1
|
Baranwal G, Mukhtar H, Kane J, Lemieux A, Misra S. Advancements in Mesenchymal Stem Cell-Based Therapy for Enhancing Arteriovenous Fistula Patency. Int J Mol Sci 2024; 25:12719. [PMID: 39684430 DOI: 10.3390/ijms252312719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% of the world's population. Hemodialysis, along with peritoneal dialysis and renal transplant, is one of the renal replacement therapies offered to patients with CKD/end-stage renal disease (ESRD). To proceed with hemodialysis, vascular access is required. The two means of long-term access are arteriovenous fistula (AVF) and arteriovenous graft (AVG). Multiple therapies have been created to help the long-term patency of AVFs. These therapies are needed as 40% of AVFs fail within the first year and additional intervention is required. Much of the existing research has focused on biomarkers, immune cells, hypoxia, and cell-based therapies. Regeneration therapy using mesenchymal stem cells seeks to investigate other ways that we can treat AVF failure. Mesenchymal stem cells are harvested as two main types, fetal and adult. Fetal cells are harvested at different times in fetal gestation and from multiple sources, placental blood, Whartons jelly, and amniotic stem cell fluid. Taken together, this review summarizes the different preclinical/clinical studies conducted using different types of MSCs towards vascular regenerative medicine and further highlights its potential to be a suitable alternative approach to enhance AVF patency.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haseeb Mukhtar
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jamie Kane
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alaura Lemieux
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Caplar BD, Togoe MM, Ribatti D, Pop D, Sinescu C, Rominu M, Petrescu EL, Negrutiu ML, Melnic E, Cimpean AM. The Chick Embryo Chorioallantoic Membrane (CAM) Assay: A Novel Experimental Model in Dental Research. Cureus 2024; 16:e74714. [PMID: 39655138 PMCID: PMC11626256 DOI: 10.7759/cureus.74714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
Animal experimental models are ruled out by respecting the 3Rs (Replacement, Reduction, Refinement) rules which governed the experimental research for decades with an increased tendency to minimize as much as it is possible any pain suffering or distress that the animals might feel. The chick embryo chorioallantoic membrane (CAM) model is an alternative to other experimental models due to its superior properties compared to other animal models. The CAM is painless by itself due to the lack of innervation and has no immune cells till the 11th day of incubation. Thus, it is extensively used for implanting malignant tumors and assessing them in relation to their metastatic and angiogenic potential. Also, various biomaterials from collagen to hard scaffolds can be implanted on the CAM surface and analyzed mainly related to their property of inducing inflammation. Dental research often uses mouse or rabbit models for experimental purposes. Different surgical techniques from experimentally induced periodontal disease to experimental dental implants may cause pain and suffering to animals. Due to all these arguments, the CAM model is a quick, cheap, and reliable alternative to other animal experimental models used in dental research. Despite its usefulness as an experimental model for different applications, ranging from inflammation studies to cancer research, the CAM model is insufficiently used in dental research. Currently, about 135 studies pertaining to this issue are available in PubMed, the majority of which focus on the reactivity of CAM vessels to various materials employed in dentistry. Limited data exist about the capacity of the CAM to promote osteogenic differentiation of dental stem cells or to enhance biomaterial integration into novel tissue architectures. The present review critically analyzed the use of the CAM model as an experimental tool in dental research. We selected from PubMed all the papers having as topic the CAM in dentistry by searching based on the following keywords: " chorioallantoic membrane, dentistry" or "chorioallantoic membrane, dental ". We focused on discussing the benefits and limitations of the CAM model in dental studies and its prospective role as a preclinical instrument for the assessment of dental tissues, biomaterials, or different dentistry-related substances prior to their use for various purposes in dental clinical practice. The impact of the CAM model-derived preclinical findings on clinical practice will be also stated by mentioning "pros and cons" arguments. The last part of the present paper reviewed the perspective of CAM assay used in combination with other experimental techniques such as tooth organoids and also the strengths and weaknesses of other species CAM assays recently developed in ostrich and Nile crocodile CAMs.
Collapse
Affiliation(s)
- Borislav Dusan Caplar
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, Dental Research Center Using Conventional and Alternative Technologies, "Victor Babes" University of Medicine and Pharmacy, Timisoara, ROU
| | - Marius Mihai Togoe
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, Dental Research Center Using Conventional and Alternative Technologies, "Victor Babes" University of Medicine and Pharmacy, Timisoara, ROU
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, ITA
| | - Daniela Pop
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, Dental Research Center Using Conventional and Alternative Technologies, "Victor Babes" University of Medicine and Pharmacy, Timisoara, ROU
| | - Cosmin Sinescu
- Department of Dentistry, Faculty of Dentistry, "Victor Babes" University of Medicine and Pharmacy, Timisoara, ROU
| | - Mihai Rominu
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, Dental Research Center Using Conventional and Alternative Technologies, "Victor Babes" University of Medicine and Pharmacy, Timisoara, ROU
| | - Emanuela Lidia Petrescu
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, Dental Research Center Using Conventional and Alternative Technologies, "Victor Babes" University of Medicine and Pharmacy, Timisoara, ROU
| | - Meda Lavinia Negrutiu
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, Dental Research Center Using Conventional and Alternative Technologies, "Victor Babes" University of Medicine and Pharmacy, Timisoara, ROU
| | - Eugen Melnic
- Department of Pathology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chișinău, MDA
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, ROU
| |
Collapse
|
3
|
Hamad-Alrashid H, Muntión S, Sánchez-Guijo F, Borrajo-Sánchez J, Parreño-Manchado F, García-Cenador MB, García-Criado FJ. Bone Regeneration with Dental Pulp Stem Cells in an Experimental Model. J Pers Med 2024; 14:1075. [PMID: 39590567 PMCID: PMC11595977 DOI: 10.3390/jpm14111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The therapeutic approach to bone mass loss and bone's limited self-regeneration is a major focus of research, emphasizing new biomaterials and cell therapy. Tissue bioengineering emerges as a potential alternative to conventional treatments. In this study, an experimental model of a critical bone lesion in rats was used to investigate bone regeneration by treating the defect with biomaterials Evolution® and Gen-Os® (OsteoBiol®, Turín, Italy), with or without mesenchymal stromal cells from dental pulp (DP-MSCs). METHODS Forty-six adult male Wistar rats were subjected to a 5-mm critical bone defect in the right mandible, which does not regenerate without intervention. The rats were randomly assigned to a Simulated Group, Control Group, or two Study Groups (using Evolution®, Gen-Os®, and DP-MSCs). The specimens were euthanized at three or six months, and radiological, histological, and ELISA tests were conducted to assess bone regeneration. RESULTS The radiological results showed that the DP-MSC group achieved uniform radiopacity and continuity in the bone edge, with near-complete structural defect restitution. Histologically, full bone regeneration was observed, with well-organized, vascularized lamellar bone and no lesion edges. These findings were supported by increases in endoglin, transforming growth factor-beta 1 (TGF-β1), protocollagen, parathormone, and calcitonin, indicating a conducive environment for bone regeneration. CONCLUSIONS The use of DP-MSCs combined with biomaterials with appropriate three-dimensional matrices is a promising therapeutic option for further exploration.
Collapse
Affiliation(s)
- Haifa Hamad-Alrashid
- Doctoral School “Studii Salamantini”, University of Salamanca, 37008 Salamanca, Spain;
| | - Sandra Muntión
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, 37007 Salamanca, Spain;
| | - Fermín Sánchez-Guijo
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, 37007 Salamanca, Spain;
- Hematology Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Javier Borrajo-Sánchez
- Department of Biomedical and Diagnostic Sciences, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| | - Felipe Parreño-Manchado
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
- Coordinator of the Esophagogastric Surgery and Obesity Unit, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - M. Begoña García-Cenador
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| | - F. Javier García-Criado
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
4
|
Yamada S, Al-Sharabi N, Torelli F, Volponi AA, Sandven L, Ueda M, Fristad I, Mustafa K. Harnessing the Antioxidative Potential of Dental Pulp Stem Cell-Conditioned Medium in Photopolymerized GelMA Hydrogels. Biomater Res 2024; 28:0084. [PMID: 39290361 PMCID: PMC11406670 DOI: 10.34133/bmr.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Gelatin methacryloyl (GelMA) stands out for its biocompatibility, tunability, and functionality, being often selected as a scaffolding material. However, the biological modulations induced by its photocrosslinking process on mesenchymal stem cells as well as stress mitigation measures remain insufficiently explored. By using GelMA of Good Manufacturing Practice (GMP) grade, this study aimed (a) to achieve a comprehensive understanding of the biological effects of photocrosslinking process with a specific focus on oxidative stress and (b) to develop a strategy to mitigate the adverse effects by employing conditioned medium (CM) by dental pulp stem cells (DPSCs). Following photocrosslinking, pathways related to oxidative phosphorylation and DNA repair were enriched in the presence of DPSC-CM carrying various antioxidants such as peroxiredoxin (PRDX) 1-6 and superoxide dismutase type 1 (SOD1), while the control samples exhibited enrichment in inflammatory signaling pathways. Incorporating DPSC-CM into the hydrogel notably reduced the degree of cellular oxidation caused by photocrosslinking and stress responses, resulting in improved cell viability, growth, motility, and osteogenic differentiation, as well as fewer apoptotic and senescent cells compared to those without DPSC-CM. The deteriorated biocompatibility of freshly crosslinked GelMA hydrogel was confirmed by the disrupted vasculature of chorioallantoic membranes in chicken embryos after implantation, which was prevented by DPSC-CM. In conclusion, this study demonstrates the robust antioxidative effects of DPSC-CM, mitigating the negative effect of GelMA photocrosslinking processes.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Francesco Torelli
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Linda Sandven
- The Molecular Imaging Center, Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Saiseiken Co. Ltd., Tokyo, Japan
| | - Inge Fristad
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
6
|
Shekatkar M, Kheur S, Deshpande S, Sanap A, Kharat A, Navalakha S, Gupta A, Kheur M, Bhonde R, Merchant YP. Angiogenic Potential of Various Oral Cavity-Derived Mesenchymal Stem Cells and Cell-Derived Secretome: A Systematic Review and Meta-Analysis. Eur J Dent 2024; 18:712-742. [PMID: 37995732 PMCID: PMC11290931 DOI: 10.1055/s-0043-1776315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Recent evidence suggests the immense potential of human mesenchymal stem cell (hMSC) secretome conditioned medium-mediated augmentation of angiogenesis. However, angiogenesis potential varies from source and origin. The hMSCs derived from the oral cavity share an exceptional quality due to their origin from a hypoxic environment. Our systematic review aimed to compare the mesenchymal stem cells (MSCs) derived from various oral cavity sources and cell-derived secretomes, and evaluate their angiogenic potential. A literature search was conducted using PubMed and Scopus from January 2000 to September 2020. Source-wise outcomes were systematically analyzed using in vitro, in vivo, and in ovo studies, emphasizing endothelial cell migration, tube formation, and blood vessel formation. Ninety-four studies were included in the systematic review, out of which 4 studies were subsequently included in the meta-analysis. Prominent growth factors and other bioactive components implicated in improving angiogenesis were included in the respective studies. The findings suggest that oral tissues are a rich source of hMSCs. The meta-analysis revealed a positive correlation between dental pulp-derived MSCs (DPMSCs) and stem cells derived from apical papilla (SCAP) compared to human umbilical cord-derived endothelial cell lines as a control. It shows a statistically significant positive correlation between the co-culture of human umbilical vein endothelial cells (HUVECs) and DPMSCs with tubule length formation and total branching points. Our meta-analysis revealed that oral-derived MSCs (dental pulp stem cells and SCAP) carry a better angiogenic potential in vitro than endothelial cell lines alone. The reviewed literature illustrates that oral cavity-derived MSCs (OC-MSCs) increased angiogenesis. The present literature reveals a dearth of investigations involving sources other than dental pulp. Even though OC-MSCs have revealed more significant potential than other MSCs, more comprehensive, target-oriented interinstitutional prospective studies are warranted to determine whether oral cavity-derived stem cells are the most excellent sources of significant angiogenic potential.
Collapse
Affiliation(s)
- Madhura Shekatkar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Shantanu Deshpande
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be) University Dental College and Hospital, Navi Mumbai, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Shivani Navalakha
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Archana Gupta
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, India
| | | | - Yash P. Merchant
- Department of Oral and Maxillofacial Surgery, Dr. D. Y. Patil Dental College, and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
7
|
Marić I, Žiberna K, Kolenc A, Maličev E. Platelet activation and blood extracellular vesicles: The influence of venepuncture and short blood storage. Blood Cells Mol Dis 2024; 106:102842. [PMID: 38492545 DOI: 10.1016/j.bcmd.2024.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Extracellular vesicles (EVs) as membrane-bound particles released by various cells are potential tools for diagnosis and treatment. Blood cells, particularly platelets, are the source of circulating EVs. MATERIAL EVs were enriched with gradient ultracentrifugation and measured by nanoparticle tracking assay. A flow cytometric multiplex assay was used for cellular source determination. Activation of platelets was measured as a percentage of CD62p+/CD61+ platelets and correlated with the concentration and size of released EVs. RESULTS In general there was no statistically significant correlation between EVs` concentration and degree of platelet activation. EVs from different cellular sources were detected. Comparing different needle thicknesses, there was a decrease in the EVs concentration for the 16G needle versus the 21G needle, but no difference was observed for EVs` size and phenotype or platelets activation. During blood storage, platelet activation increased, but there was no effect on the EVs` concentration, size, or phenotype. CONCLUSIONS Preanalytical factors like needle thickness and storage time can affect the MVs' properties. Activation of platelets during blood collection or blood storage occurs; however, it is difficult to determine its effect on the physiological properties of EVs since the mechanisms of EVs` biogenesis and especially clearness are not precisely known.
Collapse
Affiliation(s)
- Ivica Marić
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; Institute for Transplantation of Organs and Tissues of the Republic of Slovenia - Slovenia Transplant, Zaloška 7, 1000 Ljubljana, Slovenia.
| | - Klemen Žiberna
- Blood Transfusion Centre of Slovenia, Šlajmarjeva 6, 1000 Ljubljana, Slovenia
| | - Ana Kolenc
- Blood Transfusion Centre of Slovenia, Šlajmarjeva 6, 1000 Ljubljana, Slovenia
| | - Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmarjeva 6, 1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Liang J, Zhao J, Chen Y, Li B, Li Y, Lu F, Dong Z. New Insights and Advanced Strategies for In Vitro Construction of Vascularized Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:692-709. [PMID: 37409413 DOI: 10.1089/ten.teb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Inadequate vascularization is a significant barrier to clinical application of large-volume tissue engineered grafts. In contrast to in vivo vascularization, in vitro prevascularization shortens the time required for host vessels to grow into the graft core and minimizes necrosis in the core region of the graft. However, the challenge of prevascularization is to construct hierarchical perfusable vascular networks, increase graft volume, and form a vascular tip that can anastomose with host vessels. Understanding advances in in vitro prevascularization techniques and new insights into angiogenesis could overcome these obstacles. In the present review, we discuss new perspectives on angiogenesis, the differences between in vivo and in vitro tissue vascularization, the four elements of prevascularized constructs, recent advances in perfusion-based in vitro prevascularized tissue fabrication, and prospects for large-volume prevascularized tissue engineering.
Collapse
Affiliation(s)
- Jiancong Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Wang YT, Meng XT. A review of the evidence to support electrical stimulation -induced vascularization in engineered tissue. Regen Ther 2023; 24:237-244. [PMID: 37534238 PMCID: PMC10393514 DOI: 10.1016/j.reth.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Tissue engineering presents a promising solution for regenerative medicine and the success depends on the supply of oxygen/nutrients to the cells by rapid vascularization. More and more technologies are being developed to facilitate vascularization of engineered tissues. In this review, we indicated that a regulatory system which influences all angiogenesis associated cells to achieve their desired functional state is ideal for the construction of vascularized engineered tissues in vitro. We presented the evidence that electrical stimulation (ES) enhances the synergistic promotion of co-cultured angiogenesis associated cells and its potential regulatory mechanisms, highlighted the potential advantages of a combination of mesenchymal stem cells (MSCs), endothelial cells (ECs) and ES to achieve tissue vascularization, with particular emphasis on the different biological pathways of ES-regulated ECs. Finally, we proposed the future direction of using ES to reconstruct engineered tissue blood vessels, pointed out the potential advantages and disadvantages of ES application on tissue vascularization.
Collapse
Affiliation(s)
- Ying-tong Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiao-ting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
10
|
Li Y, Liu C, Han G. Research progress of odontogenic extracellular vesicles in regeneration of dental pulp. Oral Dis 2023; 29:2565-2577. [PMID: 36415913 DOI: 10.1111/odi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
It is well understood that maintaining viable pulp is critical for tooth retention. This review focused on cell-free therapy based on extracellular vesicles (EVs), a novel minimally invasive treatment strategy for endodontic restoration. This study was conducted by searching mainstream electronic databases such as Web of Science and PubMed for relevant studies on the therapeutic role of odontogenic EVs in pulp healing published in the last five years. We selected 89 relevant articles and discovered that dental stem cells (DSCs) derived EVs (DSC-EVs) have become a research hotspot in oral regenerative medicine, with significant advantages over cell transplantation in terms of low immunogenicity, ease of isolation, preservation, and management. Here, we introduce in detail the therapeutic effects of DSC-EVs for pulp restoration from three perspectives: excellent odontogenic properties, clinical applications, and possible molecular mechanisms. This article contributes a new viewpoint to the field of regenerative endodontics.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
11
|
Shekari F, Alibhai FJ, Baharvand H, Börger V, Bruno S, Davies O, Giebel B, Gimona M, Salekdeh GH, Martin‐Jaular L, Mathivanan S, Nelissen I, Nolte‐’t Hoen E, O'Driscoll L, Perut F, Pluchino S, Pocsfalvi G, Salomon C, Soekmadji C, Staubach S, Torrecilhas AC, Shelke GV, Tertel T, Zhu D, Théry C, Witwer K, Nieuwland R. Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e115. [PMID: 38939735 PMCID: PMC11080896 DOI: 10.1002/jex2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP‐TDC), Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Verena Börger
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTurinItaly
| | - Owen Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mario Gimona
- GMP UnitSpinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS) and Research Program “Nanovesicular Therapies” Paracelsus Medical UniversitySalzburgAustria
| | | | - Lorena Martin‐Jaular
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVICAustralia
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Health departmentBoeretangBelgium
| | - Esther Nolte‐’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResourcesNational Research CouncilNaplesItaly
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Carolina Soekmadji
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | | | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)SPBrazil
| | - Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Dandan Zhu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVICAustralia
| | - Clotilde Théry
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Kenneth Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology and Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical CentersLocation AMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
12
|
Chouaib B, Haack-Sørensen M, Chaubron F, Cuisinier F, Collart-Dutilleul PY. Towards the Standardization of Mesenchymal Stem Cell Secretome-Derived Product Manufacturing for Tissue Regeneration. Int J Mol Sci 2023; 24:12594. [PMID: 37628774 PMCID: PMC10454619 DOI: 10.3390/ijms241612594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cell secretome or conditioned medium (MSC-CM) is a combination of biomolecules and growth factors in cell culture growth medium, secreted by mesenchymal stem cells (MSCs), and the starting point of several derived products. MSC-CM and its derivatives could be applied after injuries and could mediate most of the beneficial regenerative effects of MSCs without the possible side effects of using MSCs themselves. However, before the clinical application of these promising biopharmaceuticals, several issues such as manufacturing protocols and quality control must be addressed. This review aims to underline the influence of the procedure for conditioned medium production on the quality of the secretome and its derivatives and highlights the questions considering cell sources and donors, cell expansion, cell passage number and confluency, conditioning period, cell culture medium, microenvironment cues, and secretome-derived product purification. A high degree of variability in MSC secretomes is revealed based on these parameters, confirming the need to standardize and optimize protocols. Understanding how bioprocessing and manufacturing conditions interact to determine the quantity, quality, and profile of MSC-CM is essential to the development of good manufacturing practice (GMP)-compliant procedures suitable for replacing mesenchymal stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Batoul Chouaib
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, 92262 Fontenay-aux-Roses, France
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100 Copenhagen, Denmark
| | - Franck Chaubron
- Institut Clinident BioPharma, Biopôle Clermont-Limagne, 63360 Saint Beauzire, France;
| | - Frederic Cuisinier
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| | - Pierre-Yves Collart-Dutilleul
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| |
Collapse
|
13
|
Hardin LT, Vang D, Thor D, Han X, Mashkoor F, Alpagot T, Ojcius DM, Xiao N. Cigarette smoking exposure disrupts the regenerative potential of dental pulp stem cells. Tob Induc Dis 2023; 21:101. [PMID: 37533959 PMCID: PMC10392041 DOI: 10.18332/tid/168125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Smoking is known to alter the regenerative and immunomodulatory properties of many types of mesenchymal stem cells (MSCs). This study investigates the impact of cigarette smoke exposure on the regenerative potential of dental pulp stem cells (DPSCs). METHODS DPSCs were treated with various doses of cigarette smoke condensate (CSC) or nicotine. Cell proliferation and survival were evaluated by a water-soluble tetrazolium salt (WST-1) and a survival assay. DPSC migration, cytokine expression, mutagenesis, and the signaling pathway were also measured during CSC and nicotine treatment. RESULTS Low concentrations of CSC and nicotine did not impair cell proliferation, but higher concentrations reduced cell proliferation. CSC and nicotine could impede DPSC survival and migration in a dose-dependent manner. In addition, the cytokine secretion expression profile was altered with CSC or nicotine treatments. In particular, secretion of IL-6, TNF-α, and IL-10 significantly increased, while TGF-β1 levels showed different patterns after exposure to CSC or nicotine, as shown by ELISA and quantitative PCR. Nicotine treatment increased AKT (also known as protein kinase B) and extracellular signal-regulated kinase (ERK) phosphorylation. Finally, CSC induced higher levels of mutagenicity than nicotine, as shown by the Ames test. CONCLUSIONS These findings suggest that cigarette smoke exposure alters the regenerative abilities of DPSCs in various ways. Future studies are warranted to further characterize the underlying molecular mechanisms of smoking-mediated damage to DPSCs, which will guide the personalized stem cell treatment plan for smoking patients.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Der Thor
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Fatima Mashkoor
- Department of Oral and Maxillofacial Surgery, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Tamer Alpagot
- Department of Periodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| |
Collapse
|
14
|
Pincela Lins PM, Pirlet E, Szymonik M, Bronckaers A, Nelissen I. Manufacture of extracellular vesicles derived from mesenchymal stromal cells. Trends Biotechnol 2023; 41:965-981. [PMID: 36750391 DOI: 10.1016/j.tibtech.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) are a promising therapy for various diseases ranging from ischemic stroke to wound healing and cancer. Their therapeutic effects are mainly mediated by secretome-derived paracrine factors, with extracellular vesicles (EVs) proven to play a key role. This has led to promising research on the potential of MSC-EVs as regenerative, off-the-shelf therapeutic agents. However, the translation of MSC-EVs into the clinic is hampered by the poor scalability of their production. Recently, new advanced methods have been developed to upscale MSC cultivation and EV production yields, ranging from new cell culture devices to priming procedures. This review gives an overview of these innovative strategies for manufacturing MSC-EVs.
Collapse
Affiliation(s)
- Paula M Pincela Lins
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium
| | - Elke Pirlet
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Michal Szymonik
- Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium
| | - Annelies Bronckaers
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium.
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium.
| |
Collapse
|
15
|
Wu Y, Li B, Yu D, Zhou Z, Shen M, Jiang F. CBX7 Rejuvenates Late Passage Dental Pulp Stem Cells by Maintaining Stemness and Pro-angiogenic Ability. Tissue Eng Regen Med 2023; 20:473-488. [PMID: 36920677 PMCID: PMC10219923 DOI: 10.1007/s13770-023-00521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Ever-growing tissue regeneration causes pressing need for large population of stem cells. However, extensive cell expansion eventually leads to impaired regenerative potentials. In this study, chromobox protein homolog 7 (CBX7) was overexpressed to rejuvenate late passage dental pulp stem cells (DPSCs-P9). METHODS The recruitment of copper ions (Cu2+)-activated hypoxia-inducible factor-1α (HIF-1α) to the CBX7 gene promoter was confirmed by chromatin immunoprecipitation assay. Functions subsequent to Cu2+-induced or recombinant overexpression of CBX7 on proliferation, multipotency, odontoblastic differentiation and angiogenesis were investigated in vitro, while murine subcutaneous transplantation model was used to further detect the effects of Cu2+-induced CBX7 overexpression in vivo. RESULTS Our data displayed that CBX7 overexpression maintain proliferation and multipotency of DPSCs-P9 almost as strong as those of DPSCs-P3. Both gene level of odontoblast-lineage markers and calcium precipitation were nearly the same between CBX7 overexpressed DPSCs-P9 and normal DPSCs-P3. Moreover, we also found upregulated expression of vascular endothelial growth factor in DPSCs-P9 with CBX7 overexpression, which increased the number of capillary-like structures and migrating co-cultured human umbilical vein endothelial cells as well. These findings indicate CBX7 as an effective factor to rejuvenate late passage stem cells insusceptible to cell expansion. Cu2+ has been proved to achieve CBX7 overexpression in DPSCs through the initiation of HIF-1α-CBX7 cascade. Under Cu2+ stimulation since P3, DPSCs-P9 exhibited ameliorated regenerative potential both in vitro and in vivo. CONCLUSION Long-term stimulation of Cu2+ to overexpress CBX7 could be a new strategy to manufacture large population of self-renewing stem cells.
Collapse
Affiliation(s)
- Yu Wu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing, 210029, China
| | - Bing Li
- Department of Oral Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China
| | - Dandan Yu
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China
| | - Zhixuan Zhou
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing, 210029, China.
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China.
| | - Ming Shen
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing, 210029, China.
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China.
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing, 210029, China.
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China.
| |
Collapse
|
16
|
Li B, Liang A, Zhou Y, Huang Y, Liao C, Zhang X, Gong Q. Hypoxia preconditioned DPSC-derived exosomes regulate angiogenesis via transferring LOXL2. Exp Cell Res 2023; 425:113543. [PMID: 36894050 DOI: 10.1016/j.yexcr.2023.113543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Hypoxia was proved to enhance the angiogenesis of stem cells. However, the mechanism of the angiogenic potential in hypoxia-pretreated dental pulp stem cells (DPSCs) is poorly understood. We previously confirmed that hypoxia enhances the angiogenic potential of DPSC-derived exosomes with upregulation of lysyl oxidase-like 2 (LOXL2). Therefore, our study aimed to illuminate whether these exosomes promote angiogenesis via transfer of LOXL2. Exosomes were generated from hypoxia-pretreated DPSCs (Hypo-Exos) stably silencing LOXL2 after lentiviral transfection and characterized with transmission electron microscopy, nanosight and Western blot. The efficiency of silencing was verified using quantitative real-time PCR (qRT-PCR) and Western blot. CCK-8, scratch and transwell assays were conducted to explore the effects of LOXL2 silencing on DPSCs proliferation and migration. Human umbilical vein endothelial cells (HUVECs) were co-incubated with exosomes to assess the migration and angiogenic capacity through transwell and matrigel tube formation assays. The relative expression of angiogenesis-associated genes was characterized by qRT-PCR and Western blot. LOXL2 was successfully silenced in DPSCs and inhibited DPSC proliferation and migration. LOXL2 silencing in Hypo-Exos partially reduced promotion of HUVEC migration and tube formation and inhibited the expression of angiogenesis-associated genes. Thus, LOXL2 is one of various factors mediating the angiogenic effects of Hypo-Exos.
Collapse
Affiliation(s)
- Baoyu Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yanling Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yihua Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Chenxi Liao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xufang Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
17
|
Song WP, Jin LY, Zhu MD, Wang H, Xia DS. Clinical trials using dental stem cells: 2022 update. World J Stem Cells 2023; 15:31-51. [PMID: 37007456 PMCID: PMC10052340 DOI: 10.4252/wjsc.v15.i3.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
For nearly 20 years, dental stem cells (DSCs) have been successfully isolated from mature/immature teeth and surrounding tissue, including dental pulp of permanent teeth and exfoliated deciduous teeth, periodontal ligaments, dental follicles, and gingival and apical papilla. They have several properties (such as self-renewal, multidirectional differentiation, and immunomodulation) and exhibit enormous potential for clinical applications. To date, many clinical articles and clinical trials using DSCs have reported the treatment of pulpitis, periapical lesions, periodontitis, cleft lip and palate, acute ischemic stroke, and so on, and DSC-based therapies obtained satisfactory effects in most clinical trials. In these studies, no adverse events were reported, which suggested the safety of DSC-based therapy. In this review, we outline the characteristics of DSCs and summarize clinical trials and their safety as DSC-based therapies. Meanwhile, we also present the current limitations and perspectives of DSC-based therapy (such as harvesting DSCs from inflamed tissue, applying DSC-conditioned medium/DSC-derived extracellular vesicles, and expanding-free strategies) to provide a theoretical basis for their clinical applications.
Collapse
Affiliation(s)
- Wen-Peng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lu-Yuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Meng-Di Zhu
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Deng-Sheng Xia
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
18
|
Semenzato M, Zambello L, Fumarola S, Motta E, Piroli L, Scorrano L, Bean C. A Novel Benchtop Device for Efficient and Simple Purification of Cytokines, Growth Factors and Stem Cells from Adipose Tissue. Biomedicines 2023; 11:biomedicines11041006. [PMID: 37189624 DOI: 10.3390/biomedicines11041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Lipoaspirates represent a source of adult stem cells, cytokines, and growth factors of adipocyte origin with immunomodulation and regenerative medicine potential. However, rapid and simple protocols for their purification using self-contained devices that can be deployed at the points of care are lacking. Here, we characterize and benchmark a straightforward mechanical dissociation procedure to collect mesenchymal stem cells (MSCs) and soluble fractions from lipoaspirates. IStemRewind, a benchtop self-contained cell purification device, allowed a one-procedure purification of cells and soluble material from lipoaspirates with minimal manipulation. The recovered cellular fraction contained CD73+, CD90+, CD105+, CD10+ and CD13+ MSCs. These markers were comparably expressed on MSCs isolated using IstemRewind or classic enzymatic dissociation procedures, apart from CD73+ MSCs, which were even more abundant in IStemRewind isolates. IstemRewind-purified MSCs retained viability and differentiation into adipocytes and osteocytes, even after a freezing-thawing cycle. Levels of IL4, IL10, bFGF and VEGF were higher compared to the pro-inflammatory cytokines TNFα, IL1β and IL6 in the IStemRewind-isolated liquid fraction. In sum, IStemRewind can be useful for straightforward, rapid, and efficient isolation of MSCs and immunomodulatory soluble factors from lipoaspirates, opening the possibility to directly isolate and employ them at the point-of-care.
Collapse
Affiliation(s)
- Martina Semenzato
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Ludovica Zambello
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Stefania Fumarola
- InScientiaFides Foundation, Strada di Paderna, 2, 47895 San Marino, San Marino
| | | | - Luana Piroli
- InScientiaFides Foundation, Strada di Paderna, 2, 47895 San Marino, San Marino
| | - Luca Scorrano
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Camilla Bean
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Medicine, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
19
|
Luo L, Zhu Q, Li Y, Hu F, Yu J, Liao X, Xing Z, He Y, Ye Q. Application of thermosensitive-hydrogel combined with dental pulp stem cells on the injured fallopian tube mucosa in an animal model. Front Bioeng Biotechnol 2023; 10:1062646. [PMID: 36686246 PMCID: PMC9852820 DOI: 10.3389/fbioe.2022.1062646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Objectives: Fallopian tube (FT) injury is an important factor that can lead to tubal infertility. Stem-cell-based therapy shows great potential for the treatment of injured fallopian tube. However, little research has shown that mesenchymal stem cells (MSCs) can be used to treat fallopian tube damage by in situ injection. In this study, we in situ transplanted PF127 hydrogel encapsulating dental pulp stem cells (DPSCs) into the injured sites to promote the repair and regeneration of fallopian tube injury. Materials and methods: The properties of dental pulp stem cells were evaluated by flow cytometry, immunofluorescence analysis, and multi-differentiation detection. The immunomodulatory and angiogenic characteristics of dental pulp stem cells were analyzed on the basis of the detection of inflammatory factor expression and the formation of capillary-like structures, respectively. The biocompatibility of PF127 hydrogel was evaluated by using Live/Dead and CCK-8 assays. The effects of PF127 hydrogel containing dental pulp stem cells on the repair and regeneration of fallopian tube injury were evaluated by histological analysis [e.g., hematoxylin and eosin (H&E) and Masson's trichrome staining, TUNEL staining, immunofluorescence staining, and immunohistochemistry], Enzyme-linked immunosorbent assay (ELISA), and RT-PCR detections. Results: Dental pulp stem cells had MSC-like characteristics and great immunomodulatory and angiogenic properties. PF127 hydrogel had a thermosensitive feature and great cytocompatibility with dental pulp stem cells. In addition, our results indicated that PF127 hydrogel containing dental pulp stem cells could promote the repair and regeneration of fallopian tube damage by inhibiting cell apoptosis, stimulating the secretion of angiogenic factors, promoting cell proliferation, modulating the secretion of inflammatory factors, and restoring the secretion of epithelial cells. Conclusion: In this study, our results reported that in situ injection of PF127 hydrogel encapsulating dental pulp stem cells into the injured sites could provide an attractive strategy for the future treatment of fallopian tube injury in clinical settings.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Lihua Luo, ; Yan He, ; Qingsong Ye,
| | - Qunyan Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiangtao Yu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyan Liao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Lihua Luo, ; Yan He, ; Qingsong Ye,
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Lihua Luo, ; Yan He, ; Qingsong Ye,
| |
Collapse
|
20
|
Pisciotta A, Di Tinco R, Bertani G, Orlandi G, Bertoni L, Pignatti E, Orciani M, Sena P, Bertacchini J, Salvarani C, Carnevale G. Human dental pulp stem cells (hDPSCs) promote the lipofibroblast transition in the early stage of a fibro-inflammatory process. Front Cell Dev Biol 2023; 11:1196023. [PMID: 37206922 PMCID: PMC10189147 DOI: 10.3389/fcell.2023.1196023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction: In autoimmune diseases, particularly in systemic sclerosis and chronic periaortitis, a strict correlation between chronic inflammation and fibrosis exists. Since the currently used drugs prove mostly effective in suppressing inflammation, a better comprehension of the molecular mechanisms exerted by cell types implicated in fibro-inflammation is needed to develop novel therapeutic strategies. Mesenchymal stromal/stem cells (MSCs) are being matter of deep investigation to unveil their role in the evolution of fibrogenetic process. Several findings pointed out the controversial implication of MSCs in these events, with reports lining at a beneficial effect exerted by external MSCs and others highlighting a direct contribution of resident MSCs in fibrosis progression. Human dental pulp stem cells (hDPSCs) have demonstrated to hold promise as potential therapeutic tools due to their immunomodulatory properties, which strongly support their contribution to tissue regeneration. Methods: Our present study evaluated hDPSCs response to a fibro-inflammatory microenvironment, mimicked in vitro by a transwell co-culture system with human dermal fibroblasts, at early and late culture passages, in presence of TGF-β1, a master promoter of fibrogenesis. Results and Discussion: We observed that hDPSCs, exposed to acute fibro-inflammatory stimuli, promote a myofibroblast-to-lipofibroblast transition, likely based on BMP2 dependent pathways. Conversely, when a chronic fibro-inflammatory microenvironment is generated, hDPSCs reduce their anti-fibrotic effect and acquire a pro-fibrotic phenotype. These data provide the basis for further investigations on the response of hDPSCs to varying fibro-inflammatory conditions.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Alessandra Pisciotta,
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Pignatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Tang H, Luo H, Zhang Z, Yang D. Mesenchymal Stem Cell-Derived Apoptotic Bodies: Biological Functions and Therapeutic Potential. Cells 2022; 11:cells11233879. [PMID: 36497136 PMCID: PMC9737101 DOI: 10.3390/cells11233879] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells with self-renewal ability and multipotency of osteogenic, chondrogenic, and adipogenic differentiation. MSCs have appeared as a promising approach for tissue regeneration and immune therapies, which are attributable not only to their differentiation into the desired cells but also to their paracrine secretion. MSC-sourced secretome consists of soluble components including growth factors, chemokines, cytokines, and encapsulated extracellular vesicles (EVs). Apoptotic bodies (ABs) are large EVs (diameter 500𠀓2000 nm) harboring a variety of cellular components including microRNA, mRNA, DNA, protein, and lipids related to the characteristics of the originating cell, which are generated during apoptosis. The released ABs as well as the genetic information they carry are engulfed by target cells such as macrophages, dendritic cells, epithelial cells, and fibroblasts, and subsequently internalized and degraded in the lysosomes, suggesting their ability to facilitate intercellular communication. In this review, we discuss the current understanding of the biological functions and therapeutic potential of MSC-derived ABs, including immunomodulation, tissue regeneration, regulation of inflammatory response, and drug delivery system.
Collapse
Affiliation(s)
| | | | | | - Di Yang
- Correspondence: ; Tel.: +86-24-31927705
| |
Collapse
|
22
|
Liu C, Li Y, Han G. Advances of Mesenchymal Stem Cells Released Extracellular Vesicles in Periodontal Bone Remodeling. DNA Cell Biol 2022; 41:935-950. [PMID: 36315196 DOI: 10.1089/dna.2022.0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles that include exosomes, microvesicles, and apoptotic bodies; they interact with target cell surface receptors and transport contents, including mRNA, proteins, and enzymes into the cytoplasm of target cells to function. The biological fingerprints of EVs practically mirror those of the parental cells they originated from. In the bone remodeling microenvironment, EVs could act on osteoblasts to regulate the bone formation, promote osteoclast differentiation, and regulate bone resorption. Therefore, there have been many attempts wherein EVs were used to achieve targeted therapy in bone-related diseases. Periodontitis, a common bacterial infectious disease, could cause severe alveolar bone resorption, resulting in tooth loss, whereas research on periodontal bone regeneration is also an urgent question. Therefore, EVs-related studies are important for periodontal bone remodeling. In this review, we summarize the current knowledge of mesenchymal stem cell-EVs involved in periodontal bone remodeling and explore the functional gene expression through a comparative analysis of transcriptomic content.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
23
|
Ahuja A, Tyagi PK, Kumar M, Sharma N, Prakash S, Radha, Chandran D, Dhumal S, Rais N, Singh S, Dey A, Senapathy M, Saleena LAK, Shanavas A, Mohankumar P, Rajalingam S, Murugesan Y, Vishvanathan M, Sathyaseelan SK, Viswanathan S, Kumar KK, Natta S, Mekhemar M. Botanicals and Oral Stem Cell Mediated Regeneration: A Paradigm Shift from Artificial to Biological Replacement. Cells 2022; 11:2792. [PMID: 36139367 PMCID: PMC9496740 DOI: 10.3390/cells11182792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Naveen Sharma
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sci-ences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo P.O. Box 138, Ethiopia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lampur 56000, Malaysia
| | - Arjun Shanavas
- Division of Medicine, Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pran Mohankumar
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Yasodha Murugesan
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Marthandan Vishvanathan
- Department of Seed Science and Technology, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | | | - Sabareeshwari Viswanathan
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Keerthana Krishna Kumar
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong 737106, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Chris-tian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
24
|
Zhang S, Tuk B, van de Peppel J, Kremers GJ, Koedam M, Pesch GR, Rahman Z, Hoogenboezem RM, Bindels EMJ, van Neck JW, Boukany PE, van Leeuwen JPTM, van der Eerden BCJ. Microfluidic evidence of synergistic effects between mesenchymal stromal cell-derived biochemical factors and biomechanical forces to control endothelial cell function. Acta Biomater 2022; 151:346-359. [PMID: 35995408 DOI: 10.1016/j.actbio.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
A functional vascular system is a prerequisite for bone repair as disturbed angiogenesis often causes non-union. Paracrine factors released from human bone marrow derived mesenchymal stromal cells (BMSCs) have angiogenic effects on endothelial cells. However, whether these paracrine factors participate in blood flow dynamics within bone capillaries remains poorly understood. Here, we used two different microfluidic designs to investigate critical steps during angiogenesis and found pronounced effects of endothelial cell proliferation as well as chemotactic and mechanotactic migration induced by BMSC conditioned medium (CM). The application of BMSC-CM in dynamic cultures demonstrates that bioactive factors in combination with fluidic flow-induced biomechanical signals significantly enhanced endothelial cell migration. Transcriptional analyses of endothelial cells demonstrate the induction of a unique gene expression profile related to tricarboxylic acid cycle and energy metabolism by the combination of BMSC-CM factors and shear stress, which opens an interesting avenue to explore during fracture healing. Our results stress the importance of in vivo - like microenvironments simultaneously including biochemical, biomechanical and oxygen levels when investigating key events during vessel repair. STATEMENT OF SIGNIFICANCE: Our results demonstrate the importance of recapitulating in vivo - like microenvironments when investigating key events during vessel repair. Endothelial cells exhibit enhanced angiogenesis characteristics when simultaneous exposing them to hMSC-CM, mechanical forces and biochemical signals simultaneously. The improved angiogenesis may not only result from the direct effect of growth factors, but also by reprogramming of endothelial cell metabolism. Moreover, with this model we demonstrated a synergistic impact of mechanical forces and biochemical factors on endothelial cell behavior and the expression of genes involved in the TCA cycle and energy metabolism, which opens an interesting new avenue to stimulate angiogenesis during fracture healing.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Bastiaan Tuk
- Department of Plastic and Reconstructive Surgery, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Center, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Georg R Pesch
- Department of Chemical Engineering, Delft University of Technology; Delft, the Netherlands
| | - Zaid Rahman
- Department of Chemical Engineering, Delft University of Technology; Delft, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Johan W van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology; Delft, the Netherlands
| | - Johannes P T M van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center; Rotterdam, the Netherlands.
| |
Collapse
|
25
|
Gomez-Sosa JF, Cardier JE, Caviedes-Bucheli J. The hypoxia-dependent angiogenic process in dental pulp. J Oral Biosci 2022; 64:381-391. [PMID: 35998752 DOI: 10.1016/j.job.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND In this review, we analyzed the existing literature to elucidate how the hypoxia-dependent angiogenic processes work in dental pulp. Angiogenesis is an essential biological process in the maturation and homeostasis of teeth. It involves multiple sequential steps such as endothelial cell proliferation and migration, cell-to-cell contact, and tube formation. HIGHLIGHT Clinical implications of understanding the process of angiogenesis include how the mineralization processes of dental pulp occur and how dental pulp maintains its homeostasis, preventing irreversible inflammation or necrosis. CONCLUSION The angiogenesis process in dental pulp regulates adequate concentrations of oxygen required for mineralization in root development and defense mechanisms against chronic stimuli.
Collapse
Affiliation(s)
- Jose Francisco Gomez-Sosa
- Unidad de Terapia Celular - Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas-Venezuela.
| | - Jose E Cardier
- Unidad de Terapia Celular - Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas-Venezuela
| | | |
Collapse
|
26
|
Yang Y, Huang H, Li Y. Roles of exosomes and exosome-derived miRNAs in pulmonary fibrosis. Front Pharmacol 2022; 13:928933. [PMID: 36034858 PMCID: PMC9403513 DOI: 10.3389/fphar.2022.928933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive fibrosing interstitial lung disease of unknown etiology that leads rapidly to death. It is characterized by the replacement of healthy tissue through an altered extracellular matrix and damage to the alveolar structure. New pharmacological treatments and biomarkers are needed for pulmonary fibrosis to ensure better outcomes and earlier diagnosis of patients. Exosomes are nanoscale vesicles released by nearly all cell types that play a central role as mediators of cell-to-cell communication. Moreover, exosomes are emerging as a crucial factor in antigen presentation, immune response, immunomodulation, inflammation, and cellular phenotypic transformation and have also shown promising therapeutic potential in pulmonary fibrosis. This review summarizes current knowledge of exosomes that may promote pulmonary fibrosis and be utilized for diagnostics and prognostics. In addition, the utilization of exosomes and their cargo miRNAs as novel therapeutics and their potential mechanisms are also discussed. This review aims to elucidate the role of exosomes in the pathogenesis of pulmonary fibrosis and paves the way for developing novel therapeutics for pulmonary fibrosis. Further in-depth research and clinical trials on this topic are encouraged in the future.
Collapse
Affiliation(s)
- Yongfeng Yang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Huang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplantation Engineering and Immunology, Institute of Clinical Pathology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yi Li,
| |
Collapse
|
27
|
Badodekar N, Mishra S, Telang G, Chougule S, Bennur D, Thakur M, Vyas N. Angiogenic Potential and Its Modifying Interventions in Dental Pulp Stem Cells: a Systematic Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Pincela Lins PM, Ribovski L, Corsi Antonio L, Altei WF, Sobreiro Selistre-de-Araújo H, Cancino-Bernardi J, Zucolotto V. Comparing extracellular vesicles and cell membranes as biocompatible coatings for gold nanorods: Implications for targeted theranostics. Eur J Pharm Biopharm 2022; 176:168-179. [PMID: 35643369 DOI: 10.1016/j.ejpb.2022.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles (EVs) and cell membrane nanoghosts are excellent coatings for nanomaterials, providing enhanced delivery in the target sites and evasion of the immune system. These cell-derived coatings allow the exploration of the delivery properties of the nanoparticles without stimulation of the immune system. Despite the advances reported on the use of EVs and cell-membrane coatings for nanomedicine applications, there are no standards to compare the benefits and main differences between these technologies. Here we investigated macrophage-derived EVs and cell membranes-coated gold nanorods and compared both systems in terms of target delivery in cancer and stromal cells. Our results reveal a higher tendency of EV-coated nanorods to interact with macrophages yet both EV and cell membrane-coated nanorods were internalized in the metastatic breast cancer cells. The main differences between these nanoparticles are related to the presence or absence of CD47 in the coating material, not usually addressed in EVs characterization. Our findings highlight important delivery differences exhibited by EVs- or cell membranes- coated nanorods which understanding may be important to the design and development of theragnostic nanomaterials using these coatings for target delivery.
Collapse
Affiliation(s)
- Paula Maria Pincela Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil.
| | - Laís Ribovski
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Luana Corsi Antonio
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Wanessa Fernanda Altei
- Laboratory of Biochemistry and Molecular Biology, Department of Physiological Sciences, Federal University of São Carlos, SP, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, SP, Brazil
| | | | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil; Institute of Advanced Studies, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
29
|
Yan C, Li N, Xiao T, Ye X, Fu L, Ye Y, Xu T, Yu J. Extracellular vesicles from the inflammatory microenvironment regulate the osteogenic and odontogenic differentiation of periodontal ligament stem cells by miR-758-5p/LMBR1/BMP2/4 axis. J Transl Med 2022; 20:208. [PMID: 35562763 PMCID: PMC9103284 DOI: 10.1186/s12967-022-03412-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
Background Extracellular vesicles (EVs) play a key role in constructing a microenvironment that favors the differentiation of stem cells. The present work aimed to determine the molecular mechanisms by which EV derived from inflammatory dental pulp stem cell (iDPSC-EV) influence periodontal ligament stem cells (PDLSCs) and provide a potential strategy for bone and dental pulp regeneration. Methods The osteogenic and odontogenic differentiation was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, alkaline phosphatase (ALP) activity assay, ALP staining, alizarin red S (ARS) staining, and immunofluorescence staining. To detect proliferation, the Cell Counting Kit-8 (CCK-8) assay, and flow cytometry analysis were used. EVs were isolated by the Exoperfect kit and ultrafiltration and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot. The expression profile of miRNAs in EVs was studied using miRNA sequence and bioinformatics, and one of the upregulated miRNAs was evaluated on PDLSCs. Results The inflammatory microenvironment stimulated osteogenic and odontogenic differentiation of DPSCs and iDPSC-EV behaved alike on PDLSCs. MiR-758-5p was upregulated in iDPSC-EV and was demonstrated to play a significant role in the osteogenic and odontogenic commitment of PDLSCs. A dual-luciferase reporter assay confirmed the binding site between miR-758-5p and limb development membrane protein 1 (LMBR1). The knockdown of LMBR1 also enhanced the above potential. Mechanically, bone morphogenetic protein (BMP) signaling was activated. Conclusions EVs from the inflammatory microenvironment enhanced the osteogenic and odontogenic differentiation of PDLSCs partly by shuttering LMBR1-targeting miR-758-5p via BMP signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03412-9.
Collapse
Affiliation(s)
- Chaoting Yan
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Department of Stomatology, The First People's Hospital of Lianyungang, Lianyungang Clinical Medical College, Nanjing Medical University, Lianyungang, China
| | - Na Li
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Tong Xiao
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Xiaying Ye
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Lin Fu
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Yu Ye
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Tao Xu
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
30
|
Vafaei S, Mansoori M, hashemi F, Basiri M. Exosome Odyssey to Original Line in Dental Regeneration. J Oral Biosci 2022; 64:271-278. [DOI: 10.1016/j.job.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|
31
|
Chouaib B, Cuisinier F, Collart-Dutilleul PY. Dental stem cell-conditioned medium for tissue regeneration: Optimization of production and storage. World J Stem Cells 2022; 14:287-302. [PMID: 35662860 PMCID: PMC9136565 DOI: 10.4252/wjsc.v14.i4.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) effects on tissue regeneration are mainly mediated by their secreted substances (secretome), inducing their paracrine activity. This Conditioned medium (CM), including soluble factors (proteins, nucleic acids, lipids) and extracellular vesicles is emerging as a potential alternative to cell therapy. However, the manufacturing of CM suffers from variable procedures and protocols leading to varying results between studies. Besides, there is no well-defined optimized procedure targeting specific applications in regenerative medicine.
AIM To focus on conditioned medium produced from dental MSC (DMSC-CM), we reviewed the current parameters and manufacturing protocols, in order to propose a standardization and optimization of these manufacturing procedures.
METHODS We have selected all publications investigating the effects of dental MSC secretome in in vitro and in vivo models of tissue regeneration, in accordance with the PRISMA guidelines.
RESULTS A total of 351 results were identified. And based on the inclusion criteria described above, 118 unique articles were included in the systematic review. DMSC-CM production was considered at three stages: before CM recovery (cell sources for CM), during CM production (culture conditions) and after production (CM treatment).
CONCLUSION No clear consensus could be recovered as evidence-based methods, but we were able to describe the most commonly used protocols: donors under 30 years of age, dental pulp stem cells and exfoliated deciduous tooth stem cells with cell passage between 1 and 5, at a confluence of 70% to 80%. CM were often collected during 48 h, and stored at -80 °C. It is important to point out that the preconditioning environment had a significant impact on DMSC-CM content and efficiency.
Collapse
Affiliation(s)
- Batoul Chouaib
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | - Frédéric Cuisinier
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | | |
Collapse
|
32
|
Li B, Xian X, Lin X, Huang L, Liang A, Jiang H, Gong Q. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules 2022; 12:biom12040575. [PMID: 35454164 PMCID: PMC9029684 DOI: 10.3390/biom12040575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Dental pulp stem cells (DPSCs) and their exosomes (Exos) are effective treatments for regenerative medicine. Hypoxia was confirmed to improve the angiogenic potential of stem cells. However, the angiogenic effect and mechanism of hypoxia-preconditioned DPSC-Exos are poorly understood. We isolated exosomes from DPSCs under normoxia (Nor-Exos) and hypoxia (Hypo-Exos) and added them to human umbilical vein endothelial cells (HUVECs). HUVEC proliferation, migration and angiogenic capacity were assessed by CCK-8, transwell, tube formation assays, qRT-PCR and Western blot. iTRAQ-based proteomics and bioinformatic analysis were performed to investigate proteome profile differences between Nor-Exos and Hypo-Exos. Western blot, immunofluorescence and immunohistochemistry were used to detect the expression of lysyl oxidase-like 2 (LOXL2) in vitro and in vivo. Finally, we silenced LOXL2 in HUVECs and rescued tube formation with Hypo-Exos. Hypo-Exos enhanced HUVEC proliferation, migration and tube formation in vitro superior to Nor-Exos. The proteomics analysis identified 79 proteins with significantly different expression in Hypo-Exos, among which LOXL2 was verified as being upregulated in hypoxia-preconditioned DPSCs, Hypo-Exos, and inflamed dental pulp. Hypo-Exos partially rescued the inhibitory influence of LOXL2 silence on HUVEC tube formation. In conclusion, hypoxia enhanced the angiogenic potential of DPSCs-Exos and partially altered their proteome profile. LOXL2 is likely involved in Hypo-Exos mediated angiogenesis.
Collapse
Affiliation(s)
- Baoyu Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xuehong Xian
- Department of Stomatology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China;
- Foshan Stomatological Hospital, Foshan University, Foshan 528000, China
| | - Xinwei Lin
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Luo Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Hongwei Jiang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (H.J.); (Q.G.)
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (B.L.); (X.L.); (L.H.); (A.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (H.J.); (Q.G.)
| |
Collapse
|
33
|
Insight in Hypoxia-Mimetic Agents as Potential Tools for Mesenchymal Stem Cell Priming in Regenerative Medicine. Stem Cells Int 2022; 2022:8775591. [PMID: 35378955 PMCID: PMC8976669 DOI: 10.1155/2022/8775591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-mimetic agents are new potential tools in MSC priming instead of hypoxia incubators or chambers. Several pharmaceutical/chemical hypoxia-mimetic agents can be used to induce hypoxia in the tissues: deferoxamine (DFO), dimethyloxaloylglycine (DMOG), 2,4-dinitrophenol (DNP), cobalt chloride (CoCl2), and isoflurane (ISO). Hypoxia-mimetic agents can increase cell proliferation, preserve or enhance differentiation potential, increase migration potential, and induce neovascularization in a concentration- and stem cell source-dependent manner. Moreover, hypoxia-mimetic agents may increase HIF-1α, changing the metabolism and enhancing glycolysis like hypoxia. So, there is clear evidence that treatment with hypoxia-mimetic agents is beneficial in regenerative medicine, preserving stem cell capacities. These agents are not studied so wildly as hypoxia but, considering the low cost and ease of use, are believed to find application as pretreatment of many diseases such as ischemic heart disease and myocardial fibrosis and promote cardiac and cartilage regeneration. The knowledge of MSC priming is critical in evaluating safety procedures and use in clinics. In this review, similarities and differences between hypoxia and hypoxia-mimetic agents in terms of their therapeutic efficiency are considered in detail. The advantages, challenges, and future perspectives in MSC priming with hypoxia mimetic agents are also discussed.
Collapse
|
34
|
Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cell Mol Life Sci 2022; 79:153. [PMID: 35217915 PMCID: PMC8881251 DOI: 10.1007/s00018-022-04183-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/09/2023]
Abstract
Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue’s epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF’s epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-β (TGFβ) and abrogated by TGFβ receptor inhibition, thereby reproducing TGFβ's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFβ receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.
Collapse
|
35
|
Vater C, Männel C, Bolte J, Tian X, Goodman SB, Zwingenberger S. Dental Pulp-Derived Stem Cells Are as Effective as Bone Marrow-Derived Mesenchymal Stromal Cells When Implanted into a Murine Critical Bone Defect. Curr Stem Cell Res Ther 2022; 17:480-491. [PMID: 35168511 DOI: 10.2174/1574888x17666220215100732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Background While bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been used for many years in bone tissue engineering applications, the procedure still has drawbacks such as painful collection methods and damage to the donor site. Dental pulp-derived stem cells (DPSCs) are readily accessible, occur in high amounts and show a high proliferation and differentiation capability. Therefore, DPSCs may be a promising alternative for BM-MSCs to repair bone defects. Objective The aim of this study was to investigate the bone regenerative potential of DPSCs in comparison to BM-MSCs in vitro and in vivo. Methods In vitro investigations included analysis of cell doubling time as well as proliferation and osteogenic differentiation. For the in vivo study 36 male NMRI nude mice were randomized into 3 groups: 1) control (cell-free mineralized collagen matrix (MCM) scaffold), 2) MCM + DPSCs and 3) MCM + BM-MSCs. Critical size 2 mm bone defects were created at the right femur of each mouse and stabilized by an external fixator. After 6 weeks animals were euthanized and microcomputed tomography scans (µCT) and histological analyses were performed. Results In vitro DPSCs showed a 2-fold lower population doubling time and a 9-fold higher increase in proliferation when seeded onto MCM scaffolds as compared to BM-MSCs, but DPSCs showed a significantly lower osteogenic capability than BM-MSCs. In vivo, the healing of the critical bone defect in NMRI nude mice was comparable among all groups. Conclusions Pre-seeding of MCM scaffolds with DPSCs and BM-MSCs did not enhance bone defect healing. </p>.
Collapse
Affiliation(s)
- Corina Vater
- University Center of Orthopaedic, Trauma and Plastic Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Männel
- University Center of Orthopaedic, Trauma and Plastic Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Julia Bolte
- University Center of Orthopaedic, Trauma and Plastic Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Xinggui Tian
- University Center of Orthopaedic, Trauma and Plastic Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and Bioengineering, Stanford University, 94305 Stanford, USA
| | - Stefan Zwingenberger
- University Center of Orthopaedic, Trauma and Plastic Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
36
|
Liu P, Zhang Y, Ma Y, Tan S, Ren B, Liu S, Dai H, Xu Z. Application of dental pulp stem cells in oral maxillofacial tissue engineering. Int J Med Sci 2022; 19:310-320. [PMID: 35165516 PMCID: PMC8795794 DOI: 10.7150/ijms.68494] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
In the maxillofacial area, soft and hard tissue abnormalities are caused by trauma, tumors, infection, and other causes that expose the maxillofacial region to the surface of the human body. Patients' normal physiological function and appearance are interfered with, and their mental health is adversely impacted, reducing their overall life quality. The pursuit of appropriate medical treatments to correct these abnormalities is thus vital. Autologous stem cell regeneration technology mainly focused on tissues has lately emerged as a significant problem in the medical community. Because of the capacity of dental pulp stem cells (DPSCs) to self-renew, the use of DPSCs from the human pulp tissues of deciduous teeth or permanent teeth has gained popularity among scientists as a stem cell-based therapy option. Aside from that, they are simple to extract and have minimal immunogenicity. As a result, bone tissue engineering may be a critical component in treating maxillofacial and periodontal bone abnormalities. DPSCs activity in maxillofacial and periodontal tissue-engineered bone tissue was investigated in this research.
Collapse
Affiliation(s)
- Peng Liu
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yingxin Zhang
- Department of Oral Emergency, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yujie Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Shuang Tan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Bingyi Ren
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Shitao Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - HuanYan Dai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhimin Xu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
37
|
Bar JK, Lis-Nawara A, Grelewski PG. Dental Pulp Stem Cell-Derived Secretome and Its Regenerative Potential. Int J Mol Sci 2021; 22:ijms222112018. [PMID: 34769446 PMCID: PMC8584775 DOI: 10.3390/ijms222112018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of the dental pulp stem (DSC) cell-derived secretome, consisting of various biomolecules, is undergoing intense research. Despite promising in vitro and in vivo studies, most DSC secretome-based therapies have not been implemented in human medicine because the paracrine effect of the bioactive factors secreted by human dental pulp stem cells (hDPSCs) and human exfoliated deciduous teeth (SHEDs) is not completely understood. In this review, we outline the current data on the hDPSC- and SHED-derived secretome as a potential candidate in the regeneration of bone, cartilage, and nerve tissue. Published reports demonstrate that the dental MSC-derived secretome/conditional medium may be effective in treating neurodegenerative diseases, neural injuries, cartilage defects, and repairing bone by regulating neuroprotective, anti-inflammatory, antiapoptotic, and angiogenic processes through secretome paracrine mechanisms. Dental MSC-secretomes, similarly to the bone marrow MSC-secretome activate molecular and cellular mechanisms, which determine the effectiveness of cell-free therapy. Many reports emphasize that dental MSC-derived secretomes have potential application in tissue-regenerating therapy due to their multidirectional paracrine effect observed in the therapy of many different injured tissues.
Collapse
|
38
|
Lin H, Chen H, Zhao X, Chen Z, Zhang P, Tian Y, Wang Y, Ding T, Wang L, Shen Y. Advances in mesenchymal stem cell conditioned medium-mediated periodontal tissue regeneration. J Transl Med 2021; 19:456. [PMID: 34736500 PMCID: PMC8567704 DOI: 10.1186/s12967-021-03125-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that leads to the destruction of both soft and hard periodontal tissues. Complete periodontal regeneration in clinics using the currently available treatment approaches is still a challenge. Mesenchymal stem cells (MSCs) have shown promising potential to regenerate periodontal tissue in various preclinical and clinical studies. The poor survival rate of MSCs during in vivo transplantation and host immunogenic reaction towards MSCs are the main drawbacks of direct use of MSCs in periodontal tissue regeneration. Autologous MSCs have limited sources and possess patient morbidity during harvesting. Direct use of allogenic MSCs could induce host immune reaction. Therefore, the MSC-based indirect treatment approach could be beneficial for periodontal regeneration in clinics. MSC culture conditioned medium (CM) contains secretomes that had shown immunomodulatory and tissue regenerative potential in pre-clinical and clinical studies. MSC-CM contains a cocktail of growth factors, cytokines, chemokines, enzymes, and exosomes, extracellular vesicles, etc. MSC-CM-based indirect treatment has the potential to eliminate the drawbacks of direct use of MSCs for periodontal tissue regeneration. MSC-CM holds the tremendous potential of bench-to-bed translation in periodontal regeneration applications. This review focuses on the accumulating evidence indicating the therapeutic potential of the MSC-CM in periodontal regeneration-related pre-clinical and clinical studies. Recent advances on MSC-CM-based periodontal regeneration, existing challenges, and prospects are well summarized as guidance to improve the effectiveness of MSC-CM on periodontal regeneration in clinics.
Collapse
Affiliation(s)
- Hongbing Lin
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Huishan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xuetao Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhen Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Peipei Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yue Tian
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yawei Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tong Ding
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
39
|
Cervino G, Oteri G, D'Amico C, Fiorillo L. Molecular features and tissue engineering techniques applied to regenerative surgery: an overview of recent data. Minerva Dent Oral Sci 2021; 70:119-127. [PMID: 34124874 DOI: 10.23736/s2724-6329.21.04517-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Regenerative procedures have become common in the medical and dentistry rehabilitation fields. Often, tissue regeneration maneuvers are necessary to rehabilitate patients in a safe and predictable manner. The aim of this narrative review was to highlight the molecular implications during regenerative surgery. EVIDENCE ACQUISITION The analysis of the literature was conducted on the main scientific databases Pubmed, Scopus, MDPI. EVIDENCE SYNTHESIS After a screening of 66 results only 8 were included. CONCLUSIONS Knowing these molecular features, it is possible to highlight which are the biomaterials that offer greater potential and identify the best protocols according to the surgical needs.
Collapse
Affiliation(s)
- Gabriele Cervino
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giacomo Oteri
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Cesare D'Amico
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy -
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Luigi Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
40
|
Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? Stem Cell Rev Rep 2021; 17:1635-1646. [PMID: 33829353 PMCID: PMC8553678 DOI: 10.1007/s12015-021-10162-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
- StemTeCh Group, Chieti, Italy.
| |
Collapse
|
41
|
Advances and Perspectives in Dental Pulp Stem Cell Based Neuroregeneration Therapies. Int J Mol Sci 2021; 22:ijms22073546. [PMID: 33805573 PMCID: PMC8036729 DOI: 10.3390/ijms22073546] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs. We also review the recent progress on neuroprotective and immunomodulatory capacity of hDPSCs and their secreted extracellular vesicles, as well as their combination with scaffold materials to improve their functional integration on the injured central nervous system (CNS) and peripheral nervous system (PNS). Finally, we offer some perspectives on the current and possible future applications of hDPSCs in neuroregenerative cell therapies.
Collapse
|
42
|
Stem Cell-Engineered Nanovesicles Exert Proangiogenic and Neuroprotective Effects. MATERIALS 2021; 14:ma14051078. [PMID: 33669122 PMCID: PMC7956182 DOI: 10.3390/ma14051078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
As a tissue regeneration strategy, the utilization of mesenchymal stem cells (MSCs) has drawn considerable attention. Comprehensive research using MSCs has led to significant preclinical or clinical outcomes; however, improving the survival rate, engraftment efficacy, and immunogenicity of implanted MSCs remains challenging. Although MSC-derived exosomes were recently introduced and reported to have great potential to replace conventional MSC-based therapeutics, the poor production yield and heterogeneity of exosomes are critical hurdles for their further applications. Herein, we report the fabrication of exosome-mimetic MSC-engineered nanovesicles (MSC-NVs) by subjecting cells to serial extrusion through filters. The fabricated MSC-NVs exhibit a hydrodynamic size of ~120 nm, which is considerably smaller than the size of MSCs (~30 μm). MSC-NVs contain both MSC markers and exosome markers. Importantly, various therapeutic growth factors originating from parent MSCs are encapsulated in the MSC-NVs. The MSC-NVs exerted various therapeutic effects comparable to those of MSCs. They also significantly induced the angiogenesis of endothelial cells and showed neuroprotective effects in damaged neuronal cells. The results collectively demonstrate that the fabricated MSC-NVs can serve as a nanosized therapeutic agent for tissue regeneration.
Collapse
|
43
|
Liu Y, Zhuang X, Yu S, Yang N, Zeng J, Liu X, Chen X. Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization. Stem Cell Res Ther 2021; 12:76. [PMID: 33482924 PMCID: PMC7821694 DOI: 10.1186/s13287-021-02151-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background Reconstruction of complex critical-size defects (CSD) in the craniofacial region is a major challenge, and soft tissue regeneration is crucial in determining the therapeutic outcomes of craniofacial CSD. Stem cells from apical papilla (SCAP) are neural crest-derived mesenchymal stem cells (MSCs) that are homologous to cells in craniofacial tissue and represent a promising source for craniofacial tissue regeneration. Exosomes, which contain compound bioactive compounds, are the key factors in stem cell paracrine action. However, the roles of exosomes derived from SCAP (SCAP-Exo) in tissue regeneration are not fully understood. Here, we explored the effects and underlying mechanisms of SCAP-Exo on CSD in maxillofacial soft tissue. Methods SCAP-Exo were isolated and identified by transmission electron microscopy and nanoparticle tracking analysis. The effects of SCAP-Exo on wound healing and vascularization were detected by measuring the wound area and performing histological and immunofluorescence analysis on the palatal gingival CSD of mice. Real-time live-cell imaging and functional assays were used to assess the effects of SCAP-Exo on the biological functions of endothelial cells (ECs). Furthermore, the molecular mechanisms of SCAP-Exo-mediated EC angiogenesis in vitro were tested by immunofluorescence staining, Western blot, and pull-down assays. Finally, in vivo experiments were carried out to verify whether SCAP-Exo could affect vascularization and wound healing through cell division cycle 42 (Cdc42). Results We found that SCAP-Exo promoted tissue regeneration of palatal gingival CSD by enhancing vascularization in the early phase in vivo and that SCAP-Exo improved the angiogenic capacity of ECs in vitro. Mechanistically, SCAP-Exo elevated cell migration by improving cytoskeletal reorganization of ECs via Cdc42 signalling. Furthermore, we revealed that SCAP-Exo transferred Cdc42 into the cytoplasm of ECs and that the Cdc42 protein could be reused directly by recipient ECs, which resulted in the activation of Cdc42-dependent filopodium formation and elevation in cell migration of ECs. Conclusion This study demonstrated that SCAP-Exo had a superior effect on angiogenesis and effectively promoted craniofacial soft tissue regeneration. These data provide a new option for SCAP-Exo to be used in a cell-free approach to optimize tissue regeneration in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02151-w.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xueying Zhuang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Si Yu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
| | - Jianhong Zeng
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
| | - Xuemei Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Chen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China. .,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
44
|
Nammian P, Asadi-Yousefabad SL, Daneshi S, Sheikhha MH, Tabei SMB, Razban V. Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy. Stem Cell Res Ther 2021; 12:58. [PMID: 33436054 PMCID: PMC7805174 DOI: 10.1186/s13287-020-02110-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. METHODS For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. RESULTS Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. CONCLUSIONS Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.
Collapse
Affiliation(s)
- Pegah Nammian
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sajad Daneshi
- Postdoctoral Researcher, Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Sheikhha
- Biotechnology Research Center, International Campus, Shahid Sadoughi University of MedicalSciences, Yazd, Iran
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Genetics, Shiraz University of Medical Science, Shiraz, Iran.
- Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
45
|
Intrinsic Angiogenic Potential and Migration Capacity of Human Mesenchymal Stromal Cells Derived from Menstrual Blood and Bone Marrow. Int J Mol Sci 2020; 21:ijms21249563. [PMID: 33334068 PMCID: PMC7765504 DOI: 10.3390/ijms21249563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC’s intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC’s tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling.
Collapse
|
46
|
Nguyen VV, Witwer KW, Verhaar MC, Strunk D, van Balkom BW. Functional assays to assess the therapeutic potential of extracellular vesicles. J Extracell Vesicles 2020; 10:e12033. [PMID: 33708360 PMCID: PMC7890556 DOI: 10.1002/jev2.12033] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
An important aspect in the development of extracellular vesicle (EV) therapeutics is identifying and quantifying the key features defining their identity, purity, sterility, potency and stability to ensure batch-to-batch reproducibility of their therapeutic efficacy. Apart from EV-inherent features, therapeutic efficacy depends on a variety of additional parameters, like dosing, frequency of application, and administration route, some of which can be addressed only in clinical trials. Before initiating clinical trials, EV-inherent features should be tested in well-standardized quantitative assays in vitro or in appropriate animal models in vivo. Ideally, such assays would predict if a particular EV preparation has the potential to achieve its intended therapeutic effects, and could be further developed into formal potency assays as published by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use guidelines. Furthermore, such assays should facilitate the comparison of EV preparations produced in different batches, on different manufacturing platforms or deriving from different cell sources. For now, a wide spectrum of in vitro and in vivo assays has been used to interrogate the therapeutic functions of EVs. However, many cannot accurately predict therapeutic potential. Indeed, several unique challenges make it difficult to set up reliable assays to assess the therapeutic potential of EVs, and to develop such assays into formal potency tests. Here, we discuss challenges and opportunities around in vitro and in vivo testing of EV therapeutic potential, including the need for harmonization, establishment of formal potency assays and novel developments for functional testing.
Collapse
Affiliation(s)
- Vivian V.T. Nguyen
- Department of Nephrology and HypertensionUMC UtrechtUtrechtThe Netherlands
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyDepartment of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Cell Therapy InstituteParacelsus Medical UniversitySalzburgAustria
| | | |
Collapse
|
47
|
Potential Therapeutic Effects of Exosomes in Regenerative Endodontics. Arch Oral Biol 2020; 120:104946. [PMID: 33129129 DOI: 10.1016/j.archoralbio.2020.104946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 10/04/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This review aims to describe the basic characteristics of exosomes, and summarize their possible source and potential biological effects in pulp regeneration, providing new insights into the therapeutic role of exosomes for regenerative endodontics in the future. DESIGN A comprehensive review of scientific literature related to exosomes potentially used for pulp regeneration was conducted. RESULTS Dental mesenchymal stem cells (MSCs) play an important role in dental pulp regeneration. MSC-derived exosomes, as important biotransmitters in intercellular communication, have been shown to replicate the therapeutic effects of their parental cells. These exosomes have better stability, lower immunogenicity, higher safety and clinical efficiency, making it possible to apply them in pulp regeneration. Existing research suggests that exosomes could trigger the regeneration of dentin/pulp-like tissue in vivo, which may attribute to their role in promoting pulp angiogenesis, regulating dental cell proliferation, migration and differentiation, and providing neuroprotection. CONCLUSIONS The applications of exosomes in the treatment of pulp regeneration have great potential, and exosomes may become ideal therapeutic biomaterial in regenerative endodontics.
Collapse
|
48
|
Kesidou D, da Costa Martins PA, de Windt LJ, Brittan M, Beqqali A, Baker AH. Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Front Physiol 2020; 11:579892. [PMID: 33101061 PMCID: PMC7546892 DOI: 10.3389/fphys.2020.579892] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide claiming almost 17. 9 million deaths annually. A primary cause is atherosclerosis within the coronary arteries, which restricts blood flow to the heart muscle resulting in myocardial infarction (MI) and cardiac cell death. Despite substantial progress in the management of coronary heart disease (CHD), there is still a significant number of patients developing chronic heart failure post-MI. Recent research has been focused on promoting neovascularisation post-MI with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Cardiac cell transplantation studies in pre-clinical models have shown improvement in cardiac function; nonetheless, poor retention of the cells has indicated a paracrine mechanism for the observed improvement. Cell communication in a paracrine manner is controlled by various mechanisms, including extracellular vesicles (EVs). EVs have emerged as novel regulators of intercellular communication, by transferring molecules able to influence molecular pathways in the recipient cell. Several studies have demonstrated the ability of EVs to stimulate angiogenesis by transferring microRNA (miRNA, miR) molecules to endothelial cells (ECs). In this review, we describe the process of neovascularisation and current developments in modulating neovascularisation in the heart using miRNAs and EV-bound miRNAs. Furthermore, we critically evaluate methods used in cell culture, EV isolation and administration.
Collapse
Affiliation(s)
- Despoina Kesidou
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Paula A. da Costa Martins
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Leon J. de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Howard Baker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Thirlwell KL, Colligan D, Mountford JC, Samuel K, Bailey L, Cuesta-Gomez N, Hewit KD, Kelly CJ, West CC, McGowan NWA, Casey JJ, Graham GJ, Turner ML, Forbes S, Campbell JDM. Pancreas-derived mesenchymal stromal cells share immune response-modulating and angiogenic potential with bone marrow mesenchymal stromal cells and can be grown to therapeutic scale under Good Manufacturing Practice conditions. Cytotherapy 2020; 22:762-771. [PMID: 32828673 DOI: 10.1016/j.jcyt.2020.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking. Human clinical-grade low-purity islet (LPI) fractions are generated as a byproduct of islet isolation for transplantation. MSC isolates were derived from LPI fractions with the aim of performing a systematic, standardized comparative analysis of these cells with clinically relevant bone marrow-derived MSCs (BM MSCs). METHODS MSC isolates were derived from LPI fractions and expanded in platelet lysate-supplemented medium or in commercially available xenogeneic-free medium. Doubling rate, phenotype, differentiation potential, gene expression, protein production and immunomodulatory capacity of LPIs were compared with those of BM MSCs. RESULTS MSCs can be readily derived in vitro from non-transplanted fractions resulting from islet cell processing (i.e., LPI MSCs). LPI MSCs grow stably in serum-free or platelet lysate-supplemented media and demonstrate in vitro self-renewal, as measured by colony-forming unit assay. LPI MSCs express patterns of chemokines and pro-regenerative factors similar to those of BM MSCs and, importantly, are equally able to attract immune cells in vitro and in vivo and suppress T-cell proliferation in vitro. Additionally, LPI MSCs can be expanded to therapeutically relevant doses at low passage under GMP conditions. CONCLUSIONS LPI MSCs represent an alternative source of GMP MSCs with functions comparable to BM MSCs.
Collapse
Affiliation(s)
- Kayleigh L Thirlwell
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh, UK; Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - David Colligan
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Joanne C Mountford
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Kay Samuel
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Laura Bailey
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Nerea Cuesta-Gomez
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Kay D Hewit
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh, UK; Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Christopher J Kelly
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Neil W A McGowan
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - John J Casey
- Transplant Unit, National Islet Transplant Programme, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marc L Turner
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Shareen Forbes
- University/British Heart Foundation Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK; Transplant Unit, National Islet Transplant Programme, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - John D M Campbell
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Edinburgh, UK; Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
50
|
Karina K, Rosliana I, Rosadi I, Schwartz R, Sobariah S, Afini I, Widyastuti T, Remelia M, Wahyuningsih KA, Pawitan JA. Safety of Technique and Procedure of Stromal Vascular Fraction Therapy: From Liposuction to Cell Administration. SCIENTIFICA 2020; 2020:2863624. [PMID: 32695550 PMCID: PMC7362293 DOI: 10.1155/2020/2863624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/24/2020] [Accepted: 06/12/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Stromal vascular fraction (SVF) therapy has been performed over the past six years to treat 421 patients by our group in five clinical centers. Autologous SVF, which is a substance containing stem cells, was isolated from lipoaspirate, mixed with platelet-rich plasma (PRP), and administered to patients with degenerative diseases, autoimmune diseases, trauma, aging, and other diseases with unknown etiology. This study aimed to determine the safety of SVF and PRP that were given through infusion, spinal, and intra-articular injection. METHODS The lipoaspirate was treated with a tissue-dissociating enzyme, and then, through centrifugation, SVF was isolated. In addition, blood was drawn from each patient, and PRP was isolated. Autologous PRP and SVF were administered to all subjects by intravenous (IV) injection. A minority group within the population received an additional spinal or intra-articular injection. The type of intervention was determined by each disease evaluation. The cell doses and adverse events for each patient were documented and analyzed. RESULTS Cell dose that was considered to be safe was less than 10 billion SVF cells in 250 cc of normal saline, for IV injection, and less than 1 billion SVF, for intra-articular and spinal injection. Adverse events were not severe and were treated successfully. Any observed adverse events were identified as a result of spinal or intra-articular injections and were not related to SVF or PRP. CONCLUSIONS Our results showed that administration of high dose of SVF until 10 billion cells in a majority of 421 patients through infusion, spinal, and intra-articular injection was feasible without causing major adverse events and should be further investigated in well-designed phase I-II clinical trial to address the safety and efficacy of therapy.
Collapse
Affiliation(s)
- Karina Karina
- Klinik Hayandra, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
| | - Iis Rosliana
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
| | - Imam Rosadi
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
| | - Rachel Schwartz
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA
| | - Siti Sobariah
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
| | - Irsyah Afini
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
| | - Tias Widyastuti
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
| | - Melinda Remelia
- Department of Basic Biomedicine, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Komang Ardi Wahyuningsih
- Klinik Hayandra, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
- HayandraLab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
- Department of Histology, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia
| | - Jeanne A. Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jl. Salemba 6, Jakarta Pusat, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo General Hospital/Faculty of Medicine, Universitas Indonesia, Jl. Diponegoro 71, Jakarta 10430, Indonesia
- Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jl. Salemba 6, Jakarta 10430, Indonesia
| |
Collapse
|