1
|
Chen ZG, Xie YT, Yang C, Xiao T, Chen SY, Wu JH, Guo QN, Gao L. M2 macrophages secrete CCL20 to regulate iron metabolism and promote daunorubicin resistance in AML cells. Life Sci 2025; 361:123297. [PMID: 39645162 DOI: 10.1016/j.lfs.2024.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Chemotherapy resistance is a significant clinical challenge in the treatment of leukemia. M2 macrophages have been identified as key contributors to the development of chemotherapy resistance in cancer, yet the precise mechanisms by which macrophages regulate this resistance remain elusive. Our study has identified CCL20 as a pivotal factor in the promotion of chemoresistance in AML cells by M2 macrophages. The chemotherapeutic agent daunorubicin induces a marked increase in ROS and lipid peroxidation levels within AML cells. This is accompanied by the inhibition of the SLC7A11/GCL/GPX4 signaling axis, elevated levels of intracellular free iron, disrupted iron metabolism, and consequent mitochondrial damage, ultimately leading to ferroptosis. Notably, CCL20 enhances the ability of AML cells to maintain iron homeostasis by upregulating SLC7A11 protein activity, mitigating mitochondrial damage, and inhibiting ferroptosis, thereby contributing to chemotherapy resistance. Furthermore, in vivo experiments demonstrated that blocking CCL20 effectively restores the sensitivity of AML cells to daunorubicin chemotherapy. Collectively, these findings underscore the complex interplay between M2 macrophages, CCL20 signaling, and chemotherapy resistance in AML, highlighting potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Zhi-Gang Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Yu-Tong Xie
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Chao Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Tong Xiao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Si-Yu Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Jun-Hong Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Qiao-Nan Guo
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037.
| |
Collapse
|
2
|
Jin Q, Jiang H, Han Y, Zhang L, Li C, Zhang Y, Chai Y, Zeng P, Yue L, Wu C. Tumor microenvironment in primary central nervous system lymphoma (PCNSL). Cancer Biol Ther 2024; 25:2425131. [PMID: 39555697 PMCID: PMC11581175 DOI: 10.1080/15384047.2024.2425131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/10/2022] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is one of the rare lymphomas limited to the central nervous system. With the availability of immunotherapy, the tumor microenvironment (TME) attracts much attention nowadays. However, the systematic studies on the TME of PCNSL are lacking. By reviewing the existing research, we found that the TME of PCNSL is infiltrated with abundant TAMs and TILs, among which cytotoxic T cells (CTLs) and M2-polarized macrophages are principal. However, the counts of immune cells infiltrated in the TME of PCNSL are significantly lower than systemic diffuse large B-cell lymphoma (DLBCL). In addition, PCNSL can attract the infiltration of immunosuppressive cells and the loss of HLA I/II expression, overexpress inhibitory immune checkpoints, and release immunosuppressive cytokines to form an immunosuppressive TME. The immunosuppressive effect of TME in PCNSL is significantly stronger than that in systemic DLBCL. These characteristics of TME highlight the immunosuppression of PCNSL.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ye Han
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yurong Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ye Chai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengyun Zeng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lingling Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Chandra DJ, Alber B, Saultz JN. The Immune Resistance Signature of Acute Myeloid Leukemia and Current Immunotherapy Strategies. Cancers (Basel) 2024; 16:2615. [PMID: 39123343 PMCID: PMC11311077 DOI: 10.3390/cancers16152615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematopoietic clonal disorder with limited curative options beyond stem cell transplantation. The success of transplant is intimately linked with the graft versus leukemia effect from the alloreactive donor immune cells including, T and NK cells. The immune system plays a dynamic role in leukemia survival and resistance. Despite our growing understanding of the immune microenvironment, responses to immune-based therapies differ greatly between patients. Herein, we review the biology of immune evasion mechanisms in AML, discuss the current landscape of immunotherapeutic strategies, and discuss the implications of therapeutic targets. This review focuses on T and NK cell-based therapy, including modified and non-modified NK cells, CAR-T and CAR-NK cells, antibodies, and checkpoint blockades. Understanding the complex interchange between immune tolerance and the emergence of tumor resistance will improve patient outcomes.
Collapse
Affiliation(s)
- Daniel J. Chandra
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Bernhard Alber
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Jennifer N. Saultz
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| |
Collapse
|
4
|
Lu K, Wang W, Liu Y, Xie C, Liu J, Xing L. Advancements in microenvironment-based therapies: transforming the landscape of multiple myeloma treatment. Front Oncol 2024; 14:1413494. [PMID: 39087026 PMCID: PMC11288838 DOI: 10.3389/fonc.2024.1413494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple myeloma (MM) is the most prevalent malignant monoclonal disease of plasma cells. There is mounting evidence that interactions with the bone marrow (BM) niche are essential for the differentiation, proliferation, survival, migration, and treatment resistance of myeloma cells. For this reason, gaining a deeper comprehension of how BM microenvironment compartments interact with myeloma cells may inspire new therapeutic ideas that enhance patient outcomes. This review will concentrate on the most recent findings regarding the mechanisms of interaction between microenvironment and MM and highlight research on treatment targeting the BM niche.
Collapse
Affiliation(s)
- Ke Lu
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wen Wang
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuntong Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Chao Xie
- Department of Respiratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lijie Xing
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
5
|
Gui H, Fan X. Anti-tumor effect of dandelion flavone on multiple myeloma cells and its mechanism. Discov Oncol 2024; 15:215. [PMID: 38850433 PMCID: PMC11162407 DOI: 10.1007/s12672-024-01076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a prevalent hematologic malignancy characterized by the uncontrolled proliferation of monoclonal plasma cells in the bone marrow and excessive monoclonal immunoglobulin production, leading to organ damage. Despite therapeutic advancements, recurrence and drug resistance remain significant challenges. OBJECTIVE This study investigates the effects of dandelion flavone (DF) on MM cell proliferation, migration, and invasion, aiming to elucidate the mechanisms involved in MM metastasis and to explore the potential of traditional Chinese medicine in MM therapy. METHODS DF's impact on myeloma cell viability was evaluated using the CCK-8 and colony formation assays. Cell mobility and invasiveness were assessed through wound healing and transwell assays, respectively. RT-PCR was employed to quantify mRNA levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Apoptotic rates and molecular markers were analyzed via flow cytometry and RT-PCR. The PI3K/AKT signaling pathway was studied using Western blot and ELISA, with IGF-1 and the PI3K inhibitor LY294002 used to validate the findings. RESULTS DF demonstrated dose-dependent inhibitory effects on MM cell proliferation, migration, and invasion. It reduced mRNA levels of MMP-2 and MMP-9 while increasing those of TIMP-1 and TIMP-2. Furthermore, DF enhanced the expression of pro-apoptotic proteins and inhibited M2 macrophage polarization by targeting key molecules and enzymes. The anti-myeloma activity of DF was mediated through the inhibition of the PI3K/AKT pathway, as evidenced by diminished phosphorylation and differential effects in the presence of IGF-1 and LY294002. CONCLUSION By modulating the PI3K/AKT pathway, DF effectively inhibits MM cell proliferation, migration, and invasion, and induces apoptosis, establishing a novel therapeutic strategy for MM based on traditional Chinese medicine.
Collapse
Affiliation(s)
- Hua Gui
- Hematology Department, QingPu Branch of ZhongShan Hospital Affiliated to Fudan University, 1158 Park Road(E), Qingpu, Shanghai, China
| | - Xiaohong Fan
- Hematology Department, QingPu Branch of ZhongShan Hospital Affiliated to Fudan University, 1158 Park Road(E), Qingpu, Shanghai, China.
| |
Collapse
|
6
|
Li K, Nie H, Jin R, Wu X. Mesenchymal stem cells-macrophages crosstalk and myeloid malignancy. Front Immunol 2024; 15:1397005. [PMID: 38779660 PMCID: PMC11109455 DOI: 10.3389/fimmu.2024.1397005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
As major components of the tumor microenvironment, both mesenchymal stem cells (MSCs) and macrophages can be remodelled and exhibit different phenotypes and functions during tumor initiation and progression. In recent years, increasing evidence has shown that tumor-associated macrophages (TAMs) play a crucial role in the growth, metastasis, and chemotherapy resistance of hematological malignancies, and are associated with poor prognosis. Consequently, TAMs have emerged as promising therapeutic targets. Notably, MSCs exert a profound influence on modulating immune cell functions such as macrophages and granulocytes, thereby playing a crucial role in shaping the immunosuppressive microenvironment surrounding tumors. However, in hematological malignancies, the cellular and molecular mechanisms underlying the interaction between MSCs and macrophages have not been clearly elucidated. In this review, we provide an overview of the role of TAMs in various common hematological malignancies, and discuss the latest advances in understanding the interaction between MSCs and macrophages in disease progression. Additionally, potential therapeutic approaches targeting this relationship are outlined.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Nie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Jin Q, Jiang H, Yue N, Zhang L, Li C, Dong C, Zeng P, Yue L, Wu C. The prognostic value of CD8 + CTLs, CD163 + TAMs, and PDL1 expression in the tumor microenvironment of primary central nervous system lymphoma. Leuk Lymphoma 2024; 65:472-480. [PMID: 38198635 DOI: 10.1080/10428194.2023.2296364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
To explore immune cell infiltration and PDL1 expression in the tumor microenvironment (TME) of primary central nervous system lymphoma (PCNSL), we performed immunohistochemical staining on paraffin-embedded tumor tissues from 34 patients diagnosed with PCNSL. CD8 and CD163 positive cells were manually counted, and PDL1 expression was quantified by the H-score scoring method in the tumor center and around the tumor. The Kaplan-Meier method was used to analyze the prognostic value of the TME. We found obvious infiltration of CD8+ CTLs and CD163+ TAMs in the TME of PCNSL patients. And PDL1 was expressed in the tumor center as well as around the tumor. Survival analysis showed that high CD8+ CTLs levels and high intratumoral PDL1 expression were significantly correlated with longer OS. High CD8+ CTLs and CD163+ TAMs levels were associated with longer PFS.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ningning Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chi Dong
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengyun Zeng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lingling Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
8
|
Radhakrishnan V, Golla U, Kudva AK. Role of Immune Cells and Immunotherapy in Multiple Myeloma. Life (Basel) 2024; 14:461. [PMID: 38672732 PMCID: PMC11050867 DOI: 10.3390/life14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical signs of multiple myeloma, a plasma cell (PC) dyscrasia, include bone loss, renal damage, and paraproteinemia. It can be defined as the uncontrolled growth of malignant PCs within the bone marrow. The distinctive bone marrow milieu that regulates the progression of myeloma disease involves interactions between plasma and stromal cells, and myeloid and lymphoid cells. These cells affect the immune system independently or because of a complicated web of interconnections, which promotes disease development and immune evasion. Due to the importance of these factors in the onset of disease, various therapeutic strategies have been created that either target or improve the immunological processes that influence disease progression. The immune system has a role in the mechanism of action of multiple myeloma treatments. The main contributions of immune cells to the bone marrow microenvironment, as well as how they interact and how immune regulation might lead to therapeutic effects, are covered in this study.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangaluru 574199, India
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Poveda-Garavito N, Combita AL. Contribution of the TIME in BCP-ALL: the basis for novel approaches therapeutics. Front Immunol 2024; 14:1325255. [PMID: 38299154 PMCID: PMC10827891 DOI: 10.3389/fimmu.2023.1325255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
The bone marrow (BM) niche is a microenvironment where both immune and non-immune cells functionally interact with hematopoietic stem cells (HSC) and more differentiated progenitors, contributing to the regulation of hematopoiesis. It is regulated by various signaling molecules such as cytokines, chemokines, and adhesion molecules in its microenvironment. However, despite the strict regulation of BM signals to maintain their steady state, accumulating evidence in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) indicates that leukemic cells can disrupt the physiological hematopoietic niche in the BM, creating a new leukemia-supportive microenvironment. This environment favors immunological evasion mechanisms and the interaction of these cells with the development and progression of BCP-ALL. With a growing understanding of the tumor immune microenvironment (TIME) in the development and progression of BCP-ALL, current strategies focused on "re-editing" TIME to promote antitumor immunity have been developed. In this review, we summarize how TIME cells are disrupted by the presence of leukemic cells, evading immunosurveillance mechanisms in the BCP-ALL model. We also explore the crosstalk between TIME and leukemic cells that leads to treatment resistance, along with the most promising immuno-therapy strategies. Understanding and further research into the role of the BM microenvironment in leukemia progression and relapse are crucial for developing more effective treatments and reducing patient mortality.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alba Lucía Combita
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Rodrigues WF, Miguel CB, de Abreu MCM, Neto JM, Oliveira CJF. Potential Associations between Vascular Biology and Hodgkin's Lymphoma: An Overview. Cancers (Basel) 2023; 15:5299. [PMID: 37958472 PMCID: PMC10649902 DOI: 10.3390/cancers15215299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Hodgkin's lymphoma (HL) is a lymphatic neoplasm typically found in the cervical lymph nodes. The disease is multifactorial, and in recent years, the relationships between various vascular molecules have been explored in the field of vascular biology. The connection between vascular biology and HL is intricate and the roles of several pathways remain unclear. This review summarizes the cellular and molecular relationships between vascular biology and HL. Proteins associated with various functions in vascular biology, including cytokines (TNF-α, IL-1, IL-13, and IL-21), chemokines (CXCL10, CXCL12, and CCL21), adhesion molecules (ELAM-1/VCAM-1), and growth factors (BDNF/NT-3, platelet-derived growth factor receptor-α), have been linked to tumor activity. Notable tumor activities include the induction of paracrine activation of NF-kB-dependent pathways, upregulation of adhesion molecule regulation, genome amplification, and effective loss of antigen presentation mediated by MHC-II. Preclinical study models, primarily those using cell culture, have been optimized for HL. Animal models, particularly mice, are also used as alternatives to complex biological systems, with studies primarily focusing on the physiopathogenic evaluation of the disease. These biomolecules warrant further study because they may shed light on obscure pathways and serve as targets for prevention and/or treatment interventions.
Collapse
Affiliation(s)
- Wellington Francisco Rodrigues
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Camila Botelho Miguel
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | | | - Jamil Miguel Neto
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Carlo José Freire Oliveira
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
| |
Collapse
|
11
|
Collier-Bain HD, Brown FF, Causer AJ, Emery A, Oliver R, Moore S, Murray J, Turner JE, Campbell JP. Harnessing the immunomodulatory effects of exercise to enhance the efficacy of monoclonal antibody therapies against B-cell haematological cancers: a narrative review. Front Oncol 2023; 13:1244090. [PMID: 37681023 PMCID: PMC10482436 DOI: 10.3389/fonc.2023.1244090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell haematological cancers. The modes of action for these mAbs include: induction of cancer cell lysis by activating Fcγ-receptors on innate immune cells; opsonising target cells for antibody-dependent cellular cytotoxicity or phagocytosis, and/or triggering the classical complement pathway; the simultaneous binding of cancer cells with T-cells to create an immune synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells; blockade of immune checkpoints to facilitate T-cell cytotoxicity against immunogenic cancer cell clones; and direct delivery of cytotoxic agents via internalisation of mAbs by target cells. While treatment regimens comprising mAb therapy can lead to durable anti-cancer responses, disease relapse is common due to failure of mAb therapy to eradicate minimal residual disease. Factors that limit mAb efficacy include: suboptimal effector cell frequencies, overt immune exhaustion and/or immune anergy, and survival of diffusely spread tumour cells in different stromal niches. In this review, we discuss how immunomodulatory changes arising from exposure to structured bouts of acute exercise might improve mAb treatment efficacy by augmenting (i) antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and (v) direct delivery of cytotoxic agents.
Collapse
Affiliation(s)
| | - Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
12
|
Yao H, Cheng L, Chen D, Zhang Q, Qiu L, Ren SH, Dou BT, Wang H, Huang J, Fan FY. Role of the bone marrow microenvironment in multiple myeloma treatment using CAR-T therapy. Expert Rev Anticancer Ther 2023; 23:807-815. [PMID: 37343305 DOI: 10.1080/14737140.2023.2229029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignant tumor caused by abnormal proliferation of bone marrow (BM) plasma cells and is the second most common hematologic malignancy. A variety of CAR-T cells targeting multiple myeloma-specific markers have shown good efficacy in clinical trials. However, CAR-T therapy still limits the insufficient duration of efficacy and recurrence of the disease. AREAS COVERED This article reviews the cell populations in the bone marrow of MM, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow microenvironment. EXPERT OPINION The limits of CAR-T therapy in MM may related to the impairment of T cell activity in the bone marrow microenvironment. This article reviews the cell populations of the immune microenvironment and nonimmune microenvironment in the bone marrow of multiple myeloma, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow. This may provides a new idea for the CAR-T therapy of multiple myeloma.
Collapse
Affiliation(s)
- Hao Yao
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Lei Cheng
- Department of Pharmacy, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Dan Chen
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Qian Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Ling Qiu
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Shi-Hui Ren
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Bai-Tao Dou
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Huan Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
- University of Electronic Science and Technology of China, Chengdu, SiChuan, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
| | - Fang-Yi Fan
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| |
Collapse
|
13
|
Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:362. [PMID: 36578079 PMCID: PMC9798587 DOI: 10.1186/s13046-022-02579-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.
Collapse
Affiliation(s)
- Wern Lynn Ng
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Stephen M. Ansell
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Patrizia Mondello
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| |
Collapse
|
14
|
Brauneck F, Fischer B, Witt M, Muschhammer J, Oelrich J, da Costa Avelar PH, Tsoka S, Bullinger L, Seubert E, Smit DJ, Bokemeyer C, Ackermann C, Wellbrock J, Haag F, Fiedler W. TIGIT blockade repolarizes AML-associated TIGIT + M2 macrophages to an M1 phenotype and increases CD47-mediated phagocytosis. J Immunother Cancer 2022; 10:jitc-2022-004794. [PMID: 36549780 PMCID: PMC9791419 DOI: 10.1136/jitc-2022-004794] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Leukemia-associated macrophages (LAMs) represent an important cell population within the tumor microenvironment, but little is known about the phenotype, function, and plasticity of these cells. The present study provides an extensive characterization of macrophages in patients with acute myeloid leukemia (AML). METHODS The phenotype and expression of coregulatory markers were assessed on bone marrow (BM)-derived LAM populations, using multiparametric flow cytometry. BM and blood aspirates were obtained from patients with newly diagnosed acute myeloid leukemia (pAML, n=59), patients in long-term remission (lrAML, n=8), patients with relapsed acute myeloid leukemia (rAML, n=7) and monocyte-derived macrophages of the blood from healthy donors (HD, n=17). LAM subpopulations were correlated with clinical parameters. Using a blocking anti-T-cell immunoreceptor with Ig and ITIM domains (TIGIT) antibody or mouse IgG2α isotype control, we investigated polarization, secretion of cytokines, and phagocytosis on LAMs and healthy monocyte-derived macrophages in vitro. RESULTS In pAML and rAML, M1 LAMs were reduced and the predominant macrophage population consisted of immunosuppressive M2 LAMs defined by expression of CD163, CD204, CD206, and CD86. M2 LAMs in active AML highly expressed inhibitory receptors such as TIGIT, T-cell immunoglobulin and mucin-domain containing-3 protein (TIM-3), and lymphocyte-activation gene 3 (LAG-3). High expression of CD163 was associated with a poor overall survival (OS). In addition, increased frequencies of TIGIT+ M2 LAMs were associated with an intermediate or adverse risk according to the European Leukemia Network criteria and the FLT3 ITD mutation. In vitro blockade of TIGIT shifted the polarization of primary LAMs or peripheral blood-derived M2 macrophages toward the M1 phenotype and increased secretion of M1-associated cytokines and chemokines. Moreover, the blockade of TIGIT augmented the anti-CD47-mediated phagocytosis of AML cell lines and primary AML cells. CONCLUSION Our findings suggest that immunosuppressive TIGIT+ M2 LAMs can be redirected into an efficient effector population that may be of direct clinical relevance in the near future.
Collapse
Affiliation(s)
- Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Brit Fischer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Witt
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Muschhammer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennyfer Oelrich
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, UK
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Elisa Seubert
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Magalhães-Gama F, Alves-Hanna FS, Araújo ND, Barros MS, Silva FS, Catão CLS, Moraes JS, Freitas IC, Tarragô AM, Malheiro A, Teixeira-Carvalho A, Costa AG. The Yin-Yang of myeloid cells in the leukemic microenvironment: Immunological role and clinical implications. Front Immunol 2022; 13:1071188. [PMID: 36532078 PMCID: PMC9751477 DOI: 10.3389/fimmu.2022.1071188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
The leukemic microenvironment has a high diversity of immune cells that are phenotypically and functionally distinct. However, our understanding of the biology, immunology, and clinical implications underlying these cells remains poorly investigated. Among the resident immune cells that can infiltrate the leukemic microenvironment are myeloid cells, which correspond to a heterogeneous cell group of the innate immune system. They encompass populations of neutrophils, macrophages, and myeloid-derived suppressor cells (MDSCs). These cells can be abundant in different tissues and, in the leukemic microenvironment, are associated with the clinical outcome of the patient, acting dichotomously to contribute to leukemic progression or stimulate antitumor immune responses. In this review, we detail the current evidence and the many mechanisms that indicate that the activation of different myeloid cell populations may contribute to immunosuppression, survival, or metastatic dissemination, as well as in immunosurveillance and stimulation of specific cytotoxic responses. Furthermore, we broadly discuss the interactions of tumor-associated neutrophils and macrophages (TANs and TAMs, respectively) and MDSCs in the leukemic microenvironment. Finally, we provide new perspectives on the potential of myeloid cell subpopulations as predictive biomarkers of therapeutical response, as well as potential targets in the chemoimmunotherapy of leukemias due to their dual Yin-Yang roles in leukemia.
Collapse
Affiliation(s)
- Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Fabíola Silva Alves-Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Nilberto Dias Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Mateus Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Flavio Souza Silva
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Claudio Lucas Santos Catão
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Júlia Santos Moraes
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Izabela Cabral Freitas
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Andréa Teixeira-Carvalho
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
16
|
Zhao J, Dong Y, Zhang Y, Wang J, Wang Z. Biophysical heterogeneity of myeloid-derived microenvironment to regulate resistance to cancer immunotherapy. Adv Drug Deliv Rev 2022; 191:114585. [PMID: 36273512 DOI: 10.1016/j.addr.2022.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
Despite the advances in immunotherapy for cancer treatment, patients still obtain limited benefits, mostly owing to unrestrained tumour self-expansion and immune evasion that exploits immunoregulatory mechanisms. Traditionally, myeloid cells have a dominantly immunosuppressive role. However, the complicated populations of the myeloid cells and their multilateral interactions with tumour/stromal/lymphoid cells and physical abnormalities in the tumour microenvironment (TME) determine their heterogeneous functions in tumour development and immune response. Tumour-associated myeloid cells (TAMCs) include monocytes, tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and granulocytes. Single-cell profiling revealed heterogeneous TAMCs composition, sub-types, and transcriptomic signatures across 15 human cancer types. We systematically reviewed the biophysical heterogeneity of TAMC composition and pro/anti-tumoral and immuno-suppressive/stimulating properties of myeloid-derived microenvironments. We also summarised comprehensive clinical strategies to overcome resistance to immunotherapy from three dimensions: targeting TAMCs, reversing physical abnormalities, utilising nanomedicines, and finally, put forward futuristic perspectives for scientific and clinical research.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yundi Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
17
|
Ho M, Xiao A, Yi D, Zanwar S, Bianchi G. Treating Multiple Myeloma in the Context of the Bone Marrow Microenvironment. Curr Oncol 2022; 29:8975-9005. [PMID: 36421358 PMCID: PMC9689284 DOI: 10.3390/curroncol29110705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The treatment landscape of multiple myeloma (MM) has evolved considerably with the FDA-approval of at least 15 drugs over the past two decades. Together with the use of autologous stem cell transplantation, these novel therapies have resulted in significant survival benefit for patients with MM. In particular, our improved understanding of the BM and immune microenvironment has led to the development of highly effective immunotherapies that have demonstrated unprecedented response rates even in the multiple refractory disease setting. However, MM remains challenging to treat especially in a high-risk setting. A key mediator of therapeutic resistance in MM is the bone marrow (BM) microenvironment; a deeper understanding is necessary to facilitate the development of therapies that target MM in the context of the BM milieu to elicit deeper and more durable responses with the ultimate goal of long-term control or a cure of MM. In this review, we discuss our current understanding of the role the BM microenvironment plays in MM pathogenesis, with a focus on its immunosuppressive nature. We also review FDA-approved immunotherapies currently in clinical use and highlight promising immunotherapeutic approaches on the horizon.
Collapse
Affiliation(s)
- Matthew Ho
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Alexander Xiao
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Dongni Yi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Giada Bianchi
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA
| |
Collapse
|
18
|
Kouroukli O, Symeonidis A, Foukas P, Maragkou MK, Kourea EP. Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes. Cancers (Basel) 2022; 14:cancers14225656. [PMID: 36428749 PMCID: PMC9688609 DOI: 10.3390/cancers14225656] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The BM, the major hematopoietic organ in humans, consists of a pleiomorphic environment of cellular, extracellular, and bioactive compounds with continuous and complex interactions between them, leading to the formation of mature blood cells found in the peripheral circulation. Systemic and local inflammation in the BM elicit stress hematopoiesis and drive hematopoietic stem cells (HSCs) out of their quiescent state, as part of a protective pathophysiologic process. However, sustained chronic inflammation impairs HSC function, favors mutagenesis, and predisposes the development of hematologic malignancies, such as myelodysplastic syndromes (MDS). Apart from intrinsic cellular mechanisms, various extrinsic factors of the BM immune microenvironment (IME) emerge as potential determinants of disease initiation and evolution. In MDS, the IME is reprogrammed, initially to prevent the development, but ultimately to support and provide a survival advantage to the dysplastic clone. Specific cellular elements, such as myeloid-derived suppressor cells (MDSCs) are recruited to support and enhance clonal expansion. The immune-mediated inhibition of normal hematopoiesis contributes to peripheral cytopenias of MDS patients, while immunosuppression in late-stage MDS enables immune evasion and disease progression towards acute myeloid leukemia (AML). In this review, we aim to elucidate the role of the mediators of immune response in the initial pathogenesis of MDS and the evolution of the disease.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, University Hospital of Patras, 26504 Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, School of Medicine, University of Patras, 26332 Patras, Greece
| | - Periklis Foukas
- 2nd Department of Pathology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Myrto-Kalliopi Maragkou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 54124 Thessaloniki, Greece
| | - Eleni P. Kourea
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-969191
| |
Collapse
|
19
|
McCay J, Gribben JG. The role of BTK inhibitors on the tumor microenvironment in CLL. Leuk Lymphoma 2022; 63:2023-2032. [PMID: 35465824 DOI: 10.1080/10428194.2022.2064995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
The CLL disease course is heterogeneous with many patients never requiring treatment and some having very aggressive rapid onset disease.Innate and adaptive immune compensatory mechanisms driven by malignant cells often lead to clonal proliferation, migration and resistance to treatment in CLL. Cell-to-cell interactions occurring within the tumor Micro-environment (TME) can impact greatly on the course of the disease as well as contribute to the variable spread of CLL cells, known as spatial heterogeneity. Following evidence showing the expression of BTK on many hematopoietic cells (an exception beting T lymphocytes) has given rise to the idea that inhibition of BTK with BTK inhibitors (BTKi) such as ibrutinib can help treat CLL.As BTK has a wide variation of expression among cells the use of BTKi has been shown to not only control CLL clones but also redistribute the balance of humoral immunity back toward those of healthy control. n this review article we look at role of BTK in the pathogenesis of CLL, the use of BTKi and their effect on humoral immunity.
Collapse
Affiliation(s)
- Joel McCay
- Barts Cancer Institute, Queen Mary University of London, London UK
| | - John G Gribben
- Barts Cancer Institute, Queen Mary University of London, London UK
| |
Collapse
|
20
|
Sun J, Park C, Guenthner N, Gurley S, Zhang L, Lubben B, Adebayo O, Bash H, Chen Y, Maksimos M, Muz B, Azab AK. Tumor-associated macrophages in multiple myeloma: advances in biology and therapy. J Immunother Cancer 2022; 10:e003975. [PMID: 35428704 PMCID: PMC9014078 DOI: 10.1136/jitc-2021-003975] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow (BM) and represents the second most common hematological malignancy in the world. The MM tumor microenvironment (TME) within the BM niche consists of a wide range of elements which play important roles in supporting MM disease progression, survival, proliferation, angiogenesis, as well as drug resistance. Together, the TME fosters an immunosuppressive environment in which immune recognition and response are repressed. Macrophages are a central player in the immune system with diverse functions, and it has been long established that macrophages play a critical role in both inducing direct and indirect immune responses in cancer. Tumor-associated macrophages (TAMs) are a major population of cells in the tumor site. Rather than contributing to the immune response against tumor cells, TAMs in many cancers are found to exhibit protumor properties including supporting chemoresistance, tumor proliferation and survival, angiogenesis, immunosuppression, and metastasis. Targeting TAM represents a novel strategy for cancer immunotherapy, which has potential to indirectly stimulate cytotoxic T cell activation and recruitment, and synergize with checkpoint inhibitors and chemotherapies. In this review, we will provide an updated and comprehensive overview into the current knowledge on the roles of TAMs in MM, as well as the therapeutic targets that are being explored as macrophage-targeted immunotherapy, which may hold key to future therapeutics against MM.
Collapse
Affiliation(s)
- Jennifer Sun
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri, USA
| | - Chaelee Park
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nicole Guenthner
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Shannon Gurley
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Luna Zhang
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri, USA
| | - Berit Lubben
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Ola Adebayo
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Hannah Bash
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yixuan Chen
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Mina Maksimos
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Barbara Muz
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Kim SY, Park SS, Lim JY, Lee JY, Yoon JH, Lee SE, Eom KS, Kim HJ, Min CK. Prognostic Role of the Ratio of Natural Killer Cells to Regulatory T cells in Patients with Multiple Myeloma Treated with Lenalidomide and Dexamethasone. Exp Hematol 2022; 110:60-68. [DOI: 10.1016/j.exphem.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
|
22
|
de Juan A, Lavin Plaza B. Isolation and Culturing of Primary Mouse and Human Macrophages. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:113-124. [PMID: 35237961 DOI: 10.1007/978-1-0716-1924-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Macrophages are mature immune cells involved in the defense of the organism. Since their discovery, the main function attributed to macrophages has been phagocytosis. However, in recent years, several new functions such as angiogenesis, tissue remodeling, clearance of apoptotic cells, pro- and anti-inflammatory properties and tumor growth have been attributed to macrophages. To perform such varied functions, macrophages acquire specific phenotypes in response to external signals. The possibility of replicating these phenotypes in vitro represents a cutting-edge tool to understand potential macrophage functions in vivo. This chapter outlines protocols used to isolate and culture murine bone marrow-derived and human monocyte-derived macrophages. Furthermore, macrophage polarization processes into different phenotypes, with special relevance to atherosclerosis, are indicated.
Collapse
Affiliation(s)
- Alba de Juan
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Begoña Lavin Plaza
- School of Biomedical Engineering and Imaging Sciences,, King's College London, London, UK. .,Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain.
| |
Collapse
|
23
|
Morana O, Wood W, Gregory CD. The Apoptosis Paradox in Cancer. Int J Mol Sci 2022; 23:ijms23031328. [PMID: 35163253 PMCID: PMC8836235 DOI: 10.3390/ijms23031328] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer growth represents a dysregulated imbalance between cell gain and cell loss, where the rate of proliferating mutant tumour cells exceeds the rate of those that die. Apoptosis, the most renowned form of programmed cell death, operates as a key physiological mechanism that limits cell population expansion, either to maintain tissue homeostasis or to remove potentially harmful cells, such as those that have sustained DNA damage. Paradoxically, high-grade cancers are generally associated with high constitutive levels of apoptosis. In cancer, cell-autonomous apoptosis constitutes a common tumour suppressor mechanism, a property which is exploited in cancer therapy. By contrast, limited apoptosis in the tumour-cell population also has the potential to promote cell survival and resistance to therapy by conditioning the tumour microenvironment (TME)-including phagocytes and viable tumour cells-and engendering pro-oncogenic effects. Notably, the constitutive apoptosis-mediated activation of cells of the innate immune system can help orchestrate a pro-oncogenic TME and may also effect evasion of cancer treatment. Here, we present an overview of the implications of cell death programmes in tumour biology, with particular focus on apoptosis as a process with "double-edged" consequences: on the one hand, being tumour suppressive through deletion of malignant or pre-malignant cells, while, on the other, being tumour progressive through stimulation of reparatory and regenerative responses in the TME.
Collapse
|
24
|
Splenic red pulp macrophages provide a niche for CML stem cells and induce therapy resistance. Leukemia 2022; 36:2634-2646. [PMID: 36163264 PMCID: PMC7613762 DOI: 10.1038/s41375-022-01682-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Disease progression and relapse of chronic myeloid leukemia (CML) are caused by therapy resistant leukemia stem cells (LSCs), and cure relies on their eradication. The microenvironment in the bone marrow (BM) is known to contribute to LSC maintenance and resistance. Although leukemic infiltration of the spleen is a hallmark of CML, it is unknown whether spleen cells form a niche that maintains LSCs. Here, we demonstrate that LSCs preferentially accumulate in the spleen and contribute to disease progression. Spleen LSCs were located in the red pulp close to red pulp macrophages (RPM) in CML patients and in a murine CML model. Pharmacologic and genetic depletion of RPM reduced LSCs and decreased their cell cycling activity in the spleen. Gene expression analysis revealed enriched stemness and decreased myeloid lineage differentiation in spleen leukemic stem and progenitor cells (LSPCs). These results demonstrate that splenic RPM form a niche that maintains CML LSCs in a quiescent state, resulting in disease progression and resistance to therapy.
Collapse
|
25
|
MacDonald G, Sitlinger A, Deal MA, Hanson ED, Ferraro S, Pieper CF, Weinberg JB, Brander DM, Bartlett DB. A pilot study of high-intensity interval training in older adults with treatment naïve chronic lymphocytic leukemia. Sci Rep 2021; 11:23137. [PMID: 34848750 PMCID: PMC8633014 DOI: 10.1038/s41598-021-02352-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the USA, affecting predominantly older adults. CLL is characterized by low physical fitness, reduced immunity, and increased risk of secondary malignancies and infections. One approach to improving CLL patients' physical fitness and immune functions may be participation in a structured exercise program. The aims of this pilot study were to examine physical and immunological changes, and feasibility of a 12-week high-intensity interval training (HIIT) combined with muscle endurance-based resistance training on older adults with treatment naïve CLL. We enrolled eighteen participants with CLL aged 64.9 ± 9.1 years and assigned them to groups depending on distance lived from our fitness center. Ten participants (4 M/6F) completed HIIT and six participants (4 M/2F) completed a non-exercising control group (Controls). HIIT consisted of three 30-min treadmill sessions/week plus two concurrent 30-min strength training sessions/week. Physical and immunological outcomes included aerobic capacity, muscle strength and endurance, and natural killer (NK) cell recognition and killing of tumor cells. We confirmed feasibility if > 70% of HIIT participants completed > 75% of prescribed sessions and prescribed minutes, and if > 80% of high-intensity intervals were at a heart rate corresponding to at least 80% of peak aerobic capacity (VO2peak). Results are presented as Hedge's G effect sizes (g), with 0.2, 0.5 and 0.8 representing small, medium and large effects, respectively. Following HIIT, leg strength (g = 2.52), chest strength (g = 1.15) and seated row strength (g = 3.07) were 35.4%, 56.1% and 39.5% higher than Controls, respectively, while aerobic capacity was 3.8% lower (g = 0.49) than Controls. Similarly, following HIIT, in vitro NK-cell cytolytic activity against the K562 cell line (g = 1.43), OSU-CLL cell line (g = 0.95), and autologous B-cells (g = 1.30) were 20.3%, 3.0% and 14.6% higher than Controls, respectively. Feasibility was achieved, with HIIT completing 5.0 ± 0.2 sessions/week and 99 ± 3.6% of the prescribed minutes/week at heart rates corresponding to 89 ± 2.8% of VO2peak. We demonstrate that 12-weeks of supervised HIIT combined with muscle endurance-based resistance training is feasible, and that high adherence and compliance are associated with large effects on muscle strength and immune function in older adults with treatment naïve CLL.Trial registration: NCT04950452.
Collapse
Affiliation(s)
- Grace MacDonald
- Division of Medical Oncology, Duke University School of Medicine, Durham, NC, USA.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Andrea Sitlinger
- Hematologic Malignancies and Cellular Therapies, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Deal
- Division of Medical Oncology, Duke University School of Medicine, Durham, NC, USA.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Ferraro
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Carl F Pieper
- Duke University Aging Center, Duke University School of Medicine, Durham, NC, USA
| | - J Brice Weinberg
- Division of Hematology, Duke University School of Medicine and VA Medical Center, Durham, NC, USA
| | - Danielle M Brander
- Hematologic Malignancies and Cellular Therapies, Duke University School of Medicine, Durham, NC, USA
| | - David B Bartlett
- Division of Medical Oncology, Duke University School of Medicine, Durham, NC, USA. .,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA. .,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK. .,Division of Medical Oncology, Department of Medicine, Duke Molecular Physiology Institute, Durham, NC, 27701, USA.
| |
Collapse
|
26
|
A young microenvironment promotes B-ALL in mice. Blood 2021; 138:1789-1790. [PMID: 34762133 DOI: 10.1182/blood.2021013699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022] Open
|
27
|
Abstract
Tumor-associated macrophages (TAMs) represent the most abundant leukocyte population in most solid tumors and are greatly influenced by the tumor microenvironment. More importantly, these macrophages can promote tumor growth and metastasis through interactions with other cell populations within the tumor milieu and have been associated with poor outcomes in multiple tumors. In this review, we examine how the tumor microenvironment facilitates the polarization of TAMs. Additionally, we evaluate the mechanisms by which TAMs promote tumor angiogenesis, induce tumor invasion and metastasis, enhance chemotherapeutic resistance, and foster immune evasion. Lastly, we focus on therapeutic strategies that target TAMs in the treatments of cancer, including reducing monocyte recruitment, depleting or reprogramming TAMs, and targeting inhibitory molecules to increase TAM-mediated phagocytosis.
Collapse
Affiliation(s)
- Amy J Petty
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Dwight H Owen
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine and OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yiping Yang
- Division of Hematology, Department of Internal Medicine, College of Medicine and OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaopei Huang
- Division of Hematology, Department of Internal Medicine, College of Medicine and OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
He F, Ding G, Jiang W, Fan X, Zhu L. Effect of tumor-associated macrophages on lncRNA PURPL/miR-363/PDZD2 axis in osteosarcoma cells. Cell Death Discov 2021; 7:307. [PMID: 34686652 PMCID: PMC8536668 DOI: 10.1038/s41420-021-00700-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are known to participate in osteosarcoma (OS) progression. As demonstrated in our previous research, miR-363 played a tumor inhibitory effect in OS cells via lowering the PDZ domain containing 2 (PDZD2) expression. The regulatory roles of TAMs on miR-363/PDZD2 and the internal mechanism relating to long noncoding RNA p53 upregulated regulator of P53 levels (lncRNA PURPL) are examined in this study. TAM-like macrophages were formed by inducing CD14+ peripheral blood mononuclear cells (PBMCs). The TAMs migration was detected after MG-63 cells transfected with miR-363 mimics or inhibitors. We then analyzed the regulatory activity of PURPL on miR-363 expression. We also tested the influences of PURPL overexpression/knockdown on MG-63 cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), as well as TAMs migration. Silence in PDZD2 expression was used to confirm the effects of PURPL on MG-63 cells. We successfully induced TAM-like macrophages. MG-63 cells transfecting miR-363 mimics suppressed TAMs migration while transfecting a converse effect was seen in miR-363 inhibitor. TAMs raised PURPL expression in MG-63 cells, which was an upstream regulator of miR-363. Along with TAMs migration, PURPL overexpression promoted MG-63 cell proliferation, migration, invasion, and EMT. An opposite influence was seen due to the PURPL knockdown. The silence of PDZD2 weakened the influences of PURPL overexpression on MG-63 cells and TAMs migration. On modulating the PURPL/miR-363/PDZD2 axis, TAMs-promoted OS development might be achieved.
Collapse
Affiliation(s)
- Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, ShangCheng, HangZhou, ZheJiang, 310006, China.
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, ShangCheng, HangZhou, ZheJiang, 310006, China
| | - Wu Jiang
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, ShangCheng, HangZhou, ZheJiang, 310006, China
| | - Xiaoliang Fan
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, ShangCheng, HangZhou, ZheJiang, 310006, China
| | - Liulong Zhu
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 HuanSha Road, ShangCheng, HangZhou, ZheJiang, 310006, China
| |
Collapse
|
29
|
Targeting Tumor-Associated Macrophages in Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13215318. [PMID: 34771482 PMCID: PMC8582510 DOI: 10.3390/cancers13215318] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the most abundant leukocyte population in most solid tumors and are greatly influenced by the tumor microenvironment. More importantly, these macrophages can promote tumor growth and metastasis through interactions with other cell populations within the tumor milieu and have been associated with poor outcomes in multiple tumors. In this review, we examine how the tumor microenvironment facilitates the polarization of TAMs. Additionally, we evaluate the mechanisms by which TAMs promote tumor angiogenesis, induce tumor invasion and metastasis, enhance chemotherapeutic resistance, and foster immune evasion. Lastly, we focus on therapeutic strategies that target TAMs in the treatments of cancer, including reducing monocyte recruitment, depleting or reprogramming TAMs, and targeting inhibitory molecules to increase TAM-mediated phagocytosis.
Collapse
|
30
|
The role of MOZ/KAT6A in hematological malignancies and advances in MOZ/KAT6A inhibitors. Pharmacol Res 2021; 174:105930. [PMID: 34626770 DOI: 10.1016/j.phrs.2021.105930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Hematological malignancies, unlike solid tumors, are a group of malignancies caused by abnormal differentiation of hematopoietic stem cells. Monocytic leukemia zinc finger protein (MOZ), a member of the MYST (MOZ, Ybf2/Sas3, Sas2, Tip60) family, is a histone acetyltransferase. MOZ is involved in various cellular functions: generation and maintenance of hematopoietic stem cells, development of erythroid cells, B-lineage progenitors and myeloid cells, and regulation of cellular senescence. Studies have shown that MOZ is susceptible to translocation in chromosomal rearrangements to form fusion genes, leading to the fusion of MOZ with other cellular regulators to form MOZ fusion proteins. Different MOZ fusion proteins have different roles, such as in the development and progression of hematological malignancies and inhibition of cellular senescence. Thus, MOZ is an attractive target, and targeting MOZ to design small-molecule drugs can help to treat hematological malignancies. This review summarizes recent progress in biology and medicinal chemistry for the histone acetyltransferase MOZ. In the biology section, MOZ and cofactors, structures of MOZ and related HATs, MOZ and fusion proteins, and roles of MOZ in cancer are discussed. In medicinal chemistry, recent developments in MOZ inhibitors are summarized.
Collapse
|
31
|
Liu Y, Zhou X, Wang X. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol 2021; 14:125. [PMID: 34404434 PMCID: PMC8369706 DOI: 10.1186/s13045-021-01134-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
B-cell lymphoma is a group of hematological malignancies with high clinical and biological heterogeneity. The pathogenesis of B-cell lymphoma involves a complex interaction between tumor cells and the tumor microenvironment (TME), which is composed of stromal cells and extracellular matrix. Although the roles of the TME have not been fully elucidated, accumulating evidence implies that TME is closely relevant to the origination, invasion and metastasis of B-cell lymphoma. Explorations of the TME provide distinctive insights for cancer therapy. Here, we epitomize the recent advances of TME in B-cell lymphoma and discuss its function in tumor progression and immune escape. In addition, the potential clinical value of targeting TME in B-cell lymphoma is highlighted, which is expected to pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yingyue Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
32
|
Mian SA, Bonnet D. Nature or Nurture? Role of the Bone Marrow Microenvironment in the Genesis and Maintenance of Myelodysplastic Syndromes. Cancers (Basel) 2021; 13:4116. [PMID: 34439269 PMCID: PMC8394536 DOI: 10.3390/cancers13164116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Myelodysplastic syndrome (MDS) are clonal haematopoietic stem cell (HSC) disorders driven by a complex combination(s) of changes within the genome that result in heterogeneity in both clinical phenotype and disease outcomes. MDS is among the most common of the haematological cancers and its incidence markedly increases with age. Currently available treatments have limited success, with <5% of patients undergoing allogeneic HSC transplantation, a procedure that offers the only possible cure. Critical contributions of the bone marrow microenvironment to the MDS have recently been investigated. Although the better understanding of the underlying biology, particularly genetics of haematopoietic stem cells, has led to better disease and risk classification; however, the role that the bone marrow microenvironment plays in the development of MDS remains largely unclear. This review provides a comprehensive overview of the latest developments in understanding the aetiology of MDS, particularly focussing on understanding how HSCs and the surrounding immune/non-immune bone marrow niche interacts together.
Collapse
Affiliation(s)
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK;
| |
Collapse
|
33
|
Mantle cell lymphoma polarizes tumor-associated macrophages into M2-like macrophages, which in turn promote tumorigenesis. Blood Adv 2021; 5:2863-2878. [PMID: 34297045 DOI: 10.1182/bloodadvances.2020003871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are recognized as a hallmark of certain solid cancers and predictors of poor prognosis; however, the functional role of TAMs in lymphoid malignancies, including B-cell lymphoma, has not been well defined. We identified infiltration of F4/80+ TAMs in a syngeneic mouse model using the recently generated murine mantle cell lymphoma (MCL) cell line FC-muMCL1. Multicolor flow cytometric analysis of syngeneic lymphoma tumors showed distinct polarization of F4/80+ TAMs into CD206+ M2 and CD80+ M1 phenotypes. Using human MCL cell lines (Mino, Granta, and JVM2), we further showed that MCL cells polarized monocyte-derived macrophages toward an M2-like phenotype, as assessed by CD163+ expression and increased interleukin-10 (IL-10) level; however, levels of the M1 markers CD80 and IL-12 remained unaffected. To show that macrophages contribute to MCL tumorigenesis, we xenografted the human MCL cell line Mino along with CD14+ monocytes and compared tumor growth between these 2 groups. Results showed that xenografted Mino along with CD14+ monocytes significantly increased the tumor growth in vivo compared with MCL cells alone (P < .001), whereas treatment with liposomal clodronate (to deplete the macrophages) reversed the effect of CD14+ monocytes on growth of MCL xenografts (P < .001). Mechanistically, IL-10 secreted by MCL-polarized M2-like macrophages was found to be responsible for increasing MCL growth by activating STAT1 signaling, whereas IL-10 neutralizing antibody or STAT1 inhibition by fludarabine or STAT1 short hairpin RNA significantly abolished MCL growth (P < .01). Collectively, our data show the existence of a tumor microenvironmental network of macrophages and MCL tumor and suggest the importance of macrophages in interventional therapeutic strategies against MCL and other lymphoid malignancies.
Collapse
|
34
|
Dou A, Fang J. Heterogeneous Myeloid Cells in Tumors. Cancers (Basel) 2021; 13:3772. [PMID: 34359674 PMCID: PMC8345207 DOI: 10.3390/cancers13153772] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies highlight a critical role of myeloid cells in cancer biology and therapy. The myeloid cells constitute the major components of tumor microenvironment (TME). The most studied tumor-associated myeloid cells (TAMCs) include monocytes, tumor-associated macrophages (TAMs), dendritic cells (DCs), cancer-related circulating neutrophils, tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). These heterogenous myeloid cells perform pro-tumor or anti-tumor function, exerting complex and even opposing effects on all stages of tumor development, such as malignant clonal evolution, growth, survival, invasiveness, dissemination and metastasis of tumor cells. TAMCs also reshape TME and tumor vasculature to favor tumor development. The main function of these myeloid cells is to modulate the behavior of lymphocytes, forming immunostimulatory or immunosuppressive TME cues. In addition, TAMCs play a critical role in modulating the response to cancer therapy. Targeting TAMCs is vigorously tested as monotherapy or in combination with chemotherapy or immunotherapy. This review briefly introduces the TAMC subpopulations and their function in tumor cells, TME, angiogenesis, immunomodulation, and cancer therapy.
Collapse
Affiliation(s)
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA;
| |
Collapse
|
35
|
Search for AL amyloidosis risk factors using Mendelian randomization. Blood Adv 2021; 5:2725-2731. [PMID: 34228109 DOI: 10.1182/bloodadvances.2021004423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
In amyloid light chain (AL) amyloidosis, amyloid fibrils derived from immunoglobulin light chain are deposited in many organs, interfering with their function. The etiology of AL amyloidosis is poorly understood. Summary data from genome-wide association studies (GWASs) of multiple phenotypes can be exploited by Mendelian randomization (MR) methodology to search for factors influencing AL amyloidosis risk. We performed a 2-sample MR analyzing 72 phenotypes, proxied by 3461 genetic variants, and summary genetic data from a GWAS of 1129 AL amyloidosis cases and 7589 controls. Associations with a Bonferroni-defined significance level were observed for genetically predicted increased monocyte counts (P = 3.8 × 10-4) and the tumor necrosis factor receptor superfamily member 17 (TNFRSF17) gene (P = 3.4 × 10-5). Two other associations with the TNFRSF (members 6 and 19L) reached a nominal significance level. The association between genetically predicted decreased fibrinogen levels may be related to roles of fibrinogen other than blood clotting. be related to its nonhemostatic role. It is plausible that a causal relationship with monocyte concentration could be explained by selection of a light chain-producing clone during progression of monoclonal gammopathy of unknown significance toward AL amyloidosis. Because TNFRSF proteins have key functions in lymphocyte biology, it is entirely plausible that they offer a potential link to AL amyloidosis pathophysiology. Our study provides insight into AL amyloidosis etiology, suggesting high circulating levels of monocytes and TNFRSF proteins as risk factors.
Collapse
|
36
|
Kuek V, Hughes AM, Kotecha RS, Cheung LC. Therapeutic Targeting of the Leukaemia Microenvironment. Int J Mol Sci 2021; 22:6888. [PMID: 34206957 PMCID: PMC8267786 DOI: 10.3390/ijms22136888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the conduct of uniform prospective clinical trials has led to improved remission rates and survival for patients with acute myeloid leukaemia and acute lymphoblastic leukaemia. However, high-risk patients continue to have inferior outcomes, where chemoresistance and relapse are common due to the survival mechanisms utilised by leukaemic cells. One such mechanism is through hijacking of the bone marrow microenvironment, where healthy haematopoietic machinery is transformed or remodelled into a hiding ground or "sanctuary" where leukaemic cells can escape chemotherapy-induced cytotoxicity. The bone marrow microenvironment, which consists of endosteal and vascular niches, can support leukaemogenesis through intercellular "crosstalk" with niche cells, including mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts. Here, we summarise the regulatory mechanisms associated with leukaemia-bone marrow niche interaction and provide a comprehensive review of the key therapeutics that target CXCL12/CXCR4, Notch, Wnt/b-catenin, and hypoxia-related signalling pathways within the leukaemic niches and agents involved in remodelling of niche bone and vasculature. From a therapeutic perspective, targeting these cellular interactions is an exciting novel strategy for enhancing treatment efficacy, and further clinical application has significant potential to improve the outcome of patients with leukaemia.
Collapse
Affiliation(s)
- Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
37
|
Wang J, Hao JP, Uddin MN, Wu Y, Chen R, Li DF, Xiong DQ, Ding N, Yang JH, Ding XS. Identification and validation of inferior prognostic genes associated with immune signatures and chemotherapy outcome in acute myeloid leukemia. Aging (Albany NY) 2021; 13:16445-16470. [PMID: 34148032 PMCID: PMC8266366 DOI: 10.18632/aging.203166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is a group of heterogeneous hematological malignancies. We identified key genes as ITGAM and lncRNA ITGB2-AS1 through different bioinformatics tools. Furthermore, qPCR was performed to verify the expression level of essential genes in clinical samples. Retrospective research on 179 AML cases was used to investigate the relationship between the expression of ITGAM and the characteristics of AML. The critical gene relationship with immune infiltration in AML was estimated. The clinical validation and prognostic investigation showed that ITGAM, PPBP, and ITGB2-AS1 are highly expressed in AML (P < 0.001) and significantly associated with the overall survival in AML. Moreover, the retrospective research on 179 clinical cases showed that positive expression of ITGAM is substantially related to AML classification (P < 0.001), higher count of white blood cells (P < 0.01), and poor chemotherapy outcome (P < 0.05). Furthermore, based on grouping ITGAM as the high and low expression in TCGA-LAML profile, we found that genes in the highly expressed ITGAM group are mainly involved in immune infiltration and inflammation-related signaling pathways. Finally, we discovered that the expression level of ITGAM and lncRNA ITGB2-AS1 are not just closely related to the immune score and stromal score (P < 0.001) but also significantly positively correlated with various Immune signatures in AML (P < 0.001), indicating the association of these genes with immunosuppression in AML. The prediction of candidate drugs indicated that certain immunosuppressive drugs have potential therapeutic effects for AML. The critical genes could be used as potential biomarkers to evaluate the survival and prognosis of AML.
Collapse
Affiliation(s)
- Jie Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Dong-Feng Li
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Dai-Qin Xiong
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Nan Ding
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jian-Hua Yang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
38
|
Miazek-Zapala N, Slusarczyk A, Kusowska A, Zapala P, Kubacz M, Winiarska M, Bobrowicz M. The "Magic Bullet" Is Here? Cell-Based Immunotherapies for Hematological Malignancies in the Twilight of the Chemotherapy Era. Cells 2021; 10:1511. [PMID: 34203935 PMCID: PMC8232692 DOI: 10.3390/cells10061511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the introduction of a plethora of different anti-neoplastic approaches including standard chemotherapy, molecularly targeted small-molecule inhibitors, monoclonal antibodies, and finally hematopoietic stem cell transplantation (HSCT), there is still a need for novel therapeutic options with the potential to cure hematological malignancies. Although nowadays HSCT already offers a curative effect, its implementation is largely limited by the age and frailty of the patient. Moreover, its efficacy in combating the malignancy with graft-versus-tumor effect frequently coexists with undesirable graft-versus-host disease (GvHD). Therefore, it seems that cell-based adoptive immunotherapies may constitute optimal strategies to be successfully incorporated into the standard therapeutic protocols. Thus, modern cell-based immunotherapy may finally represent the long-awaited "magic bullet" against cancer. However, enhancing the safety and efficacy of this treatment regimen still presents many challenges. In this review, we summarize the up-to-date state of the art concerning the use of CAR-T cells and NK-cell-based immunotherapies in hemato-oncology, identify possible obstacles, and delineate further perspectives.
Collapse
Affiliation(s)
- Nina Miazek-Zapala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
- Institute of Physiology and Pathophysiology of Hearing, World Hearing Center, 05-830 Nadarzyn, Poland
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland;
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Piotr Zapala
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland;
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Malgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| |
Collapse
|
39
|
Prognostic Value of Tie2-Expressing Monocytes in Chronic Lymphocytic Leukemia Patients. Cancers (Basel) 2021; 13:cancers13112817. [PMID: 34198760 PMCID: PMC8200999 DOI: 10.3390/cancers13112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tie2-expressing monocytes (TEM) characterized by the phenotype of CD14+CD16+Tie2+ are seen as the new immunosuppressive force in tumors. However, little is known about the role of circulating TEM in chronic lymphocytic leukemia (CLL) as opposed to their role in solid tumors. In the current study, we observed an increased percentage of TEMs in CLL patients. A greater than 14.82% proportion of TEM foretells an unfavorable prognosis. This threshold has predicted a shorter time from diagnosis to therapy, and worse overall survival. Despite these results, a multivariable Cox regression model performed in 104 CLL patients did not identify TEM as an independent predictor of survival. However, TEM, as an important element of the tumor-microenvironment, can be an important complement to other prognostic indicators. Abstract Tie2-expressing monocytes (TEMs) are associated with tumor progression and metastasis. This unique subset of monocytes has been identified as a potential prognostic marker in several solid tumors. However, TEMs remain poorly characterized in hematological cancers, including chronic lymphocytic leukemia (CLL). This study analyzed, for the first time, the clinical significance of TEM population in CLL patients. Flow cytometry analysis of TEMs (defined as CD14+CD16+Tie2+ cells) was performed at the time of diagnosis on peripheral blood mononuclear cells from 104 untreated CLL patients. Our results revealed an expansion of circulating TEM in CLL patients. These monocytes express high levels of VEGF and suppressive IL-10. A high percentage of TEM was associated closely with unfavorable prognostic markers (ZAP-70, CD38, 17p and 11q deletion, and IGHV mutational status). Moreover, increased percentages of circulating TEMs were significantly higher in patients not responding to the first-line therapy as compared to responding patients, suggesting its potential predictive value. High TEM percentage was also correlated with shorter overall survival (OS) and shorter time to treatment (TTT). Importantly, based on multivariate Cox regression analysis, TEM percentage was an independent predictor for TTT. Thus, we can suggest the adverse role of TEMs in CLL.
Collapse
|
40
|
Wu A, Gao P, Wu N, Shi C, Huang Z, Rong C, Sun Y, Sheng L, Ouyang G, Mu Q. Elevated mature monocytes in bone marrow accompanied with a higher IPSS-R score predicts a poor prognosis in myelodysplastic syndromes. BMC Cancer 2021; 21:546. [PMID: 33985456 PMCID: PMC8117396 DOI: 10.1186/s12885-021-08303-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) is a group of heterogeneous myeloid clonal diseases originating from hematopoietic stem cells. Clinically, elevated mature monocyte in bone marrow is often observed, but its clinical value still remains unclear. METHODS We retrospectively analyzed a cohort of 216 MDS patients to explore the prognostic value of the percentage of mature monocyte in bone marrow (PMMBM). All patients were divided into elevated PMMBM group and the normal group by 6% PMMBM as the cut-off value. RESULTS Our results showed that PMMBM> 6% was associated with inferior overall survival (OS) (P = 0.026) along with higher-risk IPSS-R (P = 0.025) and higher frequency of IDH2 mutation (P = 0.007). Multivariate analyses showed that besides older age (> 60 years) for OS, gender (male) for OS, lower neutrophil count (< 0.8 × 109/L) for OS, higher bone marrow blast percentage (> 5%) for OS and LFS, poorer karyotype for OS, elevated PMMBM was also an independent adverse prognostic factor for OS in MDS (P < 0.0001) but not for LFS (P = 0.736). CONCLUSIONS These findings indicate that increased PMMBM may assists Revised International Prognostic Scoring System (IPSS-R) to predict a poor outcome and provide a novel evaluation factor for MDS patients especially when their karyotype analyses fail.
Collapse
Affiliation(s)
- An Wu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China.,Institute of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Panpan Gao
- Department of Hematology, Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, PR China
| | - Ningning Wu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China.,Institute of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Cong Shi
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China.,Institute of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Zhenya Huang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China.,Institute of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Chunmeng Rong
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China.,Institute of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Ye Sun
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China.,Institute of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Lixia Sheng
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China. .,Institute of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China.
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China. .,Institute of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China.
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China. .,Institute of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, PR China.
| |
Collapse
|
41
|
Gao F, Hu J, Zhang J, Xu Y. Prognostic Value of Peripheral Blood Lymphocyte/monocyte Ratio in Lymphoma. J Cancer 2021; 12:3407-3417. [PMID: 33995619 PMCID: PMC8120176 DOI: 10.7150/jca.50552] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: Lymphocyte monocyte ratio (LMR) has been considered as a prognostic factor in patients with lymphoma, which focused on diffuse large B-cell lymphoma (DLBCL) and Hodgkin lymphoma (HL). Recently, many relevant clinical studies have been published with inconsistent results. To gain a more comprehensive view of the prognostic value of LMR, we conducted a meta-analysis on the significance of peripheral LMR in all subtypes of lymphoma. Methods: PubMed, PMC, Web of Science, Embase, and Cochrane Library were searched for relevant articles to conduct a meta-analysis. Hazard ratio (HR) and its 95% confidence interval (CI) of OS and PFS were extracted and pooled on stata12.1. Results: In the meta-analysis, forty studies were eligible and a total of 10446 patients were included. Low LMR was associated with an inferior OS (HR=2.45, 95%CI 1.95-3.08) and PFS (HR=2.36, 95%CI 1.94-2.88). In the analysis of lymphoma subtypes, similar results were seen in HL, NHL, and its subtypes including DLBCL, NK/T cell lymphoma, and follicular lymphoma. In addition, low LMR was related with higher LDH (OR=2.26, 95%CI 1.66-3.09), advanced tumor staging (OR=0.41, 95%CI 0.36-0.46), IPI score (OR=0.40, 95%CI 0.33-0.48), but not with bone marrow involvement (OR=1.24, 95%CI 0.85-1.81) or pathological subtype (OR=0.69, 95%CI 0.41-1.16). Conclusion: Low LMR in peripheral blood indicates poor prognosis in patients with lymphoma. As a simple clinical indicator, peripheral blood LMR combined with existing prognostic factors can improve the accuracy of lymphoma prognosis assessment.
Collapse
Affiliation(s)
- Feiqiong Gao
- Department of Hematology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianlai Hu
- Department of Prosthodontics, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiawei Zhang
- Department of Hematology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yang Xu
- Department of Hematology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.,Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
42
|
Zhang X, Zhong L, Zou Z, Liang G, Tang Z, Li K, Tan S, Huang Y, Zhu X. Clinical and Prognostic Pan-Cancer Analysis of N6-Methyladenosine Regulators in Two Types of Hematological Malignancies: A Retrospective Study Based on TCGA and GTEx Databases. Front Oncol 2021; 11:623170. [PMID: 33816257 PMCID: PMC8015800 DOI: 10.3389/fonc.2021.623170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most active modification factors of mRNA, which is closely related to cell proliferation, differentiation, and tumor development. Here, we explored the relationship between the pathogenesis of hematological malignancies and the clinicopathologic parameters. The datasets of hematological malignancies and controls were obtained from the TCGA [AML (n = 200), DLBCL (n = 48)] and GTEx [whole blood (n = 337), blood vascular artery (n = 606)]. We analyzed the m6A factor expression differences in normal tissue and tumor tissue and their correlations, clustered the express obvious clinical tumor subtypes, determined the tumor risk score, established Cox regression model, performed univariate and multivariate analysis on all datasets. We found that the AML patients with high expression of IGF2BP3, ALKBH5, and IGF2BP2 had poor survival, while the DLBCL patients with high expression of METTL14 had poor survival. In addition, "Total" datasets analysis revealed that IGF2BP1, ALKBH5, IGF2BP2, RBM15, METTL3, and ZNF217 were potential oncogenes for hematologic system tumors. Collectively, the expressions of some m6A regulators are closely related to the occurrence and development of hematologic system tumors, and the intervention of specific regulatory factors may lead to a breakthrough in the treatment in the future.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
| | - Liye Zhong
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhilin Zou
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Guosheng Liang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
| | - Zhenye Tang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
| | - Kai Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Tan
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
| | - Yongmei Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
43
|
Du SZ, Chen C, Qin L, Tang XL. Bioinformatics analysis of immune infiltration in glioblastoma multiforme based on data using a methylation chip in the GEO database. Transl Cancer Res 2021; 10:1484-1491. [PMID: 35116473 PMCID: PMC8798202 DOI: 10.21037/tcr-21-74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the most aggressive and malignant tumor of the central nervous system. The study was to obtain the data of immune cell infiltration based on the data of a methylation chip in the GEO, and to clarify its prognostic significance for GBM. Methods The methylation data of glioblastoma was obtained by using the Illumina human methylation 450k BeadChip. The corrected expression was obtained by using edge R. Limma was used to correct the expression amount of the samples, and EpiDISH was used to translate the methylation expression data, so that the expression amount was transformed into the expression matrix of immune cells. The immune cells were then co-expressed, and the proportion and correlation of related immune cells was determined. The results of the cells in each of two groups were analyzed by enrichment and PCA mapping to establish the relevant differences. Results The data of GBM patients were obtained from the methylation chip of the GEO database. Patients were divided into a long-term (SNU-LTS) (21 cases), and short-term survival group (SNU-STS) (12 cases). There were 73 genes with significant individual differences between the two groups (P<0.05). EpiDISH was used to translate the methylation expression data into the expression matrix of immune cells, which showed that the highest proportion of cells in groups were mono cells, while Gran cells and CD8T appeared in a very small number of samples. The positive correlation between mono and B cells was the strongest, while the negative correlation between mono and Gran cells was the strongest. A violin chart shows that there was no significant difference in the infiltration degree of six kinds of immune cells between the two groups. Principal component analysis (PCA) showed that there was individual difference between the two groups, but the overall consistency was high. Conclusions Data on tumor immune cell infiltration can be obtained by using a methylation chip in the GEO database. This not only extends the application abilities of methylation chips but provides obvious individual differences. The study of tumor immune infiltrating cells may pave the way for targeted therapy in the treatment of GBM.
Collapse
Affiliation(s)
- Song-Zhou Du
- Department of Neurosurgery, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical College, Yangtze University, Jingzhou, China
| | - Cheng Chen
- Department of Nuclear Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Lu Qin
- Department of Thyroid Vascular Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Xue-Lian Tang
- Department of Respiratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| |
Collapse
|
44
|
Guerra B, Recio C, Aranda-Tavío H, Guerra-Rodríguez M, García-Castellano JM, Fernández-Pérez L. The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Front Oncol 2021; 11:626971. [PMID: 33718197 PMCID: PMC7947625 DOI: 10.3389/fonc.2021.626971] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
A hallmark of cancer cells includes a metabolic reprograming that provides energy, the essential building blocks, and signaling required to maintain survival, rapid growth, metastasis, and drug resistance of many cancers. The influence of tumor microenviroment on cancer cells also results an essential driving force for cancer progression and drug resistance. Lipid-related enzymes, lipid-derived metabolites and/or signaling pathways linked to critical regulators of lipid metabolism can influence gene expression and chromatin remodeling, cellular differentiation, stress response pathways, or tumor microenviroment, and, collectively, drive tumor development. Reprograming of lipid metabolism includes a deregulated activity of mevalonate (MVA)/cholesterol biosynthetic pathway in specific cancer cells which, in comparison with normal cell counterparts, are dependent of the continuous availability of MVA/cholesterol-derived metabolites (i.e., sterols and non-sterol intermediates) for tumor development. Accordingly, there are increasing amount of data, from preclinical and epidemiological studies, that support an inverse association between the use of statins, potent inhibitors of MVA biosynthetic pathway, and mortality rate in specific cancers (e.g., colon, prostate, liver, breast, hematological malignances). In contrast, despite the tolerance and therapeutic efficacy shown by statins in cardiovascular disease, cancer treatment demands the use of relatively high doses of single statins for a prolonged period, thereby limiting this therapeutic strategy due to adverse effects. Clinically relevant, synergistic effects of tolerable doses of statins with conventional chemotherapy might enhance efficacy with lower doses of each drug and, probably, reduce adverse effects and resistance. In spite of that, clinical trials to identify combinatory therapies that improve therapeutic window are still a challenge. In the present review, we revisit molecular evidences showing that deregulated activity of MVA biosynthetic pathway has an essential role in oncogenesis and drug resistance, and the potential use of MVA pathway inhibitors to improve therapeutic window in cancer.
Collapse
Affiliation(s)
- Borja Guerra
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Haidée Aranda-Tavío
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miguel Guerra-Rodríguez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José M García-Castellano
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
45
|
Chen C, Wang R, Feng W, Yang F, Wang L, Yang X, Ren L, Zheng G. Peritoneal resident macrophages in mice with MLL-AF9-induced acute myeloid leukemia show an M2-like phenotype. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:266. [PMID: 33708893 PMCID: PMC7940882 DOI: 10.21037/atm-21-139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Acute myeloid leukemia (AML) is a devastating disease with a poor prognosis. Innate and adaptive immunity is closely related to the progression of leukemia. Macrophages within the leukemic microenvironment have a tendency toward a leukemia-permissive phenotype. However, the characteristics of macrophages in leukemia, including their kinetics, gene expression, and functional roles have not been fully illuminated. Methods In the current study, the characteristics of peritoneal resident macrophages, which were large peritoneal macrophages (LPM), from mice with mixed lineage leukemia (MLL)-AF9-induced AML were investigated. AML-associated large macrophages (AML-LPM) were gated as F4/80high MHC-II- by flow cytometry. To further investigate the relationship between the leukemic microenvironment and macrophage characteristics, RNA sequencing was performed. Meanwhile, apoptosis, killing ability, and phagocytic function of peritoneal resident macrophages in MLL-AF9-induced AML were assessed. Results The results suggested that AML microenvironment was found to affect the kinetics and morphology of peritoneal resident macrophages. The results of RNA sequencing suggested that the gene expression of AML-LPMs differed significantly from that of normal LPMs. The AML microenvironment also had effects on the apoptosis, killing ability, and phagocytic function of peritoneal resident macrophages. Conclusions These data suggest that peritoneal resident macrophages in mice with AML induced by MLL-AF9 show an M2-like phenotype. The reversal of macrophage polarization in the leukemic microenvironment may potentially enhance the immunotherapeutic effect in AML.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer; National Human Genetic Resources Sharing Service Platform Tianjin, Tianjin, China
| | - Rong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Feifei Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiao Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer; National Human Genetic Resources Sharing Service Platform Tianjin, Tianjin, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
46
|
The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers (Basel) 2021; 13:cancers13020217. [PMID: 33435306 PMCID: PMC7827690 DOI: 10.3390/cancers13020217] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a hematologic malignancy caused by aberrant plasma cell proliferation in the bone marrow (BM) and constitutes the second most common hematological disease after non-Hodgkin lymphoma. The disease progression is drastically regulated by the immunosuppressive tumor microenvironment (TME) generated by soluble factors and different cells that naturally reside in the BM. This microenvironment does not remain unchanged and alterations favor cancer dissemination. Despite therapeutic advances over the past 15 years, MM remains incurable and therefore understanding the elements that control the TME in MM would allow better-targeted therapies to cure this disease. In this review, we discuss the main events and changes that occur in the BM milieu during MM development. Abstract Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell–cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression.
Collapse
|
47
|
Xu B, Hu R, Liang Z, Chen T, Chen J, Hu Y, Jiang Y, Li Y. Metabolic regulation of the bone marrow microenvironment in leukemia. Blood Rev 2020; 48:100786. [PMID: 33353770 DOI: 10.1016/j.blre.2020.100786] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Most leukemia patients experience little benefit from immunotherapy, in part due to the immunosuppressive bone marrow microenvironment. Various metabolic mechanisms orchestrate the behaviors of immune cells and leukemia cells in the bone marrow microenvironment. Furthermore, leukemia cells regulate the bone marrow microenvironment through metabolism to generate an adequate supply of energy and to escape antitumor immune surveillance. Thus, the targeting of the interaction between leukemia cells and the bone marrow microenvironment provides a new therapeutic avenue. In this review, we describe the concept of the bone marrow microenvironment and several important metabolic processes of leukemia cells within the bone marrow microenvironment, including carbohydrate, lipid, and amino acid metabolism. In addition, we discuss how these metabolic pathways regulate antitumor immunity and reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Tong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yirong Jiang
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong 523059, PR China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, PR China.
| |
Collapse
|
48
|
Chatterjee B, Saha P, Bose S, Shukla D, Chatterjee N, Kumar S, Tripathi PP, Srivastava AK. MicroRNAs: As Critical Regulators of Tumor- Associated Macrophages. Int J Mol Sci 2020; 21:ijms21197117. [PMID: 32992449 PMCID: PMC7582892 DOI: 10.3390/ijms21197117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging shreds of evidence suggest that tumor-associated macrophages (TAMs) modulate various hallmarks of cancer during tumor progression. Tumor microenvironment (TME) prime TAMs to execute important roles in cancer development and progression, including angiogenesis, matrix metalloproteinases (MMPs) secretion, and extracellular matrix (ECM) disruption. MicroRNAs (miRNAs) are critical epigenetic regulators, which modulate various functions in diverse types of cells, including macrophages associated with TME. In this review article, we provide an update on miRNAs regulating differentiation, maturation, activation, polarization, and recruitment of macrophages in the TME. Furthermore, extracellular miRNAs are secreted from cancerous cells, which control macrophages phenotypic plasticity to support tumor growth. In return, TAMs also secrete various miRNAs that regulate tumor growth. Herein, we also describe the recent updates on the molecular connection between tumor cells and macrophages. A better understanding of the interaction between miRNAs and TAMs will provide new pharmacological targets to combat cancer.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Devendra Shukla
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, WB 700026, India;
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education & Research, Tirupati, Andhra Pradesh 517507, India;
| | - Prem Prakash Tripathi
- Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India;
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
- Correspondence:
| |
Collapse
|
49
|
Yang Y, Liu Z, Wang H. Peripheral Absolute Lymphocyte Count: An Economical and Clinical Available Immune-Related Prognostic Marker for Newly Diagnosed Multiple Myeloma. Med Sci Monit 2020; 26:e923716. [PMID: 32732863 PMCID: PMC7418483 DOI: 10.12659/msm.923716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background To find economical and clinically available immune-related prognostic markers that could predict the overall survival (OS) of newly diagnosed multiple myeloma (NDMM) in the new drug era. Material/Methods Absolute lymphocyte count (ALC) and absolute monocyte count (AMC) were measured in routine blood samples from 102 patients with NDMM, and the lymphocyte-monocyte ratio (LMR) was derived. All the patients were receiving bortezomib-based chemotherapy as induction treatment. Log-rank testing was used for comparing the differences between groups. Univariate and multivariate tests were used to identify prognostic markers. Results The median ALC and LMR values at diagnosis were 1.43×109/L and 3.7, respectively, and served as the cutoff point. As prognostic factors, ALC, LMR, and a new staging system combining ALC and the ISS staging system (L-ISS) were expected to have a significant impact on predicting OS. Furthermore, multivariate analysis showed that ALC ≥1.43×109/L (hazard ratio [HR]: 0.223; 95% confidence interval [CI]: 0.071–0.705; P=0.011), LMR ≥3.7 (HR: 0.363; 95% CI: 0.139–0.947; P=0.038), and L-ISS late stage (HR: 1.619; 95% CI: 1.065–2.743; P=0.027) were independent predictors for OS. Conclusions ALC and LMR can serve as surrogate markers for patients’ antitumor immunity at the initial diagnosis of multiple myeloma. A new immune-related staging system, L-ISS, which combines ALC and the ISS staging system, can predict clinical outcomes in patients who are receiving bortezomib-based chemotherapy.
Collapse
Affiliation(s)
- Ying Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Hongtao Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
50
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|