1
|
Pissas G, Tziastoudi M, Poulianiti C, Polyzou Konsta MA, Lykotsetas E, Liakopoulos V, Stefanidis I, Eleftheriadis T. In human CD4+ T-Cells, omeprazole suppresses proliferation, downregulates V-ATPase, and promotes differentiation toward an autoimmunity-favoring phenotype. Int Immunopharmacol 2025; 144:113728. [PMID: 39616854 DOI: 10.1016/j.intimp.2024.113728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) represent a commonly prescribed class of medications. Triggered by findings indicating a correlation between PPI usage and susceptibility to infectious or autoimmune diseases, we studied the impact of a pharmacological concentration of omeprazole on human CD4+ T-cells. METHODS In mixed lymphocyte reactions (MLRs), we analyzed the proliferation index and measured the concentration of key cytokines representative of distinct CD4+ T-cell subsets. In CD4+ T-cells isolated from the MLRs, we evaluated proliferation markers and pathways, the expression of signature transcription factors of CD4+ T-cell subsets, vacuolar H+- ATPase (V-ATPase) levels, and the activation status of AMP-activated kinase (AMPK) and mammalian target of rapamycin complex-1 (mTORC1). RESULTS Omeprazole reduced proliferation index in MLRs, and in isolated CD4+ T-cells, it downregulated the proliferation marker Ki-67, possibly mediated by the p53- p21 pathway. Analysis of cytokines and signature transcription factors of CD4+ T-cell subsets indicated that omeprazole decreased T helper 1 (Th1) differentiation, had negligible impact on Th2 differentiation, increased Th17 differentiation, and reduced regulatory T-cell (Treg) differentiation. Omeprazole also decreased V-ATPase, a known target of PPIs and a site for AMPK and mTORC1 activation. Consequently, this led to diminished activation of these kinases, potentially elucidating the mechanism by which omeprazole influences CD4+ T-cell differentiation. CONCLUSION Omeprazole downregulates V-ATPase and inhibits activation of AMPK and mTORC1. As a result, omeprazole suppresses CD4+ T-cell clonal expansion, potentially contributing to the observed association between PPIs and susceptibility to infections. Additionally, it modulates CD4+ T-cell differentiation in a manner that favors autoimmunity.
Collapse
Affiliation(s)
- Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Evangelos Lykotsetas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Vasilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | |
Collapse
|
2
|
Worral Wilfred Raj AS, Manoharan R. NUAKs promote mTOR/c-Myc-induced glucose and glutamine reprogramming for cell growth and metastasis in breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167508. [PMID: 39270807 DOI: 10.1016/j.bbadis.2024.167508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Breast cancer progression and metastasis are closely connected to changes in glucose and glutamine metabolism. While Novel (nua) kinase family 1 (NUAK1) and Novel (nua) kinase family 2 (NUAK2), which are two members of the AMPK-related kinases, have been associated with breast tumorigenesis, their role in the metabolic reprogramming that occurs during breast cancer progression remains unclear. Our research uncovers that NUAKs expression is significantly higher in breast cancer tissues and cell lines, and it is positively related to glycolysis, the pentose phosphate pathway (PPP), glutamine metabolism, and a poor prognosis for breast cancer patients. We show that NUAKs significantly increase metabolic reprogramming, including aerobic glycolysis, PPP, and glutamine metabolism in triple negative breast cancer subtypes but only induce aerobic glycolysis and PPP in luminal breast cancer subtypes to meet the anabolic demands of rapidly dividing breast cancer cells. In contrast, the depletion of NUAKs has the opposite effect. Mechanistic insights reveal that NUAKs activate mammalian target of rapamycin (mTOR) signaling, which in turn upregulates the c-Myc transcription factor, a crucial regulator of glucose and glutamine metabolic gene expression. Moreover, we demonstrate that NUAKs enhance mTOR/c-Myc signaling pathways, leading to increased glucose and glutamine reprogramming, which supports rapid cell proliferation and metastatic potential in breast cancer cells. Importantly, pretreating breast cancer cells with mTOR inhibitors blocked the metabolic reprogramming and tumor-promoting effect of NUAK1/2. Therefore, targeting NUAKs may represent a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Acily Skadon Worral Wilfred Raj
- Cell Signaling and Cancer Biology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Ravi Manoharan
- Cell Signaling and Cancer Biology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India.
| |
Collapse
|
3
|
Rodríguez Silva J, Monsalves-Álvarez M, Sepúlveda C, Donoso-Barraza C, Troncoso R, Hirsch S. Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell. Mol Cell Biochem 2025; 480:505-519. [PMID: 38536555 DOI: 10.1007/s11010-024-04987-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/09/2024] [Indexed: 01/03/2025]
Abstract
Evidence for folate's protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, ∼30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5-MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.
Collapse
Affiliation(s)
- Juan Rodríguez Silva
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| | - Matías Monsalves-Álvarez
- Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Carlos Sepúlveda
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Camila Donoso-Barraza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Sandra Hirsch
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Glorieux C, Enríquez C, Buc Calderon P. The complex interplay between redox dysregulation and mTOR signaling pathway in cancer: A rationale for cancer treatment. Biochem Pharmacol 2024; 232:116729. [PMID: 39709038 DOI: 10.1016/j.bcp.2024.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that plays a critical role in regulating cellular processes such as growth, proliferation, and metabolism in healthy cells. Dysregulation of mTOR signaling and oxidative stress have been implicated in various diseases including cancer. This review aims to provide an overview of the current understanding of mTOR and its involvement in cell survival and the regulation of cancer cell metabolism as well as its complex interplay with reactive oxygen species (ROS). On the one hand, ROS can inhibit or activate mTOR pathway in cancer cells through various mechanisms. Conversely, mTOR signaling can induce oxidative stress in tumor cells notably due to the inhibition in the expression of antioxidant enzyme genes. Since mTOR is often activated and plays crucial role in cancer cell survival, the use of mTOR inhibitors, which often induce ROS accumulation, could be an interesting approach for cancer treatment. This review will address the advantages, disadvantages, combination strategies, and limitations associated with therapeutic modulation of mTOR signaling pathway in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060 Guangzhou, China.
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Programa de Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000 Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
5
|
Galhuber M, Thedieck K. ODE-based models of signaling networks in autophagy. CURRENT OPINION IN SYSTEMS BIOLOGY 2024; 39:100519. [DOI: 10.1016/j.coisb.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Chang Y, Du R, Xia F, Xu X, Wang H, Chen X. Dysregulation of Fatty Acid Metabolism in Breast Cancer and Its Targeted Therapy. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:825-844. [PMID: 39628960 PMCID: PMC11614585 DOI: 10.2147/bctt.s496322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024]
Abstract
Breast cancer has become the number one cancer worldwide, there are challenges in its prevention, diagnosis and treatment, especially the pathogenesis of triple negative breast cancer has not been clear and the treatment dilemma of metastatic breast cancer. Metabolic reprogramming is currently considered to be one of the hallmarks of cancer, and metabolic alterations in breast cancer, including enhanced glycolysis, tricarboxylic acid cycle activity, glutamine catabolism, and fatty acid biosynthesis, are manifested differently in different breast cancer subtypes and have a complex relationship with tumor growth, metastasis, death, and drug resistance. At present, inhibitors of fatty acid synthesis and oxidation related enzymes have a certain effect in the treatment of breast cancer. In this paper, we review the studies on fatty acid metabolism in breast cancer to better understand the mechanism of fatty acid metabolism in breast cancer pathogenesis and hope to provide new ideas for targeting fatty acid metabolism in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yue Chang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| | - Rui Du
- Department of Anorectal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei First People’s Hospital, Hefei, Anhui, People’s Republic of China
| | - Fan Xia
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| | - Xiuli Xu
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| | - Hongzhi Wang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| | - Xueran Chen
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People’s Republic of China
| |
Collapse
|
7
|
Zeng Q, Lv C, Qi L, Wang Y, Hao S, Li G, Sun H, Du L, Li J, Wang C, Zhang Y, Wang X, Ma R, Wang T, Li Q. Sodium selenite inhibits cervical cancer progression via ROS-mediated suppression of glucose metabolic reprogramming. Life Sci 2024; 357:123109. [PMID: 39384146 DOI: 10.1016/j.lfs.2024.123109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
AIMS This study aims to explore the inhibitory effect of selenium on cervical cancer through suppression of glucose metabolic reprogramming and its underlying mechanisms. METHODS Sodium selenite (SS) treated HeLa and SiHa cells were assessed for proliferation using the CCK-8 assay and immunofluorescence. DNA synthesis was measured with the EdU assay. A nude mouse xenograft model evaluated SS's anti-cervical cancer effects. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured using flow cytometry, DCFH-DA, and JC-1 probes, respectively. Apoptosis was detected via Annexin V/PI staining and Western blot. Glucose uptake, lactate production, and ATP generation were determined using 2-NBDG probes and assay kits. The mRNA and protein levels of glycolysis-related genes HK2, GLUT1, and PDK1 were measured using RT-qPCR and Western blot. KEY FINDINGS SS inhibited HeLa and SiHa cells viability in a dose- and time-dependent manner. Intraperitoneal injection of SS in nude mice significantly inhibited HeLa cell xenograft growth without evident hepatotoxicity or nephrotoxicity. SS inhibited glucose metabolic reprogramming in cancer cells primarily via ROS-mediated AKT/mTOR/HIF-1α pathway inhibition. Pretreatment with N-acetylcysteine (NAC) or MHY1485 (an mTOR activator) partially reversed the inhibitory effects of SS on glucose metabolic reprogramming, cell proliferation, and migration, as well as its pro-apoptotic effects. SIGNIFICANCE SS exhibited anti-cervical cancer effects, likely through the induction of ROS generation and inhibition of glucose metabolic reprogramming in cervical cancer cells, thereby inhibiting cell proliferation and promoting apoptosis. These findings provide new insights into understanding the molecular mechanisms underlying SS for potential new drug development for cervical cancer.
Collapse
Affiliation(s)
- Qingyu Zeng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Cunqi Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Lei Qi
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; School of Public Health, Qiqihar Medical University, Qiqihar 161003, Heilongjiang, China
| | - Yuanyuan Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Shuxiu Hao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Guijin Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Huixin Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Linlin Du
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Jiacheng Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Cheng Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yu Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xinshu Wang
- Nanchang University Queen Mary School, Nanchang 330000, China
| | - Rong Ma
- Department of Gynecological Oncoology, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| | - Tong Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Qi Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
8
|
Sánchez-Castillo A, Savelkouls KG, Baldini A, Hounjet J, Sonveaux P, Verstraete P, De Keersmaecker K, Dewaele B, Björkblom B, Melin B, Wu WY, Sjöberg RL, Rouschop KMA, Broen MPG, Vooijs M, Kampen KR. Sertraline/chloroquine combination therapy to target hypoxic and immunosuppressive serine/glycine synthesis-dependent glioblastomas. Oncogenesis 2024; 13:39. [PMID: 39537592 PMCID: PMC11561346 DOI: 10.1038/s41389-024-00540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The serine/glycine (ser/gly) synthesis pathway branches from glycolysis and is hyperactivated in approximately 30% of cancers. In ~13% of glioblastoma cases, we observed frequent amplifications and rare mutations in the gene encoding the enzyme PSPH, which catalyzes the last step in the synthesis of serine. This urged us to unveil the relevance of PSPH genetic alterations and subsequent ser/gly metabolism deregulation in the pathogenesis of glioblastoma. Primary glioblastoma cells overexpressing PSPH and PSPHV116I showed an increased clonogenic capacity, cell proliferation, and migration, supported by elevated nucleotide synthesis and utilization of reductive NAD(P). We previously identified sertraline as an inhibitor of ser/gly synthesis and explored its efficacy at suboptimal dosages in combination with the clinically pretested chloroquine to target ser/glyhigh glioblastoma models. Interestingly, ser/glyhigh glioblastomas, including PSPHamp and PSPHV116I, displayed selective synergistic inhibition of proliferation in response to combination therapy. PSPH knockdown severely affected ser/glyhigh glioblastoma clonogenicity and proliferation, while simultaneously increasing its sensitivity to chloroquine treatment. Metabolite landscaping revealed that sertraline/chloroquine combination treatment blocks NADH and ATP generation and restricts nucleotide synthesis, thereby inhibiting glioblastoma proliferation. Our previous studies highlight ser/glyhigh cancer cell modulation of its microenvironment at the level of immune suppression. To this end, high PSPH expression predicts poor immune checkpoint therapy responses in glioblastoma patients. Interestingly, we show that PSPH amplifications in glioblastoma facilitate the expression of immune suppressor galectin-1, which can be inhibited by sertraline treatment. Collectively, we revealed that ser/glyhigh glioblastomas are characterized by enhanced clonogenicity, migration, and suppression of the immune system, which could be tackled using combined sertraline/chloroquine treatment, revealing novel therapeutic opportunities for this subgroup of GBM patients.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Alessandra Baldini
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Judith Hounjet
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
| | - Paulien Verstraete
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Barbara Dewaele
- Center for Human Genetics, Laboratory for Genetics of Malignant Disorders, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | | | - Beatrice Melin
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Wendy Y Wu
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Rickard L Sjöberg
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Kasper M A Rouschop
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Martijn P G Broen
- Department of Neurology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
9
|
Chatatikun M, Pattaranggoon NC, Sama-Ae I, Ranteh O, Poolpirom M, Pantanakong O, Chumworadet P, Kawakami F, Imai M, Tedasen A. Mechanistic exploration of bioactive constituents in Gnetum gnemon for GPCR-related cancer treatment through network pharmacology and molecular docking. Sci Rep 2024; 14:25738. [PMID: 39468096 PMCID: PMC11519448 DOI: 10.1038/s41598-024-75240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
G Protein-Coupled Receptors (GPCRs) are integral membrane proteins that have gained considerable attention as drug targets, particularly in cancer treatment. In this study, we explored the capacity of bioactive compounds derived from Gnetum gnemon (GG) for the development of of pharmaceuticals targeting GPCRs within the context of cancer therapy. Integrated approach combined network pharmacology and molecular docking to identify and validate the underlying pharmacological mechanisms. We retrieved targets for GG-derived compounds and GPCRs-related cancer from databases. Subsequently, we established a protein-protein interaction (PPI) network by mapping the shared targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were employed to predict the mechanism of action of these targets. Molecular docking was conducted to validate our findings. We identified a total of 265 targets associated with GG-derived bioactive compounds for the treatment of GPCRs-related cancer. Functional enrichment analysis revealed the promising therapeutic effects of these targets on GPCRs-related cancer pathways. The PPI network analysis identified hub targets, including MAPK3, SRC, EGFR, STAT3, ESR1, MTOR, CCND1, and PPARG, which demonstrate as treatment targets for GPCRs-related cancer using GG-derived compounds. Additionally, molecular docking experiments demonstrated the strong binding affinity of gnetin A, gnetin C, (-)-viniferin, and resveratrol dimer, thus inhibiting MAPK3, SRC, EGFR, and MTOR. Survival analysis established the clinical prognostic relevance of identified hub genes in cancer. This study presents a novel approach for comprehending the therapeutic mechanisms of GG-derived active compounds and thereby paving the way for their prospective clinical applications in the field of cancer treatment.
Collapse
Affiliation(s)
- Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Nawanwat C Pattaranggoon
- Faculty of Medical Technology, Rangsit University, Muang Pathumthani, Pathumthani, 12000, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Imran Sama-Ae
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Onggan Ranteh
- Department of Community Public Health, School of Public Health, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Manlika Poolpirom
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Oranan Pantanakong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Pitchaporn Chumworadet
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Fumitaka Kawakami
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
- Department of Regulatory Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, 252-0373, Japan
| | - Motoki Imai
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand.
- Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80161, Thailand.
| |
Collapse
|
10
|
Sharma N, Singh L, Sharma A, Kumar A, Mahajan D. NAFLD-associated hepatocellular carcinoma (HCC) - A compelling case for repositioning of existing mTORc1 inhibitors. Pharmacol Res 2024; 208:107375. [PMID: 39209081 DOI: 10.1016/j.phrs.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) is a growing concern for the high incidence rate of hepatocellular carcinoma (HCC) globally. The progression of NAFLD to HCC is heterogeneous and non-linear, involving intermediate stages of non-alcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. There is a high unmet clinical need for appropriate diagnostic, prognostic, and therapeutic options to tackle this emerging epidemic. Unfortunately, at present, there is no validated marker to identify the risk of developing HCC in patients suffering from NAFLD or NASH. Additionally, the current treatment protocols for HCC don't differentiate between viral infection or NAFLD-specific etiology of the HCC and have a limited success rate. The mammalian target of rapamycin complex 1 (mTORc1) is an important protein involved in many vital cellular processes like lipid metabolism, glucose homeostasis, and inflammation. These cellular processes are highly implicated in NAFLD and its progression to severe liver manifestations. Additionally, hyperactivation of mTORc1 is known to promote cell proliferation, which can contribute to the genesis and progression of tumors. Many mTORc1 inhibitors are being evaluated for different types of cancers under various phases of clinical trials. This paper deliberates on the strong pathological implication of the mTORc1 signaling pathway in NAFLD and its progression to NASH and HCC and advocates for a systematic investigation of known mTORc1 inhibitors in suitable pre-clinical models of HCC having NAFLD/NASH-specific etiology.
Collapse
Affiliation(s)
- Nutan Sharma
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India; Department of Chemistry, Faculty of Applied and Basic Sciences, SGT University, Gurugram 122505, India
| | - Lakhwinder Singh
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Aditya Sharma
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Ajay Kumar
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Dinesh Mahajan
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India.
| |
Collapse
|
11
|
Zare A, Khosropanah S, Daryabor G, Doroudchi M. mTOR gene variant rs2295080 might be a risk factor for atherosclerosis in Iranian women with type 2 diabetes mellitus. BMC Endocr Disord 2024; 24:162. [PMID: 39198757 PMCID: PMC11361055 DOI: 10.1186/s12902-024-01703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus, one of the most prevalent metabolic disorders worldwide, is closely linked with an enhanced risk of atherosclerosis. However, the molecular mechanism of this linkage is not still clear. Genetic variations in the mTOR gene may increase the susceptibility of individuals to these diseases. METHODS One hundred nine diabetic patients and 375 healthy subjects participated in this study. mTOR Single Nucleotide Polymorphism (SNP) rs2295080 was determined using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). RESULTS Comparison of genotypic, allelic, and genotypic combination frequencies between cases and controls revealed no significant result. Nevertheless, the frequency of rs2295080 GT + TT genotype was significantly more in diabetic women with atherosclerosis compared with those without atherosclerosis (p = 0.047). Besides, the rs2295080 G allele was more frequently detected in diabetic women without atherosclerosis compared to those with atherosclerosis (p = 0.046). CONCLUSION The rs2295080 GT + TT genotype predisposes Iranian diabetic women to atherosclerosis, while the rs2295080 G allele protects them against atherosclerosis. However, additional experiments using larger sample sizes are needed to verify this result.
Collapse
Affiliation(s)
- Afsaneh Zare
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1583, Shiraz, Iran.
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Wu HT, Wu BX, Fang ZX, Wu Z, Hou YY, Deng Y, Cui YK, Liu J. Lomitapide repurposing for treatment of malignancies: A promising direction. Heliyon 2024; 10:e32998. [PMID: 38988566 PMCID: PMC11234027 DOI: 10.1016/j.heliyon.2024.e32998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu-Kun Cui
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
13
|
Xu D, Yin S, Shu Y. NF2: An underestimated player in cancer metabolic reprogramming and tumor immunity. NPJ Precis Oncol 2024; 8:133. [PMID: 38879686 PMCID: PMC11180135 DOI: 10.1038/s41698-024-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2) is a tumor suppressor gene implicated in various tumors, including mesothelioma, schwannomas, and meningioma. As a member of the ezrin, radixin, and moesin (ERM) family of proteins, merlin, which is encoded by NF2, regulates diverse cellular events and signalling pathways, such as the Hippo, mTOR, RAS, and cGAS-STING pathways. However, the biological role of NF2 in tumorigenesis has not been fully elucidated. Furthermore, cross-cancer mutations may exert distinct biological effects on tumorigenesis and treatment response. In addition to the functional inactivation of NF2, the codeficiency of other genes, such as cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B), BRCA1-associated protein-1 (BAP1), and large tumor suppressor 2 (LATS2), results in unique tumor characteristics that should be considered in clinical treatment decisions. Notably, several recent studies have explored the metabolic and immunological features associated with NF2, offering potential insights into tumor biology and the development of innovative therapeutic strategies. In this review, we consolidate the current knowledge on NF2 and examine the potential connection between cancer metabolism and tumor immunity in merlin-deficient malignancies. This review may provide a deeper understanding of the biological roles of NF2 and guide possible therapeutic avenues.
Collapse
Affiliation(s)
- Duo Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyuan Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
15
|
Mueller S, Kline C, Franson A, van der Lugt J, Prados M, Waszak SM, Plasschaert SLA, Molinaro AM, Koschmann C, Nazarian J. Rational combination platform trial design for children and young adults with diffuse midline glioma: A report from PNOC. Neuro Oncol 2024; 26:S125-S135. [PMID: 38124481 PMCID: PMC11066905 DOI: 10.1093/neuonc/noad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 12/23/2023] Open
Abstract
Background Diffuse midline glioma (DMG) is a devastating pediatric brain tumor unresponsive to hundreds of clinical trials. Approximately 80% of DMGs harbor H3K27M oncohistones, which reprogram the epigenome to increase the metabolic profile of the tumor cells. Methods We have previously shown preclinical efficacy of targeting both oxidative phosphorylation and glycolysis through treatment with ONC201, which activates the mitochondrial protease ClpP, and paxalisib, which inhibits PI3K/mTOR, respectively. Results ONC201 and paxalisib combination treatment aimed at inducing metabolic distress led to the design of the first DMG-specific platform trial PNOC022 (NCT05009992). Conclusions Here, we expand on the PNOC022 rationale and discuss various considerations, including liquid biome, microbiome, and genomic biomarkers, quality-of-life endpoints, and novel imaging modalities, such that we offer direction on future clinical trials in DMG.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, California, USA
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea Franson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Michael Prados
- Department of Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Sebastian M Waszak
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Annette M Molinaro
- Division of Biomedical Statistics and Informatics, Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
16
|
Suh JW, Park SJ, Koh YW, Seo D, Haam S. Subnormothermic ex vivo lung perfusion possibly protects against ischemia-reperfusion injury via the mTORC-HIF-1α pathway. J Thorac Dis 2024; 16:2365-2378. [PMID: 38738245 PMCID: PMC11087601 DOI: 10.21037/jtd-23-1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 05/14/2024]
Abstract
Background Ex vivo lung perfusion (EVLP) is a useful technique for evaluating and repairing donor lungs for transplantation. However, studies examining the effects of perfusate temperature on graft function are limited. Thus, this study aimed to examine these effects during EVLP on ischemic-reperfusion injury in the donor lung. Methods Twenty-four male Sprague-Dawley rats were randomly divided into three groups, as follows: no treatment (sham group, n=5), normothermic EVLP (37 °C, n=5), and subnormothermic EVLP (30 °C, n=5). Lung function analyses, including oxygen capacity (OC), compliance, and pulmonary vascular resistance (PVR), were performed hourly during EVLP. Further, after 4 h of EVLP, histological evaluation of the right lobe was performed using the lung injury severity (LIS) scale. The expression levels of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-18 were evaluated. Metabolomic analysis of left lung tissues was conducted using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) after 4 h of EVLP in the EVLP groups and after 1 h of cold preservation in the sham group. Results Compared with those in the normothermic group, in the subnormothermic group, functional parameters during EVLP and subsequent histologic results were significantly superior, expression levels of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-18 were significantly lower, and glycolytic activity was significantly decreased. Furthermore, expression levels of mammalian target of rapamycin complex (mTORC), hypoxia-inducible factor (HIF) 1α, and nucleotide-binding domain, leucine-rich-containing family pyrin domain containing 3 (NLRP3) and its effector caspase-1 were significantly lower in the subnormothermic group than in the normothermic group. Conclusions EVLP with subnormothermic perfusion improves lung graft function by reducing the expression of pro-inflammatory cytokines and glycolytic activity during EVLP. Additionally, EVLP can be a useful target for the improvement of graft function after transplantation.
Collapse
Affiliation(s)
- Jee Won Suh
- Department of Thoracic and Cardiovascular Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
| | - Soo Jin Park
- Department of Thoracic and Cardiovascular Surgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young Wha Koh
- Department of Pathology, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Daun Seo
- Department of Thoracic and Cardiovascular Surgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
17
|
Zhao G, Forn-Cuní G, Scheers M, Lindenbergh PP, Yin J, van Loosen Q, Passarini L, Chen L, Snaar-Jagalska BE. Simultaneous targeting of AMPK and mTOR is a novel therapeutic strategy against prostate cancer. Cancer Lett 2024; 587:216657. [PMID: 38336289 DOI: 10.1016/j.canlet.2024.216657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Metastatic colonization by circulating cancer cells is a highly inefficient process. To colonize distant organs, disseminating cancer cells must overcome many obstacles in foreign microenvironments, and only a small fraction of them survives this process. How these disseminating cancer cells cope with stress and initiate metastatic process is not fully understood. In this study, we report that the metastatic onset of prostate cancer cells is associated with the dynamic conversion of metabolism signaling pathways governed by the energy sensors AMPK and mTOR. While in circulation in blood flow, the disseminating cancer cells display decreased mTOR and increased AMPK activities that protect them from stress-induced death. However, after metastatic onset, the mTOR-AMPK activities are reversed, enabling mTOR-dependent tumor growth. Suppression of this dynamic conversion by co-targeting of AMPK and mTOR signaling significantly suppresses prostate cancer cell and tumor organoid growth in vitro and experimental metastasis in vivo, suggesting that this can be a therapeutic approach against metastasizing prostate cancer.
Collapse
Affiliation(s)
- Gangyin Zhao
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Marvin Scheers
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | | | - Jie Yin
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Quint van Loosen
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Leonardo Passarini
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Lanpeng Chen
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands; Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - B Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
18
|
Chi OZ, Liu X, Fortus H, Werlen G, Jacinto E, Weiss HR. Inhibition of p70 Ribosomal S6 Kinase (S6K1) Reduces Cortical Blood Flow in a Rat Model of Autism-Tuberous Sclerosis. Neuromolecular Med 2024; 26:10. [PMID: 38570425 PMCID: PMC10990997 DOI: 10.1007/s12017-024-08780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
The manifestations of tuberous sclerosis complex (TSC) in humans include epilepsy, autism spectrum disorders (ASD) and intellectual disability. Previous studies suggested the linkage of TSC to altered cerebral blood flow and metabolic dysfunction. We previously reported a significant elevation in cerebral blood flow in an animal model of TSC and autism of young Eker rats. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin could restore normal oxygen consumption and cerebral blood flow. In this study, we investigated whether inhibiting a component of the mTOR signaling pathway, p70 ribosomal S6 kinase (S6K1), would yield comparable effects. Control Long Evans and Eker rats were divided into vehicle and PF-4708671 (S6K1 inhibitor, 75 mg/kg for 1 h) treated groups. Cerebral regional blood flow (14C-iodoantipyrine) was determined in isoflurane anesthetized rats. We found significantly increased basal cortical (+ 32%) and hippocampal (+ 15%) blood flow in the Eker rats. PF-4708671 significantly lowered regional blood flow in the cortex and hippocampus of the Eker rats. PF-4708671 did not significantly lower blood flow in these regions in the control Long Evans rats. Phosphorylation of S6-Ser240/244 and Akt-Ser473 was moderately decreased in Eker rats but only the latter reached statistical significance upon PF-4708671 treatment. Our findings suggest that moderate inhibition of S6K1 with PF-4708671 helps to restore normal cortical blood flow in Eker rats and that this information might have therapeutic potential in tuberous sclerosis complex and autism.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
19
|
Pandey S, Singh R, Habib N, Tripathi RM, Kushwaha R, Mahdi AA. Regulation of Hypoxia Dependent Reprogramming of Cancer Metabolism: Role of HIF-1 and Its Potential Therapeutic Implications in Leukemia. Asian Pac J Cancer Prev 2024; 25:1121-1134. [PMID: 38679971 PMCID: PMC11162727 DOI: 10.31557/apjcp.2024.25.4.1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
Metabolic reprogramming occurs to meet cancer cells' high energy demand. Its function is essential to the survival of malignancies. Comparing cancer cells to non-malignant cells has revealed that cancer cells have altered metabolism. Several pathways, particularly mTOR, Akt, PI3K, and HIF-1 (hypoxia-inducible factor-1) modulate the metabolism of cancer. Among other aspects of cancer biology, gene expression in metabolism, survival, invasion, proliferation, and angiogenesis of cells are controlled by HIF-1, a vital controller of cellular responsiveness to hypoxia. This article examines various cancer cell metabolisms, metabolic alterations that can take place in cancer cells, metabolic pathways, and molecular aspects of metabolic alteration in cancer cells placing special attention on the consequences of hypoxia-inducible factor and summarising some of their novel targets in the treatment of cancer including leukemia. A brief description of HIF-1α's role and target in a few common types of hematological malignancies (leukemia) is also elucidated in the present article.
Collapse
Affiliation(s)
- Sandeep Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ranjana Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Nimra Habib
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ramesh Mani Tripathi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Rashmi Kushwaha
- Department of Pathology, King George’s Medical University, Lucknow, U.P., India.
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| |
Collapse
|
20
|
Yu F, Wu X, Chen W, Yan F, Li W. Computer-assisted discovery and evaluation of potential ribosomal protein S6 kinase beta 2 inhibitors. Comput Biol Med 2024; 172:108204. [PMID: 38484695 DOI: 10.1016/j.compbiomed.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
S6K2 is an important protein in mTOR signaling pathway and cancer. To identify potential S6K2 inhibitors for mTOR pathway treatment, a virtual screening of 1,575,957 active molecules was performed using PLANET, AutoDock GPU, and AutoDock Vina, with their classification abilities compared. The MM/PB(GB)SA method was used to identify four compounds with the strongest binding energies. These compounds were further investigated using molecular dynamics (MD) simulations to understand the properties of the S6K2/ligand complex. Due to a lack of available 3D structures of S6K2, OmegaFold served as a reliable 3D predictive model with higher evaluation scores in SAVES v6.0 than AlphaFold, AlphaFold2, and RoseTTAFold2. The 150 ns MD simulation revealed that the S6K2 structure in aqueous solvation experienced compression during conformational relaxation and encountered potential energy traps of about 19.6 kJ mol-1. The virtual screening results indicated that Lys75 and Lys99 in S6K2 are key binding sites in the binding cavity. Additionally, MD simulations revealed that the ligands remained attached to the activation cavity of S6K2. Among the compounds, compound 1 induced restrictive dissociation of S6K2 in the presence of a flexible region, compound 8 achieved strong stability through hydrogen bonding with Lys99, compound 9 caused S6K2 tightening, and the binding of compound 16 was heavily influenced by hydrophobic interactions. This study suggests that these four potential inhibitors with different mechanisms of action could provide potential therapeutic options.
Collapse
Affiliation(s)
- Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiaochuan Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - WeiSong Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
21
|
Rady GS, El Deeb MA, Sarg MTM, Taher AT, Helwa AA. Design, synthesis and biological evaluation of novel morpholinopyrimidine-5-carbonitrile derivatives as dual PI3K/mTOR inhibitors. RSC Med Chem 2024; 15:733-752. [PMID: 38389871 PMCID: PMC10880895 DOI: 10.1039/d3md00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/24/2024] Open
Abstract
In this study, novel morpholinopyrimidine-5-carbonitriles were designed and synthesized as dual PI3K/mTOR inhibitors and apoptosis inducers. The integration of a heterocycle at position 2, with or without spacers, of the new key intermediate 2-hydrazinyl-6-morpholinopyrimidine-5-carbonitrile (5) yielded compounds 6-10, 11a-c and 12a-h. The National Cancer Institute (USA) tested all compounds for antiproliferative activity. Schiff bases, 12a-h analogs, were the most active ones. The most promising compounds 12b and 12d exhibited excellent antitumor activity against the leukemia SR cell line, which is the most sensitive cell line, with IC50 0.10 ± 0.01 and 0.09 ± 0.01 μM, respectively, along with significant effects on PI3Kα/PI3Kβ/PI3Kδ with IC50 values of 0.17 ± 0.01, 0.13 ± 0.01 and 0.76 ± 0.04 μM, respectively, for 12b and 1.27 ± 0.07, 3.20 ± 0.16 and 1.98 ± 0.11, respectively, for 12d compared to LY294002. Compared to Afinitor, these compounds inhibited mTOR with IC50 values of 0.83 ± 0.05 and 2.85 ± 0.17 μM, respectively. Annexin-V and propidium iodide (PI) double labeling showed that compounds 12b and 12d promote cytotoxic leukemia SR apoptosis. Compounds 12b and 12d also caused a G2/M cell cycle arrest in the leukaemia SR cell line. The findings of this study indicate that the highest effect was observed for 12b, which was supported by western blot and docking analysis.
Collapse
Affiliation(s)
- Ghada S Rady
- Directorate of Health Affairs in Giza, Ministry of Health Egypt
| | - Moshira A El Deeb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Marwa T M Sarg
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U) 6th of October city Giza 12585 Egypt
| | - Amira A Helwa
- Department of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) Al-Motamayez District, P.O. Box: 77, 6th of October city Giza Egypt
| |
Collapse
|
22
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
23
|
Iwamoto S, Kobayashi T, Hanamatsu H, Yokota I, Teranishi Y, Iwamoto A, Kitagawa M, Ashida S, Sakurai A, Matsuo S, Myokan Y, Sugimoto A, Ushioda R, Nagata K, Gotoh N, Nakajima K, Nishikaze T, Furukawa JI, Itano N. Tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation. Cell Death Dis 2024; 15:53. [PMID: 38225221 PMCID: PMC10789756 DOI: 10.1038/s41419-024-06432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.
Collapse
Affiliation(s)
- Shungo Iwamoto
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | - Hisatoshi Hanamatsu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Yukiko Teranishi
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Akiho Iwamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Miyu Kitagawa
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Sawako Ashida
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ayane Sakurai
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Suguru Matsuo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuma Myokan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Aiyu Sugimoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Naoki Itano
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
24
|
Galindo CM, Milani L, de Lima LTF, Adami ER, Go S, de Noronha L, Beltrame OC, Klassen G, de Souza Ramos EA, Elferink RPJO, Acco A. 4-Nitrochalcone as a potential drug in non-clinical breast cancer studies. Chem Biol Interact 2024; 387:110790. [PMID: 37939893 DOI: 10.1016/j.cbi.2023.110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Breast cancer is a high-magnitude public health problem, continually challenging physicians and scientists worldwide in the field of drug therapy. 4-nitrochalcone (4NC) is a phenolic compound that has promising antitumor activity in vitro, but its application in breast cancer treatment is still poorly explored. This study aimed to evaluate the action of 4NC in vitro and in vivo breast cancer models. The cytotoxic potential of 4NC was tested towards MCF-7 and MDA-MD-231 breast cancer cells, with a lower impact in the non-tumor lineage HB4a. For in vivo studies, solid Ehrlich carcinoma (SEC) was used, a syngeneic mouse model with non-nuclear estrogen and progesterone positivity, characterized by immunohistochemistry. Daily oral administration of 4NC (25 mg kg-1) for 21 days led to a consistent reduction in tumor growth compared to the vehicle group. No signs of toxicity evaluated by hematological, biochemical, histological, and oxidative stress parameters were observed in mice, and the DL50 was >2000 mg kg-1. The effectors Raptor and S6K1 showed decreased activation, with a consequent reduction in protein synthesis; concomitantly, there was an increase in LC3-II levels, but the protective autophagic response was not completed, with the maintenance of p62 levels and cell death. These results open new possibilities for the use of 4NC as a tumor cell metabolism modulating agent.
Collapse
Affiliation(s)
| | - Letícia Milani
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Lucia de Noronha
- Experimental Pathology Laboratory, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | - Olair Carlos Beltrame
- Laboratory of Clinical Pathology, Veterinary Hospital, Federal University of Paraná, Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
25
|
Ferrando AA, Wolfe RR, Hirsch KR, Church DD, Kviatkovsky SA, Roberts MD, Stout JR, Gonzalez DE, Sowinski RJ, Kreider RB, Kerksick CM, Burd NA, Pasiakos SM, Ormsbee MJ, Arent SM, Arciero PJ, Campbell BI, VanDusseldorp TA, Jager R, Willoughby DS, Kalman DS, Antonio J. International Society of Sports Nutrition Position Stand: Effects of essential amino acid supplementation on exercise and performance. J Int Soc Sports Nutr 2023; 20:2263409. [PMID: 37800468 PMCID: PMC10561576 DOI: 10.1080/15502783.2023.2263409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of literature surrounding the effects of essential amino acid (EAA) supplementation on skeletal muscle maintenance and performance. This position stand is intended to provide a scientific foundation to athletes, dietitians, trainers, and other practitioners as to the benefits of supplemental EAA in both healthy and resistant (aging/clinical) populations. EAAs are crucial components of protein intake in humans, as the body cannot synthesize them. The daily recommended intake (DRI) for protein was established to prevent deficiencies due to inadequate EAA consumption. The following conclusions represent the official position of the Society: 1. Initial studies on EAAs' effects on skeletal muscle highlight their primary role in stimulating muscle protein synthesis (MPS) and turnover. Protein turnover is critical for replacing degraded or damaged muscle proteins, laying the metabolic foundation for enhanced functional performance. Consequently, research has shifted to examine the effects of EAA supplementation - with and without the benefits of exercise - on skeletal muscle maintenance and performance. 2. Supplementation with free-form EAAs leads to a quick rise in peripheral EAA concentrations, which in turn stimulates MPS. 3. The safe upper limit of EAA intake (amount), without inborn metabolic disease, can easily accommodate additional supplementation. 4. At rest, stimulation of MPS occurs at relatively small dosages (1.5-3.0 g) and seems to plateau at around 15-18 g. 5. The MPS stimulation by EAAs does not require non-essential amino acids. 6. Free-form EAA ingestion stimulates MPS more than an equivalent amount of intact protein. 7. Repeated EAA-induced MPS stimulation throughout the day does not diminish the anabolic effect of meal intake. 8. Although direct comparisons of various formulas have yet to be investigated, aging requires a greater proportion of leucine to overcome the reduced muscle sensitivity known as "anabolic resistance." 9. Without exercise, EAA supplementation can enhance functional outcomes in anabolic-resistant populations. 10. EAA requirements rise in the face of caloric deficits. During caloric deficit, it's essential to meet whole-body EAA requirements to preserve anabolic sensitivity in skeletal muscle.
Collapse
Affiliation(s)
- Arny A. Ferrando
- University of Arkansas for Medical Sciences, Center for Translational Research in Aging and Longevity, Department of Geriatrics, Little Rock, AR, USA
| | - Robert R. Wolfe
- University of Arkansas for Medical Sciences, Center for Translational Research in Aging and Longevity, Department of Geriatrics, Little Rock, AR, USA
| | - Katie R. Hirsch
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - David D. Church
- University of Arkansas for Medical Sciences, Center for Translational Research in Aging and Longevity, Department of Geriatrics, Little Rock, AR, USA
| | - Shiloah A. Kviatkovsky
- University of Arkansas for Medical Sciences, Center for Translational Research in Aging and Longevity, Department of Geriatrics, Little Rock, AR, USA
| | | | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Drew E. Gonzalez
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Ryan J. Sowinski
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, St Charles, MO, USA
| | - Nicholas A. Burd
- University of Illinois Urbana-Champaign, Department of Kinesiology and Community Health, Urbana, IL, USA
| | - Stefan M. Pasiakos
- National Institutes of Health, Office of Dietary Supplements, Bethesda, MD, USA
| | - Michael J. Ormsbee
- Florida State University, Institute of Sports Sciences and Medicine, Nutrition and Integrative Physiology, Tallahassee, FL, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Paul J. Arciero
- University of Pittsburgh, Department of Sports Medicine and Nutrition, Pittsburgh, PA, USA
- Skidmore College, Health and Physiological Sciences, Saratoga Springs, NY, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Tampa, FL, USA
| | - Trisha A. VanDusseldorp
- Bonafede Health, LLC, JDS Therapeutics, Harrison, NY, USA
- Jacksonville University, Department of Health and Exercise Sciences, Jacksonville, FL, USA
| | | | - Darryn S. Willoughby
- University of Mary Hardin-Baylor, Human Performance Lab, School of Exercise and Sport Science, Belton, TX, USA
| | - Douglas S. Kalman
- Nova Southeastern University, Dr. Kiran C Patel College of Osteopathic Medicine, Department of Nutrition, Davie, FL, USA
| | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
26
|
Zhu L, Li XJ, Gangadaran P, Jing X, Ahn BC. Tumor-associated macrophages as a potential therapeutic target in thyroid cancers. Cancer Immunol Immunother 2023; 72:3895-3917. [PMID: 37796300 PMCID: PMC10992981 DOI: 10.1007/s00262-023-03549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Macrophages are important precursor cell types of the innate immune system and bridge adaptive immune responses through the antigen presentation system. Meanwhile, macrophages constitute substantial portion of the stromal cells in the tumor microenvironment (TME) (referred to as tumor-associated macrophages, or TAMs) and exhibit conflicting roles in the development, invasion, and metastasis of thyroid cancer (TC). Moreover, TAMs play a crucial role to the behavior of TC due to their high degree of infiltration and prognostic relevance. Generally, TAMs can be divided into two subgroups; M1-like TAMs are capable of directly kill tumor cells, and recruiting and activating other immune cells in the early stages of cancer. However, due to changes in the TME, M2-like TAMs gradually increase and promote tumor progression. This review aims to discuss the impact of TAMs on TC, including their role in tumor promotion, gene mutation, and other factors related to the polarization of TAMs. Finally, we will explore the M2-like TAM-centered therapeutic strategies, including chemotherapy, clinical trials, and combinatorial immunotherapy.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiu Juan Li
- Department of Radiology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shan-Dong Province, People's Republic of China
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiuli Jing
- Center for Life Sciences Research, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shan-Dong Province, 271000, People's Republic of China.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
27
|
Ghorbanzadeh Neghab M, Jalili-Nik M, Soltani A, Afshari AR, Hassanian SM, Rafatpanah H, Rezaee SA, Sadeghnia HR, Ataei Azimi S, Mashkani B. Rigosertib is more potent than wortmannin and rapamycin against adult T-cell leukemia-lymphoma. Biofactors 2023; 49:1174-1188. [PMID: 37345860 DOI: 10.1002/biof.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Human T lymphotropic virus type 1 (HTLV-1) infection can cause adult T-cell lymphoblastic leukemia (ATLL), an incurable, chemotherapy-resistant malignancy. In a quest for new therapeutic targets, our study sought to determine the levels of AKT, mTOR, and PI3K in ATLL MT-2 cells, HTLV-1 infected NIH/3T3 cells (Inf-3T3), and HTLV-1 infected patients (Carrier, HAM/TSP, and ATLL). Furthermore, the effects of rigosertib, wortmannin, and rapamycin on the PI3K/Akt/mTOR pathway to inhibit the proliferation of ATLL cells were examined. The results showed that mRNA expression of Akt/PI3K/mTOR was down-regulated in carrier, HAM/TSP, and ATLL patients, as well as MT-2, and Inf-3T3 cells, compared to the healthy individuals and untreated MT-2 and Inf-3T3 as controls. However, western blotting revealed an increase in the phosphorylated and activated forms of AKT and mTOR. Treating the cells with rapamycin, wortmannin, and rigosertib decreased the phosphorylated forms of Akt and mTOR and restored their mRNA expression levels. Using these inhibitors also significantly boosted the expression of the pro-apoptotic genes, Bax/Bcl-2 ratio as well as the expression of the tumor suppressor gene p53 in the MT-2 and Inf-3T3cells. Rigosertib was more potent than wortmannin and rapamycin in inducing sub-G1 and G2-M cell cycle arrest, as well as late apoptosis in the Inf-3T3 and MT-2 cells. It also synergized the cytotoxic effects of vincristine. These findings demonstrate that HTLV-1 downregulation of the mRNA level may occur as a negative feedback response to increased PI3K-Akt-mTOR phosphorylation by HTLV-1. Therefore, using rigosertib alone or in combination with common chemotherapy drugs may be beneficial in ATLL patients.
Collapse
Affiliation(s)
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Ataei Azimi
- Department of Hematology Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Kim MJ, Kim HS, Kang HW, Lee DE, Hong WC, Kim JH, Kim M, Cheong JH, Kim HJ, Park JS. SLC38A5 Modulates Ferroptosis to Overcome Gemcitabine Resistance in Pancreatic Cancer. Cells 2023; 12:2509. [PMID: 37887353 PMCID: PMC10605569 DOI: 10.3390/cells12202509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023] Open
Abstract
Pancreatic cancer is characterized by a poor prognosis, with its five-year survival rate lower than that of any other cancer type. Gemcitabine, a standard treatment for pancreatic cancer, often has poor outcomes for patients as a result of chemoresistance. Therefore, novel therapeutic targets must be identified to overcome gemcitabine resistance. Here, we found that SLC38A5, a glutamine transporter, is more highly overexpressed in gemcitabine-resistant patients than in gemcitabine-sensitive patients. Furthermore, the deletion of SLC38A5 decreased the proliferation and migration of gemcitabine-resistant PDAC cells. We also found that the inhibition of SLC38A5 triggered the ferroptosis signaling pathway via RNA sequencing. Also, silencing SLC38A5 induced mitochondrial dysfunction and reduced glutamine uptake and glutathione (GSH) levels, and downregulated the expressions of GSH-related genes NRF2 and GPX4. The blockade of glutamine uptake negatively modulated the mTOR-SREBP1-SCD1 signaling pathway. Therefore, suppression of SLC38A5 triggers ferroptosis via two pathways that regulate lipid ROS levels. Similarly, we observed that knockdown of SLC38A5 restored gemcitabine sensitivity by hindering tumor growth and metastasis in the orthotopic mouse model. Altogether, our results demonstrate that SLC38A5 could be a novel target to overcome gemcitabine resistance in PDAC therapy.
Collapse
Affiliation(s)
- Myeong Jin Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea;
| | - Hyung Sun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
| | - Hyeon Woong Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea;
| | - Da Eun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
| | - Woosol Chris Hong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Ju Hyun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Minsoo Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea;
| | - Jae-Ho Cheong
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea;
- Department of Surgery, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Hyo Jung Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
| |
Collapse
|
29
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
30
|
Fan C, Wunderlich M, Cai X, Yan Z, Zhang F, Davis AK, Xu L, Guo F, Lu QR, Azam M, Tian W, Zheng Y. Kinase-independent role of mTOR and on-/off-target effects of an mTOR kinase inhibitor. Leukemia 2023; 37:2073-2081. [PMID: 37532788 DOI: 10.1038/s41375-023-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
mTOR, as a serine/threonine kinase, is a widely pursued anticancer target. Multiple clinical trials of mTOR kinase inhibitors are ongoing, but their specificity and safety features remain lacking. Here, we have employed an inducible kinase-inactive D2338A mTOR knock-in mouse model (mTOR-/KI) together with a mTOR conditional knockout model (mTOR-/-) to assess the kinase-dependent/-independent function of mTOR in hematopoiesis and the on-/off-target effects of mTOR kinase inhibitor AZD2014. Despite exhibiting many similar phenotypes to mTOR-/- mice in hematopoiesis, the mTOR-/KI mice survived longer and showed differences in hematopoietic progenitor cells compared to mTOR-/- mice, suggesting a kinase-independent function of mTOR in hematopoiesis. Gene expression signatures in hematopoietic stem cells (HSCs) further revealed both kinase-dependent and independent effects of mTOR. AZD2014, a lead mTOR kinase inhibitor, appeared to work mostly on-target in suppressing mTOR kinase activity, mimicking that of mTOR-/KI HSCs in transcriptome analysis, but it also induced a small set of off-target responses in mTOR-/KI HSCs. In murine and human myeloid leukemia, besides kinase-inhibitory on-target effects, AZD2014 displayed similar off-target and growth-inhibitory cytostatic effects. These studies provide new insights into kinase-dependent/-independent effects of mTOR in hematopoiesis and present a genetic means for precisely assessing the specificity of mTOR kinase inhibitors.
Collapse
Affiliation(s)
- Cuiqing Fan
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiongwei Cai
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Zijun Yan
- State Key Laboratory of Genetic Engineering, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Feng Zhang
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ashley Kuenzi Davis
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lingli Xu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohammad Azam
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
31
|
Burioli EAV, Hammel M, Vignal E, Vidal-Dupiol J, Mitta G, Thomas F, Bierne N, Destoumieux-Garzón D, Charrière GM. Transcriptomics of mussel transmissible cancer MtrBTN2 suggests accumulation of multiple cancer traits and oncogenic pathways shared among bilaterians. Open Biol 2023; 13:230259. [PMID: 37816387 PMCID: PMC10564563 DOI: 10.1098/rsob.230259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Transmissible cancer cell lines are rare biological entities giving rise to diseases at the crossroads of cancer and parasitic diseases. These malignant cells have acquired the amazing capacity to spread from host to host. They have been described only in dogs, Tasmanian devils and marine bivalves. The Mytilus trossulus bivalve transmissible neoplasia 2 (MtrBTN2) lineage has even acquired the capacity to spread inter-specifically between marine mussels of the Mytilus edulis complex worldwide. To identify the oncogenic processes underpinning the biology of these atypical cancers we performed transcriptomics of MtrBTN2 cells. Differential expression, enrichment, protein-protein interaction network, and targeted analyses were used. Overall, our results suggest the accumulation of multiple cancerous traits that may be linked to the long-term evolution of MtrBTN2. We also highlight that vertebrate and lophotrochozoan cancers could share a large panel of common drivers, which supports the hypothesis of an ancient origin of oncogenic processes in bilaterians.
Collapse
Affiliation(s)
- E A V Burioli
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - M Hammel
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - E Vignal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - J Vidal-Dupiol
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - G Mitta
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, Tahiti, Polynésie française
| | - F Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - N Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - D Destoumieux-Garzón
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - G M Charrière
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
32
|
Yu C, Min S, Lv F, Ren L, Yang Y, Chen L. Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose-induced oncogenic effect by downregulating the Warburg effect. Med Oncol 2023; 40:297. [PMID: 37702811 DOI: 10.1007/s12032-023-02155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Malnutrition caused by insufficient nutritional supply may significantly hinder the quality of life among cancer patients. Sugar provides energy and nutritional support, but it also promotes cancer growth. Warburg effect is the reprogrammed glucose metabolic mode of cancer cells that meets the intensified ATP demand and biosynthesis. Vitamin C (VC) has anti-tumor effect. However, the relationship between cytotoxicity of VC on cancer cells and Warburg effect remains elusive, the effect of VC on glucose-induced oncogenic effect is also unclear. Based on colorectal cancer cell HCT116, our finding revealed that the discrepant oncogenic effect of different sugar is closely related to the intensification of Warburg effect, with glucose being the potent oncogenic component. Notably, as a potential Warburg effect inhibitor, VC suppressed cancer growth in a concentration-dependent manner and further reversed the glucose-induced oncogenic effect. Furthermore, VC protected tumor-bearing mice from insulin sensitivity impairment and inflammatory imbalance. These findings imply that VC might be a useful adjuvant treatment for cancer patients seeking to optimize nutritional support.
Collapse
Affiliation(s)
- Chang Yu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Feng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - You Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lihao Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
33
|
Rönnberg H. Signal Transduction Inhibitors. THERAPEUTIC STRATEGIES IN VETERINARY ONCOLOGY 2023:89-110. [DOI: 10.1079/9781789245820.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Kang Y, Amoafo EB, Entsie P, Beatty GL, Liverani E. A role for platelets in metabolic reprogramming of tumor-associated macrophages. Front Physiol 2023; 14:1250982. [PMID: 37693009 PMCID: PMC10484008 DOI: 10.3389/fphys.2023.1250982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer incidence and mortality are growing worldwide. With a lack of optimal treatments across many cancer types, there is an unmet need for the development of novel treatment strategies for cancer. One approach is to leverage the immune system for its ability to survey for cancer cells. However, cancer cells evolve to evade immune surveillance by establishing a tumor microenvironment (TME) that is marked by remarkable immune suppression. Macrophages are a predominant immune cell within the TME and have a major role in regulating tumor growth. In the TME, macrophages undergo metabolic reprogramming and differentiate into tumor-associated macrophages (TAM), which typically assume an immunosuppressive phenotype supportive of tumor growth. However, the plasticity of macrophage biology offers the possibility that macrophages may be promising therapeutic targets. Among the many determinants in the TME that may shape TAM biology, platelets can also contribute to cancer growth and to maintaining immune suppression. Platelets communicate with immune cells including macrophages through the secretion of immune mediators and cell-cell interaction. In other diseases, altering platelet secretion and cell-cell communication has been shown to reprogram macrophages and ameliorate inflammation. Thus, intervening on platelet-macrophage biology may be a novel therapeutic strategy for cancer. This review discusses our current understanding of the interaction between platelets and macrophages in the TME and details possible strategies for reprogramming macrophages into an anti-tumor phenotype for suppressing tumor growth.
Collapse
Affiliation(s)
- Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| | - Gregory L. Beatty
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
35
|
Nurzhan S, Bekezhankyzy Z, Ding H, Berdigaliyev N, Sergazy S, Gulyayev A, Shulgau Z, Triggle CR, Aljofan M. The Effect of Different Glucose Concentrations on the Antiproliferative Activity of Metformin in MCF-7 Breast Cancer Cells. Pharmaceutics 2023; 15:2186. [PMID: 37765157 PMCID: PMC10537756 DOI: 10.3390/pharmaceutics15092186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The glucose-lowering drug metformin has been reported to have anticancer properties through unknown mechanisms. Other unknown factors that may influence its anticancer potential include the glycemic status of the patient. Therefore, the objective of this study is to determine the effect of different glucose environments on the antiproliferative potency and the cellular mechanism of action of metformin. Human breast cancer cells, MCF-7, were incubated in low, normal, elevated, and high glucose environments and treated with metformin. The antiproliferative potential of metformin and its effect on protein expression as well as its ability to induce cellular apoptosis and autophagy under different glucose environments, were determined using different molecular techniques. Metformin significantly inhibited cellular proliferation in a time- and glucose-concentration-dependent manner. In comparison to elevated glucose, low normal glucose alone induced a significant level of autophagy that was further increased in the presence of metformin. While glucose concentration did not appear to have an effect on the antiproliferative potency of metformin, the cellular basis of action was shown to be glucose-dependent. The antiproliferative mechanism of action of metformin in elevated and low normal glucose environments is mTOR-dependent, whereas, in the high glucose environment, the antiproliferative mechanism is independent of mTOR. This is the first study to report that both the antiproliferative potency and the cellular mechanism of action aredependent on the concentration of glucose.
Collapse
Affiliation(s)
- Sholpan Nurzhan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (S.N.); (Z.B.); (N.B.)
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
| | - Zhibek Bekezhankyzy
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (S.N.); (Z.B.); (N.B.)
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, Education City, Doha P.O. Box 24144, Qatar; (H.D.); (C.R.T.)
| | - Nurken Berdigaliyev
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (S.N.); (Z.B.); (N.B.)
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
- Drug Discovery and Development Laboratory, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
- Research Institute of Balneology and Medical Rehabilitation, Akmola Region, Burabay 021708, Kazakhstan
| | - Alexander Gulyayev
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
- Drug Discovery and Development Laboratory, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
- Research Institute of Balneology and Medical Rehabilitation, Akmola Region, Burabay 021708, Kazakhstan
| | - Zarina Shulgau
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
- Drug Discovery and Development Laboratory, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
| | - Christopher R. Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, Education City, Doha P.O. Box 24144, Qatar; (H.D.); (C.R.T.)
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (S.N.); (Z.B.); (N.B.)
- Drug Discovery and Development Laboratory, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
| |
Collapse
|
36
|
Li L, Mohanty V, Dou J, Huang Y, Banerjee PP, Miao Q, Lohr JG, Vijaykumar T, Frede J, Knoechel B, Muniz-Feliciano L, Laskowski TJ, Liang S, Moyes JS, Nandivada V, Basar R, Kaplan M, Daher M, Liu E, Li Y, Acharya S, Lin P, Shanley M, Rafei H, Marin D, Mielke S, Champlin RE, Shpall EJ, Chen K, Rezvani K. Loss of metabolic fitness drives tumor resistance after CAR-NK cell therapy and can be overcome by cytokine engineering. SCIENCE ADVANCES 2023; 9:eadd6997. [PMID: 37494448 PMCID: PMC10371011 DOI: 10.1126/sciadv.add6997] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells is promising, with early-phase clinical studies showing encouraging responses. However, the transcriptional signatures that control the fate of CAR-NK cells after infusion and factors that influence tumor control remain poorly understood. We performed single-cell RNA sequencing and mass cytometry to study the heterogeneity of CAR-NK cells and their in vivo evolution after adoptive transfer, from the phase of tumor control to relapse. Using a preclinical model of noncurative lymphoma and samples from a responder and a nonresponder patient treated with CAR19/IL-15 NK cells, we observed the emergence of NK cell clusters with distinct patterns of activation, function, and metabolic signature associated with different phases of in vivo evolution and tumor control. Interaction with the highly metabolically active tumor resulted in loss of metabolic fitness in NK cells that could be partly overcome by incorporation of IL-15 in the CAR construct.
Collapse
Affiliation(s)
- Li Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuefan Huang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinaki P. Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jens G. Lohr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tushara Vijaykumar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Julia Frede
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Birgit Knoechel
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamara J. Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Judy S. Moyes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vandana Nandivada
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephan Mielke
- Department of Laboratory Medicine and Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Cell Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Rothman DL, Moore PB, Shulman RG. The impact of metabolism on the adaptation of organisms to environmental change. Front Cell Dev Biol 2023; 11:1197226. [PMID: 37377740 PMCID: PMC10291235 DOI: 10.3389/fcell.2023.1197226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Since Jacob and Monod's discovery of the lac operon ∼1960, the explanations offered for most metabolic adaptations have been genetic. The focus has been on the adaptive changes in gene expression that occur, which are often referred to as "metabolic reprogramming." The contributions metabolism makes to adaptation have been largely ignored. Here we point out that metabolic adaptations, including the associated changes in gene expression, are highly dependent on the metabolic state of an organism prior to the environmental change to which it is adapting, and on the plasticity of that state. In support of this hypothesis, we examine the paradigmatic example of a genetically driven adaptation, the adaptation of E. coli to growth on lactose, and the paradigmatic example of a metabolic driven adaptation, the Crabtree effect in yeast. Using a framework based on metabolic control analysis, we have reevaluated what is known about both adaptations, and conclude that knowledge of the metabolic properties of these organisms prior to environmental change is critical for understanding not only how they survive long enough to adapt, but also how the ensuing changes in gene expression occur, and their phenotypes post-adaptation. It would be useful if future explanations for metabolic adaptations acknowledged the contributions made to them by metabolism, and described the complex interplay between metabolic systems and genetic systems that make these adaptations possible.
Collapse
Affiliation(s)
- Douglas L. Rothman
- Departments of Radiology, Yale University, New Haven, CT, United States
- Biomedical Engineering, Yale University, New Haven, CT, United States
- Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - Peter B. Moore
- Department of Molecular Biology and Biophysics, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Robert G. Shulman
- Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Molecular Biology and Biophysics, Yale University, New Haven, CT, United States
| |
Collapse
|
38
|
Wu J, Meng F, Ran D, Song Y, Dang Y, Lai F, Yang L, Deng M, Song Y, Zhu J. The Metabolism and Immune Environment in Diffuse Large B-Cell Lymphoma. Metabolites 2023; 13:734. [PMID: 37367892 DOI: 10.3390/metabo13060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Cells utilize different metabolic processes to maintain their growth and differentiation. Tumor cells have made some metabolic changes to protect themselves from malnutrition. These metabolic alterations affect the tumor microenvironment and macroenvironment. Developing drugs targeting these metabolic alterations could be a good direction. In this review, we briefly introduce metabolic changes/regulations of the tumor macroenvironment and microenvironment and summarize potential drugs targeting the metabolism in diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Jianbo Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Fuqing Meng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Danyang Ran
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yalong Song
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yunkun Dang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Fan Lai
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Mi Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
39
|
Benites J, Valderrama JA, Contreras Á, Enríquez C, Pino-Rios R, Yáñez O, Buc Calderon P. Discovery of New 2-Phenylamino-3-acyl-1,4-naphthoquinones as Inhibitors of Cancer Cells Proliferation: Searching for Intra-Cellular Targets Playing a Role in Cancer Cells Survival. Molecules 2023; 28:molecules28114323. [PMID: 37298798 DOI: 10.3390/molecules28114323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
A series of 2-phenylamino-3-acyl-1,4-naphtoquinones were evaluated regarding their in vitro antiproliferative activities using DU-145, MCF-7 and T24 cancer cells. Such activities were discussed in terms of molecular descriptors such as half-wave potentials, hydrophobicity and molar refractivity. Compounds 4 and 11 displayed the highest antiproliferative activity against the three cancer cells and were therefore further investigated. The in silico prediction of drug likeness, using pkCSM and SwissADME explorer online, shows that compound 11 is a suitable lead molecule to be developed. Moreover, the expressions of key genes were studied in DU-145 cancer cells. They include genes involved in apoptosis (Bcl-2), tumor metabolism regulation (mTOR), redox homeostasis (GSR), cell cycle regulation (CDC25A), cell cycle progression (TP53), epigenetic (HDAC4), cell-cell communication (CCN2) and inflammatory pathways (TNF). Compound 11 displays an interesting profile because among these genes, mTOR was significantly less expressed as compared to control conditions. Molecular docking shows that compound 11 has good affinity with mTOR, unraveling a potential inhibitory effect on this protein. Due to the key role of mTOR on tumor metabolism, we suggest that impaired DU-145 cells proliferation by compound 11 is caused by a reduced mTOR expression (less mTOR protein) and inhibitory activity on mTOR protein.
Collapse
Affiliation(s)
- Julio Benites
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Jaime A Valderrama
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Álvaro Contreras
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Osvaldo Yáñez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 73 Avenue E. Mounier, 1200 Brussels, Belgium
| |
Collapse
|
40
|
Delgado A, Enkemann S. Three Layers of Personalized Medicine in the Use of Sirolimus and Its Derivatives for the Treatment of Cancer. J Pers Med 2023; 13:jpm13050745. [PMID: 37240915 DOI: 10.3390/jpm13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Rapamycin and its derivatives are mTOR inhibitors which are FDA-approved for use as immunosuppressants and chemotherapeutic agents. These agents are currently approved to treat renal cell carcinomas, soft tissue sarcomas, and other rare tumors. As tumor treatment paradigms are moving away from organ-based drug selection and moving towards tumor characteristics for individualized treatment it is important to identify as many properties as possible that impact the efficacy of the rapalogues. A review of the current literature was conducted to identify enzymes involved in the metabolism of Sirolimus, Everolimus, Ridaforolimus, and Temsirolimus along with characteristics of tumors that predict the efficacy of these agents. This review also sought to establish whether the genetic characteristics of the patient might influence the activity of the rapalogues or lead to side effects from these agents. Current evidence suggests that tumors with mutations in the mTOR signal transduction pathway are sensitive to rapalogue treatment; the rapalogues are metabolized by cytochromes such as CYP3A4, CYP3A5, and CYP2C8 and transported by ABC transporters that are known to vary in activity in individuals; and that tumors can express these transporters and detoxifying enzymes. This results in three levels of genetic analysis that could impact the effectiveness of the mTOR inhibitors.
Collapse
Affiliation(s)
- Andres Delgado
- Aultman Hospital/NEOMED Program 1, Canton, OH 44710, USA
| | - Steven Enkemann
- Edward Via College of Osteopathic Medicine, 350 Howard St., Spartanburg, SC 29303, USA
| |
Collapse
|
41
|
Nguyen TU, Hector H, Pederson EN, Lin J, Ouyang Z, Wendel HG, Singh K. Rapamycin-Induced Feedback Activation of eIF4E-EIF4A Dependent mRNA Translation in Pancreatic Cancer. Cancers (Basel) 2023; 15:1444. [PMID: 36900235 PMCID: PMC10001351 DOI: 10.3390/cancers15051444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Pancreatic cancer cells adapt molecular mechanisms to activate the protein synthesis to support tumor growth. This study reports the mTOR inhibitor rapamycin's specific and genome-wide effect on mRNA translation. Using ribosome footprinting in pancreatic cancer cells that lack the expression of 4EBP1, we establish the effect of mTOR-S6-dependent mRNAs translation. Rapamycin inhibits the translation of a subset of mRNAs including p70-S6K and proteins involved in the cell cycle and cancer cell growth. In addition, we identify translation programs that are activated following mTOR inhibition. Interestingly, rapamycin treatment results in the translational activation of kinases that are involved in mTOR signaling such as p90-RSK1. We further show that phospho-AKT1 and phospho-eIF4E are upregulated following mTOR inhibition suggesting a feedback activation of translation by rapamycin. Next, targeting eIF4E and eIF4A-dependent translation by using specific eIF4A inhibitors in combination with rapamycin shows significant growth inhibition in pancreatic cancer cells. In short, we establish the specific effect of mTOR-S6 on translation in cells lacking 4EBP1 and show that mTOR inhibition leads to feedback activation of translation via AKT-RSK1-eIF4E signals. Therefore, targeting translation downstream of mTOR presents a more efficient therapeutic strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Trang Uyen Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY 10461, USA
| | - Harrison Hector
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY 10461, USA
| | - Eric Nels Pederson
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jianan Lin
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kamini Singh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY 10461, USA
| |
Collapse
|
42
|
Metabolomics Analysis Reveals Novel Targets of Chemosensitizing Polyphenols and Omega-3 Polyunsaturated Fatty Acids in Triple Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24054406. [PMID: 36901842 PMCID: PMC10002396 DOI: 10.3390/ijms24054406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with typically poorer outcomes due to its aggressive clinical behavior and lack of targeted treatment options. Currently, treatment is limited to the administration of high-dose chemotherapeutics, which results in significant toxicities and drug resistance. As such, there is a need to de-escalate chemotherapeutic doses in TNBC while also retaining/improving treatment efficacy. Dietary polyphenols and omega-3 polyunsaturated fatty acids (PUFAs) have been demonstrated to have unique properties in experimental models of TNBC, improving the efficacy of doxorubicin and reversing multi-drug resistance. However, the pleiotropic nature of these compounds has caused their mechanisms to remain elusive, preventing the development of more potent mimetics to take advantage of their properties. Using untargeted metabolomics, we identify a diverse set of metabolites/metabolic pathways that are targeted by these compounds following treatment in MDA-MB-231 cells. Furthermore, we demonstrate that these chemosensitizers do not all target the same metabolic processes, but rather organize into distinct clusters based on similarities among metabolic targets. Common themes in metabolic targets included amino acid metabolism (particularly one-carbon and glutamine metabolism) and alterations in fatty acid oxidation. Moreover, doxorubicin treatment alone generally targeted different metabolites/pathways than chemosensitizers. This information provides novel insights into chemosensitization mechanisms in TNBC.
Collapse
|
43
|
Antigene MYCN Silencing by BGA002 Inhibits SCLC Progression Blocking mTOR Pathway and Overcomes Multidrug Resistance. Cancers (Basel) 2023; 15:cancers15030990. [PMID: 36765949 PMCID: PMC9913109 DOI: 10.3390/cancers15030990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Small-cell lung cancer (SCLC) is the most aggressive lung cancer type, and is associated with smoking, low survival rate due to high vascularization, metastasis and drug resistance. Alterations in MYC family members are biomarkers of poor prognosis for a large number of SCLC. In particular, MYCN alterations define SCLC cases with immunotherapy failure. MYCN has a highly restricted pattern of expression in normal cells and is an ideal target for cancer therapy but is undruggable by traditional approaches. We propose an innovative approach to MYCN inhibition by an MYCN-specific antigene-PNA oligonucleotide (BGA002)-as a new precision medicine for MYCN-related SCLC. We found that BGA002 profoundly and specifically inhibited MYCN expression in SCLC cells, leading to cell-growth inhibition and apoptosis, while also overcoming multidrug resistance. These effects are driven by mTOR pathway block in concomitance with autophagy reactivation, thus avoiding the side effects of targeting mTOR in healthy cells. Moreover, we identified an MYCN-related SCLC gene signature comprehending CNTFR, DLX5 and TNFAIP3, that was reverted by BGA002. Finally, systemic treatment with BGA002 significantly increased survival in MYCN-amplified SCLC mouse models, including in a multidrug-resistant model in which tumor vascularization was also eliminated. These findings warrant the clinical testing of BGA002 in MYCN-related SCLC.
Collapse
|
44
|
Targets Involved in the Anti-Cancer Activity of Quercetin in Breast, Colorectal and Liver Neoplasms. Int J Mol Sci 2023; 24:ijms24032952. [PMID: 36769274 PMCID: PMC9918234 DOI: 10.3390/ijms24032952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Phytochemicals have long been effective partners in the fight against several diseases, including cancer. Among these, flavonoids are valuable allies for both cancer prevention and therapy since they are known to influence a large panel of tumor-related processes. Particularly, it was revealed that quercetin, one of the most common flavonoids, controls apoptosis and inhibits migration and proliferation, events essential for the development of cancer. In this review, we collected the evidence on the anti-cancer activity of quercetin exploring the network of interactions between this flavonol and the proteins responsible for cancer onset and progression focusing on breast, colorectal and liver cancers, owing to their high worldwide incidence. Moreover, quercetin proved to be also a potentiating agent able to push further the anti-cancer activity of common employed anti-neoplastic agents, thus allowing to lower their dosages and, above all, to sensitize again resistant cancer cells. Finally, novel approaches to delivery systems can enhance quercetin's pharmacokinetics, thus boosting its great potentiality even further. Overall, quercetin has a lot of promise, given its multi-target potentiality; thus, more research is strongly encouraged to properly define its pharmaco-toxicological profile and evaluate its potential for usage in adjuvant and chemoprevention therapy.
Collapse
|
45
|
Ooi KX, Poo CL, Subramaniam M, Cordell GA, Lim YM. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154631. [PMID: 36621168 DOI: 10.1016/j.phymed.2022.154631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Natural products have long been regarded as a source of anticancer compounds with low toxicity. Evidence revealed that maslinic acid (MA), a widely distributed pentacyclic triterpene in common foodstuffs, exhibited pronounced inhibitory effects against various cancer cell lines. Most cancer cells thrive by acquiring cancer hallmarks, as coined by Hanahan and Weinberg in 2000 and 2011. PURPOSE This represents the first systematic review concerning the anticancer properties of MA as these cancer hallmarks are targeted. It aims to summarize the antineoplastic activities of MA, discuss the diverse mechanisms of action based on the effects of MA exerted on each hallmark. METHODS A comprehensive literature search was conducted using the search terms "maslinic," "cancer," "tumor," and "neoplasm," to retrieve articles from the databases MEDLINE, EMBASE, Web of Science, and Scopus published up to September 2022. Study selection was conducted by three reviewers independently from title and abstract screening until full-text evaluation. Data extraction was done by one reviewer and counterchecked by the second reviewer. RESULTS Of the 330 articles assessed, 40 papers met the inclusion criteria and revealed that MA inhibited 16 different cancer cell types. MA impacted every cancer hallmark by targeting multiple pathways. CONCLUSION This review provides insights regarding the inhibitory effects of MA against various cancers and its remarkable biological properties as a pleiotropic bioactive compound, which encourage further investigations.
Collapse
Affiliation(s)
- Kai Xin Ooi
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Chin Long Poo
- Herbal Medicine Research Centre, Institute for Medical Research, Setia Alam, 40170, Selangor, Malaysia
| | - Menaga Subramaniam
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia; Department of Pre-Clinical Sciences, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia.
| |
Collapse
|
46
|
Androgen receptor-dependent regulation of metabolism in high grade bladder cancer cells. Sci Rep 2023; 13:1762. [PMID: 36720985 PMCID: PMC9889754 DOI: 10.1038/s41598-023-28692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
The observed sex disparity in bladder cancer (BlCa) argues that androgen receptor (AR) signaling has a role in these malignancies. BlCas express full-length AR (FL-AR), constitutively active AR splice variants, including AR-v19, or both, and their depletion limits BlCa viability. However, the mechanistic basis of AR-dependence is unknown. Here, we depleted FL-AR, AR-v19, or all AR forms (T-AR), and performed RNA-seq studies to uncover that different AR forms govern distinct but partially overlapping transcriptional programs. Overlapping alterations include a decrease in mTOR and an increase of hypoxia regulated transcripts accompanied by a decline in oxygen consumption rate (OCR). Queries of BlCa databases revealed a significant negative correlation between AR expression and multiple hypoxia-associated transcripts arguing that this regulatory mechanism is a feature of high-grade malignancies. Our analysis of a 1600-compound library identified niclosamide as a strong ATPase inhibitor that reduces OCR in BlCa cells, decreased cell viability and induced apoptosis in a dose and time dependent manner. These results suggest that BlCa cells hijack AR signaling to enhance metabolic activity, promoting cell proliferation and survival; hence targeting this AR downstream vulnerability presents an attractive strategy to limit BlCa.
Collapse
|
47
|
Herzog AE, Somayaji R, Nör JE. Bmi-1: A master regulator of head and neck cancer stemness. FRONTIERS IN ORAL HEALTH 2023; 4:1080255. [PMID: 36726797 PMCID: PMC9884974 DOI: 10.3389/froh.2023.1080255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Head and neck cancers are composed of a diverse group of malignancies, many of which exhibit an unacceptably low patient survival, high morbidity and poor treatment outcomes. The cancer stem cell (CSC) hypothesis provides an explanation for the substantial patient morbidity associated with treatment resistance and the high frequency of tumor recurrence/metastasis. Stem cells are a unique population of cells capable of recapitulating a heterogenous organ from a single cell, due to their capacity to self-renew and differentiate into progenitor cells. CSCs share these attributes, in addition to playing a pivotal role in cancer initiation and progression by means of their high tumorigenic potential. CSCs constitute only a small fraction of tumor cells but play a major role in tumor initiation and therapeutic evasion. The shift towards stem-like phenotype fuels many malignant features of a cancer cell and mediates resistance to conventional chemotherapy. Bmi-1 is a master regulator of stem cell self-renewal as part of the polycomb repressive complex 1 (PRC1) and has emerged as a prominent player in cancer stem cell biology. Bmi-1 expression is upregulated in CSCs, which is augmented by tumor-promoting factors and various conventional chemotherapies. Bmi-1+ CSCs mediate chemoresistance and metastasis. On the other hand, inhibiting Bmi-1 rescinds CSC function and re-sensitizes cancer cells to chemotherapy. Therefore, elucidating the functional role of Bmi-1 in CSC-mediated cancer progression may unveil an attractive target for mechanism-based, developmental therapeutics. In this review, we discuss the parallels in the role of Bmi-1 in stem cell biology of health and disease and explore how this can be leveraged to advance clinical treatment strategies for head and neck cancer.
Collapse
Affiliation(s)
- Alexandra E. Herzog
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ritu Somayaji
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States,Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School; Ann Arbor, MI, United States,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, United States,Universityof Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
48
|
Zhao J, Pan H, Liu Y, He Y, Shi H, Ge C. Interacting Networks of the Hypothalamic-Pituitary-Ovarian Axis Regulate Layer Hens Performance. Genes (Basel) 2023; 14:141. [PMID: 36672882 PMCID: PMC9859134 DOI: 10.3390/genes14010141] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Egg production is a vital biological and economic trait for poultry breeding. The 'hypothalamic-pituitary-ovarian (HPO) axis' determines the egg production, which affects the layer hens industry income. At the organism level, the HPO axis is influenced by the factors related to metabolic and nutritional status, environment, and genetics, whereas at the cellular and molecular levels, the HPO axis is influenced by the factors related to endocrine and metabolic regulation, cytokines, key genes, signaling pathways, post-transcriptional processing, and epigenetic modifications. MiRNAs and lncRNAs play a critical role in follicle selection and development, atresia, and ovulation in layer hens; in particular, miRNA is known to affect the development and atresia of follicles by regulating apoptosis and autophagy of granulosa cells. The current review elaborates on the regulation of the HPO axis and its role in the laying performance of hens at the organism, cellular, and molecular levels. In addition, this review provides an overview of the interactive network regulation mechanism of the HPO axis in layer hens, as well as comprehensive knowledge for successfully utilizing their genetic resources.
Collapse
Affiliation(s)
- Jinbo Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Hongbin Pan
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Yang He
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Hongmei Shi
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| |
Collapse
|
49
|
Cai Y, Gao Q, Meng JH, Chen L. Puerarin Suppresses Glycolysis and Increases Cisplatin Chemosensitivity in Oral Squamous Cell Carcinoma via FBXW7/mTOR Signaling. Nutr Cancer 2023; 75:1028-1037. [PMID: 36718661 DOI: 10.1080/01635581.2023.2168023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study aimed to observe the effects of puerarin on glycolysis and cisplatin sensitivity in oral squamous cell carcinoma (oSCC) cells and to explore the underlying mechanisms. CAL27 cells over- or under-expressing FBXW7 were treated with cisplatin or puerarin, and the levels of proteins involved in glycolysis as well as the activity of the respective enzymes were assessed. Glucose uptake and lactate production were also evaluated, and the IC50 value of cisplatin in CAL27 cells was determined. FBXW7 overexpression significantly downregulated HK2, PKM2, and LDH; suppressed the activity of the corresponding enzymes hexokinase, pyruvate kinase, and lactate dehydrogenase; as well as reduced glucose uptake and lactate production. FBXW7 overexpression was also associated with decreased mTOR phosphorylation and increased cisplatin sensitivity. These effects were partially antagonized by lactate or the mTOR agonist MHY1485. Puerarin suppressed glycolysis by reducing glucose uptake and lactate production, while it promoted cisplatin sensitivity and activated the FBXW7/mTOR signal pathway in a concentration-dependent manner. These effects were antagonized by FBXW7 downregulation or treatment with MHY1485. Our results suggest that FBXW7 improves cisplatin chemosensitivity and suppresses glycolysis in oSCC cells, indicating its promising potential as a target for puerarin to regulate the cisplatin sensitivity of oSCC cells.
Collapse
Affiliation(s)
- Yu Cai
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - Qiang Gao
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - Jun-Hua Meng
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| | - Ling Chen
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei, China
| |
Collapse
|
50
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|