1
|
Kumariya S, Grano de Oro A, Nestor-Kalinoski AL, Joe B, Osman I. Gut microbiota-derived Metabolite, Shikimic Acid, inhibits vascular smooth muscle cell proliferation and migration. Biochem Pharmacol 2024; 229:116524. [PMID: 39251142 DOI: 10.1016/j.bcp.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Gut microbiota dysbiosis is linked to vascular wall disease, but the mechanisms by which gut microbiota cross-talk with the host vascular cells remain largely unknown. Shikimic acid (SA) is a biochemical intermediate synthesized in plants and microorganisms, but not mammals. Surprisingly, recent metabolomic profiling data demonstrate that SA is detectable in human and murine blood. In this study, analyzing data from germ-free rats, we provide evidence in support of SA as a bona fide gut microbiota-derived metabolite, emphasizing its biological relevance. Since vascular cells are the first cells exposed to circulating metabolites, in this study, we examined, for the first time, the effects and potential underlying molecular mechanisms of SA on vascular smooth muscle cell (VSMC) proliferation and migration, which play a key role in occlusive vascular diseases, such as post-angioplasty restenosis and atherosclerosis. We found that SA inhibits the proliferation and migration of human coronary artery SMCs. At the molecular level, unexpectedly, we found that SA activates, rather than inhibits, multiple pro-mitogenic signaling pathways in VSMCs, such as ERK1/2, AKT, and mTOR/p70S6K. Conversely, we found that SA activates the anti-proliferative AMP-activated protein kinase (AMPK) in VSMCs, a key cellular energy sensor and regulator. However, loss-of-function experiments demonstrate that AMPK does not mediate the inhibitory effects of SA on VSMC proliferation. In conclusion, these studies demonstrate that a microbiota-derived metabolite, SA, inhibits VSMC proliferation and migration in vitro and prompt further evaluation of the possible underlying molecular mechanisms and the potential protective role in VSMC-related vascular wall disease in vivo.
Collapse
Affiliation(s)
- Sanjana Kumariya
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA
| | - Arturo Grano de Oro
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA
| | - Islam Osman
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo, College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
2
|
McQueen LW, Ladak SS, Layton GR, Wozniak M, Solomon C, El-Dean Z, Murphy GJ, Zakkar M. Spatial Transcriptomic Profiling of Human Saphenous Vein Exposed to Ex Vivo Arterial Haemodynamics-Implications for Coronary Artery Bypass Graft Patency and Vein Graft Disease. Int J Mol Sci 2024; 25:10368. [PMID: 39408698 PMCID: PMC11476946 DOI: 10.3390/ijms251910368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Vein graft disease is the process by which saphenous vein grafts, utilised for revascularisation during coronary artery bypass graft surgery, undergo an inflammation-driven intimal hyperplasia and accelerated atherosclerosis process in subsequent years after implantation. The role of the arterial circulation, particularly the haemodynamic properties' impact on graft patency, have been investigated but have not to date been explored in depth at the transcriptomic level. We have undertaken the first-in-man spatial transcriptomic analysis of the long saphenous vein in response to ex vivo acute arterial haemodynamic stimulation, utilising a combination of a custom 3D-printed perfusion bioreactor and the 10X Genomics Visium Spatial Gene Expression technology. We identify a total of 413 significant genes (372 upregulated and 41 downregulated) differentially expressed in response to arterial haemodynamic conditions. These genes were associated with pathways including NFkB, TNF, MAPK, and PI3K/Akt, among others. These are established pathways involved in the initiation of an early pro-inflammatory response, leukocyte activation and adhesion signalling, tissue remodelling, and cellular differentiation. Utilising unsupervised clustering analysis, we have been able to classify subsets of the expression based on cell type and with spatial resolution. These findings allow for further characterisation of the early saphenous vein graft transcriptional landscape during the earliest stage of implantation that contributes to vein graft disease, in particular validation of pathways and druggable targets that could contribute towards the therapeutic inhibition of processes underpinning vein graft disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK; (L.W.M.); (S.S.L.); (G.R.L.); (M.W.); (C.S.); (Z.E.-D.); (G.J.M.)
| |
Collapse
|
3
|
Kim JW, Kim JY, Bae HE, Kim CD. Biophysically stressed vascular smooth muscle cells express MCP-1 via a PDGFR-β-HMGB1 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:449-456. [PMID: 39198225 PMCID: PMC11361998 DOI: 10.4196/kjpp.2024.28.5.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 09/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) under biophysical stress play an active role in the progression of vascular inflammation, but the precise mechanisms are unclear. This study examined the cellular expression of monocyte chemoattractant protein 1 (MCP-1) and its related mechanisms using cultured rat aortic VSMCs stimulated with mechanical stretch (MS, equibiaxial cyclic stretch, 60 cycles/ min). When the cells were stimulated with 10% MS, MCP-1 expression was markedly increased compared to those in the cells stimulated with low MS intensity (3% or 5%). An enzyme-linked immunosorbent assay revealed an increase in HMGB1 released into culture media from the cells stimulated with 10% MS compared to those stimulated with 3% MS. A pretreatment with glycyrrhizin, a HMGB1 inhibitor, resulted in the marked attenuation of MCP-1 expression in the cells stimulated with 10% MS, suggesting a key role of HMGB1 on MCP-1 expression. Western blot analysis revealed higher PDGFR-α and PDGFR-β expression in the cells stimulated with 10% MS than 3% MS-stimulated cells. In the cells deficient of PDGFR-β using siRNA, but not PDGFR-α, HMGB1 released into culture media was significantly attenuated in the 10% MS-stimulated cells. Similarly, MCP-1 expression induced in 10% MS-stimulated cells was also attenuated in cells deficient of PDGFR-β. Overall, the PDGFR-β signaling plays a pivotal role in the increased expression of MCP-1 in VSMCs stressed with 10% MS. Therefore, targeting PDGFR-β signaling in VSMCs might be a promising therapeutic strategy for vascular complications in the vasculatures under excessive biophysical stress.
Collapse
Affiliation(s)
- Ji Won Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ju Yeon Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Hee Eun Bae
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
4
|
Wang G, Zhao P, Yin C, Zheng X, Xie Y, Li X, Shang D, Shao S, Chen H, Wei L, Song Z. KIF11 promotes vascular smooth muscle cell proliferation by regulating cell cycle progression and accelerates neointimal formation after arterial injury in mice. Front Pharmacol 2024; 15:1392352. [PMID: 39166113 PMCID: PMC11333341 DOI: 10.3389/fphar.2024.1392352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Background and aims: One of the primary causes of lumen narrowing is vascular injury induced during medical procedures. Vascular injury disrupts the integrity of the endothelium, triggering platelet deposition, leukocyte recruitment, and the release of inflammatory factors. This, in turn, induces the proliferation of vascular smooth muscle cells (VSMCs), leading to neointima formation. However, the molecular mechanism underlying VSMC proliferation following injury remains unknown. KIF11 is critical in regulating the cell cycle by forming bipolar spindles during mitotic metaphase. This process may contribute to VSMCs proliferation and neointima formation following vascular injury. Yet, the function of KIF11 in VSMCs has not been elucidated. This study aims to investigate the role and mechanisms of KIF11 in regulating VSMCs cycle progression and proliferation. Methods: After conducting biological analysis of the transcriptome sequencing data from the mouse carotid artery injury model and the cell transcriptome data of PDGF-BB-induced VSMCs, we identified a potential target gene, KIF11, which may play a crucial role in vascular injury. Then we established a vascular injury model to investigate how changes in KIF11 expression and activity influence in vivo VSMCs proliferation and neointimal formation. In addition, we employed siRNA and specific inhibitors to suppress KIF11 expression and activity in VSMCs cultured in vitro to study the mechanisms underlying VSMCs cycle progression and proliferation. Results: The results of immunohistochemistry and immunofluorescence indicate a significant upregulation of KIF11 expression in the injured vascular. The intraperitoneal injection of the KIF11 specific inhibitor, K858, partially inhibits intimal hyperplasia in the vascular injury model. In vitro experiments further demonstrate that PDGF-BB upregulates KIF11 expression through the PI3K/AKT pathway, and enhances KIF11 activity. Inhibition of both KIF11 expression and activity partially reverses the pro-cycle progression and pro-proliferation effects of PDGF-BB on VSMCs. Additionally, KIF11 overexpression partially counteracts the proliferation arrest and cell cycle arrest induced by inhibiting the PI3K/AKT pathway in VSMCs. Conclusion: Our study highlights the crucial role of KIF11 in regulating the cycle progression and proliferation of VSMCs after vascular injury. A comprehensive understanding of these mechanisms could pave the way for potential therapeutic interventions in treating vascular stenosis.
Collapse
Affiliation(s)
- Gengqiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xichuan Zheng
- Department of Vascular Surgery, The Southwest Hospital of AMU, Chongqing, China
| | - Yuhang Xie
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Shang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuyu Shao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Wei
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Lu AL, Yin L, Huang Y, Islam ZH, Kanchetty R, Johnston C, Zhang K, Xie X, Park KH, Chalfant CE, Wang B. The role of 6-phosphogluconate dehydrogenase in vascular smooth muscle cell phenotypic switching and angioplasty-induced intimal hyperplasia. JVS Vasc Sci 2024; 5:100214. [PMID: 39318609 PMCID: PMC11420449 DOI: 10.1016/j.jvssci.2024.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/21/2024] [Indexed: 09/26/2024] Open
Abstract
Background Restenosis poses a significant challenge for individuals afflicted with peripheral artery diseases, often leading to considerable morbidity and necessitating repeated interventions. The primary culprit behind the pathogenesis of restenosis is intimal hyperplasia (IH), in which the hyperproliferative and migratory vascular smooth muscle cell (VSMC) accumulate excessively in the tunica intima. 6-Phosphogluconate dehydrogenase (6PGD), sometimes referred to as PGD, is one of the critical enzymes in pentose phosphate pathway (PPP). In this study, we sought to probe whether 6PGD is aberrantly regulated in IH and contributes to VSMC phenotypic switching. Methods We used clinical specimens of diseased human coronary arteries with IH lesions and observed robust upregulation of 6PGD at protein level in both the medial and intimal layers in comparison with healthy arterial segments. Results 6PGD activity and protein expression were profoundly stimulated upon platelet-derived growth factor-induced VSMC phenotypic switching. Using gain-of-function (dCas9-mediated transcriptional activation) and loss-of-function (small interfering RNA-mediated) silencing, we were able to demonstrate the pathogenic role of 6PGD in driving VSMC hyperproliferation, migration, dedifferentiation, and inflammation. Finally, we conducted a rat model of balloon angioplasty in the common carotid artery, with Pluronic hydrogel-assisted perivascular delivery of Physcion, a selective 6PGD inhibitor with poor systemic bioavailability, and observed effective mitigation of IH. Conclusions We contend that aberrant 6PGD expression and activity-indicative of a metabolic shift toward pentose phosphate pathway-could serve as a new disease-driving mechanism and, hence, an actionable target for the development of effective new therapies for IH and restenosis after endovascular interventions.
Collapse
Affiliation(s)
- Amy L Lu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Rohan Kanchetty
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Campbell Johnston
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Kaijie Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiujie Xie
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Ki Ho Park
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Charles E Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
6
|
Lu P, Fan J, Li B, Wang X, Song M. A novel protein encoded by circLARP1B promotes the proliferation and migration of vascular smooth muscle cells by suppressing cAMP signaling. Atherosclerosis 2024; 395:117575. [PMID: 38851155 DOI: 10.1016/j.atherosclerosis.2024.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AND AIMS Circular RNA (circRNA) is closely related to atherosclerosis (AS) incidence and progression, but its regulatory mechanism in AS needs further elucidation. AS development is significantly influenced by abnormal vascular smooth muscle cells (VSMCs) growth and migration. This study explored the potential protein role of circLARP1B in VSMC proliferation and migration. METHODS We performed whole-transcriptome sequencing in human normal arterial intima and advanced atherosclerotic plaques to screen for differentially expressed circRNAs. The sequencing results were combined with database analysis to screen for circRNAs with coding ability. Real-time quantitative polymerase chain reaction was utilized to assess circLARP1B expression levels in atherosclerotic plaque tissues and cells. circLARP1B-243aa function and pathway in VSMCs growth and migration were studied by scratch, transwell, 5-ethynyl-2'-deoxyuridine, cell counting kit-8, and Western blot experiments. RESULTS We found that circLARP1B was downregulated in atherosclerotic plaque tissue and promoted the proliferation and migration of VSMCs. circLARP1B encodes a novel protein with a length of 243 amino acids. Through functional experiments, we confirmed the role of circLARP1B-243aa in enhancing VSMCs migration and proliferation. Mechanistically, circLARP1B-243aa promotes VSMCs migration and growth by upregulating phosphodiesterase 4C to inhibit the cyclic adenosine monophosphate signaling pathway. CONCLUSIONS Our results suggested that circLARP1B could promote VSMCs growth and migration through the encoded protein circLARP1B-243aa. Therefore, it could be a treatment target and biomarker for AS.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cell Proliferation
- Cell Movement
- Humans
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Signal Transduction
- Cyclic AMP/metabolism
- SS-B Antigen
- Cells, Cultured
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Plaque, Atherosclerotic
- Male
Collapse
Affiliation(s)
- Peng Lu
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Jidan Fan
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China
| | - Ben Li
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China.
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Meijuan Song
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China.
| |
Collapse
|
7
|
Sun C, Mei J, Yi H, Song M, Ma Y, Huang Y. The Effect of the cAMP Signaling Pathway on HTR8/SV-Neo Cell Line Proliferation, Invasion, and Migration After Treatment with Forskolin. Reprod Sci 2024; 31:1268-1277. [PMID: 38110819 DOI: 10.1007/s43032-023-01396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023]
Abstract
Pre-eclampsia (PE) is thought to be related to placental dysfunction, particularly poor extravillous trophoblast (EVT) invasion and migration abilities. However, the pathogenic mechanism is not fully understood. This article describes the impact of the cyclic adenosine monophosphate(cAMP) signaling pathway on EVT behavior, focusing on EVT proliferation, invasion, and migration. Here, we used the HTR8/SV-neo cell line to study human EVT function in vitro. HTR8/SV-neo cells were treated with different concentrations of forskolin (cAMP pathway-specific agonist) to alter intracellular cAMP levels, and dimethyl sulfoxide (DMSO) was used as the control. First, a cAMP assay was performed to measure the cAMP concentration in HTR8/SV-neo cells treated with different forskolin concentrations, and cell proliferation was assessed by constructing cell growth curves and assessing colony formation. Cell invasion and migration were observed by Transwell experiments, and intracellular epithelial-mesenchymal transition (EMT) marker expression was evaluated by quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB). According to our research, the intracellular cAMP levels in HTR8/SV-neo cells were increased in a dose-dependent manner, and HTR8/SV-neo cell proliferation, invasion and migration were significantly enhanced. The expression of EMT and angiogenesis markers was upregulated. Additionally, with the increase in intracellular cAMP levels, the phosphorylation of intracellular mitogen-activated protein kinase (MAPK) signaling pathway components was significantly increased. These results suggested that the cAMP signaling pathway promoted the phosphorylation of MAPK signaling components, thus enhancing EVT functions, including proliferation, invasion, and migration, and to a certain extent, providing a novel direction for the treatment of PE patients.
Collapse
Affiliation(s)
- Chao Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Jiaoqi Mei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Mengyi Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China.
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China.
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
8
|
Xie L, You Q, Mao J, Wu F, Xia C, Hai R, Wei Y, Zhou X. Thyrotropin induces atherosclerosis by upregulating large conductance Ca 2+-activated K + channel subunits. Mol Cell Endocrinol 2024; 583:112145. [PMID: 38184154 DOI: 10.1016/j.mce.2024.112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Hypothyroidism is associated with elevated levels of serum thyrotropin (TSH), which have been shown to promote abnormal proliferation of vascular smooth muscle cells and contribute to the development of atherosclerosis. However, the specific mechanisms underlying the TSH-induced abnormal proliferation of vascular smooth muscle cells remain unclear. The objective of this study was to investigate the role of TSH in the progression of atherosclerosis. Our research findings revealed that hypothyroidism can trigger early atherosclerotic changes in the aorta of Wistar rats. In alignment with our in vitro experiments, we observed that TSH induces abnormal proliferation of aortic smooth muscle cells by modulating the expression of α and β1 subunits of large conductance Ca2+-activated K+ (BKCa) channels within these cells via the cAMP/PKA signaling pathway. These results collectively indicate that TSH acts through the cAMP/PKA signaling pathway to upregulate the expression of α and β1 subunits of BKCa channels, thereby promoting abnormal proliferation of arterial smooth muscle cells. These findings may provide a basis for the clinical prevention and treatment of atherosclerosis caused by elevated TSH levels.
Collapse
Affiliation(s)
- Linjun Xie
- Department of Thyroid and Breast Surgery, The First People's Hospital of Zigong, Zigong, Sichuan, China; Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Qian You
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Breast, Thyroid and Vessel Surgery, The Neijiang First People's Hospital, Neijiang, 641000, China.
| | - Jingying Mao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Fei Wu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Chengwei Xia
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Rui Hai
- Department of Vascular, Breast, Thyroid Surgery, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Yan Wei
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Puertas-Umbert L, Alonso J, Hove-Madsen L, Martínez-González J, Rodríguez C. PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets. Int J Mol Sci 2023; 24:17017. [PMID: 38069339 PMCID: PMC10707411 DOI: 10.3390/ijms242317017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Judith Alonso
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Leif Hove-Madsen
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - José Martínez-González
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Cristina Rodríguez
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
10
|
Zhang Q, Zhou X, Li X, Yao S, Jiang S, Zhang R, Zou Z, Liao L, Dong J. Effect of down-regulation of let-7c/g on triggering a double-negative feedback loop and promoting restenosis. Chin Med J (Engl) 2023; 136:2484-2495. [PMID: 37433785 PMCID: PMC10586861 DOI: 10.1097/cm9.0000000000002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) are the main causes of restenosis (RS) in diabetic lower extremity arterial disease (LEAD). However, the relevant pathogenic mechanisms are poorly understood. METHODS In this study, we introduced a "two-step injury protocol" rat RS model, which started with the induction of atherosclerosis (AS) and was followed by percutaneous transluminal angioplasty (PTA). Hematoxylin-eosin (HE) staining and immunohistochemistry staining were used to verify the form of RS. Two-step transfection was performed, with the first transfection of Lin28a followed by a second transfection of let-7c and let-7g, to explore the possible mechanism by which Lin28a exerted effects. 5-ethynyl-2΄-deoxyuridine (EdU) and Transwell assay were performed to evaluate the ability of proliferation and migration of VSMCs. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to detect the expression of Lin28a protein and let-7 family members. RESULTS Using a combination of in vitro and in vivo experiments, we discovered that let-7c, let-7g, and microRNA98 (miR98) were downstream targets of Lin28a. More importantly, decreased expression of let-7c/let-7g increased Lin28a, leading to further inhibition of let-7c/let-7g. We also found an increased level of let-7d in the RS pathological condition, suggesting that it may function as a protective regulator of the Lin28a/let-7 loop by inhibiting the proliferation and migration of VSMCs. CONCLUSION These findings indicated the presence of a double-negative feedback loop consisting of Lin28a and let-7c/let-7g, which may be responsible for the vicious behavior of VSMCs in RS.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Xianzhi Li
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Shuai Yao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shan Jiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Zhiwei Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
11
|
Liu L, Xu W, Li K, Hu Y, Shen L, Zhang H, Wang Y. Kv1.3 mediates ox-LDL-induced vascular smooth muscle cell proliferation through JAK2/STAT3 signaling pathway. Arch Biochem Biophys 2023; 746:109719. [PMID: 37591369 DOI: 10.1016/j.abb.2023.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Kv1.3 channel has been shown to participate in regulating inflammatory activation, proliferation and apoptosis in several cell types. However, most of those existing studies focused on the ion-conducting properties of Kv1.3 in maintaining the resting potential and regulating Ca2+ influx. The aim of our study was to explore whether the Kv1.3-JAK2/STAT3 signaling pathway was involved in oxidized low density lipoprotein (ox-LDL) induced vascular smooth muscle cell (VSMC) proliferation. VSMCs from mouse aorta were cultured and treated with ox-LDL (25 μg/mL). The cell counting kit-8 was used to assess cell proliferation, and western blotting was performed to detect expression levels of Kv1.3, JAK2/STAT3, phosphorylated JAK2/STAT3, cyclin B1 and cyclin D1 in treated VSMCs. VSMCs were transfected with Kv1.3 small interfering RNA (Kv1.3-siRNA) or infected with a Kv1.3 lentiviral expression vector (Lv-Kv1.3) and treated with a JAK2 inhibitor LY2784544 to assess the role of Kv1.3 and JAK2/STAT3 signaling in mediating VSMC proliferation induced by ox-LDL. Ox-LDL induced cell proliferation and upregulated the expression of Kv1.3 in mouse VSMCs. In VSMCs transfected with Kv1.3-siRNA, ox-LDL was not efficient in inducing cell proliferation or the levels of proliferation associated proteins, cyclin B1 and cyclin D1. However, cell proliferation, cyclin B1 and cyclin D1 levels increased in VSMCs infected with Lv-Kv1.3. Levels of phosphorylated JAK2 and STAT3 were increased in ox-LDL-treated VSMCs, and this increase was prevented in VSMCs transfected with Kv1.3-siRNA. Treatment with the JAK2 inhibitor LY2784544 also prevented the increase in VSMCs proliferation treated with ox-LDL. Our findings demonstrated that Kv1.3 promoted proliferation of VSMCs treated with ox-LDL, and that this effect might be mediated through activation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lin Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Ji'nan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Wei Xu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Kaiwen Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Ji'nan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Yanyan Hu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Ji'nan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Lin Shen
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Ji'nan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Hongyu Zhang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Ji'nan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Yuanyuan Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Ji'nan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| |
Collapse
|
12
|
Luo Z, Li X, Wang L, Shu C. Impact of the transforming growth factor-β pathway on vascular restenosis and its mechanism. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1252-1259. [PMID: 37875366 PMCID: PMC10930841 DOI: 10.11817/j.issn.1672-7347.2023.230064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 10/26/2023]
Abstract
As a crucial regulatory molecule in the context of vascular stenosis, transforming growth factor-β (TGF-β), plays a pivotal role in its initiation and progression. TGF-β, a member of the TGF-β superfamily, can bind to the TGF-β receptor and transduce extracellular to intracellular signals through canonical Smad dependent or noncanonical signaling pathways to regulate cell growth, proliferation, differentiation, and apoptosis. Restenosis remains one of the most challenging problems in cardiac, cerebral, and peripheral vascular disease worldwide. The mechanisms for occurrence and development of restenosis are diverse and complex. The TGF-β pathway exhibits diversity across various cell types. Hence, clarifying the specific roles of TGF-β within different cell types and its precise impact on vascular stenosis provides strategies for future research in the field of stenosis.
Collapse
Affiliation(s)
- Zhongchen Luo
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Xin Li
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Lunchang Wang
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Chang Shu
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science, Beijing 100037, China.
| |
Collapse
|
13
|
Cheng Y, Li W, Chen J, Qi D, Guan M, Cao T, Hu H, Wu L, Rao Q, Wan Q. Correlation Analysis between Intrarenal Small Artery Intimal Thickening and Clinicopathological Features and Prognosis in Primary Membranous Nephropathy Patients. Nephron Clin Pract 2023; 148:95-103. [PMID: 37611552 DOI: 10.1159/000533414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Primary membranous nephropathy (PMN) is the most common pathological type of nephrotic syndrome in adults. Intrarenal small artery intimal thickening can be observed in most renal biopsies. The purpose of this study was to investigate the association between intrarenal small artery intimal thickening and clinicopathological features and prognosis in PMN patients. METHODS Data were continuously collected from patients who were diagnosed with PMN in Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University) from 2008 to 2021 for a retrospective cohort study. Regression analysis and survival analysis were used to analyze the relationship between intrarenal small artery intimal thickening and renal prognosis in PMN patients. RESULTS 300 PMN patients were enrolled in this study, including 165 patients (55%) with intrarenal small artery intimal thickening. Patients with intimal thickening were older, with higher BMI, systolic blood pressure and diastolic blood pressure, serum uric acid, a higher proportion of hypertension, acute kidney injury, nephrotic syndrome, more urine protein, and lower eGFR. Multivariate Cox regression analysis showed that after adjusting for age, gender, hypertension, BMI, urine protein, eGFR, and the use of ACEI/ARB and hormone immunosuppressants, intimal thickening was a risk factor for renal prognosis in PMN patients (HR = 3.68, 95% CI 1.36-9.96, p < 0.05). Kaplan-Meier survival curve analysis showed that the incidence of reaching the renal composite outcome was higher in the intimal thickening group (p < 0.05). CONCLUSION The prognosis of PMN patients with intrarenal small artery intimal thickening is worse, so early intervention is very important for these patients.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | | | - Jia Chen
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dongli Qi
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mijie Guan
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Tao Cao
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Liling Wu
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | | | - Qijun Wan
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Campolo F, Assenza MR, Venneri MA, Barbagallo F. Once upon a Testis: The Tale of Cyclic Nucleotide Phosphodiesterase in Testicular Cancers. Int J Mol Sci 2023; 24:ijms24087617. [PMID: 37108780 PMCID: PMC10146088 DOI: 10.3390/ijms24087617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphodiesterases are key regulators that fine tune the intracellular levels of cyclic nucleotides, given their ability to hydrolyze cAMP and cGMP. They are critical regulators of cAMP/cGMP-mediated signaling pathways, modulating their downstream biological effects such as gene expression, cell proliferation, cell-cycle regulation but also inflammation and metabolic function. Recently, mutations in PDE genes have been identified and linked to human genetic diseases and PDEs have been demonstrated to play a potential role in predisposition to several tumors, especially in cAMP-sensitive tissues. This review summarizes the current knowledge and most relevant findings regarding the expression and regulation of PDE families in the testis focusing on PDEs role in testicular cancer development.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Rita Assenza
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| |
Collapse
|
15
|
Al Hageh C, Chacar S, Venkatachalam T, Gauguier D, Abchee A, Chammas E, Hamdan H, O’Sullivan S, Zalloua P, Nader M. Genetic Variants in PHACTR1 & LPL Mediate Restenosis Risk in Coronary Artery Patients. Vasc Health Risk Manag 2023; 19:83-92. [PMID: 36814994 PMCID: PMC9940491 DOI: 10.2147/vhrm.s394695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/25/2022] [Indexed: 02/17/2023] Open
Abstract
Background and Objective Coronary artery disease (CAD) is a major cause of death worldwide. Revascularization via stent placement or coronary artery bypass grafting (CABG) are standard treatments for CAD. Despite a high success rate, these approaches are associated with long-term failure due to restenosis. Risk factors associated with restenosis were investigated using a case-control association study design. Methods Five thousand two hundred and forty-two patients were enrolled in this study and were assigned as follows: Stenosis Group: 3570 patients with CAD >50% without a prior stent or CABG (1394 genotyped), and Restenosis Group: 1672 patients with CAD >50% and prior stent deployment or CABG (705 genotyped). Binomial regression models were applied to investigate the association of restenosis with diabetes, hypertension, and dyslipidemia. The genetic association with restenosis was conducted using PLINK 1.9. Results Dyslipidemia is a major risk factor (Odds Ratio (OR) = 2.14, P-value <0.0001) for restenosis particularly among men (OR = 2.32, P < 0.0001), while type 2 diabetes (T2D) was associated with an increased risk of restenosis in women (OR = 1.36, P = 0.01). The rs9349379 (PHACTR1) and rs264 (LPL) were associated with an increased risk of restenosis in our patients. PHACTR1 variant was associated with increased risk of restenosis mainly in women and in diabetic patients, while the LPL variant was associated with increased risk of restenosis in men. Conclusion The rs9349379 in PHACTR1 gene is significantly associated with restenosis, this association is more pronounced in women and in diabetic patients. The rs264 in LPL gene was associated with increased risk of restenosis in male patients.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stephanie Chacar
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Thenmozhi Venkatachalam
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Dominique Gauguier
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada,Université Paris Cité, INSERM, Paris, France
| | - Antoine Abchee
- Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Elie Chammas
- School of Medicine, Lebanese University, Beirut, Lebanon
| | - Hamdan Hamdan
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Siobhan O’Sullivan
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates,Biotechnology Center, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates,Harvard T.H. Chan School of Public Health, Boston, MA, USA,Correspondence: Pierre Zalloua; Moni Nader, College of Medicine and Health Sciences, Khalifa University for Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates, Email ;
| | - Moni Nader
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE,Biotechnology Center, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Xia Y, Zhang X, An P, Luo J, Luo Y. Mitochondrial Homeostasis in VSMCs as a Central Hub in Vascular Remodeling. Int J Mol Sci 2023; 24:ijms24043483. [PMID: 36834896 PMCID: PMC9961025 DOI: 10.3390/ijms24043483] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Vascular remodeling is a common pathological hallmark of many cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant cell type lining the tunica media and play a crucial role in maintaining aortic morphology, integrity, contraction and elasticity. Their abnormal proliferation, migration, apoptosis and other activities are tightly associated with a spectrum of structural and functional alterations in blood vessels. Emerging evidence suggests that mitochondria, the energy center of VSMCs, participate in vascular remodeling through multiple mechanisms. For example, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis prevents VSMCs from proliferation and senescence. The imbalance between mitochondrial fusion and fission controls the abnormal proliferation, migration and phenotypic transformation of VSMCs. Guanosine triphosphate-hydrolyzing enzymes, including mitofusin 1 (MFN1), mitofusin 2 (MFN2), optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (DRP1), are crucial for mitochondrial fusion and fission. In addition, abnormal mitophagy accelerates the senescence and apoptosis of VSMCs. PINK/Parkin and NIX/BINP3 pathways alleviate vascular remodeling by awakening mitophagy in VSMCs. Mitochondrial DNA (mtDNA) damage destroys the respiratory chain of VSMCs, resulting in excessive ROS production and decreased ATP levels, which are related to the proliferation, migration and apoptosis of VSMCs. Thus, maintaining mitochondrial homeostasis in VSMCs is a possible way to relieve pathologic vascular remodeling. This review aims to provide an overview of the role of mitochondria homeostasis in VSMCs during vascular remodeling and potential mitochondria-targeted therapies.
Collapse
|
17
|
Warwick T, Buchmann GK, Pflüger-Müller B, Spaeth M, Schürmann C, Abplanalp W, Tombor L, John D, Weigert A, Leo-Hansmann M, Dimmeler S, Brandes RP. Acute injury to the mouse carotid artery provokes a distinct healing response. Front Physiol 2023; 14:1125864. [PMID: 36824462 PMCID: PMC9941170 DOI: 10.3389/fphys.2023.1125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Treatment of vascular stenosis with angioplasty results in acute vascular damage, which may lead to restenosis. Owing to the highly complex cellularity of blood vessels, the healing response following this damage is incompletely understood. To gain further insight into this process, scRNA-seq of mouse carotid tissue after wire injury was performed. Stages of acute inflammation, resolution and remodeling were recapitulated in these data. To identify cell types which give rise to neointima, analyses focused on smooth muscle cell and fibroblast populations, and included data integration with scRNA-seq data from myocardial infarction and atherosclerosis datasets. Following carotid injury, a subpopulation of smooth muscle cells which also arises during atherosclerosis and myocardial infarction was identified. So-called stem cell/endothelial cell/monocyte (SEM) cells are candidates for repopulating injured vessels, and were amongst the most proliferative cell clusters following wire-injury of the carotid artery. Importantly, SEM cells exhibit specific transcriptional profiles which could be therapeutically targeted. SEM cell gene expression patterns could also be detected in bulk RNA-sequencing of neointimal tissue isolated from injured carotid vessels by laser capture microdissection. These data indicate that phenotypic plasticity of smooth muscle cells is highly important to the progression of lumen loss following acute carotid injury. Interference with SEM cell formation could be an innovative approach to combat development of restenosis.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Giulia Karolin Buchmann
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Wesley Abplanalp
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lukas Tombor
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - David John
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Leo-Hansmann
- Department of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,*Correspondence: Ralf P. Brandes,
| |
Collapse
|
18
|
Feng M, Tu W, Zhou Q, Du Y, Xu K, Wang Y. circHECTD1 Promotes the Proliferation and Migration of Human Brain Vascular Smooth Muscle Cells via Interacting with KHDRBS3 to Stabilize EZH2 mRNA Expression. J Inflamm Res 2023; 16:1311-1323. [PMID: 36998321 PMCID: PMC10046248 DOI: 10.2147/jir.s398199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Purpose The objective of this paper is to explore the role of circHECTD1 in vascular smooth muscle cells (VSMCs) and atherosclerosis (AS). Methods VSMCs were treated with platelet-derived growth factor-BB (PDGF-BB) in vitro, and the level of circHECTD1 was determined using qRT-PCR. Cell proliferation, migration, and invasion were analyzed using CCK8 and transwell assays. Cell apoptosis and cell cycle were analyzed using flow cytometry. The binding interaction between circHECTD1 and KHDRBS3 or EZH2 was investigated using the RIP, RNA pull-down. Results CircHECTD1 was upregulated in PDGF-BB-induced VSMCs with a dose-dependent and time-dependent manner. Knockdown of circHECTD1 suppressed VSMCsproliferation and migration and enhanced cell apoptosis in VSMCs, while circHECTD1 overexpression yielded opposite effects. Mechanistically, circHECTD1 could interact with KHDRBS3, thus enhanced the stability of EZH2 mRNA and increased EZH2 protein level. In addition, silencing EZH2 in VSMCs reversed the proliferation-enhancing effect of circHECTD1 overexpression. Conclusion Our findings provided providing a potential prognostic and therapy biomarker for AS.
Collapse
Affiliation(s)
- Meina Feng
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, People’s Republic of China
| | - Wenxian Tu
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, People’s Republic of China
| | - Qin Zhou
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, People’s Republic of China
| | - Yuanmin Du
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, People’s Republic of China
| | - Kang Xu
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, People’s Republic of China
| | - Yunfeng Wang
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, People’s Republic of China
- Correspondence: Yunfeng Wang, Email
| |
Collapse
|
19
|
Zhang J, Zhao WR, Shi WT, Tan JJ, Zhang KY, Tang JY, Chen XL, Zhou ZY. Tribulus terrestris L. extract ameliorates atherosclerosis by inhibition of vascular smooth muscle cell proliferation in ApoE -/- mice and A7r5 cells via suppression of Akt/MEK/ERK signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115547. [PMID: 35870688 DOI: 10.1016/j.jep.2022.115547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.
Collapse
Affiliation(s)
- Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jun-Jie Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Kai-Yu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
20
|
Sawma T, Shaito A, Najm N, Sidani M, Orekhov A, El-Yazbi AF, Iratni R, Eid AH. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis 2022; 358:12-28. [DOI: 10.1016/j.atherosclerosis.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
|
21
|
Xu H, Fang B, Bao C, Mao X, Zhu C, Ye L, Liu Q, Li Y, Du C, Qi H, Zhang X, Guan Y. The Prostaglandin E2 Receptor EP4 Promotes Vascular Neointimal Hyperplasia through Translational Control of Tenascin C via the cAPM/PKA/mTORC1/rpS6 Pathway. Cells 2022; 11:cells11172720. [PMID: 36078128 PMCID: PMC9454981 DOI: 10.3390/cells11172720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important metabolite of arachidonic acid which plays a crucial role in vascular physiology and pathophysiology via its four receptors (EP1-4). However, the role of vascular smooth muscle cell (VSMC) EP4 in neointimal hyperplasia is largely unknown. Here we showed that VSMC-specific deletion of EP4 (VSMC-EP4) ameliorated, while VSMC-specific overexpression of human EP4 promoted, neointimal hyperplasia in mice subjected to femoral artery wire injury or carotid artery ligation. In vitro studies revealed that pharmacological activation of EP4 promoted, whereas inhibition of EP4 suppressed, proliferation and migration of primary-cultured VSMCs. Mechanically, EP4 significantly increased the protein expression of tenascin C (TN-C), a pro-proliferative and pro-migratory extracellular matrix protein, at the translational level. Knockdown of TN-C markedly suppressed EP4 agonist-induced VSMC proliferation and migration. Further studies uncovered that EP4 upregulated TN-C protein expression via the PKA/mTORC1/Ribosomal protein S6 (rpS6) pathway. Together, our findings demonstrate that VSMC EP4 increases TN-C protein expression to promote neointimal hyperplasia via the PKA-mTORC1-rpS6 pathway. Therefore, VSMC EP4 may represent a potential therapeutic target for vascular restenosis.
Collapse
Affiliation(s)
- Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Bingying Fang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chengzhen Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Xiuhui Mao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chunhua Zhu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Lan Ye
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Qian Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Yaqing Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chunxiu Du
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Hang Qi
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
- Correspondence: (X.Z.); (Y.G.)
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
- Correspondence: (X.Z.); (Y.G.)
| |
Collapse
|
22
|
Noh JY, Lee IP, Han NR, Kim M, Min YK, Lee SY, Yun SH, Kim SI, Park T, Chung H, Park D, Lee CH. Additive Effect of CD73 Inhibitor in Colorectal Cancer Treatment With CDK4/6 Inhibitor Through Regulation of PD-L1. Cell Mol Gastroenterol Hepatol 2022; 14:769-788. [PMID: 35843546 PMCID: PMC9424593 DOI: 10.1016/j.jcmgh.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Although cancer immunotherapies are effective for advanced-stage cancers, there are no clinically approved immunotherapies for colon cancers (CRCs). Therefore, there is a high demand for the development of novel therapies. Extracellular adenosine-mediated signaling is considered a promising target for advanced-stage cancers that are nonresponsive to programmed death 1 (PD-1)-/programmed death-ligand 1 (PD-L1)-targeted immunotherapies. In this study, we aimed to elucidate novel tumorigenic mechanisms of extracellular adenosine. METHODS To investigate the effects of extracellular adenosine on tumor-associated macrophages, peripheral blood-derived human macrophages were treated with adenosine and analyzed using flow cytometry and Western blot. Changes in adenosine-treated macrophages were further assessed using multi-omics analysis, including total RNA sequencing and proteomics. Colon cancer mouse models were used to measure the therapeutic efficacy of AB680 and palbociclib. We also used tissue microarrays of patients with CRC, to evaluate their clinical relevance. RESULTS Extracellular adenosine-mediated reduction of cyclin D1 (CCND1) was found to be critical for the regulation of immune checkpoint molecules and PD-L1 levels in human macrophages, indicating that post-translational modification of PD-L1 is affected by adenosine. A potent CD73 selective inhibitor, AB680, reversed the effects of adenosine on CCND1 and PD-L1. This result strongly suggests that AB680 is a combinatory therapeutic option to overcome the undesired side effects of the cyclin-dependent kinase 4/6 inhibitor, palbociclib, which increases PD-L1 expression in tumors. Because palbociclib is undergoing clinical trials for metastatic CRC in combination with cetuximab (clinical trial number: NCT03446157), we validated that the combination of AB680 and palbociclib significantly improved anti-tumor efficacy in CRC animal models, thereby highlighting it as a novel immunotherapeutic strategy. We further assessed whether the level of CCND1 in tumor-associated macrophages was indeed reduced in tumor sections obtained from patients with CRC, for evaluating the clinical relevance of this strategy. CONCLUSIONS In this study, we demonstrated that a novel combination therapy of AB680 and palbociclib may be advantageous for the treatment of CRC.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Aging convergence research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - In Pyo Lee
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Na Rae Han
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Miok Kim
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Yong Ki Min
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Sung Ho Yun
- Center for Research Equipment, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Korea
| | - Hyunmin Chung
- Aging convergence research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Korea,Dr Daeui Park, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea. tel: +82-42-610-8251.
| | - Chang Hoon Lee
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea,Correspondence Address correspondence to: Dr Chang Hoon Lee, Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea. tel: +82-42-860-7414.
| |
Collapse
|
23
|
Tan YQ, Li J, Chen HW. Epac, a positive or negative signaling molecule in cardiovascular diseases. Pharmacotherapy 2022; 148:112726. [DOI: 10.1016/j.biopha.2022.112726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
|
24
|
Wilson S, Mone P, Kansakar U, Jankauskas SS, Donkor K, Adebayo A, Varzideh F, Eacobacci M, Gambardella J, Lombardi A, Santulli G. Diabetes and restenosis. Cardiovasc Diabetol 2022; 21:23. [PMID: 35164744 PMCID: PMC8845371 DOI: 10.1186/s12933-022-01460-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023] Open
Abstract
Restenosis, defined as the re-narrowing of an arterial lumen after revascularization, represents an increasingly important issue in clinical practice. Indeed, as the number of stent placements has risen to an estimate that exceeds 3 million annually worldwide, revascularization procedures have become much more common. Several investigators have demonstrated that vessels in patients with diabetes mellitus have an increased risk restenosis. Here we present a systematic overview of the effects of diabetes on in-stent restenosis. Current classification and updated epidemiology of restenosis are discussed, alongside the main mechanisms underlying the pathophysiology of this event. Then, we summarize the clinical presentation of restenosis, emphasizing the importance of glycemic control in diabetic patients. Indeed, in diabetic patients who underwent revascularization procedures a proper glycemic control remains imperative.
Collapse
Affiliation(s)
- Scott Wilson
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Pasquale Mone
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
| | - Urna Kansakar
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
| | - Kwame Donkor
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Ayobami Adebayo
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Fahimeh Varzideh
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael Eacobacci
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA
- International Translational Research and Medical Education (ITME) Consortium, Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Angela Lombardi
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA
| | - Gaetano Santulli
- Department of Medicine, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY, USA.
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI),, Albert Einstein College of Medicine, New York, NY, USA.
- International Translational Research and Medical Education (ITME) Consortium, Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.
| |
Collapse
|
25
|
Tao J, Cao X, Yu B, Qu A. Vascular Stem/Progenitor Cells in Vessel Injury and Repair. Front Cardiovasc Med 2022; 9:845070. [PMID: 35224067 PMCID: PMC8866648 DOI: 10.3389/fcvm.2022.845070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular repair upon vessel injury is essential for the maintenance of arterial homeostasis and function. Stem/progenitor cells were demonstrated to play a crucial role in regeneration and replenishment of damaged vascular cells during vascular repair. Previous studies revealed that myeloid stem/progenitor cells were the main sources of tissue regeneration after vascular injury. However, accumulating evidences from developing lineage tracing studies indicate that various populations of vessel-resident stem/progenitor cells play specific roles in different process of vessel injury and repair. In response to shear stress, inflammation, or other risk factors-induced vascular injury, these vascular stem/progenitor cells can be activated and consequently differentiate into different types of vascular wall cells to participate in vascular repair. In this review, mechanisms that contribute to stem/progenitor cell differentiation and vascular repair are described. Targeting these mechanisms has potential to improve outcome of diseases that are characterized by vascular injury, such as atherosclerosis, hypertension, restenosis, and aortic aneurysm/dissection. Future studies on potential stem cell-based therapy are also highlighted.
Collapse
Affiliation(s)
- Jiaping Tao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
- *Correspondence: Baoqi Yu
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
- Aijuan Qu
| |
Collapse
|
26
|
Zhang F, Xiao X, Li Y, Wu H, Deng X, Jiang Y, Zhang W, Wang J, Ma X, Zhao Y. Therapeutic Opportunities of GPBAR1 in Cholestatic Diseases. Front Pharmacol 2022; 12:805269. [PMID: 35095513 PMCID: PMC8793736 DOI: 10.3389/fphar.2021.805269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
GPBAR1, a transmembrane G protein-coupled receptor for bile acids, is widely expressed in multiple tissues in humans and rodents. In recent years, GPBAR1 has been thought to play an important role in bile homeostasis, metabolism and inflammation. This review specifically focuses on the function of GPBAR1 in cholestatic liver disease and summarizes the various pathways through which GPBAR1 acts in cholestatic models. GPBAR1 mainly regulates cholestasis in a holistic system of liver-gallbladder-gut formation. In the state of cholestasis, the activation of GPBAR1 could regulate liver inflammation, induce cholangiocyte regeneration to maintain the integrity of the biliary tree, control the hydrophobicity of the bile acid pool and promote the secretion of bile HCO3−. All these functions of GPBAR1 might be clear ways to protect against cholestatic diseases and liver injury. However, the characteristic of GPBAR1-mediated proliferation increases the risk of proliferation of cholangiocarcinoma in malignant transformed cholangiocytes. This dichotomous function of GPBAR1 limits its use in cholestasis. During disease treatment, simultaneous activation of GPBAR1 and FXR receptors often results in improved outcomes, and this strategy may become a crucial direction in the development of bile acid-activated receptors in the future.
Collapse
Affiliation(s)
- Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Wu B, Xu C, Ding HS, Qiu L, Gao JX, Li M, Xiong Y, Xia H, Liu X. Galangin inhibits neointima formation induced by vascular injury via regulating the PI3K/AKT/mTOR pathway. Food Funct 2022; 13:12077-12092. [DOI: 10.1039/d2fo02441a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Galangin inhibits neointimal hyperplasia after vascular injury by inhibiting vascular smooth muscle cell proliferation, migration, phenotypic switching and promoting autophagy.
Collapse
Affiliation(s)
- Bing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hua-Sheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ji-Xian Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ming Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuanguo Xiong
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
28
|
Dillard J, Meng X, Nelin L, Liu Y, Chen B. Nitric oxide activates AMPK by modulating PDE3A in human pulmonary artery smooth muscle cells. Physiol Rep 2021; 8:e14559. [PMID: 32914566 PMCID: PMC7507575 DOI: 10.14814/phy2.14559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/17/2023] Open
Abstract
Phosphodiesterase 3 (PDE3), of which there are two isoforms, PDE3A and PDE3B, hydrolyzes cAMP and cGMP—cyclic nucleotides important in the regulation of pulmonary vascular tone. PDE3 has been implicated in pulmonary hypertension unresponsive to nitric oxide (NO); however, contributions of the two isoforms are not known. Furthermore, adenosine monophosphate‐activated protein kinase (AMPK), a critical regulator of cellular energy homeostasis, has been shown to be modulated by PDE3 in varying cell types. While AMPK has recently been implicated in pulmonary hypertension pathogenesis, its role and regulation in the pulmonary vasculature remain to be elucidated. Therefore, we utilized human pulmonary artery smooth muscle cells (hPASMC) to test the hypothesis that NO increases PDE3 expression in an isoform‐specific manner, thereby activating AMPK and inhibiting hPASMC proliferation. We found that in hPASMC, NO treatment increased PDE3A protein expression and PDE3 activity with a concomitant decrease in cAMP concentrations and increase in AMPK phosphorylation. Knockdown of PDE3A using siRNA transfection blunted the NO‐induced AMPK activation, indicating that PDE3A plays an important role in AMPK regulation in hPASMC. Treatment with a soluble guanylate cyclase (sGC) stimulator increased PDE3A expression and AMPK activation similar to that seen with NO treatment, whereas treatment with a sGC inhibitor blunted the NO‐induced increase in PDE3A and AMPK activation. These results suggest that NO increases PDE3A expression, decreases cAMP, and activates AMPK via the sGC‐cGMP pathway. We speculate that NO‐induced increases in PDE3A and AMPK may have implications in the pathogenesis and the response to therapies in pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- Julie Dillard
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Xiaomei Meng
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Leif Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
29
|
Perrault R, Molnar P, Poole J, Zahradka P. PDGF-BB-mediated activation of CREB in vascular smooth muscle cells alters cell cycling via Rb, FoxO1 and p27 kip1. Exp Cell Res 2021; 404:112612. [PMID: 33895117 DOI: 10.1016/j.yexcr.2021.112612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION & AIM The vascular response to injury leads to the secretion of several factors, including platelet-derived growth factor (PDGF-BB). PDGF-BB stimulates smooth muscle cell (SMC) conversion to the synthetic phenotype, thereby enhancing proliferation and migration, and contributing to neointimal hyperplasia. Likewise, the cAMP response element binding protein (CREB) transcription factor has been shown to mediate SMC proliferation in response to various mitogens. We therefore investigated the contribution of CREB to PDGF-BB-dependent proliferation of SMCs with the intention of identifying signaling pathways involved both up and downstream of CREB activation. METHODS & RESULTS Treatments were performed on vascular SMCs from a porcine coronary artery explant model. The role of CREB was examined via adenoviral expression of a dominant-negative CREB mutant (kCREB) as well as inhibition of CREB binding protein (CBP). Involvement of the p27kip1 pathway was determined using a constitutively expressing p27kip1 adenoviral vector. PDGF-BB stimulated transient CREB phosphorylation on Ser-133 via ERK1/2-, PI3-kinase- and Src-dependent pathways. Expression of kCREB decreased PDGF-BB-dependent cell proliferation. PCNA expression and Rb phosphorylation were also inhibited by kCREB. These cell cycle proteins are controlled via p27kip1 expression in response to CREB-dependent post-translational modification of FoxO1. kCREB had no effect on Cyclin D1 expression, but did prevent PDGF-BB-induced Cyclin D1 nuclear translocation. An interaction inhibitor of CBP confirmed that Cyclin D1 is downstream of PDGF-BB and CREB. CONCLUSION CREB phosphorylation is required for SMC proliferation in response to PDGF-BB. This phenotypic change requires CBP and is mediated by Cyclin D1 and p27kip as a result of changes in FoxO1 activity.
Collapse
Affiliation(s)
- Raissa Perrault
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada; Department of Experimental Sciences, Université de Saint Boniface, Winnipeg, Manitoba, Canada
| | - Peter Molnar
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada
| | - Jenna Poole
- Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Molecular Physiology Laboratory, St. Boniface Albrechtsen Research Centre, Canada.
| |
Collapse
|
30
|
Ghasempour G, Mahabadi VP, Shabani M, Mohammadi A, Zamani-Garmsiri F, Amirfarhangi A, Karimi M, Najafi M. miR-181b and miR-204 suppress the VSMC proliferation and migration by downregulation of HCK. Microvasc Res 2021; 136:104172. [PMID: 33894273 DOI: 10.1016/j.mvr.2021.104172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND VSMC proliferation and migration pathways play important roles in plaque formation in the vessel stenosis and re-stenosis processes. The microRNAs affect the expression of many genes that regulate these cellular processes. The aim of this study was to investigate the effects of miR-181b, miR-204, and miR-599 on the gene and protein expression levels of hematopoietic cell kinase (HCK) in VSMCs. METHODS miR-181b, miR-204 were predicted for the suppression of HCK in the chemokine signaling pathway using bioinformatics tools. Then, the VSMCs were transfected by PEI-containing microRNAs. The HCK gene and protein expression levels were evaluated using RT-qPCR and Western blotting techniques, respectively. Moreover, the cellular proliferation and migration were evaluated by MTT and scratch assay methods. RESULTS The miR-181b and miR-204 decreased significantly the HCK gene and (total and phosphorylated) protein expression levels. Also, the miR-599 did not show any significant effects on the HCK gene and protein levels. The data also showed that miR-181b, miR-204, and miR-599 prevent significantly the proliferation and migration of VSMCs. CONCLUSION The downregulation of HCK by miR-181b and miR-204 suppressed the VSMC proliferation and migration.
Collapse
Affiliation(s)
- Ghasem Ghasempour
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Vice-Chancellor for Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Mohammadi
- Clinical Biochemistry Department, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Transcription factors regulated by cAMP in smooth muscle of the myometrium at human parturition. Biochem Soc Trans 2021; 49:997-1011. [PMID: 33860781 PMCID: PMC8106496 DOI: 10.1042/bst20201173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) contributes to maintenance of a quiescent (relaxed) state in the myometrium (i.e. uterine smooth muscle) during pregnancy, which most commonly has been attributed to activation of protein kinase A (PKA). PKA-mediated phosphorylation of cytosolic contractile apparatus components in myometrial smooth muscle cells (mSMCs) are known to promote relaxation. Additionally, PKA also regulates nuclear transcription factor (TF) activity to control expression of genes important to the labour process; these are mostly involved in actin-myosin interactions, cell-to-cell connectivity and inflammation, all of which influence mSMC transition from a quiescent to a contractile (pro-labour) phenotype. This review focuses on the evidence that cAMP modulates the activity of TFs linked to pro-labour gene expression, predominantly cAMP response element (CRE) binding TFs, nuclear factor κB (NF-κB), activator protein 1 (AP-1) family and progesterone receptors (PRs). This review also considers the more recently described exchange protein directly activated by cAMP (EPAC) that may oppose the pro-quiescent effects of PKA, as well as explores findings from other cell types that have the potential to be of novel relevance to cAMP action on TF function in the myometrium.
Collapse
|
32
|
Identification of the antidepressive properties of C1, a specific inhibitor of Skp2, in mice. Behav Pharmacol 2021; 32:62-72. [PMID: 33416256 DOI: 10.1097/fbp.0000000000000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have reported that SMIP004, an inhibitor of S-phase kinase-associated protein 2 (Skp2), displays antidepressant-like activities in stress-naïve and chronically stressed mice. Here, we investigated the antidepressant-like effect of C1, another inhibitor of Skp2, in mouse models following acute or chronic drug administration at different doses and treatment times by using the tail suspension test (TST), forced swimming test (FST), and social interaction test (SIT). The time- and dose-dependent results showed that the antidepressant-like effect of C1 occurred 8 days after the drug treatment, and C1 produced antidepressant-like activities at the dose of 5 and 10 but not 1 mg/kg in male or female mice. C1 administration (5 mg/kg) also induced antidepressant-like effects in stress-naïve mice in a three-times administration mode within 24 h (24, 5, and 1 h before the test) but not in an acute administration mode (1 h before the test). The C1 and fluoxetine co-administration produced additive effect on depression-like behaviors in stress-naïve mice. The antidepressant-like effect of C1 was not associated with the change in locomotor activity, as no increased locomotor activity was observed in different treatment modes. Furthermore, the long-term C1 treatment (5 mg/kg) was found to ameliorate the depression-like behaviors in chronic social defeat stress-exposed mice, suggesting that C1 can produce antidepressant-like actions in stress conditions. Since C1 is a specific inhibitor of Skp2, our results demonstrate that inhibition of Skp2 might be a potential strategy for the treatment of depression, and Skp2 may be potential target for the development of novel antidepressants.
Collapse
|
33
|
Chen H, Wang J, Xie L, Shen YL, Wang HM, Zheng KL, Zhang Q. Correlation between serum cartilage oligomeric matrix protein and major adverse cardiovascular events within 30 days in patients with acute coronary syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:353. [PMID: 33708980 PMCID: PMC7944313 DOI: 10.21037/atm-21-333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background We studied the correlation between cartilage oligomeric matrix protein (COMP) and major adverse cardiovascular events in patients with acute coronary syndrome (ACS) within 30 days. Methods This study included 170 ACS patients who were hospitalized in the Second Affiliated Hospital of Nantong University from August 2017 to April 2019. Serum COMP level was measured at baseline. The enrolled patients were followed up for 30 days and grouped according to the occurrence of major adverse cardiovascular events (MACE) during follow-up. Among the 170 patients, 23 patients had MACE during hospitalization (MACE group), and 147 patients had no MACE (no MACE group). Results The serum COMP levels in the MACE group were significantly higher than those of the non-MACE group [84.85 (51.55, 141.75) vs. 20.65 (9.11, 46.31) ng/mL, respectively, P<0.05]. The area under the receiver operating characteristic (ROC) curve for COMP in predicting the occurrence of MACE within 30 days was 0.839, with a cutoff level of 39.9 ng/mL [95% confidence interval (CI): 0.774–0.890], 86.96% sensitivity, and 72.79% specificity (P<0.0001). Multivariate logistic regression analysis showed that serum COMP could be used as an independent predictor of MACE within 30 days in ACS patients [odds ratio (OR): 1.024, 95% CI: 1.0133–1.0349, P=0.0001]. Conclusions Serum COMP is associated with the short-term prognosis of ACS patients. High serum COMP levels can be used as a predictor of MACE within 30 days in ACS patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ling Xie
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ya-Li Shen
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hui-Min Wang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Kou-Long Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qing Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
34
|
Corsini M, Moroni E, Ravelli C, Grillo E, Presta M, Mitola S. In Situ DNA/Protein Interaction Assay to Visualize Transcriptional Factor Activation. Methods Protoc 2020; 3:mps3040080. [PMID: 33233345 PMCID: PMC7720131 DOI: 10.3390/mps3040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
The chick embryo chorioallantoic membrane (CAM) represents a powerful in vivo model to study several physiological and pathological processes including inflammation and tumor progression. Nevertheless, the possibility of deepening the molecular processes in the CAM system is biased by the absence/scarcity of chemical and biological reagents, designed explicitly for avian species. This is particularly true for transcriptional factors, proteinaceous molecules that regulate various cellular responses, including proliferation, survival, and differentiation. Here, we propose a detailed antibody-independent protocol to visualize the activation and nuclear translocation of transcriptional factors in cells or in tissues of different animal species. As a proof of concept, DNA/cAMP response element-binding protein (CREB) interaction was characterized on the CAM tissue using oligonucleotides containing the palindromic binding sequence of CREB. Scrambled oligonucleotides were used as controls. In situ DNA/protein interaction protocol is a versatile method that is useful for the study of transcription factors in the cell and tissue of different origins.
Collapse
|
35
|
Yarwood SJ. Special Issue on "New Advances in Cyclic AMP Signalling"-An Editorial Overview. Cells 2020; 9:cells9102274. [PMID: 33053803 PMCID: PMC7599692 DOI: 10.3390/cells9102274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclic nucleotides 3′,5′-adenosine monophosphate (cyclic AMP) signalling system underlies the control of many biological events and disease processes in man. Cyclic AMP is synthesised by adenylate cyclase (AC) enzymes in order to activate effector proteins and it is then degraded by phosphodiesterase (PDE) enzymes. Research in recent years has identified a range of cell-type-specific cyclic AMP effector proteins, including protein kinase A (PKA), exchange factor directly activated by cyclic AMP (EPAC), cyclic AMP responsive ion channels (CICs), and the Popeye domain containing (POPDC) proteins, which participate in different signalling mechanisms. In addition, recent advances have revealed new mechanisms of action for cyclic AMP signalling, including new effectors and new levels of compartmentalization into nanodomains, involving AKAP proteins and targeted adenylate cyclase and phosphodiesterase enzymes. This Special Issue contains 21 papers that highlight advances in our current understanding of the biology of compartmentlised cyclic AMP signalling. This ranges from issues of pathogenesis and associated molecular pathways, functional assessment of novel nanodomains, to the development of novel tool molecules and new techniques for imaging cyclic AMP compartmentilisation. This editorial aims to summarise these papers within the wider context of cyclic AMP signalling.
Collapse
Affiliation(s)
- Stephen John Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
| |
Collapse
|
36
|
Yu Y, Su X, Qin Q, Hou Y, Zhang X, Zhang H, Jia M, Chen Y. Yes-associated protein and transcriptional coactivator with PDZ-binding motif as new targets in cardiovascular diseases. Pharmacol Res 2020; 159:105009. [DOI: 10.1016/j.phrs.2020.105009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|
37
|
Shigeoka T, Nomiyama T, Kawanami T, Hamaguchi Y, Horikawa T, Tanaka T, Irie S, Motonaga R, Hamanoue N, Tanabe M, Nabeshima K, Tanaka M, Yanase T, Kawanami D. Activation of overexpressed glucagon-like peptide-1 receptor attenuates prostate cancer growth by inhibiting cell cycle progression. J Diabetes Investig 2020; 11:1137-1149. [PMID: 32146725 PMCID: PMC7477521 DOI: 10.1111/jdi.13247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Incretin therapy is a common treatment for type 2 diabetes mellitus. We have previously reported an anti-prostate cancer effect of glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4. The attenuation of cell proliferation in the prostate cancer cell line was dependent on GLP-1R expression. Here, we examined the relationship between human prostate cancer severity and GLP-1R expression, as well as the effect of forced expression of GLP-1R using a lentiviral vector. MATERIALS AND METHODS Prostate cancer tissues were extracted by prostatectomy and biopsy. GLP-1R was overexpressed in ALVA-41 cells using a lentiviral vector (ALVA-41-GLP-1R cells). GLP-1R expression was detected by immunohistochemistry and quantitative polymerase chain reaction. Cell proliferation was examined by growth curves and bromodeoxyuridine incorporation assays. Cell cycle distribution and regulators were examined by flow cytometry and western blotting. In vivo experiments were carried out using a xenografted model. RESULTS GLP-1R expression levels were significantly inversely associated with the Gleason score of human prostate cancer tissues. Abundant GLP-1R expression and functions were confirmed in ALVA-41-GLP-1R cells. Exendin-4 significantly decreased ALVA-41-GLP-1R cell proliferation in a dose-dependent manner. DNA synthesis and G1-to-S phase transition were inhibited in ALVA-41-GLP-1R cells. SKP2 expression was decreased and p27Kip1 protein was subsequently increased in ALVA-41-GLP-1R cells treated with exendin-4. In vivo experiments carried out by implanting ALVA-41-GLP-1R cells showed that exendin-4 decreased prostate cancer growth by activation of GLP-1R overexpressed in ALVA41-GLP-1R cells. CONCLUSIONS Forced expression of GLP-1R attenuates prostate cancer cell proliferation by inhibiting cell cycle progression in vitro and in vivo. Therefore, GLP-1R activation might be a potential therapy for prostate cancer.
Collapse
Affiliation(s)
- Toru Shigeoka
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
- Research institute for Islet BiologyFukuoka UniversityFukuokaJapan
| | - Takako Kawanami
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
| | - Tsuyoshi Horikawa
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
| | - Shinichiro Irie
- Department of UrologySchool of MedicineFukuoka UniversityFukuokaJapan
| | - Ryoko Motonaga
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
| | - Nobuya Hamanoue
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
| | - Kazuki Nabeshima
- Department of PathologySchool of MedicineFukuoka UniversityFukuokaJapan
| | - Masatoshi Tanaka
- Department of UrologySchool of MedicineFukuoka UniversityFukuokaJapan
| | - Toshihiko Yanase
- Research institute for Islet BiologyFukuoka UniversityFukuokaJapan
- Muta HospitalFukuokaJapan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes MellitusSchool of MedicineFukuoka UniversityFukuokaJapan
| |
Collapse
|
38
|
EPAC in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21145160. [PMID: 32708284 PMCID: PMC7404248 DOI: 10.3390/ijms21145160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.
Collapse
|
39
|
Lupieri A, Blaise R, Ghigo A, Smirnova N, Sarthou MK, Malet N, Limon I, Vincent P, Hirsch E, Gayral S, Ramel D, Laffargue M. A non-catalytic function of PI3Kγ drives smooth muscle cell proliferation after arterial damage. J Cell Sci 2020; 133:jcs.245969. [PMID: 32482794 DOI: 10.1242/jcs.245969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Arterial remodeling in hypertension and intimal hyperplasia involves inflammation and disrupted flow, both of which contribute to smooth muscle cell dedifferentiation and proliferation. In this context, our previous results identified phosphoinositide 3-kinase γ (PI3Kγ) as an essential factor in inflammatory processes of the arterial wall. Here, we identify for the first time a kinase-independent role of nonhematopoietic PI3Kγ in the vascular wall during intimal hyperplasia using PI3Kγ-deleted mice and mice expressing a kinase-dead version of the enzyme. Moreover, we found that the absence of PI3Kγ in vascular smooth muscle cells (VSMCs) leads to modulation of cell proliferation, associated with an increase in intracellular cAMP levels. Real-time analysis of cAMP dynamics revealed that PI3Kγ modulates the degradation of cAMP in primary VSMCs independently of its kinase activity through regulation of the enzyme phosphodiesterase 4. Importantly, the use of an N-terminal competing peptide of PI3Kγ blocked primary VSMC proliferation. These data provide evidence for a kinase-independent role of PI3Kγ in arterial remodeling and reveal novel strategies targeting the docking function of PI3Kγ for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Adrien Lupieri
- Department of Vascular Biology of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse 3, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse, France
| | - Régis Blaise
- Sorbonne Université, Faculté des Sciences et Ingénierie, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation Biologique et Vieillissement (B2A), 75005 Paris, France
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Natalia Smirnova
- Department of Vascular Biology of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse 3, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse, France
| | - Marie-Kerguelen Sarthou
- Department of Vascular Biology of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse 3, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse, France
| | - Nicole Malet
- Department of Vascular Biology of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse 3, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse, France
| | - Isabelle Limon
- Sorbonne Université, Faculté des Sciences et Ingénierie, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation Biologique et Vieillissement (B2A), 75005 Paris, France
| | - Pierre Vincent
- Sorbonne Université, Faculté des Sciences et Ingénierie, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation Biologique et Vieillissement (B2A), 75005 Paris, France
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Stéphanie Gayral
- Department of Vascular Biology of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse 3, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse, France
| | - Damien Ramel
- Department of Vascular Biology of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse 3, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse, France
| | - Muriel Laffargue
- Department of Vascular Biology of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse 3, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Toulouse, France
| |
Collapse
|
40
|
Endogenous hydrogen sulfide improves vascular remodeling through PPARδ/SOCS3 signaling. J Adv Res 2020; 27:115-125. [PMID: 33318871 PMCID: PMC7728593 DOI: 10.1016/j.jare.2020.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Mounting evidences demonstrated the deficiency of hydrogen sulfide (H2S) facilitated the progression of cardiovascular diseases. However, the exact effects of H2S on vascular remodeling are not consistent. Objectives This study aimed to investigate the beneficial role of endogenous H2S on vascular remodeling. Methods CSE inhibitor, DL-propargylglycine (PPG) was used to treat mice and vascular smooth muscle cells (VSMCs). Sodium hydrosulfide (NaHS) was given to provide hydrogen sulfide. Vascular tension, H&E staining, masson trichrome staining, western blot and CCK8 were used to determine the vascular remodeling, expressions of inflammatory molecules and proliferation of VSMCs. Results The deficiency of endogenous H2S generated vascular remodeling with aggravated active and passive contraction, thicken aortic walls, collagen deposition, increased phosphorylation of STAT3, decreased production of PPARδ and SOCS3 in aortas, which were reversed by NaHS. PPG inhibited expression of PPARδ and SOCS3, stimulated the phosphorylation of STAT3, increased inflammatory molecules production and proliferation rate of VSMCs which could all be corrected by NaHS supply. PPARδ agonist GW501516 offered protections similar to NaHS in PPG treated VSMCs. Aggravated active and passive contraction in PPG mice aortas, upregulated p-STAT3 and inflammatory molecules, downregulated SOCS3 and phenotype transformation in PPG treated VSMCs could be corrected by PPARδ agonist GW501516 treatment. On the contrary, PPARδ antagonist GSK0660 exhibited opposite effects on vascular contraction in aortas, expressions of p-STAT3 and SOCS3 in VSMCs compared with GW501516. Conclusion In a word, endogenous H2S protected against vascular remodeling through preserving PPARδ/SOCS3 anti-inflammatory signaling pathway. Deficiency of endogenous H2S should be considered as a risk factor for VSMCs dysfunction.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Intracranial atherosclerosis (ICAS) is the most common cause of stroke throughout the world. It also increases the risk of recurrent stroke and dementia. As a complex and multifactorial disease, ICAS is influenced by multiple genetic, biological, and environmental factors. This review summarizes the candidate gene and genome-wide studies aimed at discovering genetic risk factors of ICAS. RECENT FINDINGS Numerous studies have focused on the association between single-nucleotide polymorphisms (SNPs) of atherosclerosis-related genes and the risk of ICAS. Variants in adiponectin Q (ADIPOQ), ring finger protein 213 (RNF213), apolipoprotein E (APOE), phosphodiesterase 4D (PDE4D), methylenetetrahydrofolate reductase (MTHFR), lipoprotein lipase (LPL), α-adducin (ADD1) genes, angiotensin-converting enzyme (ACE), and other genes related to renin-angiotensin-aldosterone system have been associated with ICAS. We review the available evidences on the candidate genes and SNPs associated with genetic susceptibility to ICAS, and point out future developments of this field. Genetic discoveries could have clinical implications for intracranial atherosclerotic disease.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th Street, 6th floor, Suite 639, New York, NY, 10032, USA
| | - Jose Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th Street, 6th floor, Suite 639, New York, NY, 10032, USA.
| |
Collapse
|