1
|
Chiarella E. Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Cell Tissue Res 2024; 398:161-173. [PMID: 39436449 PMCID: PMC11614986 DOI: 10.1007/s00441-024-03926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Hematopoietic stem cells (HSCs) drive cellular turnover in the hematopoietic system by balancing self-renewal and differentiation. In the adult bone marrow (BM), these cells are regulated by a complex cellular microenvironment known as "niche," which involves dynamic interactions between diverse cellular and non-cellular elements. During blood cell maturation, lineage branching is guided by clusters of genes that interact or counteract each other, forming complex networks of lineage-specific transcription factors. Disruptions in these networks can lead to obstacles in differentiation, lineage reprogramming, and ultimately malignant transformation, including acute myeloid leukemia (AML). Zinc Finger Protein 521 (Znf521/Zfp521), a conserved transcription factor enriched in HSCs in both human and murine hematopoiesis, plays a pivotal role in regulating HSC self-renewal and differentiation. Its enforced expression preserves progenitor cell activity, while inhibition promotes differentiation toward the lymphoid and myeloid lineages. Transcriptomic analysis of human AML patient samples has revealed upregulation of ZNF521 in AMLs with the t(9;11) fusion gene MLL-AF9. In vitro studies have shown that ZNF521 collaborates with MLL-AF9 to enhance the growth of transformed leukemic cells, increase colony formation, and activate MLL target genes. Conversely, inhibition of ZNF521 using short-hairpin RNA (shRNA) results in decreased leukemia proliferation, reduced colony formation, and induction of cell cycle arrest in MLL-rearranged AML cell lines. In vivo experiments have demonstrated that mZFP521-deficient mice transduced with MLL-AF9 experience a delay in leukemia development. This review provides an overview of the regulatory network involving ZNF521, which plays a crucial role in controlling both HSC self-renewal and differentiation pathways. Furthermore, we examine the impact of ZNF521 on the leukemic phenotype and consider it a potential marker for MLL-AF9+ AML.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Leszczenko P, Nowakowska AM, Jakubowska J, Pastorczak A, Zabczynska M, Mlynarski W, Baranska M, Ostrowska K, Majzner K. Raman spectroscopy can recognize the KMT2A rearrangement as a distinct subtype of leukemia. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124173. [PMID: 38520957 DOI: 10.1016/j.saa.2024.124173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) are the two most common hematologic malignancies, challenging to treat and associated with high recurrence and mortality rates. This work aims to identify specific Raman biomarkers of ALL cells with the KMT2A gene rearrangement (KMT2A-r), representing a highly aggressive subtype of childhood leukemia with a poor prognosis. The proposed approach combines the sensitivity and specificity of Raman spectroscopy with machine learning and allows us to distinguish not only myelo- and lymphoblasts but also discriminate B-cell precursor (BCP) ALL with KMT2A-r from other blasts of BCP-ALL. We have found that KMT2A-r ALL cells fixed with 0.5% glutaraldehyde exhibit a unique spectroscopic profile that enables us to identify this subtype from other leukemias and normal cells. Therefore, a rapid and label-free method was developed to identify ALL blasts with KMT2A-r based on the ratio of the two Raman bands assigned to phenylalanine - 1040 and 1008 cm-1. This is the first time that a particular group of leukemic cells has been identified in a label-free way. The identified biomarker can be used as a screening method in diagnostic laboratories or non-reference medical centers.
Collapse
Affiliation(s)
- Patrycja Leszczenko
- Jagiellonian University, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland.
| | - Anna M Nowakowska
- Jagiellonian University, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Justyna Jakubowska
- Medical University of Lodz, Department of Pediatrics, Oncology, and Hematology, Sporna 36/50, 91-738 Lodz, Poland.
| | - Agata Pastorczak
- Medical University of Lodz, Department of Pediatrics, Oncology, and Hematology, Sporna 36/50, 91-738 Lodz, Poland.
| | - Marta Zabczynska
- Medical University of Lodz, Department of Pediatrics, Oncology, and Hematology, Sporna 36/50, 91-738 Lodz, Poland.
| | - Wojciech Mlynarski
- Medical University of Lodz, Department of Pediatrics, Oncology, and Hematology, Sporna 36/50, 91-738 Lodz, Poland.
| | - Malgorzata Baranska
- Jagiellonian University, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Kinga Ostrowska
- Medical University of Lodz, Department of Pediatrics, Oncology, and Hematology, Sporna 36/50, 91-738 Lodz, Poland.
| | - Katarzyna Majzner
- Jagiellonian University, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
3
|
Liu J, Huang XJ. [Progress of allogeneic hematopoietic stem cell transplantation in KMT2A-rearranged acute leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:514-520. [PMID: 38964931 PMCID: PMC11270489 DOI: 10.3760/cma.j.cn121090-20231026-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 07/06/2024]
Abstract
KMT2A (lysine methyltransferase 2A) -rearranged acute leukemia is a class of leukemia with unique biological characteristics with moderate or poor prognosis. In recent years, allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been increasingly indicated for patients with KMT2A-rearranged acute leukemia. By reviewing the clinical studies of allo-HSCT in KMT2A-rearranged acute leukemia, the efficacy of allo-HSCT in children and adults with KMT2A-rearranged acute myeloid leukemia and acute lymphoblastic leukemia was assessed, the factors affecting the prognosis of allo-HSCT were summarized, and the methods that may improve the outcomes of allo-HSCT were explored.
Collapse
Affiliation(s)
- J Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
4
|
Müller H, Dicker F, Bär C, Walter W, Hutter S, Nadarajah N, Meggendorfer M, Gao Q, Iacobucci I, Mullighan CG, Kern W, Haferlach T, Haferlach C. Proximally biased V(D)J recombination in the clonal evolution of IGH alleles in KMT2A::AFF1 BCP-ALL of all age classes. Hemasphere 2024; 8:e71. [PMID: 38650597 PMCID: PMC11033919 DOI: 10.1002/hem3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
| | | | | | | | | | | | | | - Qingsong Gao
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Ilaria Iacobucci
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | | | | | | | | |
Collapse
|
5
|
Popa CA, Andreescu NI, Arghirescu TS, Petrescu CAM, Jincă CM, Huţ EF, Drăgoi RG, Puenea G, Popa D. Classic and molecular cytogenetic findings in leukemia patients from the Western part of Romania. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:203-208. [PMID: 39020534 PMCID: PMC11384830 DOI: 10.47162/rjme.65.2.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in childhood and rare in adults, while acute myeloid leukemia (AML) is less common in children and more common in older adults. The aim of the study was to present our experience for the diagnostic of leukemia by using the classic and molecular cytogenetic methods. The study was conducted between 2009 and 2019 within the Classic and Molecular Genetic Laboratory of the Oncohematology Department from the Louis Ţurcanu Emergency Hospital for Children, Timişoara, Romania. The study group included 337 children and adults, evaluated between 2009 and 2019. By using the conventional and molecular cytogenetic technique, the cytogenetic anomalies found were 35 numerical chromosomal abnormalities, 10 (9;22)(q34;q11) [four ALL, one AML, five chronic myeloid leukemia (CML)] translocations, nine (15;17)(q24;q21) translocations, three (14;14)(q11;q32) translocations, two (4;11)(q21;q23) translocations, one (1;14)(p32;q11) translocation, one (7;14)(qter;q11) translocation, one (8;21)(q22;q22) translocation, one (9;14)(p12;q32) translocation, seven rearrangements of the MLL gene and two rearrangements of the core-binding factor subunit beta∕myosin heavy chain 11 (CBFB∕MYH11) gene. The use of conventional and molecular cytogenetic analysis is one of the most important prognostic indicators in acute leukemia patients, allowing the identification of biologically distinct subtypes of disease and selection of appropriate treatment approaches.
Collapse
Affiliation(s)
- Cristina Annemari Popa
- Department of Genetics, Genomic Medicine Centre, Department of Pediatrics, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania; ;
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tibben BM, Rothbart SB. Mechanisms of DNA Methylation Regulatory Function and Crosstalk with Histone Lysine Methylation. J Mol Biol 2024; 436:168394. [PMID: 38092287 PMCID: PMC10957332 DOI: 10.1016/j.jmb.2023.168394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
DNA methylation is a well-studied epigenetic modification that has key roles in regulating gene expression, maintaining genome integrity, and determining cell fate. Precisely how DNA methylation patterns are established and maintained in specific cell types at key developmental stages is still being elucidated. However, research over the last two decades has contributed to our understanding of DNA methylation regulation by other epigenetic processes. Specifically, lysine methylation on key residues of histone proteins has been shown to contribute to the allosteric regulation of DNA methyltransferase (DNMT) activities. In this review, we discuss the dynamic interplay between DNA methylation and histone lysine methylation as epigenetic regulators of genome function by synthesizing key recent studies in the field. With a focus on DNMT3 enzymes, we discuss mechanisms of DNA methylation and histone lysine methylation crosstalk in the regulation of gene expression and the maintenance of genome integrity. Further, we discuss how alterations to the balance of various sites of histone lysine methylation and DNA methylation contribute to human developmental disorders and cancers. Finally, we provide perspectives on the current direction of the field and highlight areas for continued research and development.
Collapse
Affiliation(s)
- Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
7
|
De Sa H, Leonard J. Novel Biomarkers and Molecular Targets in ALL. Curr Hematol Malig Rep 2024; 19:18-34. [PMID: 38048037 DOI: 10.1007/s11899-023-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemia (ALL) is a widely heterogeneous disease in terms of genomic alterations, treatment options, and prognosis. While ALL is considered largely curable in children, adults tend to have higher risk disease subtypes and do not respond as favorably to conventional chemotherapy. Identifying genomic drivers of leukemogenesis and applying targeted therapies in an effort to improve disease outcomes is an exciting focus of current ALL research. Here, we review recent updates in ALL targeted therapy and present promising opportunities for future research. RECENT FINDINGS With the utilization of next-generation sequencing techniques, the genomic landscape of ALL has greatly expanded to encompass novel subtypes characterized by recurrent chromosomal rearrangements, gene fusions, sequence mutations, and distinct gene expression profiles. The evolution of small molecule inhibitors and immunotherapies, and the exploration of unique therapy combinations are some examples of recent advancements in the field. Targeted therapies are becoming increasingly important in the treatment landscape of ALL to improve outcomes and minimize toxicity. Significant recent advancements have been made in the detection of susceptible genomic drivers and the use of novel therapies to target them.
Collapse
Affiliation(s)
- Hong De Sa
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA
| | - Jessica Leonard
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Adamczyk A, Nowakowska AM, Jakubowska J, Zabczynska M, Bartoszek M, Kashyrskaya S, Fatla A, Stawoski K, Siakala K, Pastorczak A, Ostrowska K, Mlynarski W, Majzner K, Baranska M. Raman classification of selected subtypes of acute lymphoblastic leukemia (ALL). Analyst 2024; 149:571-581. [PMID: 38099606 DOI: 10.1039/d3an01708g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with chromosome translocations like KMT2A gene rearrangement (KMT2A-r) and BCR-ABL1 fusion gene have been recognized as crucial drivers in both BCP-ALL leukemogenesis and treatment management. Standard diagnostic protocols for proliferative diseases of the hematopoietic system, like KMT2A-r-ALL, are genetically based and strongly molecularly oriented. Therefore, an efficient diagnostic procedure requires not only experienced and multidisciplinary laboratory staff but also considerable instrumentation and material costs. In recent years, a Raman spectroscopy method has been increasingly used to detect subtle chemical changes in individual cells resulting from stress or disease. Therefore, the objective of this study was to identify Raman signatures for the molecular subtypes and to develop a classification method based on the unique spectroscopic profile of in vitro models that represent specific aberrations aimed at KMT2A-r (RS4;11, and SEM) and the BCR-ABL1 fusion gene (SUP-B15, BV-173, and SD-1). Data analysis was based on chemometric methods, i.e. principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and support vector machine (SVM). The PCA-based multivariate model was used for pattern recognition of each investigated group of cells while PLS-DA and SVM were used to build models for the discrimination of spectra from the studied BCP-ALL molecular subtypes. The results showed that the studied molecular subtypes of ALL have characteristic spectroscopic profiles reflecting their peculiar biochemical state. The content of lipids (1600 cm-1), nucleic acids (789 cm-1), and haemoproteins (754, 1130, and 1315 cm-1), which are crucial in cell metabolism, was indicated as the main source of differentiation between subtypes. Identification of spectroscopic markers of cells with BCR-ABL1 or KMT2A-r may be useful in pharmacological studies to monitor the effectiveness of chemotherapy and further to understand differences in molecular responses between leukemia primary cells and cell lines.
Collapse
Affiliation(s)
- Adriana Adamczyk
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland.
| | - Anna M Nowakowska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland.
| | - Justyna Jakubowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36/50 Sporna St., Lodz, Poland
| | - Marta Zabczynska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36/50 Sporna St., Lodz, Poland
| | - Maja Bartoszek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland.
| | - Sviatlana Kashyrskaya
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland.
| | - Agnieszka Fatla
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland.
| | - Kacper Stawoski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland.
| | - Kacper Siakala
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland.
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36/50 Sporna St., Lodz, Poland
| | - Kinga Ostrowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36/50 Sporna St., Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36/50 Sporna St., Lodz, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland.
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland.
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| |
Collapse
|
9
|
Jiang B, Zhao Y, Luo Y, Yu J, Chen Y, Ye B, Fu H, Lai X, Liu L, Ye Y, Zheng W, Sun J, He J, Zhao Y, Wei G, Cai Z, Huang H, Shi J. Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients With Acute Myeloid Leukemia Harboring KMT2A Rearrangement and Its Prognostic Factors. Cell Transplant 2024; 33:9636897231225821. [PMID: 38270130 PMCID: PMC10812095 DOI: 10.1177/09636897231225821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
KMT2A rearrangement (KMT2A-r) in patients with acute myeloid leukemia (AML) is associated with poor outcomes; the prognostic factors after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remain unclear. We investigated 364 adults with AML who underwent allo-HSCT between April 2016 and May 2022, and 45 had KMT2A-r among them. Propensity score analysis with 1:1 matching and the nearest neighbor matching method identified 42 patients in KMT2A-r and non-KMT2A-r cohorts, respectively. The 2-year overall survival (OS), relapse-free survival (RFS), cumulative incidence of relapse (CIR), and non-relapsed mortality rates of patients with KMT2A-r (n = 45) were 59.1%, 49.6%, 41.5%, and 8.9%, respectively. Using propensity score matching, the 2-year OS rate of patients with KMT2A-r (n = 42) was lower than that of those without KMT2A-r (n = 42; 56.1% vs 88.1%, P = 0.003). Among patients with KMT2A-r (n = 45), the prognostic advantage was exhibited from transplantation in first complete remission (CR1) and measurable residual disease (MRD) negative, which was reflected in OS, RFS, and CIR (P < 0.001, P < 0.001, and P = 0.002, respectively). Furthermore, patients with AF6 had poorer outcomes than those with AF9, ELL, and other KMT2A-r subtypes (P = 0.032, P = 0.001, and P = 0.001 for OS, RFS, and CIR, respectively). However, no differences were found in the OS, RFS, and CIR between patients with KMT2A-r with and without mutations (all P > 0.05). Univariate and multivariate analyses revealed that achieving CR1 MRD negative before HSCT was a protective factor for OS [hazard ratio (HR) = 0.242, P = 0.007], RFS (HR = 0.350, P = 0.036), and CIR (HR = 0.271, P = 0.021), while AF6 was a risk factor for RFS (HR = 2.985, P = 0.028) and CIR (HR = 4.675, P = 0.004). The prognosis of patients with KMT2A-r AML was poor, particularly those harboring AF6-related translocation; however, it is not associated with the presence of mutations. These patients can benefit from achieving CR1 MRD negative before HSCT.
Collapse
Affiliation(s)
- Bingqian Jiang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hematology, Wenzhou, People’s Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| |
Collapse
|
10
|
El Mahdaoui C, Hda N, Oukkache B, Dehbi H, Khoubila N, Madani A, Cherkaoui S. t(1;4) translocation in a child with acute lymphoblastic leukemia: a case report. J Med Case Rep 2023; 17:537. [PMID: 38082322 PMCID: PMC10714495 DOI: 10.1186/s13256-023-04270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia is the most common childhood cancer, with an 80% frequency in children between 1 and 10 years old. The outcome and prognosis of acute lymphoblastic leukemia in children depends on various factors, such as age, clinical and biological features, and cytogenetic factors. CASE PRESENTATION We report the case of a pediatric patient, a 4-year-old Moroccan female who was referred to the Hematology and Oncology Department of 20 August 1953 Hospital in Casablanca and diagnosed with B-cell acute lymphoblastic leukemia associated with a rare genetic chromosomal abnormality. CONCLUSION Translocation (1;4)(p21;p15) is a relatively rare chromosomal abnormality found in human leukemia and was never described isolated in pediatric B-cell acute lymphoblastic leukemia patients. It showed a good evolution by complete remission and recovery of this patient after receiving all chemotherapy and after 8 years of follow-up.
Collapse
Affiliation(s)
- Chaimae El Mahdaoui
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco.
| | - Nezha Hda
- Hda Laboratories of Medical Biology Analysis, Casablanca, Morocco
| | - Bouchra Oukkache
- Hematology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratory of Medical Genetics, Ibn Rochd University Hospital, Casablanca, Morocco
- Hematology and Pediatric Oncology Department of August 20 Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Nisrine Khoubila
- Hematology and Pediatric Oncology Department of August 20 Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Abdellah Madani
- Hematology and Pediatric Oncology Department of August 20 Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Siham Cherkaoui
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Hematology and Pediatric Oncology Department of August 20 Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
11
|
Asees MY, Shrateh ON, Assi AS, Habbabeh M, Shiha HO, Shakhsheer S. Infantile B-cell acute lymphoblastic leukaemia with the highest recorded count of white blood cells in the literature: case report and literature review. Ann Med Surg (Lond) 2023; 85:6294-6297. [PMID: 38098549 PMCID: PMC10718326 DOI: 10.1097/ms9.0000000000001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Infantile leukaemia is an uncommon haematological cancer that manifests within the first year of life. This malignancy is highly aggressive and possesses distinctive immunophenotypic, cytogenetic, and molecular attributes. It can originate from either myeloid or lymphoid cells. It often exhibits a higher incidence among females. Case presentation A 1-month-old male infant, initially seemingly healthy, presented with irritability and feeding difficulties. Born without complications, routine neonatal assessments appeared normal, and physical examination revealed no abnormalities. However, laboratory tests indicated an extremely high white blood cell count, low platelets, and elevated haemoglobin. Further examinations showed a white blood cell count of 1450 × 106/l with a blood film revealing significant leukocytosis dominated by blast cells. Abdominal ultrasound confirmed hepatosplenomegaly which was not present during pregnancy. Subsequent bone marrow analysis and flow cytometry established a diagnosis of B-cell acute lymphoblastic leukaemia (B-ALL). Clinical discussion It is rare for infantile ALL to manifest within the first month after birth. In most cases, the diagnosis is established before birth. When characteristic signs such as hepatosplenomegaly, leukaemia cutis, or infiltrative involvement of the extramedullary and central nervous systems are present, postnatal diagnoses are relatively straightforward. However, there are instances where children present with non-specific and ambiguous symptoms that resemble other medical conditions. Conclusion This case underscores the importance of paediatricians being vigilant and attuned to the subtle indicators that differentiate common illnesses from serious conditions such as infantile ALL.
Collapse
Affiliation(s)
- Mohammad Y. Asees
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| | - Oadi N. Shrateh
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Ayuob S. Assi
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| | - Maysaa Habbabeh
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| | - Haneen Omar Shiha
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| | - Shurouq Shakhsheer
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| |
Collapse
|
12
|
Li X, Wu X, Nie S, Zhao J, Yao Y, Wu F, Mishra CB, Ashraf-Uz-Zaman M, Moku BK, Song Y. Discovery, Structure-Activity Relationship and In Vitro Anticancer Activity of Small-Molecule Inhibitors of the Protein-Protein Interactions between AF9/ENL and AF4 or DOT1L. Cancers (Basel) 2023; 15:5283. [PMID: 37958457 PMCID: PMC10650850 DOI: 10.3390/cancers15215283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause 5-10% acute leukemias with poor clinical outcomes. Protein-protein interactions (PPI) between the most frequent MLL fusion partner proteins AF9/ENL and AF4 or histone methyltransferase DOT1L are drug targets for MLL-rearranged (MLL-r) leukemia. Several benzothiophene-carboxamide compounds were identified as novel inhibitors of these PPIs with IC50 values as low as 1.6 μM. Structure-activity relationship studies of 77 benzothiophene and related indole and benzofuran compounds show that a 4-piperidin-1-ylphenyl or 4-pyrrolidin-1-ylphenyl substituent is essential for the activity. The inhibitors suppressed expression of MLL target genes HoxA9, Meis1 and Myc, and selectively inhibited proliferation of MLL-r and other acute myeloid leukemia cells with EC50 values as low as 4.7 μM. These inhibitors are useful chemical probes for biological studies of AF9/ENL, as well as pharmacological leads for further drug development against MLL-r and other leukemias.
Collapse
Affiliation(s)
- Xin Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Xiaowei Wu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
| | - Shenyou Nie
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
| | - Jidong Zhao
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
| | - Yuan Yao
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
| | - Fangrui Wu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
| | - Chandra Bhushan Mishra
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
| | - Md Ashraf-Uz-Zaman
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
| | - Bala Krishna Moku
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (X.L.); (X.W.); (S.N.); (J.Z.); (Y.Y.); (F.W.); (C.B.M.); (M.A.-U.-Z.); (B.K.M.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
13
|
Qiu KY, Liao XY, Huang K, Xu HG, Li Y, Zhou DH, Fang JP. Coexistence of ETV6-RUNX1 and MLL aberration among pediatric acute lymphoblastic leukemia: case reports and a literature review. Transl Cancer Res 2023; 12:2952-2958. [PMID: 37969368 PMCID: PMC10643948 DOI: 10.21037/tcr-23-142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/14/2023] [Indexed: 11/17/2023]
Abstract
Background It is known that ETV6-RUNX1 is usually related to favorable prognosis, but MLL aberration has been associated with poor prognosis among pediatric acute lymphoblastic leukemia (ALL). However, the outcome of coexistence of ETV6-RUNX1 and MLL aberration in pediatric ALL patients is unknown. Herein, we report 4 cases of the coexistence of ETV6-RUNX1 and MLL-partial tandem duplications (MLL-PTD) in pediatric ALL patients and show the favorable outcome, which was never reported before. Case Description The frequency of coexistence of ETV6-RUNX1 and MLL aberration at our children's medical center was calculated as 0.98% (4/410). All of them were ETV6/RUNX1-positive cases that exhibited MLL-PTD, and the 10-year event-free survival (EFS) and overall survival (OS) were both 75%. With the following keywords of "ETV6-RUNX1", "MLL", "children" and "acute lymphoblastic leukemia", a literature search of coexistence of ETV6-RUNX1 and MLL aberration was conducted in the database of PubMed, and 4 articles were retrieved finally, involving 16 cases of children. Among the 16 cases of pediatric ALL, the age ranged from 2 to 7 years old, including 9 males and 7 females and the white blood cell (WBC) count was (2.66-68.6)×109/L. In terms of fusion genes, they all had positive ETV6/RUNX1. Among them, MLL deletion was exhibited among 8 ETV6/RUNX1-positive patients, and 2 cases of der(21) duplication. MLL allelic deletions were shown among the remaining ETV6/RUNX1-positive patients. All patients showed a favorable outcome. Conclusions The results of our analysis primarily provide compelling evidence that cases with an MLL-PTD or other types of MLL aberration are in fact a distinct subentry among ETV6-RUNX1 B-cell ALL (B-ALL).
Collapse
Affiliation(s)
- Kun-Yin Qiu
- Department of Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiong-Yu Liao
- Department of Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke Huang
- Department of Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong-Gui Xu
- Department of Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Li
- Department of Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dun-Hua Zhou
- Department of Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian-Pei Fang
- Department of Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Kosik P, Skorvaga M, Belyaev I. Preleukemic Fusion Genes Induced via Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24076580. [PMID: 37047553 PMCID: PMC10095576 DOI: 10.3390/ijms24076580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Although the prevalence of leukemia is increasing, the agents responsible for this increase are not definitely known. While ionizing radiation (IR) was classified as a group one carcinogen by the IARC, the IR-induced cancers, including leukemia, are indistinguishable from those that are caused by other factors, so the risk estimation relies on epidemiological data. Several epidemiological studies on atomic bomb survivors and persons undergoing IR exposure during medical investigations or radiotherapy showed an association between radiation and leukemia. IR is also known to induce chromosomal translocations. Specific chromosomal translocations resulting in preleukemic fusion genes (PFGs) are generally accepted to be the first hit in the onset of many leukemias. Several studies indicated that incidence of PFGs in healthy newborns is up to 100-times higher than childhood leukemia with the same chromosomal aberrations. Because of this fact, it has been suggested that PFGs are not able to induce leukemia alone, but secondary mutations are necessary. PFGs also have to occur in specific cell populations of hematopoetic stem cells with higher leukemogenic potential. In this review, we describe the connection between IR, PFGs, and cancer, focusing on recurrent PFGs where an association with IR has been established.
Collapse
Affiliation(s)
- Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
15
|
Mansoor N, Imran S, Maqsood S, Pasha S, Jabbar N. Infantile B-lymphoblastic leukemia: a case series and review of the literature. J Int Med Res 2023; 51:3000605231167789. [PMID: 37066443 PMCID: PMC10127210 DOI: 10.1177/03000605231167789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Infantile leukemia is a rare hematological malignancy that occurs in the first year of life. It is an aggressive disease with peculiar immunophenotypic, cytogenetic, and molecular characteristics. It can be myeloid or lymphoid in origin. More than 80% of cases involve KMT2A gene rearrangement in the lymphoblastic subset, versus 50% in the myeloid subset. In this study, we present three cases of this rare entity to add knowledge about its clinical presentation and diagnostic profiles. These cases of infantile B-lymphoblastic leukemia (B-ALL) were retrospectively reviewed at the Department of Hematology, Section Cytogenetics at Indus Hospital and Health Network. The clinical characteristics, complete diagnostic profile, immunophenotypic profile, fluorescence in situ hybridization (FISH) results, treatments, and outcomes of the patients were assessed. All three infants were girls who presented with hyperleukocytosis, and they were diagnosed by eight-color flow cytometry. FISH studies revealed KMT2A gene rearrangement in two of the three patients. Infantile B-ALL is a biologically distinct disease carrying a poor prognosis. Female preponderance, hyperleukocytosis, and hepatosplenomegaly are common findings in this subgroup. No standard protocol for this rare entity has proven ideal for managing these young infants.
Collapse
Affiliation(s)
- Neelum Mansoor
- Department of Hematology & Blood Center, Indus Hospital & Health Network, Karachi, Pakistan
| | - Sadia Imran
- Department of Pediatric Oncology, Indus Hospital & Health Network, Karachi, Pakistan
| | - Sidra Maqsood
- Indus Hospital Research Centre, Indus Hospital & Health Network, Karachi, Pakistan
| | - Shadab Pasha
- Department of Hematology & Blood Center, Indus Hospital & Health Network, Karachi, Pakistan
| | - Naeem Jabbar
- Department of Hematology & Blood Center, Indus Hospital & Health Network, Karachi, Pakistan
| |
Collapse
|
16
|
Górecki M, Kozioł I, Kopystecka A, Budzyńska J, Zawitkowska J, Lejman M. Updates in KMT2A Gene Rearrangement in Pediatric Acute Lymphoblastic Leukemia. Biomedicines 2023; 11:biomedicines11030821. [PMID: 36979800 PMCID: PMC10045821 DOI: 10.3390/biomedicines11030821] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
The KMT2A (formerly MLL) encodes the histone lysine-specific N-methyltransferase 2A and is mapped on chromosome 11q23. KMT2A is a frequent target for recurrent translocations in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), or mixed lineage (biphenotypic) leukemia (MLL). Over 90 KMT2A fusion partners have been identified until now, including the most recurring ones—AFF1, MLLT1, and MLLT3—which encode proteins regulating epigenetic mechanisms. The presence of distinct KMT2A rearrangements is an independent dismal prognostic factor, while very few KMT2A rearrangements display either a good or intermediate outcome. KMT2A-rearranged (KMT2A-r) ALL affects more than 70% of new ALL diagnoses in infants (<1 year of age), 5–6% of pediatric cases, and 15% of adult cases. KMT2A-rearranged (KMT2A-r) ALL is characterized by hyperleukocytosis, a relatively high incidence of central nervous system (CNS) involvement, an aggressive course with early relapse, and early relapses resulting in poor prognosis. The exact pathways of fusions and the effects on the final phenotypic activity of the disease are still subjects of much research. Future trials could consider the inclusion of targeted immunotherapeutic agents and prioritize the identification of prognostic factors, allowing for the less intensive treatment of some infants with KMT2A ALL. The aim of this review is to summarize our knowledge and present current insight into the mechanisms of KMT2A-r ALL, portray their characteristics, discuss the clinical outcome along with risk stratification, and present novel therapeutic strategies.
Collapse
Affiliation(s)
- Mateusz Górecki
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ilona Kozioł
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Kopystecka
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Budzyńska
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
17
|
Yang L, Yan Y, Li J, Zhou C, Jin J, Zhang T, Wu H, Li X, Wang W, Yuan L, Zhang X, Gao J. (Tn5-)FISH-based imaging in the era of 3D/spatial genomics. BIOPHYSICS REPORTS 2023; 9:15-25. [PMID: 37426200 PMCID: PMC10323772 DOI: 10.52601/bpr.2023.220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/20/2023] [Indexed: 07/11/2023] Open
Abstract
3D genomics mainly focuses on the 3D position of single genes at the cell level, while spatial genomics focuses more on the tissue level. In this exciting new era of 3D/spatial genomics, half-century old FISH and its derivative methods, including Tn5-FISH, play important roles. In this review, we introduce the Tn5-FISH we developed recently, and present six different applications published by our collaborators and us, based on (Tn5-)FISH, which can be either general BAC clone-based FISH or Tn5-FISH. In these interesting cases, (Tn5-)FISH demonstrated its vigorous ability of targeting sub-chromosomal structures across different diseases and cell lines (leukemia, mESCs (mouse embryonic stem cells), and differentiation cell lines). Serving as an effective tool to image genomic structures at the kilobase level, Tn5-FISH holds great potential to detect chromosomal structures in a high-throughput manner, thus bringing the dawn for new discoveries in the great era of 3D/spatial genomics.
Collapse
Affiliation(s)
- Liheng Yang
- Seaver College, Pepperdine University, CA 90263, USA
| | - Yan Yan
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, BNRist, Department of Automation, Beijing 100084, China
- MOE Key Laboratory of Bioinformatics, Beijing 100084, China
| | - JunLin Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100084, China
| | - Cheng Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlan Jin
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518034, China
| | - Tongmei Zhang
- Medical Oncology, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Haokaifeng Wu
- Centre for Regenerative Medicine and Health, HongKong Institute of Science & Innovation, Chinese Academy of Sciences, HongKong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
| | - Li Yuan
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100084, China
| | - Xu Zhang
- Beijing Institute of Collaborative Innovation, Beijing 100094, China
| | - Juntao Gao
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, BNRist, Department of Automation, Beijing 100084, China
- MOE Key Laboratory of Bioinformatics, Beijing 100084, China
- Institute for TCM-X, Beijing 100084, China
| |
Collapse
|
18
|
Numata M, Haginoya N, Shiroishi M, Hirata T, Sato-Otsubo A, Yoshikawa K, Takata Y, Nagase R, Kashimoto Y, Suzuki M, Schulte N, Polier G, Kurimoto A, Tomoe Y, Toyota A, Yoneyama T, Imai E, Watanabe K, Hamada T, Kanada R, Watanabe J, Kagoshima Y, Tokumaru E, Murata K, Baba T, Shinozaki T, Ohtsuka M, Goto K, Karibe T, Deguchi T, Gocho Y, Yoshida M, Tomizawa D, Kato M, Tsutsumi S, Kitagawa M, Abe Y. A novel Menin-MLL1 inhibitor, DS-1594a, prevents the progression of acute leukemia with rearranged MLL1 or mutated NPM1. Cancer Cell Int 2023; 23:36. [PMID: 36841758 PMCID: PMC9960487 DOI: 10.1186/s12935-023-02877-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Mixed lineage leukemia 1-rearranged (MLL1-r) acute leukemia patients respond poorly to currently available treatments and there is a need to develop more effective therapies directly disrupting the Menin‒MLL1 complex. Small-molecule-mediated inhibition of the protein‒protein interaction between Menin and MLL1 fusion proteins is a potential therapeutic strategy for patients with MLL1-r or mutated-nucleophosmin 1 (NPM1c) acute leukemia. In this study, we preclinically evaluated the new compound DS-1594a and its salts. METHODS We evaluated the preclinical efficacy of DS-1594a as well as DS-1594a·HCl (the HCl salt of DS-1594a) and DS-1594a·succinate (the succinic acid salt of DS-1594a, DS-1594b) in vitro and in vivo using acute myeloid leukemia (AML)/acute lymphoblastic leukemia (ALL) models. RESULTS Our results showed that MLL1-r or NPM1c human leukemic cell lines were selectively and highly sensitive to DS-1594a·HCl, with 50% growth inhibition values < 30 nM. Compared with cytrabine, the standard chemotherapy drug as AML therapy, both DS-1594a·HCl and DS-1594a·succinate mediated the eradication of potential leukemia-initiating cells by enhancing differentiation and reducing serial colony-forming potential in MLL1-r AML cells in vitro. The results were confirmed by flow cytometry, RNA sequencing, RT‒qPCR and chromatin immunoprecipitation sequencing analyses. DS-1594a·HCl and DS-1594a·succinate exhibited significant antitumor efficacy and survival benefit in MOLM-13 cell and patient-derived xenograft models of MLL1-r or NPM1c acute leukemia in vivo. CONCLUSION We have generated a novel, potent, orally available small-molecule inhibitor of the Menin-MLL1 interaction, DS-1594a. Our results suggest that DS-1594a has medicinal properties distinct from those of cytarabine and that DS-1594a has the potential to be a new anticancer therapy and support oral dosing regimen for clinical studies (NCT04752163).
Collapse
Affiliation(s)
- Masashi Numata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Noriyasu Haginoya
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Machiko Shiroishi
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tsuyoshi Hirata
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Aiko Sato-Otsubo
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Kenji Yoshikawa
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshimi Takata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Reina Nagase
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshinori Kashimoto
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Makoto Suzuki
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Nina Schulte
- grid.488273.20000 0004 0623 5599Daiichi Sankyo Europe GmbH, Munich, Germany
| | - Gernot Polier
- grid.488273.20000 0004 0623 5599Daiichi Sankyo Europe GmbH, Munich, Germany
| | - Akiko Kurimoto
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yumiko Tomoe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Akiko Toyota
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tomoko Yoneyama
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Emi Imai
- grid.410844.d0000 0004 4911 4738Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Kenji Watanabe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tomoaki Hamada
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Ryutaro Kanada
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Jun Watanabe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Yoshiko Kagoshima
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Eri Tokumaru
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Kenji Murata
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Takayuki Baba
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Taeko Shinozaki
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Masami Ohtsuka
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Koichi Goto
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Tsuyoshi Karibe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Takao Deguchi
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Gocho
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masanori Yoshida
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- grid.63906.3a0000 0004 0377 2305Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Pediatrics, University of Tokyo, Tokyo, Japan ,grid.63906.3a0000 0004 0377 2305Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Shinji Tsutsumi
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| | - Mayumi Kitagawa
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005, Japan.
| | - Yuki Abe
- grid.410844.d0000 0004 4911 4738Shinagawa R&D Center, Daiichi Sankyo Co., Ltd, 1-2-5 Hiromachi, Shinagawa-Ku, Tokyo, 140-0005 Japan
| |
Collapse
|
19
|
Ragusa D, Dijkhuis L, Pina C, Tosi S. Mechanisms associated with t(7;12) acute myeloid leukaemia: from genetics to potential treatment targets. Biosci Rep 2023; 43:BSR20220489. [PMID: 36622782 PMCID: PMC9894016 DOI: 10.1042/bsr20220489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Acute myeloid leukaemia (AML), typically a disease of elderly adults, affects 8 children per million each year, with the highest paediatric incidence in infants aged 0-2 of 18 per million. Recurrent cytogenetic abnormalities contribute to leukaemia pathogenesis and are an important determinant of leukaemia classification. The t(7;12)(q36;p13) translocation is a high-risk AML subtype exclusively associated with infants and represents the second most common abnormality in this age group. Mechanisms of t(7;12) leukaemogenesis remain poorly understood. The translocation relocates the entire MNX1 gene within the ETV6 locus, but a fusion transcript is present in only half of the patients and its significance is unclear. Instead, research has focused on ectopic MNX1 expression, a defining feature of t(7;12) leukaemia, which has nevertheless failed to produce transformation in conventional disease models. Recently, advances in genome editing technologies have made it possible to recreate the t(7;12) rearrangement at the chromosomal level. Together with recent studies of MNX1 involvement using murine in vivo, in vitro, and organoid-based leukaemia models, specific investigation on the biology of t(7;12) can provide new insights into this AML subtype. In this review, we provide a comprehensive up-to-date analysis of the biological features of t(7;12), and discuss recent advances in mechanistic understanding of the disease which may deliver much-needed therapeutic opportunities to a leukaemia of notoriously poor prognosis.
Collapse
Affiliation(s)
- Denise Ragusa
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| | - Liza Dijkhuis
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
| | - Cristina Pina
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| | - Sabrina Tosi
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| |
Collapse
|
20
|
Chen YF, Li J, Xu LL, Găman MA, Zou ZY. Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities. World J Clin Cases 2023; 11:268-291. [PMID: 36686358 PMCID: PMC9850970 DOI: 10.12998/wjcc.v11.i2.268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements in basic research in molecular biology and immunology and with deepening understanding of the biological characteristics of hematopoietic stem cells, allo-HSCT has been widely applied in clinical practice. During allo-HSCT, preconditioning, the donor, and the source of stem cells can be tailored to the patient’s conditions, greatly broadening the indications for HSCT, with clear survival benefits. However, the risks associated with allo-HSCT remain high, i.e. hematopoietic reconstitution failure, delayed immune reconstitution, graft-versus-host disease, and post-transplant relapse, which are bottlenecks for further improvements in allo-HSCT efficacy and have become hot topics in the field of HSCT. Other bottlenecks recognized in the current treatment of individuals diagnosed with acute myeloid leukemia and subjected to allo-HSCT include the selection of the most appropriate conditioning regimen and post-transplantation management. In this paper, we reviewed the progress of relevant research regarding these aspects.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital, Taizhou 318000, Zhejiang Province, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Zhen-You Zou
- Department of Scientific Research,Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
21
|
Qiu KY, Zhou DH, Liao XY, Huang K, Li Y, Xu HG, Weng WJ, Xu LH, Fang JP. Prognostic value and outcome for acute lymphocytic leukemia in children with MLL rearrangement: a case-control study. BMC Cancer 2022; 22:1257. [DOI: 10.1186/s12885-022-10378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Purpose
To evaluate the prognostic factors and outcome for acute lymphoblastic leukemia (ALL) in children with MLL rearrangement (MLL-r).
Methods
A total of 124 pediatric patients who were diagnosed with ALL were classified into two groups based on the MLL-r status by using a retrospective case-control study method from June 2008 to June 2020.
Results
The prevalence of MLL-r positive in the whole cohort was 4.9%. The complete remission (CR) rate on Day 33 in the MLL-r positive group was not statistically different from the negative group (96.8% vs 97.8%, P = 0.736). Multivariate analysis showed that T-cell, white blood cell counts (WBC) ≥ 50 × 109/L, MLL-AF4, and D15 minimal residual disease (MRD) positive were independent risk factors affecting the prognosis of MLL-r positive children. Stem cell transplantation (SCT) was a favorable independent prognostic factor affecting event-free survival (EFS) in MLL-r positive patients (P = 0.027), and there was a trend toward an independent prognostic effect on overall survival (OS) (P = 0.065). The 10-year predicted EFS for patients with MLL-AF4, MLL-PTD, MLL-ENL, other MLL partner genes, and MLL-r negative cases were 46.67 ± 28.61%, 85.71 ± 22.37%, 75 ± 32.41%, 75 ± 32.41%, and 77.33 ± 10.81%, respectively (P = 0.048). The 10-year predicted OS were 46.67 ± 28.61%, 85.71 ± 22.37%, 75 ± 32.41%, 75 ± 32.41%, and 85.2 ± 9.77%, respectively (P = 0.049). The 124 patients with ALL were followed up and eventually 5 (4%) cases relapsed, with a median relapse time of 3.9 years.
Conclusion
Patients with MLL-r positive ALL have moderate remission rates, but are prone to relapse with low overall survival. The outcome of MLL-r positive ALL was closely related to the partner genes, and clinical attention should be paid to screening for MLL partner genes and combining them with other prognostic factors for accurate risk stratification.
Collapse
|
22
|
Zhang MY, Zhao Y, Zhang JH. t(4;11) translocation in hyperdiploid de novo adult acute myeloid leukemia: A case report. World J Clin Cases 2022; 10:11980-11986. [PMID: 36405254 PMCID: PMC9669862 DOI: 10.12998/wjcc.v10.i32.11980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND MLL gene rearrangement is a common genetic abnormality of acute myeloid leukemia (AML), which predicts poor prognosis and is important in clinical diagnosis. MLL rearrangement involves many chromosomes, among which, t(4;11) translocation is rare in AML. The present case was t(4;11) AML, accompanied by a hyperdiploid karyotype. Such cases have not been reported previously.
CASE SUMMARY An adult male with self-reported symptoms of fatigue, febrility and hyperleukocytosis was diagnosed with AML by morphology and confirmed by immunophenotype analysis. Uncommonly, chromosomal and fluorescence in situ hybridization (FISH) analysis showed a hyperdiploid karyotype with t(4;11) translocation and MLL rearrangement, and a negative MLL–AF4 fusion gene result. The patient died of respiratory and circulatory failure 5 days after diagnosis.
CONCLUSION t(4;11) AML with hyperdiploid karyotype has not been reported. In this case, t(4;11) was only detected by karyotype analysis and FISH, suggesting their importance in MLL rearrangement detection.
Collapse
Affiliation(s)
- Min-Yu Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Yue Zhao
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Ji-Hong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| |
Collapse
|
23
|
Uckun FM, Qazi S. Tyrosine kinases in KMT2A/MLL-rearranged acute leukemias as potential therapeutic targets to overcome cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:902-916. [PMID: 36627892 PMCID: PMC9771742 DOI: 10.20517/cdr.2022.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022]
Abstract
Aim: The main goal of this study was to elucidate at the transcript level the tyrosine kinase expression profiles of primary leukemia cells from mixed lineage leukemia 1 gene rearranged (KMT2A/MLL-R+) acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients. Methods: We evaluated protein tyrosine kinase (PTK) gene expression profiles of primary leukemic cells in KMT2A/MLL-R+ AML and ALL patients using publicly available archived datasets. Results: Our studies provided unprecedented evidence that the genetic signatures of KMT2A/MLL-R+ AML and ALL cells are characterized by transcript-level overexpression of specific PTK. In infants, children and adults with KMT2A/MLL-R+ ALL, as well as pediatric patients with KMT2A/MLL-R+ AML, the gene expression levels for FLT3, BTK, SYK, JAK2/JAK3, as well as several SRC family PTK were differentially amplified. In adults with KMT2A/MLL-R+ AML, the gene expression levels for SYK, JAK family kinase TYK2, and the SRC family kinases FGR and HCK were differentially amplified. Conclusion: These results provide new insights regarding the clinical potential of small molecule inhibitors of these PTK, many of which are already FDA/EMA-approved for other indications, as components of innovative multi-modality treatment platforms against KMT2A/MLL-R+ acute leukemias.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Correspondence to: Dr. Fatih M. Uckun, Ares Pharmaceuticals, 12590 Ethan Ave N, St. Paul, MN 55110, USA. E-mail:
| | | |
Collapse
|
24
|
Fioretti T, Zanobio M, Raia M, Errichiello S, Izzo B, Cattaneo F, Ammendola R, Cevenini A, Esposito G. MiR-27a downregulates 14-3-3θ, RUNX1, AF4, and MLL-AF4, crucial drivers of blast transformation in t(4;11) leukemia cells. Cell Biochem Funct 2022; 40:706-717. [PMID: 35981137 PMCID: PMC9804920 DOI: 10.1002/cbf.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 01/09/2023]
Abstract
The chromosomal translocation t(4;11)(q21;q23), a hallmark of an aggressive form of acute lymphoblastic leukemia (ALL), encodes mixed-lineage leukemia (MLL)-AF4 oncogenic chimera that triggers aberrant transcription of genes involved in lymphocyte differentiation, including HOXA9 and MEIS1. The scaffold protein 14-3-3θ, which promotes the binding of MLL-AF4 to the HOXA9 promoter, is a target of MiR-27a, a tumor suppressor in different human leukemia cell types. We herein study the role of MiR-27a in the pathogenesis of t(4;11) ALL. Reverse transcription quantitative PCR (qPCR) reveals that MiR-27a and 14-3-3θ expression is inversely correlated in t(4;11) ALL cell lines; interestingly, MiR-27a relative expression is significantly lower in patients affected by t(4;11) ALL than in patients affected by the less severe t(12;21) leukemia. In t(4;11) leukemia cells, ectopic expression of MiR-27a decreases protein level of 14-3-3θ and of the key transcription factor RUNX1. We show for the first time that MiR-27a also targets AF4 and MLL-AF4; in agreement, MiR-27a overexpression strongly reduces AF4 and MLL-AF4 protein levels in RS4;11 cells. Consequent to AF4 and MLL-AF4 downregulation, MiR-27a overexpression negatively affects transcription of HOXA9 and MEIS1 in different t(4;11) leukemia cell lines. In agreement, we show through chromatin immunoprecipitation experiments that MiR-27a overexpression impairs the binding of MLL-AF4 to the HOXA9 promoter. Lastly, we found that MiR-27a overexpression decreases viability, proliferation, and clonogenicity of t(4;11) cells, whereas it enhances their apoptotic rate. Overall, our study identifies the first microRNAthat strikes in one hit four crucial drivers of blast transformation in t(4;11) leukemia. Therefore, MiR-27a emerges as a new promising therapeutic target for this aggressive and poorly curable form of leukemia.
Collapse
Affiliation(s)
- Tiziana Fioretti
- CEINGE Advanced Biotechnologies Franco Salvatore s.c. a r.l.NaplesItaly
| | - Mariateresa Zanobio
- Department of Molecular Medicine and Medical Biotechnology, School of MedicineUniversity of Naples Federico IINaplesItaly,Precision MedicineUniversity of Campania “Luigi Vanvitelli”Naples, Italy
| | - Maddalena Raia
- CEINGE Advanced Biotechnologies Franco Salvatore s.c. a r.l.NaplesItaly
| | - Santa Errichiello
- CEINGE Advanced Biotechnologies Franco Salvatore s.c. a r.l.NaplesItaly
| | - Barbara Izzo
- CEINGE Advanced Biotechnologies Franco Salvatore s.c. a r.l.NaplesItaly,Department of Molecular Medicine and Medical Biotechnology, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Armando Cevenini
- CEINGE Advanced Biotechnologies Franco Salvatore s.c. a r.l.NaplesItaly,Department of Molecular Medicine and Medical Biotechnology, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Gabriella Esposito
- CEINGE Advanced Biotechnologies Franco Salvatore s.c. a r.l.NaplesItaly,Department of Molecular Medicine and Medical Biotechnology, School of MedicineUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
25
|
Liu Y, Zheng R, Liu Y, Yang L, Li T, Li Y, Jiang Z, Liu Y, Wang C, Wang S. An easy-to-use nomogram predicting overall survival of adult acute lymphoblastic leukemia. Front Oncol 2022; 12:977119. [PMID: 36226057 PMCID: PMC9549528 DOI: 10.3389/fonc.2022.977119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Adult acute lymphoblastic leukemia (ALL) is heterogeneous both biologically and clinically. The outcomes of ALL have been improved with the application of children-like regimens and novel agents including immune therapy in young adults. The refractory to therapy and relapse of ALL have occurred in most adult cases. Factors affecting the prognosis of ALL include age and white blood cell (WBC) count at diagnosis. The clinical implications of genetic biomarkers, including chromosome translocation and gene mutation, have been explored in ALL. The interactions of these factors on the prediction of prognosis have not been evaluated in adult ALL. A prognostic model based on clinical and genetic abnormalities is necessary for clinical practice in the management of adult ALL. The newly diagnosed adult ALL patients were divided into the training and the validation cohort at 7:3 ratio. Factors associated with overall survival (OS) were assessed by univariate/multivariate Cox regression analyses and a signature score was assigned to each independent factor. A nomogram based on the signature score was developed and validated. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to assess the performance of the nomogram model. This study included a total of 229 newly diagnosed ALL patients. Five independent variables including age, WBC, bone marrow (BM) blasts, MLL rearrangement, and ICT gene mutations (carried any positive mutation of IKZF1, CREBBP and TP53) were identified as independent adverse factors for OS evaluated by the univariate, Kaplan-Meier survival and multivariate Cox regression analyses. A prognostic nomogram was built based on these factors. The areas under the ROC curve and calibration curve showed good accuracy between the predicted and observed values. The DCA curve showed that the performance of our model was superior to current risk factors. A nomogram was developed and validated based on the clinical and laboratory factors in newly diagnosed ALL patients. This model is effective to predict the overall survival of adult ALL. It is a simple and easy-to-use model that could efficiently predict the prognosis of adult ALL and is useful for decision making of treatment.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyue Zheng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Liu
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lu Yang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shujuan Wang,
| |
Collapse
|
26
|
Flores-Lujano J, Duarte-Rodríguez DA, Jiménez-Hernández E, Martín-Trejo JA, Allende-López A, Peñaloza-González JG, Pérez-Saldivar ML, Medina-Sanson A, Torres-Nava JR, Solís-Labastida KA, Flores-Villegas LV, Espinosa-Elizondo RM, Amador-Sánchez R, Velázquez-Aviña MM, Merino-Pasaye LE, Núñez-Villegas NN, González-Ávila AI, del Campo-Martínez MDLÁ, Alvarado-Ibarra M, Bekker-Méndez VC, Cárdenas-Cardos R, Jiménez-Morales S, Rivera-Luna R, Rosas-Vargas H, López-Santiago NC, Rangel-López A, Hidalgo-Miranda A, Vega E, Mata-Rocha M, Sepúlveda-Robles OA, Arellano-Galindo J, Núñez-Enríquez JC, Mejía-Aranguré JM. Persistently high incidence rates of childhood acute leukemias from 2010 to 2017 in Mexico City: A population study from the MIGICCL. Front Public Health 2022; 10:918921. [PMID: 36187646 PMCID: PMC9518605 DOI: 10.3389/fpubh.2022.918921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Over the years, the Hispanic population living in the United States has consistently shown high incidence rates of childhood acute leukemias (AL). Similarly, high AL incidence was previously observed in Mexico City (MC). Here, we estimated the AL incidence rates among children under 15 years of age in MC during the period 2010-2017. Methods The Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia conducted a study gathering clinical and epidemiological information regarding children newly diagnosed with AL at public health institutions of MC. Crude age incidence rates (cAIR) were obtained. Age-standardized incidence rates worldwide (ASIRw) and by municipalities (ASIRm) were calculated by the direct and indirect methods, respectively. These were reported per million population <15 years of age; stratified by age group, sex, AL subtypes, immunophenotype and gene rearrangements. Results A total of 903 AL cases were registered. The ASIRw was 63.3 (cases per million) for AL, 53.1 for acute lymphoblastic leukemia (ALL), and 9.4 for acute myeloblastic leukemia. The highest cAIR for AL was observed in the age group between 1 and 4 years (male: 102.34 and female: 82.73). By immunophenotype, the ASIRw was 47.3 for B-cell and 3.7 for T-cell. The incidence did not show any significant trends during the study period. The ASIRm for ALL were 68.6, 66.6 and 62.8 at Iztacalco, Venustiano Carranza and Benito Juárez, respectively, whereas, other municipalities exhibited null values mainly for AML. Conclusion The ASIRw for childhood AL in MC is among the highest reported worldwide. We observed spatial heterogeneity of rates by municipalities. The elevated AL incidence observed in Mexican children may be explained by a combination of genetic background and exposure to environmental risk factors.
Collapse
Affiliation(s)
- Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Centro Médico Nacional “La Raza, ” Hospital General “Gaudencio González Garza, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico,Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional “Siglo XXI, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aldo Allende-López
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aurora Medina-Sanson
- Departamento de HematoOncología, Hospital Infantil de México Federico Gómez, Secretaría de Salud (SS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional “Siglo XXI, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre, ” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Raquel Amador-Sánchez
- Servicio de Hematología Pediátrica, Hospital General Regional 1 “Dr. Carlos McGregor Sánchez Navarro, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre, ” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Nora Nancy Núñez-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional “La Raza, ” Hospital General “Gaudencio González Garza, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ana Itamar González-Ávila
- Servicio de Hematología Pediátrica, Hospital General Regional 1 “Dr. Carlos McGregor Sánchez Navarro, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de los Ángeles del Campo-Martínez
- Servicio de Hematología Pediátrica, Centro Médico Nacional “La Raza, ” Hospital General “Gaudencio González Garza, ” Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Martha Alvarado-Ibarra
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre, ” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Hospital de Infectología “Dr. Daniel Méndez Hernández, ” “La Raza, ” Instituto Mexicano del Seguro Social (IMSS), Unidad de Investigación Médica en Inmunología e Infectología, Mexico City, Mexico
| | - Rocío Cárdenas-Cardos
- Servicio de Oncología Pediátrica, Instituto Nacional de Pediatría, Secretaría de Salud (SS), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Roberto Rivera-Luna
- Servicio de Oncología Pediátrica, Instituto Nacional de Pediatría, Secretaría de Salud (SS), Mexico City, Mexico
| | - Haydee Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Norma C. López-Santiago
- Servicio de Hematología Pediátrica, Instituto Nacional de Pediatría, Secretaría de Salud (SS), Mexico City, Mexico
| | - Angélica Rangel-López
- Coordinación de Investigación en Salud, Unidad Habilitada de Apoyo al Predictamen, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Elizabeth Vega
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Laboratorio de Virología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Secretaría de Salud (SS), Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico,Juan Carlos Núñez-Enríquez
| | - Juan Manuel Mejía-Aranguré
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico,Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría “Dr. Silvestre Frenk Freund, ” Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico,Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico,*Correspondence: Juan Manuel Mejía-Aranguré
| |
Collapse
|
27
|
Bioinformatic Analyses of Broad H3K79me2 Domains in Different Leukemia Cell Line Data Sets. Cells 2022; 11:cells11182830. [PMID: 36139405 PMCID: PMC9496709 DOI: 10.3390/cells11182830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
A subset of expressed genes is associated with a broad H3K4me3 (histone H3 trimethylated at lysine 4) domain that extends throughout the gene body. Genes marked in this way in normal cells are involved in cell-identity and tumor-suppressor activities, whereas in cancer cells, genes driving the cancer phenotype (oncogenes) have this feature. Other histone modifications associated with expressed genes that display a broad domain have been less studied. Here, we identified genes with the broadest H3K79me2 (histone H3 dimethylated at lysine 79) domain in human leukemic cell lines representing different forms of leukemia. Taking a bioinformatic approach, we provide evidence that genes with the broadest H3K79me2 domain have known roles in leukemia (e.g., JMJD1C). In the mixed-lineage leukemia cell line MOLM-13, the HOXA9 gene is in a 100 kb broad H3K79me2 domain with other HOXA protein-coding and oncogenic long non-coding RNA genes. The genes in this domain contribute to leukemia. This broad H3K79me2 domain has an unstable chromatin structure, as was evident by enhanced chromatin accessibility throughout. Together, we provide evidence that identification of genes with the broadest H3K79me2 domain will aid in generating a panel of genes in the diagnosis and therapeutic treatment of leukemia in the future.
Collapse
|
28
|
Fodil S, Chevret S, Rouzaud C, Valade S, Rabian F, Mariotte E, Raffoux E, Itzykson R, Boissel N, Sébert M, Adès L, Zafrani L, Azoulay E, Lengliné E. Post-remission outcomes in AML patients with high hyperleukocytosis and inaugural life-threatening complications. PLoS One 2022; 17:e0270744. [PMID: 35797337 PMCID: PMC9262217 DOI: 10.1371/journal.pone.0270744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Patients with hyperleukocytic (HL) acute myeloid leukemia (AML) are at higher risk of early death. Initial management of these patients is challenging, not fully codified and heterogenous. Retrospective studies showed that several symptomatic measures might decrease early death rate but long-term data are scarce. We aimed to analyze whether the therapeutic measures carried out urgently at diagnosis may influence the outcome among HL AML patients having achieved who survived inaugural complications. Methods We retrospectively reviewed all medical charts from patients admitted to Saint-Louis Hospital between January, 1st 1997 and December, 31st 2018 with newly diagnosed AML and white blood cell (WBC) count above 50x109/L. Outcome measures were cumulative incidence of relapse (CIR), treatment-related mortality (TRM) defined as relapse-free death, and overall survival. Univariate and multivariate analyses were performed using Cox proportional hazards models. Results A total of 184 patients with HL AML in complete remission (CR) were included in this study. At 2 years after CR. 62.5% of patients were alive, at 5 years, cumulated incidence of relapse was 55.8%. We found that every therapeutic measure, including life-sustaining therapies carried out in the initial phase of the disease, did not increase the relapse risk. The use of hydroxyurea for more than 4 days was associated with a higher risk of relapse. At the end of the study, 94 patients (51.1%) were still alive including 23 patients out of 44 aged less than 60 yo that were able to return to work. Conclusion We show that the use of emergency measures including life sustaining therapies does not come at the expense of a higher risk of relapse or mortality, except in the case of prolonged use of hydroxyurea. Patients with HL AML should be able to benefit from all available techniques, regardless of their initial severity.
Collapse
Affiliation(s)
- Sofiane Fodil
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
- Sorbonne Université, Paris, France
| | - Sylvie Chevret
- Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, Paris, France
| | - Camille Rouzaud
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Sandrine Valade
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Florence Rabian
- Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Eric Mariotte
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Emmanuel Raffoux
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Raphael Itzykson
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Nicolas Boissel
- Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Marie Sébert
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
- Université de Paris and INSERM U944, Paris, France
| | - Lionel Adès
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
- Université de Paris and INSERM U944, Paris, France
| | - Lara Zafrani
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Elie Azoulay
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Etienne Lengliné
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
30
|
The Impact of Exosomes/Microvesicles Derived from Myeloid Dendritic Cells Cultured in the Presence of Calcitriol and Tacalcitol on Acute B-Cell Precursor Cell Lines with MLL Fusion Gene. J Clin Med 2022; 11:jcm11082224. [PMID: 35456315 PMCID: PMC9032710 DOI: 10.3390/jcm11082224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D analogs (VDAs) may directly inhibit the growth of normal and malignant (derived from acute lymphoblastic leukemia (ALL)) B cells, as both types of cells express vitamin D receptor (VDR). We performed anti-proliferative, morphology tests and phenotyping to evaluate the sensitivity of monocytes and iDCs (immature myeloid-derived dendritic cells) on calcitriol and tacalcitol treatment, phenotyping, morphology, and size distribution measurement to determine the characteristics of microvesicles (MVs) and exosomes (EXs) derived from them and, finally, phenotyping and Elisa test to determine the effects of VDAs on modulation of the phenotype of B cells through extracellular vesicles (EVs) released by iDCs. Our results confirmed that both SC cells and iDCs were sensitive to the VDAs and showed altered surface expression of markers associated with monocyte differentiation, which was resulting in the phenotypic changes in EVs derived from them. We also showed that obtained EVs could change the morphology and phenotype of ALL-B-derived precursor cells in a different way, depending on their origin. The differential effect of VDAs on ALL-B cells, which was associated with increased or decreased expression of CD27, CD24, CD38, and CD23 expression, was observed. Hence, further studies to explain the modulation in the composition of EVs by VDAs are required.
Collapse
|
31
|
Jassinskaja M, Hansson J. The Opportunity of Proteomics to Advance the Understanding of Intra- and Extracellular Regulation of Malignant Hematopoiesis. Front Cell Dev Biol 2022; 10:824098. [PMID: 35350382 PMCID: PMC8957922 DOI: 10.3389/fcell.2022.824098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal and adult hematopoiesis are regulated by largely distinct sets of cell-intrinsic gene regulatory networks as well as extracellular cues in their respective microenvironment. These ontogeny-specific programs drive hematopoietic stem and progenitor cells (HSPCs) in fetus and adult to divergent susceptibility to initiation and progression of hematological malignancies, such as leukemia. Elucidating how leukemogenic hits disturb the intra- and extracellular programs in HSPCs along ontogeny will provide a better understanding of the causes for age-associated differences in malignant hematopoiesis and facilitate the improvement of strategies for prevention and treatment of pediatric and adult acute leukemia. Here, we review current knowledge of the intrinsic and extrinsic programs regulating normal and malignant hematopoiesis, with a particular focus on the differences between infant and adult acute leukemia. We discuss the recent advances in mass spectrometry-based proteomics and its opportunity for resolving the interplay of cell-intrinsic and niche-associated factors in regulating malignant hematopoiesis.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.,York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Wang N, Ji W, Wang L, Wu W, Zhang W, Wu Q, Du W, Bai H, Peng B, Ma B, Li L. Overview of the structure, side effects, and activity assays of l-asparaginase as a therapy drug of acute lymphoblastic leukemia. RSC Med Chem 2022; 13:117-128. [PMID: 35308022 PMCID: PMC8864486 DOI: 10.1039/d1md00344e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/09/2022] [Indexed: 01/14/2023] Open
Abstract
l-Asparaginase (l-ASNase is the abbreviation, l-asparagine aminohydrolase, E.C.3.5.1.1) is an enzyme that is clinically employed as an antitumor agent for the treatment of acute lymphoblastic leukemia (ALL). Although l-ASNase is known to deplete l-asparagine (l-Asn), causing cytotoxicity in leukemia cells, the specific molecular signaling pathways are not well defined. Because of the deficiencies in the production and administration of current formulations, the l-ASNase agent in clinical use is still associated with serious side effects, so controlling its dose and activity monitoring during therapy is crucial for improving the treatment success rate. Accordingly, it is urgent to summarize and develop effective analytical methods to detect l-ASNase activity in treatment. However, current reports on these detection methods are fragmented and also have not been systematically summarized and classified, thereby not only delaying the investigations of specific molecular mechanisms, but also hindering the development of novel detection methods. Herein, in this review, we provided a detailed summary of the l-ASNase structures, antitumor mechanism and side effects, and current detection approaches, such as fluorescence assays, colorimetric assays, spectroscopic assays and some other assays. All of them possess unique advantages and disadvantages, so it has been difficult to establish clear criteria for clinical application. We hope that this review will be of some value in promoting the development of l-ASNase activity detection methods.
Collapse
Affiliation(s)
- Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Lan Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wanxia Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wei Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wei Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211800 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| |
Collapse
|
33
|
Qayed M, Bleakley M, Shah NN. Role of chimeric antigen receptor T-cell therapy: bridge to transplantation or stand-alone therapy in pediatric acute lymphoblastic leukemia. Curr Opin Hematol 2021; 28:373-379. [PMID: 34508031 PMCID: PMC9079121 DOI: 10.1097/moh.0000000000000685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To discuss the curative potential for chimeric antigen receptor T-cell (CAR-T) therapy, with or without consolidative hematopoietic stem cell transplantation (HCT) in the treatment of children and young adults with B lineage acute lymphoblastic leukemia (B-ALL). RECENT FINDINGS CAR-T targeting CD19 can induce durable remissions and prolong life in patients with relapsed/refractory B-ALL. Whether HCT is needed to consolidate remission and cure relapse/refractory B-ALL following a CD19 CAR-T induced remission remains controversial. Preliminary evidence suggests that consolidative HCT following CAR-T in HCT-naïve children improves leukemia-free survival. However, avoiding HCT-related late effects is a desirable goal, so identification of patients at high risk of relapse is needed to appropriately direct those patients to HCT when necessary, while avoiding HCT in others. High disease burden prior to CAR-T infusion, loss of B-cell aplasia and detection of measurable residual disease by flow cytometry or next-generation sequencing following CAR-T therapy associate with a higher relapse risk and may identify patients requiring consolidative HCT for relapse prevention. SUMMARY There is a pressing need to determine when CD19 CAR-T alone is likely to be curative and when a consolidative HCT will be required. We discuss the current state of knowledge and future directions.
Collapse
Affiliation(s)
- Muna Qayed
- Pediatric Hematology/Oncology and Bone Marrow Transplantation, Aflac Cancer and Blood Disorders Center, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle WA
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
34
|
Piciocchi A, Messina M, Elia L, Vitale A, Soddu S, Testi AM, Chiaretti S, Mancini M, Albano F, Spadano A, Krampera M, Bonifacio M, Cairoli R, Vetro C, Colella F, Ferrara F, Cimino G, Bassan R, Fazi P, Vignetti M. Prognostic impact of KMT2A-AFF1-positivity in 926 BCR-ABL1-negative B-lineage acute lymphoblastic leukemia patients treated in GIMEMA clinical trials since 1996. Am J Hematol 2021; 96:E334-E338. [PMID: 34048072 DOI: 10.1002/ajh.26253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Antonella Vitale
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | | | - Anna Maria Testi
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Marco Mancini
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Francesco Albano
- Hematology, Department of Emergency and Organ Transplantation University of Bari Bari Italy
| | - Antonio Spadano
- Department of Hematology, Transfusion Medicine and Biotechnology "Santo Spirito" Civic Hospital Pescara Italy
| | - Mauro Krampera
- Department of Medicine, Section of Haematology University of Verona Verona Italy
| | | | - Roberto Cairoli
- Department of Hematology ASST Grande Ospedale Metropolitano Niguarda Milan Italy
| | - Calogero Vetro
- Division of Hematology Policlinico Rodolico‐S. Marco Catania Italy
| | | | - Felicetto Ferrara
- Division of Hematology and Stem Cell Transplantation Unit Cardarelli Hospital Naples Italy
| | - Giuseppe Cimino
- Hematology, Department of Translational and Precision Medicine Sapienza University, ASL Latina, Presidio Ospedaliero Nord ‐ Ospedale Santa Maria Goretti Latina Italy
| | - Renato Bassan
- Hematology Unit Ospedale dell'Angelo and Ospedale Ss Giovanni e Paolo Mestre Italy
| | - Paola Fazi
- GIMEMA Foundation Franco Mandelli Onlus Rome Italy
| | - Marco Vignetti
- GIMEMA Foundation Franco Mandelli Onlus Rome Italy
- Hematology, Department of Translational and Precision Medicine Sapienza University Rome Italy
| |
Collapse
|
35
|
Lee SHR, Li Z, Tai ST, Oh BLZ, Yeoh AEJ. Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel) 2021; 13:4068. [PMID: 34439222 PMCID: PMC8393341 DOI: 10.3390/cancers13164068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. This aggressive cancer comprises multiple molecular subtypes, each harboring a distinct constellation of somatic, and to a lesser extent, inherited genetic alterations. With recent advances in genomic analyses such as next-generation sequencing techniques, we can now clearly identify >20 different genetic subtypes in ALL. Clinically, identifying these genetic subtypes will better refine risk stratification and determine the optimal intensity of therapy for each patient. Underpinning each genetic subtype are unique clinical and therapeutic characteristics, such as age and presenting white blood cell (WBC) count. More importantly, within each genetic subtype, there is much less variability in treatment response and survival outcomes compared with current risk factors such as National Cancer Institute (NCI) criteria. We review how this new taxonomy of genetic subtypes in childhood ALL interacts with clinical risk factors used widely, i.e., age, presenting WBC, IKZF1del, treatment response, and outcomes.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Zhenhua Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Si Ting Tai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Bernice L. Z. Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Allen E. J. Yeoh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| |
Collapse
|
36
|
Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia. Cancer Immunol Immunother 2021; 71:689-703. [PMID: 34365516 DOI: 10.1007/s00262-021-03009-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
CD19-targeted chimeric antigen receptor (CAR) T cell therapy has demonstrated striking responses among B cell acute lymphoblastic leukemia (B-ALL), but analyses of potential factors associated with poor response and relapse are lacking. Here, we summarize the long-term follow-up of 254 B-ALL treated with CD19 CAR-T cells from 5 clinical trials (NCT03173417, NCT02546739, and NCT03671460 retrospectively registered on May 23, 2017, March 1, 2018, and September 7, 2018, respectively, at www.clinicaltrials.gov ; ChiCTR-ONC-17012829, and ChiCTR1800016541 retrospectively registered on September 28, 2017, and June 7, 2018, at www.chictr.org.cn ). Our data showed that TP53 mutation, bone marrow blasts > 20%, prior CAR-T/blinatumomab treatment, and severe cytokine release syndrome (CRS) were associated with a lower complete remission (CR) rate while age, extramedullary disease, complex cytogenetics, history of prior transplant, prior courses of chemotherapy, CAR-T cell dose, and manufacturing source of the cellular product did not affect patients' CR rate. Risk factors related to leukemia-free survival (LFS) and overall survival (OS) were history of prior transplant, complex cytogenetics, TP53 mutation, severe CRS, neurotoxicity, and CAR-T therapy without consolidative allogeneic hematopoietic stem cell transplantation (allo-HSCT). Age and CAR-T cell dose did not influence LFS and OS. Patients with consolidative allo-HSCT after CAR-T therapy had a superior OS and LFS compared to those who did not. This benefit was also observed in both pediatric and adult patients as well as in patients either in high- or low-risk groups. This large study to identify risk factors of CR, LFS, and OS may help to maximize clinical outcomes of CAR-T therapy. Précis TP53 mutation and BM blasts > 20% are two independent factors associated with the CR rate. Patients with high tumor burden as well as those with bone marrow blasts < 5% can benefit from consolidative allo-HSCT post-CAR-T therapy.
Collapse
|
37
|
Machado CB, DA Silva EL, Dias Nogueira BM, DA Silva JBS, DE Moraes Filho MO, Montenegro RC, DE Moraes MEA, Moreira-Nunes CA. The Relevance of Aurora Kinase Inhibition in Hematological Malignancies. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:111-126. [PMID: 35399305 DOI: 10.21873/cdp.10016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
Aurora kinases are a family of serine/threonine protein kinases that play a central role in eukaryotic cell division. Overexpression of aurora kinases in cancer and their role as major regulators of the cell cycle quickly inspired the idea that their inhibition might be a potential pathway when treating oncologic patients. Over the past couple of decades, the search for designing and testing of molecules capable of inhibiting aurora activities fueled many pre-clinical and clinical studies. In this study, data from the past 10 years of in vitro and in vivo investigations, as well as clinical trials, utilizing aurora kinase inhibitors as therapeutics for hematological malignancies were compiled and discussed, aiming to highlight potential uses of these inhibitors as a novel monotherapy model or alongside conventional chemotherapies. While there is still much to be elucidated, it is clear that these kinases play a key role in oncogenesis, and their manageable toxicity and potentially synergistic effects still render them a focus of interest for future investigations in combinatorial clinical trials.
Collapse
Affiliation(s)
- Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Emerson Lucena DA Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jean Breno Silveira DA Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico DE Moraes Filho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
38
|
Shalabi H, Gust J, Taraseviciute A, Wolters PL, Leahy AB, Sandi C, Laetsch TW, Wiener L, Gardner RA, Nussenblatt V, Hill JA, Curran KJ, Olson TS, Annesley C, Wang HW, Khan J, Pasquini MC, Duncan CN, Grupp SA, Pulsipher MA, Shah NN. Beyond the storm - subacute toxicities and late effects in children receiving CAR T cells. Nat Rev Clin Oncol 2021; 18:363-378. [PMID: 33495553 PMCID: PMC8335746 DOI: 10.1038/s41571-020-00456-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
As clinical advances with chimeric antigen receptor (CAR) T cells are increasingly described and the potential for extending their therapeutic benefit grows, optimizing the implementation of this therapeutic modality is imperative. The recognition and management of cytokine release syndrome (CRS) marked a milestone in this field; however, beyond the understanding gained in treating CRS, a host of additional toxicities and/or potential late effects of CAR T cell therapy warrant further investigation. A multicentre initiative involving experts in paediatric cell therapy, supportive care and/or study of late effects from cancer and haematopoietic stem cell transplantation was convened to facilitate the comprehensive study of extended CAR T cell-mediated toxicities and establish a framework for new systematic investigations of CAR T cell-related adverse events. Together, this group identified six key focus areas: extended monitoring of neurotoxicity and neurocognitive function, psychosocial considerations, infection and immune reconstitution, other end organ toxicities, evaluation of subsequent neoplasms, and strategies to optimize remission durability. Herein, we present the current understanding, gaps in knowledge and future directions of research addressing these CAR T cell-related outcomes. This systematic framework to study extended toxicities and optimization strategies will facilitate the translation of acquired experience and knowledge for optimal application of CAR T cell therapies.
Collapse
Affiliation(s)
- Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Juliane Gust
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington Seattle, Seattle, WA, USA
| | - Agne Taraseviciute
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Pamela L Wolters
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Allison B Leahy
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos Sandi
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
- St. Baldrick's Foundation, Monrovia, CA, USA
| | - Theodore W Laetsch
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lori Wiener
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Rebecca A Gardner
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington Seattle, Seattle, WA, USA
| | - Veronique Nussenblatt
- National Institute of Allergy and Infectious Disease, Clinical Center, NIH, Bethesda, MD, USA
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kevin J Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy S Olson
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colleen Annesley
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington Seattle, Seattle, WA, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | - Marcelo C Pasquini
- Blood and Marrow Transplant and Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, WI, USA
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI, USA
| | - Christine N Duncan
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Stephan A Grupp
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Pulsipher
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
39
|
Doucette K, Karp J, Lai C. Advances in therapeutic options for newly diagnosed, high-risk AML patients. Ther Adv Hematol 2021; 12:20406207211001138. [PMID: 33995985 PMCID: PMC8111550 DOI: 10.1177/20406207211001138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by clonal proliferation of neoplastic immature precursor cells. AML impacts older adults and has a poor prognosis. Despite recent advances in treatment, AML is complex, with both genetic and epigenetic aberrations in the malignant clone and elaborate interactions with its microenvironment. We are now able to stratify patients on the basis of specific clinical and molecular features in order to optimize individual treatment strategies. However, our understanding of the complex nature of these molecular abnormalities continues to expand the defining characteristics of high-risk mutations. In this review, we focus on genetic and microenvironmental factors in adverse risk AML that play critical roles in leukemogenesis, including those not described in an European LeukemiaNet adverse risk group, and describe therapies that are currently in the clinical arena, either approved or under development.
Collapse
Affiliation(s)
- Kimberley Doucette
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Judith Karp
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Catherine Lai
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| |
Collapse
|
40
|
Fioretti T, Cevenini A, Zanobio M, Raia M, Sarnataro D, Cattaneo F, Ammendola R, Esposito G. Nuclear FGFR2 Interacts with the MLL-AF4 Oncogenic Chimera and Positively Regulates HOXA9 Gene Expression in t(4;11) Leukemia Cells. Int J Mol Sci 2021; 22:ijms22094623. [PMID: 33924850 PMCID: PMC8124917 DOI: 10.3390/ijms22094623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
The chromosomal translocation t(4;11) marks an infant acute lymphoblastic leukemia associated with dismal prognosis. This rearrangement leads to the synthesis of the MLL-AF4 chimera, which exerts its oncogenic activity by upregulating transcription of genes involved in hematopoietic differentiation. Crucial for chimera’s aberrant activity is the recruitment of the AF4/ENL/P-TEFb protein complex. Interestingly, a molecular interactor of AF4 is fibroblast growth factor receptor 2 (FGFR2). We herein analyze the role of FGFR2 in the context of leukemia using t(4;11) leukemia cell lines. We revealed the interaction between MLL-AF4 and FGFR2 by immunoprecipitation, western blot, and immunofluorescence experiments; we also tested the effects of FGFR2 knockdown, FGFR2 inhibition, and FGFR2 stimulation on the expression of the main MLL-AF4 target genes, i.e., HOXA9 and MEIS1. Our results show that FGFR2 and MLL-AF4 interact in the nucleus of leukemia cells and that FGFR2 knockdown, which is associated with decreased expression of HOXA9 and MEIS1, impairs the binding of MLL-AF4 to the HOXA9 promoter. We also show that stimulation of leukemia cells with FGF2 increases nuclear level of FGFR2 in its phosphorylated form, as well as HOXA9 and MEIS1 expression. In contrast, preincubation with the ATP-mimetic inhibitor PD173074, before FGF2 stimulation, reduced FGFR2 nuclear amount and HOXA9 and MEIS1 transcript level, thereby indicating that MLL-AF4 aberrant activity depends on the nuclear availability of FGFR2. Overall, our study identifies FGFR2 as a new and promising therapeutic target in t(4;11) leukemia.
Collapse
Affiliation(s)
- Tiziana Fioretti
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
| | - Armando Cevenini
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Mariateresa Zanobio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Maddalena Raia
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
| | - Daniela Sarnataro
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Gabriella Esposito
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
- Correspondence: ; Tel.: +30-0817463146
| |
Collapse
|
41
|
Marcotte EL, Spector LG, Mendes-de-Almeida DP, Nelson HH. The Prenatal Origin of Childhood Leukemia: Potential Applications for Epidemiology and Newborn Screening. Front Pediatr 2021; 9:639479. [PMID: 33968846 PMCID: PMC8102903 DOI: 10.3389/fped.2021.639479] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
Childhood leukemias are heterogeneous diseases with widely differing incident rates worldwide. As circulating tumors, childhood acute leukemias are uniquely accessible, and their natural history has been described in greater detail than for solid tumors. For several decades, it has been apparent that most cases of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) initiate in utero. Circumstantial evidence in support of this contention includes the young age of onset and high rate of concordance among identical twins. "Backtracking" of leukemic somatic mutations, particularly gene translocations, to cord blood and dried blood spots collected during the perinatal period has provided molecular proof of prenatal leukemogenesis. Detection of a patient's leukemia translocation in easily accessible birth samples, such as dried blood spots, is straightforward with the knowledge of their idiosyncratic breakpoints. However, to translate these findings into population-based screening and leukemia prevention requires novel methods able to detect translocations at all possible breakpoints when present in a low frequency of cells. Several studies have attempted to screen for leukemic translocations, mainly the common ETV6-RUNX1 translocation, in cord blood samples from healthy children. Most studies have reported finding translocations in healthy children, but estimates of prevalence have varied widely and greatly exceed the incidence of leukemia, leading to concerns that technical artifact or contamination produced an artificially inflated estimate of translocation prevalence at birth. New generation techniques that capture the presence of these translocations at birth have the potential to vastly increase our understanding of the epidemiology of acute leukemias. For instance, if leukemic translocations are present at birth in a far higher proportion of children than eventually develop acute leukemia, what are the exposures and somatic molecular events that lead to disease? And could children with translocations present at birth be targeted for prevention of disease? These questions must be answered before large-scale newborn screening for leukemia can occur as a public health initiative. Here, we review the literature regarding backtracking of acute leukemias and the prevalence of leukemic translocations at birth. We further suggest an agenda for epidemiologic research using new tools for population screening of leukemic translocations.
Collapse
Affiliation(s)
- Erin L. Marcotte
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Logan G. Spector
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Daniela P. Mendes-de-Almeida
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Hematology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Division of Molecular Carcinogenesis, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Heather H. Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
42
|
Liu X, Zhao Y, Luedke C, Jug R, Yang LH, Lu M, Pan Z, Wang D, Lorsbach R, Shi Y, Knez V, Rehder C, Liang X, Wang E. Infantile leukemia-What factors determine its distinct biological nature? Clinicopathological study of 78 cases. Int J Lab Hematol 2021; 43:1117-1122. [PMID: 33847065 DOI: 10.1111/ijlh.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Infantile leukemia encompasses a heterogeneous group which needs stratifying for treatment selection. METHODS We collected 78 cases of infantile leukemia and retrospectively analyzed their clinicopathological data. RESULTS Infantile leukemia featured a ratio of acute myeloid leukemia (AML) to B-lymphoblastic leukemia (B-ALL) of 1:2, with a better survival for AML than B-ALL (median survival 36 vs 24 months). When stratified by age, "early" infantile B-ALL (2-6 months) showed a high rate of KMT2A rearrangement (100%), similar to the rate seen in congenital B-ALL (1 month) (100%) and higher than seen in "late" infantile B-ALL (≥7 months) (68%). The three categories of infantile B-ALL exhibited an age-dependent increase in survival (median survival 8.5, 24, and >24 months, respectively). The age-dependent survival benefit remained after excluding the cases negative for KMT2A rearrangement. Conversely, infantile AML lacked an age-dependent pattern of survival. CONCLUSION The clinical outcome of infantile leukemia depends on the type of leukemia. Given the age-dependent survival, infantile B-ALL can be divided into three subcategories.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Yue Zhao
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Catherine Luedke
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Rachel Jug
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Lian-He Yang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Mark Lu
- Department of Laboratory Medicine, University of California and Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Zenggang Pan
- Department of Pathology, Yale University Medical Center, New Haven, CT, USA
| | - Dehua Wang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert Lorsbach
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yang Shi
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Virginia Knez
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Catherine Rehder
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Xiayuan Liang
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
43
|
CAR-T Therapy, the End of a Chapter or the Beginning of a New One? Cancers (Basel) 2021; 13:cancers13040853. [PMID: 33670515 PMCID: PMC7922383 DOI: 10.3390/cancers13040853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary CAR-T therapy is a breakthrough treatment in our fight against cancer. It was recently approved for the treatment of advanced diffuse large B-cell lymphoma and acute lymphoblastic leukaemia after the failure of previous multiple therapies. The positive results achieved in the registration studies for those patients were remarkable. Unfortunately, this was not the end of this chapter. Disease relapses occur in the range of 30–60% of patients treated with CAR-T therapy. Cytokine release syndrome represents a major side effect for treatment with CAR-T therapy. Notwithstanding, the high positive results triggered the start of a huge research activity of CAR-T therapy in other haematologic malignancies such as acute myelogenous leukaemia, Hodgkin’s disease, chronic lymphocytic leukaemia, and multiple myeloma. The research is also trying to overcome the hurdles stated above. These activities represent a new chapter in the management of haematologic malignancies with CAR-T therapy. Abstract Chimeric antigen receptor-T (CAR-T) therapy targeting CD19 has revolutionised the treatment of advanced acute lymphoblastic leukaemia (ALL) and diffuse large B-cell lymphoma (DLBCL). The ability to specifically target the cancer cells has shown high positive results as reported in the registration studies. The success of CAR-T therapy in the first two indications led to the initiation of a large number of studies testing CAR-T therapy in different haematologic tumours such as acute myelogenous leukaemia (AML), Hodgkin’s disease (HD), chronic lymphocytic leukaemia (CLL), multiple myeloma (MM), as well as different solid tumours. Unfortunately, relapses occurred in patients treated with CAR-T therapy, calling for the development of effective subsequent therapies. Likewise, this novel mechanism of action was also accompanied by a different toxicity profile, such as cytokine release syndrome (CRS). Patients’ access to the treatment is still limited by its cost. Notwithstanding, this did not prohibit further development of this new therapy to treat other malignancies. This research activity of CAR-T therapy moves it from being used as an end-stage treatment for ALL and DLBCL to a new therapeutic option for a wide range of patients with different haematologic and solid tumours.
Collapse
|
44
|
Infant Acute Myeloid Leukemia: A Unique Clinical and Biological Entity. Cancers (Basel) 2021; 13:cancers13040777. [PMID: 33668444 PMCID: PMC7918235 DOI: 10.3390/cancers13040777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Infant acute myeloid leukemia (AML) is a rare subgroup of AML of children <2 years of age. It is as frequent as infant acute lymphoblastic leukemia (ALL) but not clearly distinguished by study groups. However, infant AML demonstrates peculiar clinical and biological characteristics, and its prognosis differs from AML in older children. Acute megakaryoblastic leukemia (AMKL) is very frequent in this age group and has raised growing interest. Thus, AMKL is a dominant topic in this review. Recent genomic sequencing has contributed to our understanding of infant AML. These data demonstrated striking features of infant AML: fusion genes are able to induce AML transformation without additional cooperation, and unlike AML in older age groups there is a paucity of associated mutations. Mice modeling of these fusions showed the essential role of ontogeny in the infant leukemia phenotype compared to older children and adults. Understanding leukemogenesis may help in developing new targeted treatments to improve outcomes that are often very poor in this age group. A specific diagnostic and therapeutic approach for this age group should be investigated.
Collapse
|
45
|
Abstract
PURPOSE OF THE REVIEW Infant leukemia is a rare, distinct subgroup of pediatric acute leukemias diagnosed in children under 1 year of age and characterized by unique, aggressive biology. Here, we review its clinical presentation, underlying molecular biology, current treatment strategies, and novel therapeutic approaches. RECENT FINDINGS Infant leukemias are associated with high-risk molecular features and high rates of chemotherapy resistance. International collaborative clinical trials have led to better understanding of the underlying molecular biology, refined risk-based stratification, and investigated the use of hematopoietic stem cell transplantation. However, intensification of chemotherapy has failed to improve outcomes, and current regimens are associated with significant treatment-related and long-term toxicities. Infants with leukemia remain a challenging group to treat. We must continue collaborative efforts to move beyond traditional cytotoxic chemotherapy, incorporate molecularly targeted strategies and immunotherapy, and increase access to clinical trials to improve outcomes for this high-risk group of patients.
Collapse
|
46
|
Aberrant Activity of Histone-Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis. Int J Mol Sci 2020; 21:ijms21249340. [PMID: 33302406 PMCID: PMC7762615 DOI: 10.3390/ijms21249340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes.
Collapse
|
47
|
Mo G, Wang HW, Talleur AC, Shahani SA, Yates B, Shalabi H, Douvas MG, Calvo KR, Shern JF, Chaganti S, Patrick K, Song Y, Fry TJ, Wu X, Triplett BM, Khan J, Gardner RA, Shah NN. Diagnostic approach to the evaluation of myeloid malignancies following CAR T-cell therapy in B-cell acute lymphoblastic leukemia. J Immunother Cancer 2020; 8:jitc-2020-001563. [PMID: 33246985 PMCID: PMC7703409 DOI: 10.1136/jitc-2020-001563] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
Immunotherapeutic strategies targeting B-cell acute lymphoblastic leukemia (B-ALL) effectively induce remission; however, disease recurrence remains a challenge. Due to the potential for antigen loss, antigen diminution, lineage switch or development of a secondary or treatment-related malignancy, the phenotype and manifestation of subsequent leukemia may be elusive. We report on two patients with multiply relapsed/refractory B-ALL who, following chimeric antigen receptor T-cell therapy, developed myeloid malignancies. In the first case, a myeloid sarcoma developed in a patient with a history of myelodysplastic syndrome. In the second case, two distinct events occurred. The first event represented a donor-derived myelodysplastic syndrome with monosomy 7 in a patient with a prior hematopoietic stem cell transplantation. This patient went on to present with lineage switch of her original B-ALL to ambiguous lineage T/myeloid acute leukemia. With the rapidly evolving field of novel immunotherapeutic strategies, evaluation of relapse and/or subsequent neoplasms is becoming increasingly more complex. By virtue of these uniquely complex cases, we provide a framework for the evaluation of relapse or evolution of a subsequent malignancy following antigen-targeted immunotherapy.
Collapse
Affiliation(s)
- George Mo
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shilpa A Shahani
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Bonnie Yates
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Haneen Shalabi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael G Douvas
- Department of Hematology/Oncology, Emily Couric Clinical Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Katherine R Calvo
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Jack F Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Sridhar Chaganti
- Centre for Clincal Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Young Song
- Oncogenomics Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Terry J Fry
- University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders, Children's Hospital of Colorado, Aurora, Colorado, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon M Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Javed Khan
- Oncogenomics Section, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|