential of ELF1 expression in SLE (AUC = 0.9493), as well as its value in assessing disease activity (AUC = 0.6852) and renal involvement (AUC = 0.7363). In conclusion, this study underscores the potential of ELF1 as a SLE biomarker for diagnosis and evaluation, offering insights into the underlying mechanisms of SLE and paving the way for future therapeutic research.
Collapse
Affiliation(s)
- Yukun Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Dermatology, College of Medicine, Beilun Branch of the First Affiliated Hospital, Zhejiang University, No.1288, Lushan East Road, Ningbo, Zhejiang, 315800, China
| | - Minglong Cai
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230032, Anhui, China
| | - Xiaoyi Huang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Leilei Wen
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yujun Sheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
- Department of Dermatology, China-Japan Friendship Hospital, Peking, China.
| |
Collapse
|
4
|
Varaganti V, Vadakedath S, Ca J, Kandi V, B PV, Hussain MH, V A, Gayathri K. Mechanisms Underlying Gender Influence on the Clinical Course and Immunopathogenesis of Systemic Lupus Erythematosus: An Explorative Review. Cureus 2024; 16:e73646. [PMID: 39677179 PMCID: PMC11645479 DOI: 10.7759/cureus.73646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder with a complex clinical course and diverse presentations. The immunopathogenesis of SLE has long intrigued physicians and researchers. Despite its extensive global prevalence, there is no specific treatment to prevent and treat SLE, and in the majority of SLE patients, the management involves controlling disease remissions and symptom reactivations or flares. SLE patients suffer from damage to different organs of the body, complicating disease management. They are predisposed to infectious diseases that could contribute to enhanced disease progression. Devising effective management strategies requires a comprehensive understanding of the effects of the disease and its influence on the immune system. SLE affects females more frequently than men. However, male SLE patients often suffer from more severe disease than females. Gender variations have also been noted in clinical manifestations in patients with SLE. In light of this, additional research is needed to understand these variations and promote the progress of gender-specific patient management and treatment strategies. This review aimed to compare the influence of gender on the clinical consequences, immunopathogenesis, and associated consequences between male and female SLE patients. An extensive literature search was conducted to collect relevant data. PubMed, MEDLINE, Embase, and Google Scholar were searched from inception to the present for articles that compared clinical outcomes and associated disorders in terms of gender among SLE patients. We also explored the immunopathogenesis, mechanisms underlying gender-based clinical effects of SLE, and infectious disease-related consequences. Additionally, we provide key updates regarding the treatment and management of SLE.
Collapse
Affiliation(s)
- Vamshi Varaganti
- Medicine, Prathima Institute of Medical Sciences, Karimnagar, IND
| | | | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Pooja V B
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Mir Hyder Hussain
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Anuradha V
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Kalidindi Gayathri
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
5
|
Dao LTM, Vu TT, Nguyen QT, Hoang VT, Nguyen TL. Current cell therapies for systemic lupus erythematosus. Stem Cells Transl Med 2024; 13:859-872. [PMID: 38920310 PMCID: PMC11386214 DOI: 10.1093/stcltm/szae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.
Collapse
Affiliation(s)
- Lan T M Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thu Thuy Vu
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thanh Liem Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vinmec International Hospital, Center of Regenerative Medicine and Cell Therapy, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vin University, College of Health Sciences, Hanoi 100000, Vietnam
| |
Collapse
|
6
|
Zhang X, Lin G, Zhang Q, Wu H, Xu W, Wang Z, He Z, Su L, Zhuang Y, Gong A. The rs3918188 and rs1799983 loci of eNOS gene are associated with susceptibility in patients with systemic lupus erythematosus in Northeast China. Sci Rep 2024; 14:20803. [PMID: 39242633 PMCID: PMC11379712 DOI: 10.1038/s41598-024-70711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
To investigate the association between single nucleotide polymorphism (SNP) at the rs3918188, rs1799983 and rs1007311 loci of the endothelial nitric oxide synthase (eNOS) gene and genetic susceptibility to systemic lupus erythematosus (SLE) in northeastern China. The base distribution of eNOS gene rs3918188, rs1799983 and rs1007311 in 1712 human peripheral blood samples from Northeast China was detected by SNaPshot sequencing technology. The correlation between genotype, allele and gene model of these loci of the eNOS gene and the genetic susceptibility to SLE was investigated by logistic regression analysis. The results of the differences in the frequency distribution of their gene models were visualised using R 4.3.2 software. Finally, HaploView 4.2 software was used to analyse the relationship between the haplotypes of the three loci mentioned above and the genetic susceptibility to SLE. A multifactor dimensionality reduction (MDR) analysis was used to determine the best SNP-SNP interaction model. The CC genotype and C allele at the rs3918188 locus may be a risk factor for SLE (CC vs AA: OR = 1.827, P < 0.05; C vs A: OR = 1.558, P < 0.001), and this locus increased the risk of SLE in the dominant model and the recessive model (AC + CC vs AA: OR = 1.542, P < 0.05; CC vs AA + AC: OR = 1.707, P < 0.001), while the risk of SLE was reduced in the overdominant model (AC vs AA + CC: OR = 0.628, P < 0.001). The GT genotype and T allele at locus rs1799983 may be a protective factor for SLE (GT vs GG: OR = 0.328, P < 0.001; T vs G: OR = 0.438, P < 0.001) and this locus reduced the risk of SLE in the overdominant model (GT vs GG + TT: OR = 0.385, P < 0.001). There is a strong linkage disequilibrium between the rs1007311 and rs1799983 loci of the eNOS gene. Among them, the formed haplotype AG increased the risk of SLE compared to GG. AT and GT decreased the risk of SLE compared to GG. In this study, the eNOS gene rs3918188 and rs1799983 loci were found to be associated with susceptibility to SLE. This helps to deeply explore the mechanism of eNOS gene and genetic susceptibility to SLE. It provides a certain research basis for the subsequent exploration of the molecular mechanism of these loci and SLE, as well as the early diagnosis, treatment and prognosis of SLE.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China
| | - Guiling Lin
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China
| | - Qi Zhang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Huitao Wu
- Heilongjiang Academy of Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Wenlu Xu
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China
| | - Zhe Wang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China
| | - Ziman He
- Heilongjiang Academy of Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Linglan Su
- Heilongjiang Academy of Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Yanping Zhuang
- International Research Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Aimin Gong
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
7
|
Zhu BY, Liu ZC, Zhao ZX, Huang HP, Zhang N, Xia J, Chen WW. Pharmacological Mechanism of Chinese Medicine in Systemic Lupus Erythematosus: A Narrative Review. Chin J Integr Med 2024:10.1007/s11655-024-3762-0. [PMID: 39240290 DOI: 10.1007/s11655-024-3762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 09/07/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder affecting multiple systems, characterized by the development of harmful autoantibodies and immune complexes that lead to damage in organs and tissues. Chinese medicine (CM) plays a role in mitigating complications, enhancing treatment effectiveness, and reducing toxicity of concurrent medications, and ensuring a safe pregnancy. However, CM mainly solves the disease comprehensively through multi-target and multi-channel regulation process, therefore, its treatment mechanism is often complicated, involving many molecular links. This review introduces the research progress of pathogenesis of SLE from the aspects of genetics, epigenetics, innate immunity and acquired immunity, and then discusses the molecular mechanism and target of single Chinese herbal medicine and prescription that are commonly used and effective in clinic to treat SLE.
Collapse
Affiliation(s)
- Bo-Yu Zhu
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhi-Chao Liu
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhen-Xi Zhao
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hui-Ping Huang
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Na Zhang
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia Xia
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wei-Wei Chen
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
8
|
Houen G. Auto-immuno-deficiency syndromes. Autoimmun Rev 2024; 23:103610. [PMID: 39209011 DOI: 10.1016/j.autrev.2024.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases constitute a broad, heterogenous group with many diverse and often overlapping symptoms. Even so, they are traditionally classified as either systemic, rheumatic diseases or organ-directed diseases. Several theories exist about autoimmune diseases, including defective self-recognition, altered self, molecular mimicry, bystander activation and epitope spreading. While there is no consensus about these theories, it is generally accepted that genetic, pre-disposing factors in combination with environmental factors can result in autoimmune disease. The relative contribution of genetic and environmental factors varies between diseases, as does the significance of individual contributing factors within related diseases. Among the genetic factors, molecules involved in antigen (Ag) recognition, processing, and presentation stand out (e.g., MHC I and II) together with molecules involved in immune signaling and regulation of cellular interactions (i.e., immuno-phenotypes). Also, various immuno-deficiencies have been linked to development of autoimmune diseases. Among the environmental factors, infections (e.g., viruses) have attracted most attention, but factors modulating the immune system have also been the subject of much research (e.g., sunlight and vitamin D). Multiple sclerosis currently stands out due to a very strong and proven association with Epstein-Barr virus infection, notably in cases of late infection and in cases of EBV-associated mononucleosis. Thus, a common picture is emerging that both systemic and organ-directed autoimmune diseases may appropriately be described as auto-immuno-deficiency syndromes (AIdeSs), a concept that emphasizes and integrates existing knowledge on the role of immuno-deficiencies and chronic infections with development of overlapping disease syndromes with variable frequencies of autoantibodies and/or autoreactive T cells. This review integrates and exemplifies current knowledge on the interplay of genetically determined immuno-phenotypes and chronic infections in the development of AIdeSs.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Neurology and Translational Research Center (TRACE), Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| |
Collapse
|
9
|
Wang Q, Kim T, Martínez-Bonet M, Aguiar VRC, Sim S, Cui J, Sparks JA, Chen X, Todd M, Wauford B, Marion MC, Langefeld CD, Weirauch MT, Gutierrez-Arcelus M, Nigrovic PA. High-throughput identification of functional regulatory SNPs in systemic lupus erythematosus. Nat Commun 2024; 15:6804. [PMID: 39122710 PMCID: PMC11315931 DOI: 10.1038/s41467-024-50710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Genome-wide association studies implicate multiple loci in risk for systemic lupus erythematosus (SLE), but few contain exonic variants, rendering systematic identification of non-coding variants essential to decoding SLE genetics. We utilized SNP-seq and bioinformatic enrichment to interrogate 2180 single-nucleotide polymorphisms (SNPs) from 87 SLE risk loci for potential binding of transcription factors and related proteins from B cells. 52 SNPs that passed initial screening were tested by electrophoretic mobility shift and luciferase reporter assays. To validate the approach, we studied rs2297550 in detail, finding that the risk allele enhanced binding to the transcription factor Ikaros (encoded by IKZF1), thereby modulating expression of IKBKE. Correspondingly, primary cells from genotyped healthy donors bearing the risk allele expressed higher levels of the interferon / NF-κB regulator IKKε. Together, these findings define a set of likely functional non-coding lupus risk variants and identify a regulatory pathway involving rs2297550, Ikaros, and IKKε implicated by human genetics in risk for SLE.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sangwan Sim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing Cui
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marc Todd
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Wauford
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Miranda C Marion
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew T Weirauch
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Liu M, Wang S, Liang Y, Fan Y, Wang W. Genetic polymorphisms in genes involved in the type I interferon system (STAT4 and IRF5): association with Asian SLE patients. Clin Rheumatol 2024; 43:2403-2416. [PMID: 38963465 DOI: 10.1007/s10067-024-07046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with a polymorphic clinical presentation involving multisystem damages with significant differences in prevalence and disease severity among different ethnic groups. Although genetic, hormonal, and environmental factors have been demonstrated to contribute a lot to SLE, the pathogenesis of SLE is still unknown. Numerous evidence revealed that gene variants within the type I interferons (IFN) signaling pathway performed the great genetic associations with autoimmune diseases including SLE. To date, through genome-wide association studies (GWAS), genetic association studies showed that more than 100 susceptibility genes have been linked to the pathogenesis of SLE, among which TYK2, STAT1, STAT4, and IRF5 are important molecules directly connected to the type I interferon signaling system. The review summarized the genetic associations and the detailed risk loci of STAT4 and IRF5 with Asian SLE patients, explored the genotype distributions associated with the main clinical manifestations of SLE, and sorted out the potential reasons for the differences in susceptibility in Asia and Europe. Moreover, the therapies targeting STAT4 and IRF5 were also evaluated in order to propose more personalized and targeted treatment plans in SLE.
Collapse
Affiliation(s)
- Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenglong Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yujiao Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongsheng Fan
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
11
|
Kwok A. Risk Assessment and Optimization for Pregnancy in Patients with Rheumatic Diseases. Diagnostics (Basel) 2024; 14:1414. [PMID: 39001304 PMCID: PMC11241172 DOI: 10.3390/diagnostics14131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/16/2024] Open
Abstract
Patients with rheumatic diseases frequently operate with incomplete or incorrect information while planning for and experiencing pregnancy, often due to variability in provider care and knowledge. Risk assessment at each stage of pregnancy-pre-conception, during pregnancy, and postpartum-is focused on reducing maternal and neonatal complications. This review aims to compile updated, evidence-based guidance on how to minimize risk factors contributing to adverse pregnancy outcomes (APOs). Mitigation of known causes of infertility, appropriate testing and monitoring, achieving low disease activity on pregnancy-safe disease-modifying antirheumatic drugs (DMARDs) prior to conception, controlling hypertension (a frequent comorbidity among patients with certain rheumatic diseases), and the use of appropriate adjunctive medications (such as low-dose aspirin when preeclampsia risk is high) can optimize fertility and prevent adverse maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Alyssa Kwok
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Austin, TX 78712, USA
| |
Collapse
|
12
|
Xu Y, Gao R, Zhang M, Zeng Q, Zhu G, Qiu J, Su W, Wang R. Deletion of the Mitochondrial Membrane Protein Fam210b Is Associated with the Development of Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7253. [PMID: 39000360 PMCID: PMC11241391 DOI: 10.3390/ijms25137253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Mitochondrial dysfunction has been increasingly recognized as a trigger for systemic lupus erythematosus (SLE). Recent bioinformatics studies have suggested Fam210b as a significant candidate for the classification and therapeutic targeting of SLE. To experimentally prove the role of Fam210b in SLE, we constructed Fam210b knockout (Fam210b-/-) mice using the CRISPR-Cas9 method. We found that approximately 15.68% of Fam210b-/- mice spontaneously developed lupus-like autoimmunity, which was characterized by skin ulcerations, splenomegaly, and an increase in anti-double-stranded DNA (anti-dsDNA) IgG antibodies and anti-nuclear antibodies(ANA). Single-cell sequencing showed that Fam210b was mainly expressed in erythroid cells. Critically, the knockout of Fam210b resulted in abnormal erythrocyte differentiation and development in the spleens of mice. Concurrently, the spleens exhibited an increased number of CD71+ erythroid cells, along with elevated levels of reactive oxygen species (ROS) in the erythrocytes. The co-culture of CD71+ erythroid cells and lymphocytes resulted in lymphocyte activation and promoted dsDNA and IgG production. In summary, Fam210b knockout leads to a low probability of lupus-like symptoms in mice through the overproduction of ROS in CD71+ erythroid cells. Thus, Fam210b reduction may serve as a novel key marker that triggers the development of SLE.
Collapse
Affiliation(s)
- Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; (Y.X.); (R.G.); (M.Z.); (Q.Z.); (G.Z.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; (Y.X.); (R.G.); (M.Z.); (Q.Z.); (G.Z.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; (Y.X.); (R.G.); (M.Z.); (Q.Z.); (G.Z.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; (Y.X.); (R.G.); (M.Z.); (Q.Z.); (G.Z.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; (Y.X.); (R.G.); (M.Z.); (Q.Z.); (G.Z.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jinming Qiu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; (Y.X.); (R.G.); (M.Z.); (Q.Z.); (G.Z.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; (Y.X.); (R.G.); (M.Z.); (Q.Z.); (G.Z.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; (Y.X.); (R.G.); (M.Z.); (Q.Z.); (G.Z.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
13
|
Zhang X, Wang Z, Lin GL, Wei FZ, Zhuang YP, Xu WL, Zhang Q, Wu HT, He ZM, Yin XY, Liu Y, Mi L, Gong AM. Analysis of status and influencing factors of mental health in patients with systemic lupus erythematosus. World J Psychiatry 2024; 14:829-837. [PMID: 38984348 PMCID: PMC11230090 DOI: 10.5498/wjp.v14.i6.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder with varied clinical courses and prognoses, not only did the patients suffer from physical impairment, but also various physical and psychiatric comorbidities. Growing evidence have suggested that mental disorders in SLE patients, can lead to various adverse consequences. AIM To explored the features and influencing factors of mental health in patients with SLE and clarifying the correlations between mental health and personality characteristics and perceived social support. The results would provide a basis for psychological intervention in patients with SLE. METHODS The clinical data of 168 patients with SLE admitted at the First Affiliated Hospital of Hainan Medical University between June 2020 and June 2022 were collected. Psychological assessment and correlation analysis were conducted using the Symptom Checklist-90 (SCL-90) and Perceived Social Support Scale, and the collected data were compared with the national norms in China. The relevant factors influencing mental health were identified by statistical analysis. A general information questionnaire, the Revised Life Orientation Test, and Short-Form 36-Item Health Survey were employed to assess optimism level and quality of life (QoL), respectively. RESULTS Patients with SLE obtained higher scores for the somatization, depression, anxiety, and phobic anxiety subscales than national norms (P < 0.05). A correlation was identified between total social support and total SCL-90 score or each subscale (P < 0.05). The factors significantly affecting patients' mental health were hormone dosage and disease activity index (DAI) (P < 0.05). The average optimism score of patients with SLE was 14.36 ± 4.42, and 30 cases were in the middle and lower levels. A positive correlation was found between optimism level and QoL scores. CONCLUSION Patients with SLE develop psychological disorders at varying degrees, which are significantly influenced by hormone dosage and DAI. Patients' mental health should be closely monitored during clinical diagnosis and treatment and provided adequate support in establishing positive, healthy thinking and behavior patterns and improving their optimism level and QoL.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Zhe Wang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Gui-Ling Lin
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Fang-Zhi Wei
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Yan-Ping Zhuang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Wen-Lu Xu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Qi Zhang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Hui-Tao Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Zi-Man He
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Xi-Yu Yin
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| | - Ying Liu
- Department of Rheumatology and Immunology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Long Mi
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Ai-Min Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571101, Hainan Province, China
| |
Collapse
|
14
|
Wang Y, Zhou Z, Zhang HP. Causal association between systemic lupus erythematosus and primary biliary cholangitis: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38282. [PMID: 38788005 PMCID: PMC11124658 DOI: 10.1097/md.0000000000038282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
An association has been observed between systemic lupus erythematosus (SLE) and primary biliary cholangitis (PBC) in observational studies, however, the exact causal link remains unclear. We aim to evaluate the causal relationships between SLE and PBC through bidirectional Mendelian randomization (MR). Single-nucleotide polymorphisms (SNPs) were selected as instrumental variables from publicly accessible genome-wide association studies (GWAS) in European populations. The PBC and SLE GWAS data were obtained from the MRC IEU Open GWAS database, consisting of 24,510 and 14,267 samples, respectively. After a series of quality control and outlier removal, inverse variance weighted was used as the primary approach to evaluate the causal association between SLE and PBC. The horizontal pleiotropy and heterogeneity were examined by the MR-Egger intercept test and Cochran Q value, respectively. Seven SNPs were included to examine the causal effect of SLE on PBC. Genetically predicted SLE may increase the risk of PBC development, with an odds ratio (OR) of 1.324 (95% confidence interval [CI] 1.220 ∼ 1.437, P ˂ .001). Twenty SNPs were included to explore the causal effect of PBC on SLE. Genetically predicted PBC may increase the risk of SLE development, with an OR of 1.414 (95% CI 1.323 ∼ 1.511, P ˂ .001). Horizontal pleiotropy and heterogeneity were absent (P > .05) among SNPs. The robustness of our results was further enhanced by using the leave-one-out method. Our research has provided new insights into SLE and PBC, indicating bidirectional causal associations between the 2 diseases. These findings offer valuable contributions to future clinical studies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology & Rheumatology, Hubei NO.3 People’s Hospital of Jianghan University, Wuhan City, China
| | - Zhe Zhou
- Department of Radiology, The Affiliated Hospital of Wuhan Sports University, Wuhan City, China
| | - Hai-Ping Zhang
- Department of Gastroenterology, Hubei NO.3 People’s Hospital of Jianghan University, Wuhan City, China
| |
Collapse
|
15
|
Latini A, Borgiani P, De Benedittis G, Ciccacci C, Novelli L, Pepe G, Helmer-Citterich M, Baldini I, Perricone C, Ceccarelli F, Conti F, Ianniciello G, Caceres J, Ottalevi R, Capulli M, Novelli G. Large-scale DNA sequencing identifies rare variants associated with Systemic Lupus Erythematosus susceptibility in known risk genes. Gene 2024; 907:148279. [PMID: 38360126 DOI: 10.1016/j.gene.2024.148279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The identification of rare genetic variants associated to Systemic Lupus Erythematosus (SLE) could also help to understand the pathogenic mechanisms at the basis of the disease. In this study we have analyzed a cohort of 200 Italian SLE patients in order to explore the rare protein-coding variants in five genes (TNFAIP3, STAT4, IL10, TRAF3IP2, and HCP5) already investigated for commons variants found associated in our previous studies. Genomic DNA of 200 SLE patients was sequenced by whole exome sequencing. The identified variants were filtered by frequency and evaluated by in silico predictions. Allelic association analysis was performed with standard Fisher's exact test. Introducing a cutoff at MAF < 0.01, a total of 19 rare variants were identified. Seven of these variants were ultra-rare (MAF < 0.001) and six were absent in the GnomAD database. For TNFAIP3 gene, the variant c.A1939C was observed in 4 SLE patients and it is located in a region enriched in phosphorylation sites and affects the predict affinity of specific kinases. In TRAF3IP2 gene, we observed 5 different rare variants, including the novel variant c.G410A, located in the region that mediates interaction with TRAF6, and therefore a possible risk factor for SLE development. In STAT4 gene, we identified 6 different rare variants. Among these, three missense variants decrease the stability of this protein. Moreover, 3 novel rare variants were detected in 3 SLE patients. In particular, c.A767T variant was predicted as damaging by six prediction tools. Concluding, we have observed that even in genes whose common variability is associated with SLE susceptibility, it is possible to identify rare variants that could have a strong effect in the disease development and could therefore allow a better understanding of the functional domain involved.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy.
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | - Giada De Benedittis
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Gerardo Pepe
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy
| | - Manuela Helmer-Citterich
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy
| | | | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, Perugia, Italy
| | - Fulvia Ceccarelli
- Reumatologia, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Fabrizio Conti
- Reumatologia, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | | | | | | | - Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy; IRCCS NEUROMED, Pozzilli, IS, Italy; School of Medicine, Department of Pharmacology, Reno University of Nevada, NV, USA
| |
Collapse
|
16
|
Anutraungkool T, Padungkiatsagul T, Jindahra P, Vanikieti K. Prevalences of Other Non-Thyroid Autoimmune Diseases and Factor Associated with Their Presence in Ocular Myasthenia Gravis. Clin Ophthalmol 2024; 18:1125-1132. [PMID: 38686013 PMCID: PMC11057627 DOI: 10.2147/opth.s458979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Purpose To report the prevalences of other non-thyroid autoimmune diseases and identify factors associated with their presence in ocular myasthenia gravis (OMG) subjects. Subjects and Methods A total of 208 subjects with OMG diagnosis were included. Demographic data, clinical characteristics, the ice-pack test, the acetylcholine receptor (AChR) antibody test, electrophysiology tests (single-fiber electromyography and repetitive nerve stimulation), the presence of thymoma, generalized myasthenia gravis conversion, and the presence of other non-thyroid autoimmune diseases (defined as the presence of at least one other non-thyroid autoimmune disease) were retrospectively reviewed. Factors associated with the presence of other non-thyroid autoimmune diseases were analyzed by univariate and multivariate logistic regression. Results Of the total 208 subjects, 21 (10.10%) exhibited the presence of other non-thyroid autoimmune diseases (19 subjects (9.14%) and 2 subjects (0.96%) had one and two other non-thyroid autoimmune diseases, respectively), and systemic lupus erythematosus (SLE) was diagnosed in 9 subjects, followed by Sjogren's syndrome (7 subjects), rheumatoid arthritis (6 subjects), and ankylosing spondylitis (1 subject). Therefore, the prevalences of SLE, Sjogren's syndrome, rheumatoid arthritis, and ankylosing spondylitis in OMG subjects were estimated to be 4.33% (95% confidence interval (CI): 2.29-8.02%), 3.37% (95% CI: 1.64-6.79%), 2.88% (95% CI: 1.33-6.14%), and 0.48% (95% CI: 0.08-2.67%), respectively. Positivity of the AChR antibody was the only significant factor associated with the presence of other non-thyroid autoimmune diseases (odds ratio 4.10, 95% CI: 1.11-15.21, p = 0.035). Conclusions The presence of other non-thyroid autoimmune diseases was found in approximately 10% of OMG patients, with SLE displaying the highest prevalence. We recommend screening and monitoring for other non-thyroid autoimmune diseases in OMG patients, particularly those with positivity of the AChR antibody.
Collapse
Affiliation(s)
- Thanathon Anutraungkool
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanyatuth Padungkiatsagul
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Panitha Jindahra
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kavin Vanikieti
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Li Y, Chen Y, Sun Y, Li S, Dong L, Li Z, Shen G. Waardenburg syndrome type 2 with a de novo variant of the SOX10 gene: a case report. BMC Med Genomics 2024; 17:104. [PMID: 38659011 PMCID: PMC11040914 DOI: 10.1186/s12920-024-01877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Waardenburg syndrome type 2 (WS2) has been reported to be a rare hereditary disorder, which is distinguished by vivid blue eyes, varying degrees of hearing impairment, and abnormal pigment deposition in the skin and hair. Variants in the sex-determining region Y-box containing gene 10 (SOXl0) gene may cause congenital deafness and have been demonstrated to be important during the development of WS2. METHODS Complete clinical data of the proband and her family members (her parents and 2 sisters) was collected and physical examinations were performed in the hospital. The laboratory examination including hemoglobin, Coomb's test, urine protein, ENA, autoimmune hepatitis-related autoantibodies and ultrasonography were all conducted. We obtained the peripheral blood samples from all the participants and performed whole exome sequencing and sanger sequencing validation. RESULTS The present study identified a family of 5 members, and only the proband exhibited typical WS2. Beyond the characteristics of WS2, the proband also manifested absence of puberty. The proband and her younger sister manifested systemic lupus erythematosus (SLE). Whole exome sequencing revealed a de novo variant in the SOX10 gene. The variant c.175 C > T was located in exon 2 of the SOX10 gene, which is anticipated to result in early termination of protein translation. CONCLUSION The present study is the first to report a case of both WS2 and SLE, and the present findings may provide a new insight into WS2.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, P.R. China
| | - Yuxue Chen
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, P.R. China
| | - Yang Sun
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, P.R. China
| | - Shouxin Li
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, P.R. China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, P.R. China
| | - Zongzhe Li
- Division of Cardiology, Department of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, P.R. China
| | - Guifen Shen
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, P.R. China.
| |
Collapse
|
18
|
Chen YJ, Hsiao TH, Lin YC, Jeng WJ, Mao CL, Wei CY, Hsieh YC, Huang CJ, Pan MH, Chen IC, Lin CH, Chen YM, Yang HI. Polygenic Risk Score Predicts Earlier-Onset Adult Systemic Lupus Erythematosus and First-Year Renal Diseases in a Taiwanese Cohort. RMD Open 2024; 10:e003293. [PMID: 38637112 PMCID: PMC11146410 DOI: 10.1136/rmdopen-2023-003293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/26/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVES This study aimed to develop a predictive model using polygenic risk score (PRS) to forecast renal outcomes for adult systemic lupus erythematosus (SLE) in a Taiwanese population. METHODS Patients with SLE (n=2782) and matched non-SLE controls (n=11 128) were genotyped using Genome-Wide TWB 2.0 single-nucleotide polymorphism (SNP) array. PRS models (C+T, LDpred2, Lassosum, PRSice-2, PRS-continuous shrinkage (CS)) were constructed for predicting SLE susceptibility. Logistic regression was assessed for C+T-based PRS association with renal involvement in patients with SLE. RESULTS In the training set, C+T-based SLE-PRS, only incorporating 27 SNPs, outperformed other models with area under the curve (AUC) values of 0.629, surpassing Lassosum (AUC=0.621), PRSice-2 (AUC=0.615), LDpred2 (AUC=0.609) and PRS-CS (AUC=0.602). Additionally, C+T-based SLE-PRS demonstrated consistent predictive capacity in the testing set (AUC=0.620). Individuals in the highest quartile exhibited earlier SLE onset (39.06 vs 44.22 years, p<0.01), higher Systemic Lupus Erythematosus Disease Activity Index scores (3.00 vs 2.37, p=0.04), elevated risks of renal involvement within the first year of SLE diagnosis, including WHO class III-IV lupus nephritis (OR 2.36, 95% CI 1.47 to 3.80, p<0.01), estimated glomerular filtration rate <60 mL/min/1.73m2 (OR 1.49, 95% CI 1.18 to 1.89, p<0.01) and urine protein-to-creatinine ratio >150 mg/day (OR 2.07, 95% CI 1.49 to 2.89, p<0.01), along with increased seropositivity risks, compared with those in the lowest quartile. Furthermore, among patients with SLE with onset before 50 years, the highest PRS quartile was significantly associated with more serious renal diseases within the first year of SLE diagnosis. CONCLUSIONS PRS of SLE is associated with earlier onset, renal involvement within the first year of SLE diagnosis and seropositivity in Taiwanese patients. Integrating PRS with clinical decision-making may enhance lupus nephritis screening and early treatment to improve renal outcomes in patients with SLE.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Juei Jeng
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chien-Lin Mao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Yi Wei
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Chung Hsieh
- Division of Hepatogastroenterology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chih-Jen Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hwai-I Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Nigrovic PA, Wang Q, Kim T, Martinez-Bonet M, Aguiar VRC, Sim S, Cui J, Sparks JA, Chen X, Todd M, Wauford B, Marion MC, Langefeld CD, Weirauch MT, Gutierrez-Arcelus M. High-throughput identification of functional regulatory SNPs in systemic lupus erythematosus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.16.553538. [PMID: 37645953 PMCID: PMC10462027 DOI: 10.1101/2023.08.16.553538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Genome-wide association studies implicate multiple loci in risk for systemic lupus erythematosus (SLE), but few contain exonic variants, rendering systematic identification of non-coding variants essential to decoding SLE genetics. We utilized SNP-seq and bioinformatic enrichment to interrogate 2180 single-nucleotide polymorphisms (SNPs) from 87 SLE risk loci for potential binding of transcription factors and related proteins from B cells. 52 SNPs that passed initial screening were tested by electrophoretic mobility shift and luciferase reporter assays. To validate the approach, we studied rs2297550 in detail, finding that the risk allele enhanced binding to the transcription factor Ikaros (IKZF1), thereby modulating expression of IKBKE. Correspondingly, primary cells from genotyped healthy donors bearing the risk allele expressed higher levels of the interferon / NF-κB regulator IKKϵ. Together, these findings define a set of likely functional non-coding lupus risk variants and identify a new regulatory pathway involving rs2297550, Ikaros, and IKKϵ implicated by human genetics in risk for SLE.
Collapse
|
20
|
Zhang Y, Morris R, Brown GJ, Lorenzo AMD, Meng X, Kershaw NJ, Kiridena P, Burgio G, Gross S, Cappello JY, Shen Q, Wang H, Turnbull C, Lea-Henry T, Stanley M, Yu Z, Ballard FD, Chuah A, Lee JC, Hatch AM, Enders A, Masters SL, Headley AP, Trnka P, Mallon D, Fletcher JT, Walters GD, Šestan M, Jelušić M, Cook MC, Athanasopoulos V, Fulcher DA, Babon JJ, Vinuesa CG, Ellyard JI. Rare SH2B3 coding variants in lupus patients impair B cell tolerance and predispose to autoimmunity. J Exp Med 2024; 221:e20221080. [PMID: 38417019 PMCID: PMC10901239 DOI: 10.1084/jem.20221080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/14/2023] [Accepted: 01/17/2024] [Indexed: 03/01/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a clear genetic component. While most SLE patients carry rare gene variants in lupus risk genes, little is known about their contribution to disease pathogenesis. Amongst them, SH2B3-a negative regulator of cytokine and growth factor receptor signaling-harbors rare coding variants in over 5% of SLE patients. Here, we show that unlike the variant found exclusively in healthy controls, SH2B3 rare variants found in lupus patients are predominantly hypomorphic alleles, failing to suppress IFNGR signaling via JAK2-STAT1. The generation of two mouse lines carrying patients' variants revealed that SH2B3 is important in limiting the number of immature and transitional B cells. Furthermore, hypomorphic SH2B3 was shown to impair the negative selection of immature/transitional self-reactive B cells and accelerate autoimmunity in sensitized mice, at least in part due to increased IL-4R signaling and BAFF-R expression. This work identifies a previously unappreciated role for SH2B3 in human B cell tolerance and lupus risk.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Grant J. Brown
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Ayla May D. Lorenzo
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Xiangpeng Meng
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Nadia J. Kershaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Pamudika Kiridena
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Gaétan Burgio
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Simon Gross
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Jean Y. Cappello
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Qian Shen
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Francis Crick Institute, London, UK
| | - Hao Wang
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Francis Crick Institute, London, UK
| | - Cynthia Turnbull
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Tom Lea-Henry
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Canberra Hospital, Garran, Australia
| | - Maurice Stanley
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Zhijia Yu
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Fiona D. Ballard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Aaron Chuah
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - James C. Lee
- Francis Crick Institute, London, UK
- Department of Gastroenterology, Division of Medicine, Institute for Liver and Digestive Health, University College London, London, UK
| | - Ann-Maree Hatch
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Canberra Hospital, Garran, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Seth L. Masters
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | | | - Peter Trnka
- Queensland Children’s Hospital, South Brisbane, Australia
| | | | | | | | - Mario Šestan
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Jelušić
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Matthew C. Cook
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Canberra Hospital, Garran, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Vicki Athanasopoulos
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - David A. Fulcher
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Carola G. Vinuesa
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Francis Crick Institute, London, UK
| | - Julia I. Ellyard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
21
|
Yeo NKW, Lim CK, Yaung KN, Khoo NKH, Arkachaisri T, Albani S, Yeo JG. Genetic interrogation for sequence and copy number variants in systemic lupus erythematosus. Front Genet 2024; 15:1341272. [PMID: 38501057 PMCID: PMC10944961 DOI: 10.3389/fgene.2024.1341272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Early-onset systemic lupus erythematosus presents with a more severe disease and is associated with a greater genetic burden, especially in patients from Black, Asian or Hispanic ancestries. Next-generation sequencing techniques, notably whole exome sequencing, have been extensively used in genomic interrogation studies to identify causal disease variants that are increasingly implicated in the development of autoimmunity. This Review discusses the known casual variants of polygenic and monogenic systemic lupus erythematosus and its implications under certain genetic disparities while suggesting an age-based sequencing strategy to aid in clinical diagnostics and patient management for improved patient care.
Collapse
Affiliation(s)
- Nicholas Kim-Wah Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Che Kang Lim
- Duke-NUS Medical School, Singapore, Singapore
- Department of Clinical Translation Research, Singapore General Hospital, Singapore, Singapore
| | - Katherine Nay Yaung
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas Kim Huat Khoo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| |
Collapse
|
22
|
Xu WD, Yang C, Li R, Tang YY, Wang DC, Huang AF. Association of BTN3A1 gene polymorphisms with systemic lupus erythematosus in a Chinese Han population. Int J Rheum Dis 2024; 27:e15112. [PMID: 38450995 DOI: 10.1111/1756-185x.15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rong Li
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang-Yang Tang
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
23
|
Chan EYH, Lai FFY, Ma ALT, Chan TM. Managing Lupus Nephritis in Children and Adolescents. Paediatr Drugs 2024; 26:145-161. [PMID: 38117412 DOI: 10.1007/s40272-023-00609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/21/2023]
Abstract
Lupus nephritis is an important manifestation of systemic lupus erythematosus, which leads to chronic kidney disease, kidney failure, and can result in mortality. About 35%-60% of children with systemic lupus erythematosus develop kidney involvement. Over the past few decades, the outcome of patients with lupus nephritis has improved significantly with advances in immunosuppressive therapies and clinical management. Nonetheless, there is a paucity of high-level evidence to guide the management of childhood-onset lupus nephritis, because of the relatively small number of patients at each centre and also because children and adolescents are often excluded from clinical trials. Children and adults differ in more ways than just size, and there are remarkable differences between childhood- and adult-onset lupus nephritis in terms of disease severity, treatment efficacy, tolerance to medications and most importantly, psychosocial perspective. In this article, we review the 'art and science' of managing childhood-onset lupus nephritis, which has evolved in recent years, and highlight special considerations in this specific patient population.
Collapse
Affiliation(s)
- Eugene Yu-Hin Chan
- Paediatric Nephrology Centre, Hong Kong Children's Hospital, Kowloon, Hong Kong.
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Fiona Fung-Yee Lai
- Paediatric Nephrology Centre, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Alison Lap-Tak Ma
- Paediatric Nephrology Centre, Hong Kong Children's Hospital, Kowloon, Hong Kong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tak Mao Chan
- Paediatric Nephrology Centre, Hong Kong Children's Hospital, Kowloon, Hong Kong.
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, School of Clinical Medicine, Pok Fu Lam, Hong Kong.
| |
Collapse
|
24
|
Schauren JDS, de Oliveira AH, Consiglio CR, Monticielo OA, Xavier RM, Nunes NS, Ellwanger JH, Chies JAB. CCR5 promoter region polymorphisms in systemic lupus erythematosus. Int J Immunogenet 2024; 51:20-31. [PMID: 37984413 DOI: 10.1111/iji.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the impacts of CCR5 promoter region polymorphisms on the development of systemic lupus erythematosus (SLE) by comparing CCR5 genotypes and haplotypes from SLE patients with ethnically matched controls. A total of 382 SLE patients (289 European-derived and 93 African-derived) and 375 controls (243 European-derived and 132 African-derived) were genotyped for the CCR2-64I G > A (rs1799864), CCR5-59353 C > T (rs1799988), CCR5-59356 C > T (rs41469351), CCR5-59402 A > G (rs1800023) and CCR5-59653 C > T (rs1800024) polymorphisms through polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Previous data from CCR5Δ32 analysis was included in the study to infer the CCR5 haplotypes and as a possible confounding factor in the binary logistic regression. European-derived patients showed a higher frequency of CCR5 wild-type genotype (conversely, a reduced frequency of Δ32 allele) and a reduced frequency of the HHG*2 haplotype compared to controls; both factors significantly affecting disease risk [p = .003 (OR 3.5, 95%CI 1.6-7.5) and 2.0% vs. 7.2% (residual p = 2.9E - 5), respectively]. Additionally, the HHA/HHB, HHC and HHG*2 haplotype frequencies differed between African-derived patients and controls [10% vs. 20.5% (residual p = .003), 29.4% vs. 17.4% (residual p = .003) and 3.9% vs. 0.8% (residual p = .023), respectively]. Considering the clinical manifestations of the disease, the CCR5Δ32 presence was confirmed as a susceptibility factor to class IV nephritis in the African-derived group and when all patients were grouped for comparison [pcorrected = .012 (OR 3.0; 95%CI 3.0-333.3) and pcorrected = .0006 (OR 6.8; 95%CI 1.9-24.8), respectively]. In conclusion, this study indicates that CCR5 promoter polymorphisms are important disease modifiers in SLE. Present data reinforces the CCR5Δ32 polymorphism as a protective factor for the development of the disease in European-derived patients and as a susceptibility factor for class IV nephritis in African-derived patients. Furthermore, we also described a reduced frequency of HHA/HHB and an increased frequency of HHC and HHG*2 haplotypes in African-derived patients, which could modify the CCR5 protein expression in specific cell subsets.
Collapse
Affiliation(s)
- Juliana da Silveira Schauren
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda Henrique de Oliveira
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Rosat Consiglio
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Odirlei André Monticielo
- Division of Rheumatology, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Machado Xavier
- Division of Rheumatology, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália Schneider Nunes
- Postgraduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Aringer M, Finzel S, Voll RE. [Immunopathogenesis of systemic lupus erythematosus]. Z Rheumatol 2024; 83:68-76. [PMID: 35551439 PMCID: PMC10847069 DOI: 10.1007/s00393-022-01214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Insights into the immunopathogenesis of systemic lupus erythematosus (SLE) help to understand the complex disease patterns and to develop new treatment strategies. The disease manifestations essentially result from autoantibodies, immune complexes and cytokines. Particularly the propensity towards developing various autoantibodies is central to the disease itself; autoantibody specificities lead to highly variable organ manifestations. This review article delineates the clinically relevant state of knowledge on SLE pathogenesis, with the goal to establish a model useful for clinical practice, which also helps to classify the novel therapeutic approaches.
Collapse
Affiliation(s)
- Martin Aringer
- Rheumatologie, Medizinische Klinik III und UniversitätsCentrum für Autoimmun- und Rheumatische Erkrankungen (UCARE), Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - Stephanie Finzel
- Klinik für Rheumatologie und Klinische Immunologie & Centrum für chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - Reinhard E Voll
- Klinik für Rheumatologie und Klinische Immunologie & Centrum für chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg, Deutschland
| |
Collapse
|
26
|
Wang Y, He J, Ma H, Liu J, Du L, Chai C, Liu Y, Wang X. NR_103776.1 as a novel diagnostic biomarker for systemic lupus erythematosus. Ir J Med Sci 2024; 193:211-221. [PMID: 37369931 DOI: 10.1007/s11845-023-03420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND With the development of sequencing technologies, there is increasing evidence that long noncoding RNAs (lncRNAs) are involved in systemic lupus erythematosus (SLE). The level of NR_103776.1 expression in SLE and its clinical associations are still not well defined. OBJECTIVE To identify differentially expressed lncRNAs and explore their functional roles in SLE. METHODS Transcriptome sequencing was used to screen differentially expressed lncRNAs and mRNAs. Expression validation of clinical samples was performed by QRT-PCR. Bioinformatics was used to analyze its prognostic value and potential function. RESULTS Of the 231 significantly differentially expressed lncRNAs, NR_103776.1 could be used to distinguish not only SLE patients and rheumatoid arthritis patients but also active SLE patients, stable SLE patients, and healthy controls. NR_103776.1 was significantly and negatively correlated with inflammatory indexes (CRP and ESR). NR_103776.1 dysregulation might contribute to the metabolism of RNA and proteins in SLE patients. CONCLUSIONS This study not only provided a transcriptome profile of lncRNAs aberrantly expressed in individual nucleated cells of SLE patients but also suggested NR_103776.1 as a novel potential diagnostic biomarker.
Collapse
Affiliation(s)
- Yuqun Wang
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Jia He
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Honglei Ma
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Junhong Liu
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Linping Du
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Chunxiang Chai
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yajing Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Xiaodong Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
27
|
Wang DC, Xu WD, Tang YY, Yang C, Li R, Wu GC, Huang AF. Neuropeptide Y, a potential marker for lupus, promotes lupus development. Int Immunopharmacol 2024; 126:111272. [PMID: 38006754 DOI: 10.1016/j.intimp.2023.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE Relationship between neuropeptide Y (NPY) serum levels, NPY genetic mutation with systemic lupus erythematosus (SLE) pathogenesis is yet to be clarified, and role of NPY in development of SLE needs elucidation. METHOD This study included 460 SLE patients, 472 non-SLE cases, 500 healthy volunteers. Serum NPY, matrix metalloproteinase-1 (MMP-1) and MMP-8 levels were tested by ELISA. Genotyping 7 NPY single nucleotides polymorphisms (SNPs) (rs5573, rs5574, rs16129, rs16138, rs16140, rs16147, rs16478) was obtained by Kompetitive Allele-Specific PCR (KASP) method. Pristane-induced lupus mice were treated with NPY-Y1 receptor antagonist, and histological analysis, serological changes of the mice were evaluated. RESULTS NPY serum concentrations were significantly increased in SLE patients when compared to that in healthy volunteers, non-SLE cases. Rs5573 G allele, rs16129 T allele, rs16147 G allele frequencies were significantly different between SLE cases and healthy controls. Rs5574 TT + TC genotypes were related to levels of IgG, C3, C4 and erythrocyte sedimentation rate, and rs16138 GG + GC genotypes correlated with SLE cases with anti-double-stranded deoxyribonucleic acid antibody (anti-dsDNA) (+). Serum MMP-1, MMP-8 concentrations were higher in SLE patients, and NPY levels were significantly related to MMP-1, MMP-8 levels. After treatment of lupus mice with NPY-Y1 receptor antagonist, damage of liver, spleen and kidney was alleviated, production of autoantibodies (anti-nuclear antibody (ANA), total IgG, anti-dsDNA) and MMP-1, MMP-8 was down-regulated, and differentiation of CD3+, CD8+ T cells, B cells, monocytes, macrophages, T helper 1 (Th1), Th2, Th17 cells was reversed. CONCLUSION NPY may be a biomarker for lupus, which may promote occurrence and development of lupus.
Collapse
Affiliation(s)
- Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, Sichuan 646000, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, Sichuan 646000, China
| | - Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, Sichuan 646000, China
| | - Chan Yang
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, Sichuan 646000, China
| | - Rong Li
- Department of Evidence-Based Medicine, Southwest Medical University, 1 Xianglin Road, Luzhou, Sichuan 646000, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui 230601, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, Sichuan 646000, China.
| |
Collapse
|
28
|
Kwon G, Wiedemann A, Steinheuer LM, Stefanski AL, Szelinski F, Racek T, Frei AP, Hatje K, Kam-Thong T, Schubert D, Schindler T, Dörner T, Thurley K. Transcriptional profiling upon T cell stimulation reveals down-regulation of inflammatory pathways in T and B cells in SLE versus Sjögren's syndrome. NPJ Syst Biol Appl 2023; 9:62. [PMID: 38102122 PMCID: PMC10724199 DOI: 10.1038/s41540-023-00319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share clinical as well as pathogenic similarities. Although previous studies suggest various abnormalities in different immune cell compartments, dedicated cell-type specific transcriptomic signatures are often masked by patient heterogeneity. Here, we performed transcriptional profiling of isolated CD4, CD8, CD16 and CD19 lymphocytes from pSS and SLE patients upon T cell stimulation, in addition to a steady-state condition directly after blood drawing, in total comprising 581 sequencing samples. T cell stimulation, which induced a pronounced inflammatory response in all four cell types, gave rise to substantial re-modulation of lymphocyte subsets in the two autoimmune diseases compared to healthy controls, far exceeding the transcriptomic differences detected at steady-state. In particular, we detected cell-type and disease-specific down-regulation of a range of pro-inflammatory cytokine and chemokine pathways. Such differences between SLE and pSS patients are instrumental for selective immune targeting by future therapies.
Collapse
Affiliation(s)
- Gino Kwon
- Systems Biology of Inflammation, German Rheumatism Research Center, a Leibniz-Institute, Berlin, Germany
| | - Annika Wiedemann
- Rheumatology and Clinical Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa M Steinheuer
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Ana-Luisa Stefanski
- Rheumatology and Clinical Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Szelinski
- Rheumatology and Clinical Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tomas Racek
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Andreas Philipp Frei
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tony Kam-Thong
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Schubert
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Thomas Schindler
- Product Development Immunology, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Thomas Dörner
- Rheumatology and Clinical Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Kevin Thurley
- Systems Biology of Inflammation, German Rheumatism Research Center, a Leibniz-Institute, Berlin, Germany.
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
29
|
Yuan G, Yang M, Xie J, Xu K, Zhang F. No evidence of genetic causal association between sex hormone-related traits and systemic lupus erythematosus: A two-sample Mendelian randomization study. Clin Rheumatol 2023; 42:3237-3249. [PMID: 37495778 DOI: 10.1007/s10067-023-06700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE Previous studies have demonstrated an association between sex hormone-related traits and systemic lupus erythematosus (SLE). However, because of the difficulties in determining sequential temporality, the causal association remains elusive. In this study, we used two-sample Mendelian randomization (MR) to explore the genetic causal associations between sex hormone-related traits and SLE. METHODS We used a two-sample MR to explore the causal association between sex hormone-related traits and SLE. The summarized data for sex hormone-related traits (including testosterone, estradiol (E2), sex hormone-binding globulin (SHBG), and bioavailable testosterone (BT)) originated from large genome-wide association studies (GWASs) of European descent. Aggregated data for SLE were derived from the FinnGen consortium (835 cases and 300,162 controls). Random-effects inverse-variance weighted (IVW), MR-Egger, weighted median, simple mode, weighted mode, and fixed-effects IVW methods were used for the MR analysis. Random-effects IVW was the primary method used to analyze the genetic causal association between sex hormone-related traits and SLE. Heterogeneity of the MR results was detected using the IVW Cochran's Q estimates. The pleiotropy of MR results was detected using MR-Egger regression and the MR pleiotropy residual sum and outlier (MR-PRESSO) test. Finally, leave-one-out analysis was performed to determine whether MR results were affected by a single single-nucleotide polymorphism (SNP). RESULTS Random-effects IVW as the primary method showed that testosterone (odds ratio (OR), 0.87; 95% confidence interval (CI), 0.41-1.82; P = 0.705), E2 (OR, 0.95; 95% CI, 0.73-1.23; P = 0.693), SHBG (OR, 1.25; 95% CI, 0.74-2.13; P = 0.400), and BT (OR, 0.99; 95% CI, 0.67-1.47; P = 0.959) had no potential causal association with SLE. The MR-Egger, weighted median, simple mode, weighted mode, and fixed-effects IVW methods all indicated consistent results. The results of the MR-Egger regression showed that there was no pleiotropy in our MR analysis (P > 0.05). The IVW Cochran's Q estimates showed that the MR analysis results of E2, SHBG, and BT on SLE had no heterogeneity (P > 0.05), but testosterone and SLE had heterogeneity (P < 0.05). The leave-one-out analysis confirmed that a single SNP did not affect the MR results. CONCLUSIONS Our MR analysis demonstrated that genetically predicted testosterone, E2, SHBG, and BT levels were not associated with SLE risk, but the roles of other non-genetic pathways cannot be ruled out. Key Points • This is the first MR study to explore the causal association of sex hormone-related traits with SLE. • No evidence to support causal associations between sex hormone-related traits and SLE. • Our MR analysis may provide novel insights into the causal association between sex hormone-related traits and SLE risk.
Collapse
Affiliation(s)
- Guolian Yuan
- Scientific Research and Experiment Center, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jiale Xie
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiao Tong University, Xi'an, People's Republic of China
| |
Collapse
|
30
|
Zhu Y, Wang B, Hao Y, Zhu R. Clinical features of myasthenia gravis with neurological and systemic autoimmune diseases. Front Immunol 2023; 14:1223322. [PMID: 37781409 PMCID: PMC10538566 DOI: 10.3389/fimmu.2023.1223322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Multiple reports on the co-existence of autoimmune diseases and myasthenia gravis (MG) have raised considerable concern. Therefore, we reviewed autoimmune diseases in MG to explore their clinical presentations and determine whether the presence of autoimmune diseases affects the disease severity and treatment strategies for MG. We reviewed all the major immune-mediated coexisting autoimmune conditions associated with MG. PubMed, Embase and Web of Science were searched for relevant studies from their inception to January 2023. There is a higher frequency of concomitant autoimmune diseases in patients with MG than in the general population with a marked risk in women. Most autoimmune comorbidities are linked to AChR-MG; however, there are few reports of MuSK-MG. Thyroid disorders, systemic lupus erythematosus, and vitiligo are the most common system autoimmune diseases associated with MG. In addition, MG can coexist with neurological autoimmune diseases, such as neuromyelitis optica (NMO), inflammatory myopathy (IM), multiple sclerosis (MS), and autoimmune encephalitis (AE), with NMO being the most common. Autoimmune diseases appear to develop more often in early-onset MG (EOMG). MS coexists more commonly with EOMG, while IM coexists with LOMG. In addition, MG complicated by autoimmune diseases tends to have mild clinical manifestations, and the coexistence of autoimmune diseases does not influence the clinical course of MG. The clinical course of neurological autoimmune diseases is typically severe. Autoimmune diseases occur most often after MG or as a combined abnormality; therefore, timely thymectomy followed by immunotherapy could be effective. In addition, thymoma-associated AChR MG is associated with an increased risk of AE and IM, whereas NMO and MS are associated with thymic hyperplasia. The co-occurrence of MG and autoimmune diseases could be attributed to similar immunological mechanisms with different targets and common genetic factor predisposition. This review provides evidence of the association between MG and several comorbid autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Warner SA, Sotelo C. Systemic Lupus Erythematous Presenting as a Grand Mal Seizure: Case Report. J Emerg Nurs 2023; 49:477-484. [PMID: 37393073 DOI: 10.1016/j.jen.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 07/03/2023]
Abstract
A 30-year-old female presented to their local emergency department with an active, unprovoked generalized tonic-clonic seizure in progress. Past medical and family history of the patient did not include inflammatory or autoimmune conditions nor epilepsy or seizure. The patient's toxicology screen was negative, along with neurological and infectious differentials assessed for rule-outs. This case report includes updated guidelines for the diagnosis and treatment of neuropsychiatric systemic lupus erythematosus for advanced practice providers.
Collapse
|
32
|
Frostegård J. Antibodies against Phosphorylcholine-Implications for Chronic Inflammatory Diseases. Metabolites 2023; 13:720. [PMID: 37367878 DOI: 10.3390/metabo13060720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Atherosclerosis and its main consequence, cardiovascular disease (CVD) are nowadays regarded as chronic inflammatory disease conditions, and CVD is the main cause of death in the world. Other examples of chronic inflammation are rheumatic and other autoimmune conditions, but also diabetes, obesity, and even osteoarthritis among others. In addition, infectious diseases can have traits in common with these conditions. Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease, where atherosclerosis is increased and the risk of CVD is very high. This is a clinical problem but could also shed light on the role of the immune system in atherosclerosis and CVD. Underlying mechanisms are of major interest and these are only partially known. Phosphorylcholine (PC) is a small lipid-related antigen, which is both a danger associated molecular pattern (DAMP), and a pathogen associated molecular pattern (PAMP). Antibodies against PC are ubiquitous and 5-10% of circulating IgM is IgM anti-PC. Anti-PC, especially IgM and IgG1 anti-PC, has been associated with protection in the chronic inflammatory conditions mentioned above, and develops during the first years of life, while being present at very low levels at birth. Animal experiments with immunization to raise anti-PC ameliorate atherosclerosis and other chronic inflammatory conditions. Potential mechanisms include anti-inflammatory, immune modulatory, clearance of dead cells and protection against infectious agents. An intriguing possibility is to raise anti-PC levels through immunization, to prevent and/or ameliorate chronic inflammation.
Collapse
Affiliation(s)
- Johan Frostegård
- IMM, Nobels Väg 13, Karolinska Institutet, 17165 Stockholm, Sweden
| |
Collapse
|
33
|
Sutanto H, Yuliasih Y. Disentangling the Pathogenesis of Systemic Lupus Erythematosus: Close Ties between Immunological, Genetic and Environmental Factors. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1033. [PMID: 37374237 DOI: 10.3390/medicina59061033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease that attacks various organ systems with a variety of clinical implications, ranging from mild skin and mucosal manifestations to severe central nervous system manifestations and death. Cases of SLE have been documented nearly two centuries ago when scholars used the terms 'erythema centrifugum' and 'seborrhea congestiva' to describe the discoid skin lesions and the butterfly or malar rash in SLE. Since then, knowledge about this disease has developed rapidly, especially knowledge related to the underlying pathogenesis of SLE. To date, it is known that immune system dysregulation, supported by genetic and environmental predisposition, can trigger the occurrence of SLE in a group of susceptible individuals. Various inflammatory mediators, cytokines and chemokines, as well as intra- and intercellular signaling pathways, are involved in the pathogenesis of SLE. In this review, we will discuss the molecular and cellular aspects of SLE pathogenesis, with a focus on how the immune system, genetics and the environment interact and trigger the various clinical manifestations of SLE.
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Yuliasih Yuliasih
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| |
Collapse
|
34
|
Wang J, Guo HX, Cheng T, Shi L, Zhang SX, Li XF. Reduced circulating Tregs and positive pANCA were robustly associated with the occurrence of antiphospholipid syndrome in patients with systemic lupus erythematosus. Lupus 2023; 32:746-755. [PMID: 37051771 DOI: 10.1177/09612033231171287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a typical chronic immune disorder with clinical heterogeneity. The systemic abnormal immune response not only challenges the diagnosis and treatment of the disease itself but also the secondary antiphospholipid syndrome (APS), characterized by recurrent arterial or venous thrombosis, recurrent spontaneous abortion, or stillbirth. Clinical interest has primarily focused on primary APS's pathological and clinical features. However, differences in clinical features and laboratory indicators between SLE with or without APS are still lacking, especially differences between circulating lymphocytes, which are critical in the pathogenesis of SLE and its complications. METHODS In this retrospective study, we collected and analyzed clinical characteristics, general laboratory indicators, immunological indicators, and circulating lymphocyte subsets of SLE with or without APS. RESULTS Systemic lupus erythematosus with APS (SLE-APS) had elevated SLEDAI scores, hospitalization costs and time, and frequencies of central nervous system symptoms and spontaneous abortion compared with those without APS. SLE-APS had higher positive anti-Cardiolipin antibodies, anti-β2 Glycoprotein 1 antibodies, and perinuclear antineutrophil cytoplasmic antibody (pANCA) than none-APS patients. Compared with healthy controls (HCs), the circulating lymphocyte subsets were altered to some extent in all patients, especially in patients with SLE-APS. Reduced Tregs and positive pANCA were independent risk factors for SLE secondary APS. CONCLUSION The present study revealed a robust association between APS secondary to SLE and reduced Tregs and positive pANCA, which provides essential information regarding the diagnosis and therapeutic possibilities of APS secondary to SLE.
Collapse
Affiliation(s)
- Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Hong-Xia Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Lei Shi
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| |
Collapse
|
35
|
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, Köhl J, Kridin K, Kalies K, Kasprick A, Goletz S, Humrich JY, Manz RA, Künstner A, Hammers CM, Akbarzadeh R, Busch H, Sadik CD, Lange T, Grasshoff H, Hackel AM, Erdmann J, König I, Raasch W, Becker M, Kerstein-Stähle A, Lamprecht P, Riemekasten G, Schmidt E, Ludwig RJ. Autoimmune pre-disease. Autoimmun Rev 2023; 22:103236. [PMID: 36436750 DOI: 10.1016/j.autrev.2022.103236] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | | | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Inke König
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Kerstein-Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany.
| |
Collapse
|
36
|
Albert EA, Kondratieva OA, Baranova EE, Sagaydak OV, Belenikin MS, Zobkova GY, Kuznetsova ES, Deviatkin AA, Zhurov AA, Karpulevich EA, Volchkov PY, Vorontsova MV. Transferability of the PRS estimates for height and BMI obtained from the European ethnic groups to the Western Russian populations. Front Genet 2023; 14:1086709. [PMID: 36726807 PMCID: PMC9885218 DOI: 10.3389/fgene.2023.1086709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
Genetic data plays an increasingly important role in modern medicine. Decrease in the cost of sequencing with subsequent increase in imputation accuracy, and the accumulation of large amounts of high-quality genetic data enable the creation of polygenic risk scores (PRSs) to perform genotype-phenotype associations. The accuracy of phenotype prediction primarily depends on the overall trait heritability, Genome-wide association studies cohort size, and the similarity of genetic background between the base and the target cohort. Here we utilized 8,664 high coverage genomic samples collected across Russia by "Evogen", a Russian biomedical company, to evaluate the predictive power of PRSs based on summary statistics established on cohorts of European ancestry for basic phenotypic traits, namely height and BMI. We have demonstrated that the PRSs calculated for selected traits in three distinct Russian populations, recapitulate the predictive power from the original studies. This is evidence that GWAS summary statistics calculated on cohorts of European ancestry are transferable onto at least some ethnic groups in Russia.
Collapse
Affiliation(s)
- E. A. Albert
- National Medical Research Center for Endocrinology, Moscow, Russia,Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia,*Correspondence: E. A. Albert,
| | - O. A. Kondratieva
- Department of Information Systems, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | - A. A. Deviatkin
- National Medical Research Center for Endocrinology, Moscow, Russia,Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - A. A. Zhurov
- National Medical Research Center for Endocrinology, Moscow, Russia
| | - E. A. Karpulevich
- Department of Information Systems, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
| | - P. Y. Volchkov
- National Medical Research Center for Endocrinology, Moscow, Russia,Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - M. V. Vorontsova
- National Medical Research Center for Endocrinology, Moscow, Russia
| |
Collapse
|
37
|
García-Ortiz H, Barajas-Olmos F, Flores-Huacuja M, Morales-Rivera MI, Martínez-Hernández A, Baca V, Contreras-Cubas C, Orozco L. Ancestry-dependent genetic structure of the Xq28 risk haplotype in the Mexican population and its association with childhood-onset systemic lupus erythematosus. Front Med (Lausanne) 2023; 9:1044856. [PMID: 36714151 PMCID: PMC9877425 DOI: 10.3389/fmed.2022.1044856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Here we aimed to investigate the association of the Xq28 risk haplotype (H1) with susceptibility to childhood-onset systemic lupus erythematosus (SLE), and to compare its frequency and genetic structure in the Mexican population with those in other continental populations. Methods We genotyped 15 single-nucleotide variants (SNVs) that form the H1 haplotype, using TaqMan real-time PCR. The association analysis [case-control and transmission disequilibrium test (TDT)] included 376 cases and 400 adult controls, all of whom were mestizos (MEZ). To identify risk alleles in Mexican Indigenous individuals, SNVs were imputed from whole-exome sequencing data of 1,074 individuals. The allelic frequencies determined in MEZ and Indigenous individuals were compared with those of the continental populations from the 1,000 Genomes database phase 3. Linkage disequilibrium (LD) analysis of risk alleles was performed on all populations. Interleukin-1 receptor associated kinase 1 (IRAK1) and methyl CpG binding protein 2 (MECP2) mRNA levels were determined using real-time PCR. Results Case-control analysis revealed genetic association with childhood-onset SLE for all 15 SNVs (OR = 1.49-1.75; p = 0.0095 to 1.81 × 10-4) and for the Xq28 risk haplotype (OR = 1.97, p = 4 × 10-6). Comparing with individuals of European ancestry (0.14-0.16), the frequencies of the risk alleles were significantly higher in the MEZ individuals (0.55-0.68) and even higher in Indigenous individuals (0.57-0.83). LD analysis indicated a differential haplotype structure within the Indigenous groups, which was inherited to the MEZ population as a result of genetic admixture. Individuals homozygous for the Xq28 risk haplotype exhibited decreased levels of both MECP2A and B transcripts. Conclusion We found that the H1 risk haplotype differs in its conformation in the Mexican population. This difference could be attributed to positive selection within the Indigenous population, with its inheritance now having an autoimmune health impact in both the Mexican Indigenous and MEZ populations.
Collapse
Affiliation(s)
- Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico
| | - Marlen Flores-Huacuja
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico
| | - Monserrat I. Morales-Rivera
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico
| | - Vicente Baca
- Department of Rheumatology, Hospital de Pediatría, CMN Siglo XXI IMSS, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico,*Correspondence: Cecilia Contreras-Cubas,
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, SS, Mexico City, Mexico,Lorena Orozco,
| |
Collapse
|
38
|
Ming B, Bai M, Cai S, Wang B, Zhong J, Dong L. Clinical characteristics of SLE patients infected with Epstein-Barr virus and potential associated risk factors. Clin Rheumatol 2023; 42:101-109. [PMID: 36155871 DOI: 10.1007/s10067-022-06369-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To investigate the clinical features and potential associated risk factors of Epstein-Barr virus (EBV) DNA positivity in systemic lupus erythematosus (SLE) patients. METHODS A total of 121 newly diagnosed SLE patients who had never used immunosuppressive drugs (treatment-naïve) and 191 previously treated SLE patients from January 2017 to January 2020 were enrolled in this study. And 115 age- and sex-matched non-rheumatic disease controls were also included. RESULTS A significantly higher incidence of EBV DNA positivity and higher viral DNA copies in peripheral blood mononuclear cells were observed among treatment-naïve and previously treated SLE patients compared with controls. The positivity rate of EBV DNA was further increased in previously treated SLE patients compared with that in treatment-naïve patients. EBV DNA-positive treatment-naïve SLE patients presented lower incidence of hemolytic anemia and more affected organ number than EBV DNA-negative patients. EBV DNA-positive treated SLE patients showed older age, longer immunosuppressive duration, higher IgG level, and higher Th/Ts ratio than EBV DNA-negative patients. Patients responding well to treatment with decreased SLE disease activity index scores had a transformation of EBV DNA from positive to negative in treated SLE patients. Multivariate logistic regression analysis showed that older age, higher IgG level, and longer immunosuppressive duration were associated risk factors for EBV DNA positivity in SLE patients, while higher TNF-α level was a protective factor. CONCLUSION Older age, higher IgG level, and longer immunosuppressive duration are associated with the positivity of EBV DNA in SLE patients. A seroconversion of EBV DNA indicates an association between EBV positivity and therapy response, while larger number cases are needed to confirm. Key Points • Older age, higher IgG level, and longer immunosuppressive duration are associated with EBV DNA positivity in SLE patients. • A seroconversion of EBV DNA might be an indicator to reflect the SLE therapy -response.
Collapse
Affiliation(s)
- Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ma Bai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bei Wang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
39
|
Abstract
The prognosis in systemic lupus erythematosus (SLE) has improved due to better treatment and care, but cardiovascular disease (CVD) still remains an important clinical problem, since the risk of CVD in SLE is much higher than among controls. Atherosclerosis is the main cause of CVD in the general population, and in SLE, increased atherosclerosis, especially the prevalence of atherosclerotic plaques, has been demonstrated. Atherosclerosis is an inflammatory condition, where immunity plays an important role. Interestingly, oxidized low-density lipoprotein, defective clearance of dead cells, and inflammation, with a pro-inflammatory T-cell profile are characteristics of both atherosclerosis and SLE. In addition to atherosclerosis as an underlying cause of CVD in SLE, there are also other non-mutually exclusive mechanisms, and the most important of these are antiphospholipid antibodies (aPL) leading to the antiphospholipid antibody syndrome with both arterial and venous thrombosis. aPL can cause direct pro-inflammatory and prothrombotic effects on endothelial and other cells and also interfere with the coagulation, for example, by inhibiting annexin A5 from its antithrombotic and protective effects. Antibodies against phosphorylcholine (anti-PC) and other small lipid-related epitopes, sometimes called natural antibodies, are negatively associated with CVD and atherosclerosis in SLE. Taken together, a combination of traditional risk factors such as hypertension and dyslipidemia, and nontraditional ones, especially aPL, inflammation, and low anti-PC are implicated in the increased risk of CVD in SLE. Close monitoring of both traditional risk factors and nontraditional ones, including treatment of disease manifestations, not lest renal disease in SLE, is warranted.
Collapse
Affiliation(s)
- Johan Frostegård
- Section of Immunology and Chronic Disease, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Ma J, Zhang H, Chu W, Wang P, Chen H, Zhang Y, Wang G. Construction of molecular subgroups in childhood systemic lupus erythematosus using bioinformatics. Medicine (Baltimore) 2022; 101:e32274. [PMID: 36595784 PMCID: PMC9794347 DOI: 10.1097/md.0000000000032274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a complex autoimmune disorder. In patients with childhood SLE (cSLE), the onset of the disease occurs before 18 years of age and accounts for a high proportion of childhood autoimmune diseases. Adult SLE and cSLE differ in terms of clinical manifestations, gene expression profiles, and treatment. Because current diagnostic methods do not meet clinical requirements, researchers currently use transcriptome analysis to investigate the characteristics of the cSLE genome. In the present study, we used bioinformatics methods to genotype cSLE and identify potential therapeutic targets. METHODS The transcriptomes of 952 patients with cSLE and 94 normal controls were obtained from the Gene Expression Omnibus using unsupervised class learning to determine the genotypes in the microarray dataset, and the clinical characteristics, differentially expressed genes, and biological characteristics of the subtypes were analyzed. RESULTS Patients with cSLE were accordingly classified into three subgroups. Subgroup I was associated with lupus nephritis, female patients, and a high SLE disease activity index, and the disease in this subgroup was more severe than that in other subgroups. The SLE disease activity index in subgroup II was low; this subgroup may be related to lupus vasculitis. Subgroup III mostly included male patients and was associated with neuropsychiatric manifestations of lupus. CONCLUSION We divided patients with cSLE into three subgroups with different characteristics based on transcriptome data. Our findings provide molecular evidence for future diagnosis and individualized treatment of cSLE.
Collapse
Affiliation(s)
- Jianglei Ma
- School of Clinical Medicine, Dali University, Dali, China
| | - Huijie Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Weijiang Chu
- Department of Endocrinology, Laizhou People’s Hospital, Yantai, China
| | - Pengyu Wang
- School of Clinical Medicine, Dali University, Dali, China
| | - Huaqiu Chen
- Department of Laboratory, Xichang People’s Hospital, Sichuan, China
| | - Yuanyuan Zhang
- School of Clinical Medicine, Dali University, Dali, China
| | - Guangming Wang
- School of Clinical Medicine, Dali University, Dali, China
- * Correspondence: Guangming Wang, School of Clinical Medicine, Dali University, Dali 671000, China (e-mail: )
| |
Collapse
|
41
|
Immunogenetic Profiling of SLE and LN among Jordanian Patients. J Pers Med 2022; 12:jpm12121955. [PMID: 36556176 PMCID: PMC9782219 DOI: 10.3390/jpm12121955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a prolonged inflammatory autoimmune disease, which is characterized by a high titer of serological autoantibodies. Interactions between environmental and genetic factors play a crucial role in the pathogenesis of SLE. Human Leukocyte Antigen (HLA) genes, namely HLA-class II genes, are one of the main candidate genes that increase susceptibility to SLE. The aim of this study was to investigate, for the first time, the association of HLA-DRB1 and HLA-DQB1 genes among Jordanian patients diagnosed with SLE and Lupus Nephritis (LN) using the Polymerase Chain Reaction-Sequence-Specific Primer (PCR-SSP) technique. This study showed that SLE is positively associated with DRB1*0301, DRB1*1101, DRB1*1102 and HLA-DQB1*0601. Furthermore, HLA-DRB1*0301, DRB1*1101, HLA-DRB1*1501 and HLA-DQB1*0601 were found to be linked to SLE patients with LN. In addition, haplotypes HLA-DRB1*0301/DQB1*0201 and HLA-DRB1*1501/DQB1*0601 were found to be linked to SLE and LN. Our findings may serve as possible predictive markers for early screening for LN risk in SLE patients. In light of these results, the role of HLA gene polymorphisms may help in understanding the clinical course, prognosis of the disease and developing better treatment strategies for SLE patients. In addition, it may help in early diagnosis, prevention, intervention and management of the disease.
Collapse
|
42
|
Yan ZY, Hu WQ, Zong QQ, Yu GH, Zhai CX, Wang LL, Wang YH, Zhang TY, Li Z, Teng Y, Cai J, Chen YF, Li M, Xu ZZ, Pan FM, Pan HF, Su H, Zou YF. Associations of RPEL1 and miR-1307 gene polymorphisms with disease susceptibility, glucocorticoid efficacy, anxiety, depression, and health-related quality of life in Chinese systemic lupus erythematosus patients. Lupus 2022; 31:1735-1743. [PMID: 36194484 DOI: 10.1177/09612033221131182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our present study intended to examine the associations of RPEL1 and miR-1307 gene polymorphisms (rs4917385 and rs7911488) with susceptibility, glucocorticoids (GCs) efficacy, anxiety, depression, and health-related quality of life (HRQoL) in Chinese systemic lupus erythematosus (SLE) patients. METHODS Initially, 1000 participants (500 SLE cases and 500 controls) were recruited for the case-control study. Then, 429 cases who received GCs were followed through 12 weeks to explore GCs efficacy, depression, anxiety, and HRQoL. We selected the iMLDR technique for genotyping: RPEL1: rs4917385 (G/T) and miR-1307: rs7911488 (A/G). RESULTS The minor G allele of rs7911488 reduced the risk of SLE (p = .024). Four haplotypes consisting of rs4917385 and rs7911488 were associated with SLE susceptibility (p < .025). Both rs4917385 and rs7911488 were associated with anxiety symptoms and physical function (PF) in SLE patients (p < .025). The rs4917385 was associated with depression and its improvement. No statistical significance was found between RPEL1 and miR-1307 gene polymorphisms with GCs efficacy. Meanwhile, additive interaction analysis showed a significant association between RPEL1 and miR-1307 gene polymorphisms with tea consumption in anxiety. CONCLUSION RPEL1 and miR-1307 gene polymorphisms (rs4917385 and rs7911488) might be related to SLE susceptibility in Chinese population. Additionally, the two polymorphisms were possibly associated with depression, anxiety, and HRQoL in Chinese SLE population.
Collapse
Affiliation(s)
- Zi-Ye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Wan-Qin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Qi-Qun Zong
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Guang-Hui Yu
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Chun-Xia Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Lin-Lin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Yu-Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Ting-Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Jing Cai
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang-Fan Chen
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mu Li
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhou-Zhou Xu
- Department of Rheumatology and Immunology, 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China.,Key Laboratory of Dermatology, (Anhui Medical University), Ministry of Education, Hefei, China
| |
Collapse
|
43
|
Coit P, Roopnarinesingh X, Ortiz-Fernández L, McKinnon-Maksimowicz K, Lewis EE, Merrill JT, McCune WJ, Wren JD, Sawalha AH. Hypomethylation of miR-17-92 cluster in lupus T cells and no significant role for genetic factors in the lupus-associated DNA methylation signature. Ann Rheum Dis 2022; 81:1428-1437. [PMID: 35710306 PMCID: PMC10259175 DOI: 10.1136/annrheumdis-2022-222656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Lupus T cells demonstrate aberrant DNA methylation patterns dominated by hypomethylation of interferon-regulated genes. The objective of this study was to identify additional lupus-associated DNA methylation changes and determine the genetic contribution to epigenetic changes characteristic of lupus. METHODS Genome-wide DNA methylation was assessed in naïve CD4+ T cells from 74 patients with lupus and 74 age-matched, sex-matched and race-matched healthy controls. We applied a trend deviation analysis approach, comparing methylation data in our cohort with over 16 500 samples. Methylation quantitative trait loci (meQTL) analysis was performed by integrating methylation profiles with genome-wide genotyping data. RESULTS In addition to the previously reported epigenetic signature in interferon-regulated genes, we observed hypomethylation in the promoter region of the miR-17-92 cluster in patients with lupus. Members of this microRNA cluster play an important role in regulating T cell proliferation and differentiation. Expression of two microRNAs in this cluster, miR-19b1 and miR-18a, showed a significant positive correlation with lupus disease activity. Among miR-18a target genes, TNFAIP3, which encodes a negative regulator of nuclear factor kappa B, was downregulated in lupus CD4+ T cells. MeQTL identified in lupus patients showed overlap with genetic risk loci for lupus, including CFB and IRF7. The lupus risk allele in IRF7 (rs1131665) was associated with significant IRF7 hypomethylation. However, <1% of differentially methylated CpG sites in patients with lupus were associated with an meQTL, suggesting minimal genetic contribution to lupus-associated epigenotypes. CONCLUSION The lupus defining epigenetic signature, characterised by robust hypomethylation of interferon-regulated genes, does not appear to be determined by genetic factors. Hypomethylation of the miR-17-92 cluster that plays an important role in T cell activation is a novel epigenetic locus for lupus.
Collapse
Affiliation(s)
- Patrick Coit
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiavan Roopnarinesingh
- Graduate Program, Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Lourdes Ortiz-Fernández
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Emily E Lewis
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joan T Merrill
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - W Joseph McCune
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Cognitive dysfunction in SLE: An understudied clinical manifestation. J Autoimmun 2022; 132:102911. [PMID: 36127204 DOI: 10.1016/j.jaut.2022.102911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric lupus (NPSLE) is a debilitating manifestation of SLE which occurs in a majority of SLE patients and has a variety of clinical manifestations. In the central nervous system, NPSLE may result from ischemia or penetration of inflammatory mediators and neurotoxic antibodies through the blood brain barrier (BBB). Here we focus on cognitive dysfunction (CD) as an NPSLE manifestation; it is common, underdiagnosed, and without specific therapy. For a very long time, clinicians ignored cognitive dysfunction and researchers who might be interested in the question struggled to find an approach to understanding mechanisms for this manifestation. Recent years, however, propelled by a more patient-centric approach to disease, have seen remarkable progress in our understanding of CD pathogenesis. This has been enabled through the use of novel imaging modalities and numerous mouse models. Overall, these studies point to a pivotal role of an impaired BBB and microglial activation in leading to neuronal injury. These insights suggest potential therapeutic modalities and make possible clinical trials for cognitive impairment.
Collapse
|
45
|
Yaigoub H, Fath N, Tirichen H, Wu C, Li R, Li Y. Bidirectional crosstalk between dysbiotic gut microbiota and systemic lupus erythematosus: What is new in therapeutic approaches? Clin Immunol 2022; 244:109109. [PMID: 36087683 DOI: 10.1016/j.clim.2022.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by chronic inflammation and multiple organs damage. Its pathogenesis is complex and involves multiple factors including gut microbiota. Accumulating evidence indicates the interaction of microbial communities with the host immune system to maintain a state of homeostasis. Imbalances within the gut microbial composition and function may contribute to the development of many autoimmune diseases including SLE. In this review, we aim to highlight the dysregulation of commensal bacteria and their metabolites in the gastrointestinal tract and the resulting autoimmune responses in lupus and to decrypt the cross-link between the altered gut microbiota and the immune system in the SLE condition. We also provide new insights into targeting gut microbiota as a promising therapeutic approach to treat and manage SLE.
Collapse
Affiliation(s)
- Hasnaa Yaigoub
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Nada Fath
- Comparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, Rabat, Morocco
| | - Hasna Tirichen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
46
|
Zhang P, Zhai J, Wang K, Wu Y. IKBKE and BANK1 Polymorphisms and Clinical Characteristics in Chinese Women with Systemic Lupus Erythematosus. Immunol Invest 2022; 51:2097-2107. [PMID: 35930382 DOI: 10.1080/08820139.2022.2108325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Defects in apoptotic cell clearance is a pathogenic factor in systemic lupus erythematosus (SLE). This study screened potential pathogenic single nucleotide polymorphisms (SNPs) related to anti-apoptosis from an SLE family and explored their contribution to SLE susceptibility in Chinese women. METHODS Four SNPs (IKBKE rs15672, BANK1 rs12640056, BANK1 rs6842661, and NFKBIA rs1957106) with potential SLE susceptibility were analyzed for clinical characteristics between 567 patients with SLE and 345 healthy control subjects. RESULTS IKBKE rs15672 G/A and BANK1 rs12640056C/T polymorphisms were associated with SLE susceptibility (rs15672 A vs G, P = 0.028, OR = 1.25, 95% CI = 1.02-1.52; rs12640056 T vs C, P = 0.015, OR = 0.78, 95% CI = 0.64-0.95, respectively). In addition, patients with AA+GA genotypes of IKBKE rs15672 had higher positive rates of anti-SSB antibodies (q = 0.008) and lower positive rates of anti-RIB antibodies (q = 0.024) than those with the GG genotype. There were no significant differences in BANK1 rs12640056 between different genotypes and clinical characteristics. CONCLUSION IKBKE rs15672 G/A and BANK1 rs12640056C/T polymorphisms are associated with susceptibility to SLE in Chinese women. This highlights the important role of these two SNPs in this disease and suggests that multiple genes from these pathways are candidates for functional studies and therapeutic targets.
Collapse
Affiliation(s)
- Ping Zhang
- West China School of Medicine/Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhao Zhai
- West China School of Medicine/Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kefen Wang
- West China School of Medicine/Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongkang Wu
- West China School of Medicine/Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Outpatient Department, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Appenzeller S, Pereira DR, Julio PR, Reis F, Rittner L, Marini R. Neuropsychiatric manifestations in childhood-onset systemic lupus erythematosus. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:571-581. [PMID: 35841921 DOI: 10.1016/s2352-4642(22)00157-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Neuropsychiatric manifestations occur frequently and are challenging to diagnose in childhood-onset systemic lupus erythematosus (SLE). Most patients with childhood-onset SLE have neuropsychiatric events in the first 2 years of disease. 30-70% of patients present with more than one neuropsychiatric event during their disease course, with an average of 2-3 events per person. These symptoms are associated with disability and mortality. Serum, cerebrospinal fluid, and neuroimaging findings have been described in childhood-onset SLE; however, only a few have been validated as biomarkers for diagnosis, monitoring response to treatment, or prognosis. The aim of this Review is to describe the genetic risk, clinical and neuroimaging characteristics, and current treatment strategies of neuropsychiatric manifestations in childhood-onset SLE.
Collapse
Affiliation(s)
- Simone Appenzeller
- Department of Orthopedics, Rheumatology, and Traumatology, University of Campinas, Campinas, Brazil; Rheumatology Laboratory, University of Campinas, Campinas, Brazil.
| | - Danilo Rodrigues Pereira
- Rheumatology Laboratory, University of Campinas, Campinas, Brazil; Medical Physiopathology Graduate Program, University of Campinas, Campinas, Brazil
| | - Paulo Rogério Julio
- Rheumatology Laboratory, University of Campinas, Campinas, Brazil; Child and Adolescent Health Graduate Program, University of Campinas, Campinas, Brazil
| | - Fabiano Reis
- Department of Radiology, University of Campinas, Campinas, Brazil
| | - Leticia Rittner
- School of Medical Science; School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Roberto Marini
- Pediatric Rheumatology Unit, Department of Pediatrics, University of Campinas, Campinas, Brazil
| |
Collapse
|
48
|
Frangou E, Garantziotis P, Grigoriou M, Banos A, Nikolopoulos D, Pieta A, Doumas SA, Fanouriakis A, Hatzioannou A, Manolakou T, Alissafi T, Verginis P, Athanasiadis E, Dermitzakis E, Bertsias G, Filia A, Boumpas DT. Cross-species transcriptome analysis for early detection and specific therapeutic targeting of human lupus nephritis. Ann Rheum Dis 2022; 81:1409-1419. [PMID: 35906002 PMCID: PMC9484391 DOI: 10.1136/annrheumdis-2021-222069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
Objectives Patients with lupus nephritis (LN) are in urgent need for early diagnosis and therapeutic interventions targeting aberrant molecular pathways enriched in affected kidneys. Methods We used mRNA-sequencing in effector (spleen) and target (kidneys, brain) tissues from lupus and control mice at sequential time points, and in the blood from 367 individuals (261 systemic lupus erythematosus (SLE) patients and 106 healthy individuals). Comparative cross-tissue and cross-species analyses were performed. The human dataset was split into training and validation sets and machine learning was applied to build LN predictive models. Results In murine SLE, we defined a kidney-specific molecular signature, as well as a molecular signature that underlies transition from preclinical to overt disease and encompasses pathways linked to metabolism, innate immune system and neutrophil degranulation. The murine kidney transcriptome partially mirrors the blood transcriptome of patients with LN with 11 key transcription factors regulating the cross-species active LN molecular signature. Integrated protein-to-protein interaction and drug prediction analyses identified the kinases TRRAP, AKT2, CDK16 and SCYL1 as putative targets of these factors and capable of reversing the LN signature. Using murine kidney-specific genes as disease predictors and machine-learning training of the human RNA-sequencing dataset, we developed and validated a peripheral blood-based algorithm that discriminates LN patients from normal individuals (based on 18 genes) and non-LN SLE patients (based on 20 genes) with excellent sensitivity and specificity (area under the curve range from 0.80 to 0.99). Conclusions Machine-learning analysis of a large whole blood RNA-sequencing dataset of SLE patients using human orthologs of mouse kidney-specific genes can be used for early, non-invasive diagnosis and therapeutic targeting of LN. The kidney-specific gene predictors may facilitate prevention and early intervention trials.
Collapse
Affiliation(s)
- Eleni Frangou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - Panagiotis Garantziotis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Clinical Immunology and Rheumatology, Medical University Hannover, Hannover, Germany
| | - Maria Grigoriou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dionysis Nikolopoulos
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antigone Pieta
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stavros A Doumas
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antonis Fanouriakis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aikaterini Hatzioannou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Themis Alissafi
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panayotis Verginis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Emmanouil Athanasiadis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development and Institute of Genetics and Genomics of Geneva (iG3), University of Geneva Medical School, Geneve, Switzerland
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete Medical School, Heraklion, Greece
| | - Anastasia Filia
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,4th Department of Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
49
|
Khatri B, Tessneer KL, Rasmussen A, Aghakhanian F, Reksten TR, Adler A, Alevizos I, Anaya JM, Aqrawi LA, Baecklund E, Brun JG, Bucher SM, Eloranta ML, Engelke F, Forsblad-d’Elia H, Glenn SB, Hammenfors D, Imgenberg-Kreuz J, Jensen JL, Johnsen SJA, Jonsson MV, Kvarnström M, Kelly JA, Li H, Mandl T, Martín J, Nocturne G, Norheim KB, Palm Ø, Skarstein K, Stolarczyk AM, Taylor KE, Teruel M, Theander E, Venuturupalli S, Wallace DJ, Grundahl KM, Hefner KS, Radfar L, Lewis DM, Stone DU, Kaufman CE, Brennan MT, Guthridge JM, James JA, Scofield RH, Gaffney PM, Criswell LA, Jonsson R, Eriksson P, Bowman SJ, Omdal R, Rönnblom L, Warner B, Rischmueller M, Witte T, Farris AD, Mariette X, Alarcon-Riquelme ME, Shiboski CH, Wahren-Herlenius M, Ng WF, Sivils KL, Adrianto I, Nordmark G, Lessard CJ. Genome-wide association study identifies Sjögren's risk loci with functional implications in immune and glandular cells. Nat Commun 2022; 13:4287. [PMID: 35896530 PMCID: PMC9329286 DOI: 10.1038/s41467-022-30773-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sjögren's disease is a complex autoimmune disease with twelve established susceptibility loci. This genome-wide association study (GWAS) identifies ten novel genome-wide significant (GWS) regions in Sjögren's cases of European ancestry: CD247, NAB1, PTTG1-MIR146A, PRDM1-ATG5, TNFAIP3, XKR6, MAPT-CRHR1, RPTOR-CHMP6-BAIAP6, TYK2, SYNGR1. Polygenic risk scores yield predictability (AUROC = 0.71) and relative risk of 12.08. Interrogation of bioinformatics databases refine the associations, define local regulatory networks of GWS SNPs from the 95% credible set, and expand the implicated gene list to >40. Many GWS SNPs are eQTLs for genes within topologically associated domains in immune cells and/or eQTLs in the main target tissue, salivary glands.
Collapse
Affiliation(s)
- Bhuwan Khatri
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kandice L. Tessneer
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Astrid Rasmussen
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Farhang Aghakhanian
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Tove Ragna Reksten
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Adam Adler
- grid.274264.10000 0000 8527 6890NGS Core Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Ilias Alevizos
- grid.419633.a0000 0001 2205 0568Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD USA
| | - Juan-Manuel Anaya
- grid.412191.e0000 0001 2205 5940Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogotá, Colombia
| | - Lara A. Aqrawi
- grid.5510.10000 0004 1936 8921Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway ,grid.457625.70000 0004 0383 3497Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Eva Baecklund
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan G. Brun
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sara Magnusson Bucher
- grid.15895.300000 0001 0738 8966Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maija-Leena Eloranta
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fiona Engelke
- grid.10423.340000 0000 9529 9877Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Helena Forsblad-d’Elia
- grid.8761.80000 0000 9919 9582Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stuart B. Glenn
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Daniel Hammenfors
- grid.412008.f0000 0000 9753 1393Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Juliana Imgenberg-Kreuz
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Janicke Liaaen Jensen
- grid.5510.10000 0004 1936 8921Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Svein Joar Auglænd Johnsen
- grid.412835.90000 0004 0627 2891Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Malin V. Jonsson
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Section for Oral and Maxillofacial Radiology, Department of Clinical Dentistry, Medical Faculty, University of Bergen, Bergen, Norway
| | - Marika Kvarnström
- grid.4714.60000 0004 1937 0626Rheumatology Unity, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden ,grid.425979.40000 0001 2326 2191Academic Specialist Center, Center for Rheumatology and Studieenheten, Stockholm Health Services, Region Stockholm, Sweden
| | - Jennifer A. Kelly
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - He Li
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.505430.7Translational Sciences, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA USA
| | - Thomas Mandl
- grid.4514.40000 0001 0930 2361Rheumatology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Javier Martín
- grid.4711.30000 0001 2183 4846Instituto de Biomedicina y Parasitología López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Gaétane Nocturne
- grid.413784.d0000 0001 2181 7253Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Le Kremlin Bicêtre, France
| | - Katrine Brække Norheim
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412835.90000 0004 0627 2891Department of Rheumatology, Stavanger University Hospital, Stavanger, Norway
| | - Øyvind Palm
- grid.5510.10000 0004 1936 8921Department of Rheumatology, University of Oslo, Oslo, Norway
| | - Kathrine Skarstein
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Anna M. Stolarczyk
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kimberly E. Taylor
- grid.266102.10000 0001 2297 6811Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California USA
| | - Maria Teruel
- grid.4489.10000000121678994Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Elke Theander
- grid.411843.b0000 0004 0623 9987Department of Rheumatology, Skåne University Hospital, Malmö, Sweden ,Medical Affairs, Jannsen-Cilag EMEA (Europe/Middle East/Africa), Beerse, Belgium
| | - Swamy Venuturupalli
- grid.50956.3f0000 0001 2152 9905Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Daniel J. Wallace
- grid.50956.3f0000 0001 2152 9905Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Kiely M. Grundahl
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | | | - Lida Radfar
- grid.266900.b0000 0004 0447 0018Oral Diagnosis and Radiology Department, University of Oklahoma College of Dentistry, Oklahoma City, OK USA
| | - David M. Lewis
- grid.266900.b0000 0004 0447 0018Department of Oral and Maxillofacial Pathology, University of Oklahoma College of Dentistry, Oklahoma City, OK USA
| | - Donald U. Stone
- grid.266902.90000 0001 2179 3618Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - C. Erick Kaufman
- grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Michael T. Brennan
- grid.239494.10000 0000 9553 6721Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC USA ,grid.241167.70000 0001 2185 3318Department of Otolaryngology/Head and Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Joel M. Guthridge
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Judith A. James
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - R. Hal Scofield
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ,grid.413864.c0000 0004 0420 2582US Department of Veterans Affairs Medical Center, Oklahoma City, OK USA
| | - Patrick M. Gaffney
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Lindsey A. Criswell
- grid.266102.10000 0001 2297 6811Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California USA ,grid.266102.10000 0001 2297 6811Institute of Human Genetics (IHG), University of California San Francisco, San Francisco, CA USA ,grid.280128.10000 0001 2233 9230Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, NIH, Bethesda, MD USA
| | - Roland Jonsson
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Per Eriksson
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Simon J. Bowman
- grid.412563.70000 0004 0376 6589Rheumatology Department, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK ,grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute of Inflammation & Ageing, University of Birmingham, Birmingham, UK ,grid.415667.7Rheumatology Department, Milton Keynes University Hospital, Milton Keynes, UK
| | - Roald Omdal
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412835.90000 0004 0627 2891Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Lars Rönnblom
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Blake Warner
- grid.419633.a0000 0001 2205 0568Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD USA
| | - Maureen Rischmueller
- grid.278859.90000 0004 0486 659XRheumatology Department, The Queen Elizabeth Hospital, Woodville, South Australia ,grid.1010.00000 0004 1936 7304University of Adelaide, Adelaide, South Australia
| | - Torsten Witte
- grid.10423.340000 0000 9529 9877Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - A. Darise Farris
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Xavier Mariette
- grid.413784.d0000 0001 2181 7253Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Le Kremlin Bicêtre, France
| | - Marta E. Alarcon-Riquelme
- grid.4489.10000000121678994Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | | | - Caroline H. Shiboski
- grid.266102.10000 0001 2297 6811Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA USA
| | | | - Marie Wahren-Herlenius
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.4714.60000 0004 1937 0626Rheumatology Unity, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Wan-Fai Ng
- grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK ,grid.420004.20000 0004 0444 2244NIHR Newcastle Biomedical Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Kathy L. Sivils
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.505430.7Translational Sciences, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA USA
| | - Indra Adrianto
- grid.239864.20000 0000 8523 7701Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, MI USA
| | - Gunnel Nordmark
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christopher J. Lessard
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
50
|
Jadidi N, Alesaeidi S, Arab F, Pakzad B, Siasi E, Esmaeilzadeh E. miRNA-binding site polymorphism in IL-15RA gene in rheumatoid arthritis and systemic lupus erythematosus: correlation with disease risk and clinical characteristics. Clin Rheumatol 2022; 41:3487-3494. [PMID: 35857215 DOI: 10.1007/s10067-022-06298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION/OBJECTIVES MiRSNPs may interfere with mRNA stability through effects on microRNAs (miRNAs)-mRNA interactions via direct changes in miRNA binding site or effect on the secondary structure of this region and changes in accessibility of this region to miRNAs. Studies have confirmed that an elevated level of interleukin-15 receptor alpha (IL-15RA) has an important role in the pathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). In the present study, for the first time, we aimed to evaluate the possible correlation between a miRSNP, rs2296135, in IL-15RA gene with the risk of SLE and RA. METHODS In this case-control study, 100 SLE patients, 100 RA patients, and 110 healthy participants were enrolled to assess rs2296135 genotypes with real-time PCR high-resolution melting method. RESULTS According to our findings, AA genotype and A allele of rs2296135 were considerably associated with enhanced risk of RA (for AA genotype, OR = 2.29; 95% CI [1.06-5.02]; for A allele, OR = 1.65; 95% CI [1.10-2.48]). However, this common variant was not significantly correlated with SLE risk in population under study. Stratification analysis in the RA group verified that patients with the A allele had considerably higher serum concentrations of C-reactive protein (CRP) (P < 0.001). In SLE subjects, the frequency of arthritis (P: 0.021) and renal involvement (P: 0.025) in patients with A allele was significantly higher than in other SLE individuals. CONCLUSION The current study proposes a substantial association between rs2296135 polymorphism in IL-15RA gene with augmented risk of RA and some clinical characteristics in RA and SLE patients.
Collapse
Affiliation(s)
- Nilofar Jadidi
- Department of Genetics, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.,Department of Biology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samira Alesaeidi
- Rheumatology and Internal Medicine, Rheumatology Research Center, Amir-Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Arab
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Pakzad
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Elham Siasi
- Department of Genetics, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Emran Esmaeilzadeh
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran. .,Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran.
| |
Collapse
|