1
|
Mahdabi M, Mehrgan MS, Rajabi Islami H. Deciphering the impact of stickwater hydrolysate on growth performance, immune response, and IGF-1/PI3K/AKT/mTOR signaling pathway in Siberian sturgeon (Acipenser baerii) fingerlings. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01407-5. [PMID: 39373813 DOI: 10.1007/s10695-024-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
A feeding trial lasting 56 days was carried out to assess how the inclusion of stickwater hydrolysate (SWH) in the diet of Siberian sturgeon (Acipenser baerii) fingerlings affected their growth performance, immunity, digestive enzyme activity, and gene expression linked to the IGF-1/PI3K/AKT/mTOR signaling pathway. Siberian sturgeon fingerlings were acclimatized and fed isonitrogenous, isoenergetic diets with varying SWH concentrations (0%, 0.5%, 1.5%, and 2.5%). Growth parameters, serum proteins, immunological and digestive enzyme activities, and gene expression levels were assessed post-trial. Results demonstrated that 0.5%, and 1.5% SWH treatments significantly improved weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio. Notably, these diets also elevated serum protein and plasma globulin levels, reduced albumin-to-globulin ratios, and enhanced lysozyme, myeloperoxidase (MPO) activities, and immunoglobulin (Ig) M levels, indicating an immunostimulatory effect. Digestive enzyme activities were markedly increased in the SWH groups, particularly at 1.5%. Gene expression analyses revealed upregulation of mtorc1, s6K, akt, pi3k, and igf1, with concurrent downregulation of 4e-bp1 in the muscle of fish, signifying activation of the IGF-1/PI3K/AKT/mTOR pathway, which is central to protein synthesis and muscle growth. In conclusion, SWH at appropriate levels significantly enhances growth, digestive efficiency, and immune function in Siberian sturgeon fingerlings, while also activating key metabolic pathways.
Collapse
Affiliation(s)
- Mahdad Mahdabi
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Shamsaie Mehrgan
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Houman Rajabi Islami
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
He XN, Zeng ZZ, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Li SW, Feng L, Zhou XQ. Aflatoxin B1 decreased flesh flavor and inhibited muscle development in grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:27-38. [PMID: 39026602 PMCID: PMC11254537 DOI: 10.1016/j.aninu.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 07/20/2024]
Abstract
In nature, aflatoxins, especially aflatoxin B1 (AFB1), are the common mycotoxins, which cause serious health problems for humans and animals. This paper aimed to study the effects of AFB1 on flesh flavor and muscle development of grass carp (Ctenopharyngodon idella) and its mechanism. There were 1440 individual fish in total, with 6 treatments and each treatment replicated 3 times. The 6 treatments were fed a control diet with different doses of AFB1 (0.04, 29.48, 58.66, 85.94, 110.43 and 146.92 μg/kg diet) for 60 d. AFB1 increased myofiber diameter, as well as decreased myofiber density of grass carp muscle (P < 0.05). The contents of free amino acid decreased gradually (P < 0.05) as dietary AFB1 increased in the muscle of grass carp. The levels of reactive oxygen species, malonaldehyde and protein carbonyl (PC) were increased (P < 0.05) with the dietary AFB1 increased. The levels of antioxidant enzyme (glutathione peroxidase, glutathione, glutathione reductase, total antioxidant capacity, anti-superoxide anion, and anti-hydroxyl radical) were decreased (P < 0.05) with the dietary AFB1 increased. In addition, dietary AFB1 decreased the content of collagen, and downregulated the mRNA and protein levels of transforming growth factor-β (TGF-β)/Smads signaling pathway in grass carp muscle (P < 0.05). The mRNA and protein levels of myogenic regulatory factors were downregulated in grass carp muscle (P < 0.05). Furthermore, the activities of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) were increased (P < 0.05), and the protein levels of phosphorylate-38 mitogen-activated protein kinase (p-p38MAPK), phosphorylate-c-Jun N-terminal kinase, urokinase-type plasminogen activator (uPA), MMP-2 and MMP-9 were upregulated (P < 0.05), but collagen Ⅰ, laminin β1 and fibronectin were downregulated (P < 0.05) with the dietary AFB1 increased in the muscle of grass carp. Based on the results of this study, we can draw the following conclusion: dietary AFB1 might damage flesh flavor and inhibit the muscle development through MAPK/uPA/MMP/extracellular matrix (ECM) signaling pathway in grass carp. Moreover, the recommended safe limit of AFB1 in feed is no more than 26.77 μg/kg diet according to the PC levels in grass carp muscle.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen-Zhen Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
3
|
Eterovick PC, Schmidt R, Sabino-Pinto J, Yang C, Künzel S, Ruthsatz K. The microbiome at the interface between environmental stress and animal health: an example from the most threatened vertebrate group. Proc Biol Sci 2024; 291:20240917. [PMID: 39291456 PMCID: PMC11409201 DOI: 10.1098/rspb.2024.0917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrate pollution and global warming are ubiquitous stressors likely to interact and affect the health and survival of wildlife, particularly aquatic ectotherms. Animal health is largely influenced by its microbiome (commensal/symbiotic microorganisms), which responds to such stressors. We used a crossed experimental design including three nitrate levels and five temperature regimes to investigate their interactive and individual effects on an aquatic ectotherm, the European common frog. We associated health biomarkers in larvae with changes in gut bacteria diversity and composition. Larvae experienced higher stress levels and lower body condition under high temperatures and nitrate exposure. Developmental rate increased with temperature but decreased with nitrate pollution. Alterations in bacteria composition but not diversity are likely to correlate with the observed outcomes in larvae health. Leucine degradation decreased at higher temperatures corroborating accelerated development, nitrate degradation increased with nitrate level corroborating reduced body condition and an increase in lysine biosynthesis may have helped larvae deal with the combined effects of both stressors. These results reinforce the importance of associating traditional health biomarkers with underlying microbiome changes. Therefore, we urge studies to investigate the effects of environmental stressors on microbiome composition and consequences for host health in a world threatened by biodiversity loss.
Collapse
Affiliation(s)
- Paula Cabral Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Robin Schmidt
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Joana Sabino-Pinto
- GELIFES—Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747, AG Groningen, The Netherlands
| | - Chen Yang
- Department of Biostatistics, Southern Medical University, 510515, Guangzhou, People’s Republic of China
| | - Sven Künzel
- Max-Planck-Institut für Evolutionsbiologie, 24306, Plön, Germany
| | - Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Liu Y, Li J, Ding C, Tong H, Yan Y, Li S, Li S, Cao Y. Leu promotes C2C12 cell differentiation by regulating the GSK3β/β-catenin signaling pathway through facilitating the interaction between SESN2 and RPN2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6696-6705. [PMID: 38551359 DOI: 10.1002/jsfa.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 03/02/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Leucine (Leu) is an essential amino acid that facilitates skeletal muscle satellite cell differentiation, yet its mechanism remains underexplored. Sestrin2 (SESN2) serves as a Leu sensor, binding directly to Leu, while ribophorin II (RPN2) acts as a signaling factor in multiple pathways. This study aimed to elucidate Leu's impact on mouse C2C12 cell differentiation and skeletal muscle injury repair by modulating RPN2 expression through SESN2, offering a theoretical foundation for clinical skeletal muscle injury prevention and treatment. RESULTS Leu addition promoted C2C12 cell differentiation compared to the control, enhancing early differentiation via myogenic determinant (MYOD) up-regulation. Sequencing revealed SESN2 binding to and interacting with RPN2. RPN2 overexpression up-regulated MYOD, myogenin and myosin heavy chain 2, concurrently decreased p-GSK3β and increased nuclear β-catenin. Conversely, RPN2 knockdown yielded opposite results. Combining RPN2 knockdown with Leu rescued increased p-GSK3β and decreased nuclear β-catenin compared to Leu absence. Hematoxylin and eosin staining results showed that Leu addition accelerated mouse muscle damage repair, up-regulating Pax7, MYOD and RPN2 in the cytoplasm, and nuclear β-catenin, confirming that the role of Leu in muscle injury repair was consistent with the results for C2C12 cells. CONCLUSION Leu, bound with SESN2, up-regulated RPN2 expression, activated the GSK3β/β-catenin pathway, enhanced C2C12 differentiation and expedited skeletal muscle damage repair. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Jinping Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Cong Ding
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Shuang Li
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Yunkao Cao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Park SJ, Nam CH, Ahn HS, Kim T. The efficacy and safety of leucine-enriched essential amino acids in knee osteoarthritis patients: A randomized controlled trial. Medicine (Baltimore) 2024; 103:e38168. [PMID: 38728455 PMCID: PMC11081624 DOI: 10.1097/md.0000000000038168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Supplementation with leucine-enriched essential amino acids (LEAAs) has shown efficacy in the recovery of muscle injury and activation of muscle synthesis. Muscle function in knee osteoarthritis is a crucial factor for managing pain and preserving ambulatory function. However, the efficacy and safety of LEAAs supplementation in patients with knee osteoarthritis have not been evaluated. METHODS In this prospective analysis, we evaluated the efficacy and safety of supplementation with 12 g of LEAAs daily for 8 weeks in knee-symptomatic osteoarthritis patients. For assessing the efficacy, clinical pain, calf circumference, and disability were assessed using questionnaires (visual analog scale, Knee Society Score, and 36-item short form survey [SF-36]), laboratory analyses (total protein and albumin), and radiologic study (dual-energy X-ray absorptiometry [DEXA]) for muscle and bone density. To evaluate safety, generalized or localized protein allergic reactions, complete blood count, liver and kidney function, and serum glucose were measured. RESULTS Sixty-five participants, categorized into the experimental (n = 32) and control (n = 33) groups, were included in this 8-week trial from March 2022 to July 2022. A significantly higher efficacy was observed in the experimental group than in the control group, as indicated by muscle density in the DEXA scan (P = .001) and SF-36 (P < .001). The safety evaluation revealed no related generalized or local protein allergy. Hematological findings, serum glucose, and kidney and liver toxicity were not significantly different between the groups. CONCLUSION Supplementation with leucine-enriched proteins is safe and efficacious in the improvement of muscle density and quality of life.
Collapse
Affiliation(s)
- Seung-Jun Park
- Himchan and University Hospital Sharjah Spine and Joint Centre, University Hospital Sharjah, Sharjah, United Arab Emirates
- Joint and Arthritis Research, Himchan Hospital, Seoul, Korea
| | - Chang Hyun Nam
- Joint and Arthritis Research, Himchan Hospital, Seoul, Korea
- Department of Orthopedic Surgery, Mok-dong Himchan Hospital, Seoul, Korea
| | - Hye Sun Ahn
- Joint and Arthritis Research, Himchan Hospital, Seoul, Korea
| | - Taehyun Kim
- Joint and Arthritis Research, Himchan Hospital, Seoul, Korea
- Department of Orthopedic Surgery, Mok-dong Himchan Hospital, Seoul, Korea
| |
Collapse
|
6
|
Cao X, Cui H, Ji X, Li B, Lu R, Zhang Y, Chen J. Determining the Potential Roles of Branched-Chain Amino Acids in the Regulation of Muscle Growth in Common Carp ( Cyprinus carpio) Based on Transcriptome and MicroRNA Sequencing. AQUACULTURE NUTRITION 2023; 2023:7965735. [PMID: 37303609 PMCID: PMC10257547 DOI: 10.1155/2023/7965735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Branched-chain amino acids (BCAAs) can be critically involved in skeletal muscle growth and body energy homeostasis. Skeletal muscle growth is a complex process; some muscle-specific microRNAs (miRNAs) are involved in the regulation of muscle thickening and muscle mass. Additionally, the regulatory network between miRNA and messenger RNA (mRNA) in the modulation of the role of BCAAs on skeletal muscle growth in fish has not been studied. In this study, common carp was starved for 14 days, followed by a 14-day gavage therapy with BCAAs, to investigate some of the miRNAs and genes that contribute to the regulation of normal growth and maintenance of skeletal muscle in response to short-term BCAA starvation stress. Subsequently, the transcriptome and small RNAome sequencing of carp skeletal muscle were performed. A total of 43,414 known and 1,112 novel genes were identified, in addition to 142 known and 654 novel miRNAs targeting 22,008 and 33,824 targets, respectively. Based on their expression profiles, 2,146 differentially expressed genes (DEGs) and 84 differentially expressed miRNA (DEMs) were evaluated. Kyoto Encyclopedia of Genes and Genome pathways, including the proteasome, phagosome, autophagy in animals, proteasome activator complex, and ubiquitin-dependent protein catabolic process, were enriched for these DEGs and DEMs. Our findings revealed the role of atg5, map1lc3c, ctsl, cdc53, psma6, psme2, myl9, and mylk in skeletal muscle growth, protein synthesis, and catabolic metabolism. Furthermore, miR-135c, miR-192, miR-194, and miR-203a may play key roles in maintaining the normal activities of the organism by regulating genes related to muscle growth, protein synthesis, and catabolism. This study on transcriptome and miRNA reveals the potential molecular mechanisms underlying the regulation of muscle protein deposition and provides new insights into genetic engineering techniques to improve common carp muscle development.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Ji
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Baohua Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Dietary Leucine Improves Fish Intestinal Barrier Function by Increasing Humoral Immunity, Antioxidant Capacity, and Tight Junction. Int J Mol Sci 2023; 24:ijms24054716. [PMID: 36902147 PMCID: PMC10003359 DOI: 10.3390/ijms24054716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
This study attempted to evaluate the possible impact and mechanism of leucine (Leu) on fish intestinal barrier function. One hundred and five hybrid Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂ catfish were fed with six diets in graded levels of Leu 10.0 (control group), 15.0, 20.0, 25.0, 30.0, 35.0, and 40.0 g/kg diet for 56 days. Results showed that the intestinal activities of LZM, ACP, and AKP and contents of C3, C4, and IgM had positive linear and/or quadratic responses to dietary Leu levels. The mRNA expressions of itnl1, itnl2, c-LZM, g-LZM, and β-defensin increased linearly and/or quadratically (p < 0.05). The ROS, PC, and MDA contents had a negative linear and/or quadratic response, but GSH content and ASA, AHR, T-SOD, and GR activities had positive quadratic responses to dietary Leu levels (p < 0.05). No significant differences on the CAT and GPX activities were detected among treatments (p > 0.05). Increasing dietary Leu level linearly and/or quadratically increased the mRNA expressions of CuZnSOD, CAT, and GPX1α. The GST mRNA expression decreased linearly while the GCLC and Nrf2 mRNA expressions were not significantly affected by different dietary Leu levels. The Nrf2 protein level quadratically increased, whereas the Keap1 mRNA expression and protein level decreased quadratically (p < 0.05). The translational levels of ZO-1 and occludin increased linearly. No significant differences were indicated in Claudin-2 mRNA expression and protein level. The transcriptional levels of Beclin1, ULK1b, ATG5, ATG7, ATG9a, ATG4b, LC3b, and P62 and translational levels of ULK1, LC3Ⅱ/Ⅰ, and P62 linearly and quadratically decreased. The Beclin1 protein level was quadratically decreased with increasing dietary Leu levels. These results suggested that dietary Leu could improve fish intestinal barrier function by increasing humoral immunity, antioxidative capacities, and tight junction protein levels.
Collapse
|
8
|
Sharf Y, Khan MA. Dietary leucine requirement of fingerling Channa punctatus (Bloch) based on growth, feed conversion and leucine retention efficiency, hematological parameters, antioxidant and intestinal enzyme activities. Amino Acids 2023; 55:451-468. [PMID: 36682022 DOI: 10.1007/s00726-023-03240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/09/2023] [Indexed: 01/23/2023]
Abstract
To find out the dietary leucine requirement of fingerling Channa punctatus (5.24 ± 0.07 g), six purified experimental diets (45% CP and 14.73 kJ/g DE) with various leucine concentrations (0.5, 1.0,1.5, 2.0, 2.5 and 3.0% diet) were fed to apparent satiation to triplicate groups for 12 weeks (714/02/a/CPCSEA). Absolute weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio, protein and leucine retention efficiency, and RNA/DNA ratio improved up to 2.0% leucine in the diet. Carcass protein and fat increased significantly with increasing leucine levels up to a 2.0% dry diet. Moisture content showed a reverse pattern. Red blood corpuscles hemoglobin and hematocrit increased with incremental levels of leucine up to 2.0% diet. Significant changes were also noted in serum total protein, superoxide dismutase, aspartate aminotransferase, alanine aminotransferase, and lysozyme activity. Serum protein, superoxide dismutase and lysozyme activity were positively correlated with increasing leucine levels up to 2.0% diet, whereas aspartate aminotransferase and alanine aminotransferase showed the opposite trend. Based on the quadratic regression analysis of absolute weight gain, specific growth rate, feed conversion ratio, protein, and leucine retention efficiency, inclusion of 2.0% leucine is recommended for optimum growth of fingerling C. punctatus.
Collapse
Affiliation(s)
- Yusra Sharf
- Fish Nutrition Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India
| | - Mukhtar A Khan
- Fish Nutrition Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
9
|
Wang MM, Guo HX, Huang YY, Liu WB, Wang X, Xiao K, Xiong W, Hua HK, Li XF, Jiang GZ. Dietary Leucine Supplementation Improves Muscle Fiber Growth and Development by Activating AMPK/Sirt1 Pathway in Blunt Snout Bream ( Megalobrama amblycephala). AQUACULTURE NUTRITION 2022; 2022:7285851. [PMID: 36860449 PMCID: PMC9973133 DOI: 10.1155/2022/7285851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
This research is aimed at evaluating the effects of leucine supplementation on muscle fibers growth and development of blunt snout bream through a feeding trial and a primary muscle cells treatment. An 8-week trial with diets containing 1.61% leucine (LL) or 2.15% leucine (HL) was conducted in blunt snout bream (mean initial weight = 56.56 ± 0.83 g). Results demonstrated that the specific gain rate and the condition factor of fish in the HL group were the highest. The essential amino acids content of fish fed HL diets was significantly higher than that fed LL diets. The texture (hardness, springiness, resilience, and chewiness), the small-sized fiber ratio, fibers density, and sarcomere lengths in fish all obtained the highest in the HL group. Additionally, the proteins expression related with the activation of the AMPK pathway (p-Ampk, Ampk, p-Ampk/Ampk, and Sirt1) and the expression of genes (myogenin (myog), myogenic regulatory factor 4 (mrf4) and myoblast determination protein (myod), and protein (Pax7) related to muscle fiber formation were significantly upregulated with increasing level of dietary leucine. In vitro, the muscle cells were treated with 0, 40 and 160 mg/L leucine for 24 h. The results showed that treated with 40 mg/L leucine significantly raised the protein expressions of BCKDHA, Ampk, p-Ampk, p-Ampk/Ampk, Sirt1, and Pax7 and the gene expressions of myog, mrf4, and myogenic factor 5 (myf5) in muscle cells. In summary, leucine supplementation promoted muscle fibers growth and development, which may be related to the activation of BCKDH and AMPK.
Collapse
Affiliation(s)
- Mang-mang Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Hui-xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Yang-yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Wen-bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Wei Xiong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Hao-kun Hua
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Xiang-fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Guang-zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| |
Collapse
|
10
|
Wu P, Zeng Y, Qin Q, Wu C, Wang Y, Zhao R, Tao M, Zhang C, Tang C, Liu S. Comparative analysis of the texture, composition, antioxidant capacity and nutrients of natural gynogenesis blunt snout bream and its parent muscle. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Panteli N, Demertzioglou M, Feidantsis K, Karapanagiotis S, Tsele N, Tsakoniti K, Gkagkavouzis K, Mylonas CC, Kormas KA, Mente E, Antonopoulou E. Advances in understanding the mitogenic, metabolic, and cell death signaling in teleost development: the case of greater amberjack (Seriola dumerili, Risso 1810). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1665-1684. [PMID: 36459361 DOI: 10.1007/s10695-022-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Cell growth and differentiation signals of insulin-like growth factor-1 (IGF-1), a key regulator in embryonic and postnatal development, are mediated through the IGF-1 receptor (IGF-1R), which activates several downstream pathways. The present study aims to address crucial organogenesis and development pathways including Akt, MAPKs, heat shock response, apoptotic and autophagic machinery, and energy metabolism in relation to IGF-1R activation during five developmental stages of reared Seriola dumerili: 1 day prior to hatching fertilized eggs (D-1), hatching day (D0), 3 days post-hatching larvae (D3), 33 (D33) and 46 (D46) days post-hatching juveniles. During both the fertilized eggs stage and larval-to-juvenile transition, IGF-1R/Akt pathway activation may mediate the hypertrophic signaling, while p44/42 MAPK phosphorylation was apparent at S. dumerili post-hatching processes and juvenile organs completion. On the contrary, apoptosis was induced during embryogenesis and autophagy at hatching day indicating a potential involvement in morphogenetic rearrangements and yolk-sac reserves depletion. Larvae morphogenesis was accompanied by a metabolic turnover with increased substantial energy consumption. The findings of the present study demonstrate the developmental stages-specific shift in critical signaling pathways during the ontogeny of reared S. dumerili.
Collapse
Affiliation(s)
- Nikolas Panteli
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Demertzioglou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | | | | | - Konstantinos Gkagkavouzis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Buildings A & B 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Eleni Mente
- School of Veterinary Medicine, Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
12
|
Liu G, Zhou M, Wang X, Mao X, Long X, Xie S, Han D, Tan Q. Effects of Dietary Cottonseed Protein Concentrate Levels on Growth Performance, Health Status, Flesh Quality and Intestinal Microbiota of Grass Carp ( Ctenopharyngodon idellus). Metabolites 2022; 12:metabo12111046. [PMID: 36355129 PMCID: PMC9698574 DOI: 10.3390/metabo12111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the nutritional value of cottonseed protein concentrate (CPC) as a single dietary protein source and the optimal protein level for grass carp (Ctenopharyngodon idellus). An 8-week feeding trial was conducted by feeding juvenile grass carp (initial body weight: 4.68 ± 0.01 g) with six experimental diets containing graded levels of protein provided by CPC. The results showed that the optimal CPC level (CPC4) improved the growth performance and health status of grass carp. The optimal dietary protein level was estimated to be 38.61 and 38.66% based on specific growth rate (SGR) and feed efficiency (FE), respectively. The CPC4 group significantly increased the total antioxidant capacity (T-AOC) content and glutathione peroxidase (GSH-Px) activity in the hepatopancreas (p < 0.05). In addition, the CPC4 group increased the muscle T-AOC and glutathione (GSH) content and improved muscle hardness, and the gene expression of MRFs, fgf6a, myhc-7, myhc-1, myhc-4, igf-II, and tor was upregulated while mstn gene expression was downregulated (p < 0.05). Correlation analysis revealed that the optimal dietary CPC level promoted grass carp growth, health, and flesh quality by regulating the relative abundance of intestinal microbes. Furthermore, CPC6 upregulated the ko00480 (Glutathione metabolism) and ko00620 (Pyruvate metabolism) pathways compared to CPC1 (p < 0.05), possibly indicating that low dietary CPC levels adversely affected amino acid metabolism in the intestinal microbiota of grass carp, while a high level of CPC will meet the metabolic needs of the body by increasing the utilization of energy.
Collapse
Affiliation(s)
- Guoqing Liu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Zhou
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjie Mao
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianmei Long
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qingsong Tan
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2113
| |
Collapse
|
13
|
Comesaña S, Chivite M, Blanco AM, Alborja-Valado M, Calo J, Conde-Sieira M, Soengas JL. Involvement of Mechanistic Target of Rapamycin (mTOR) in Valine Orexigenic Effects in Rainbow Trout. AQUACULTURE NUTRITION 2022; 2022:7509382. [PMID: 36860456 PMCID: PMC9973124 DOI: 10.1155/2022/7509382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 09/14/2022] [Indexed: 06/18/2023]
Abstract
This study was aimed at clarifying the importance of a mechanistic target of rapamycin (mTOR) in the central orexigenic effect of valine in fish. For this, rainbow trout (Oncorhynchus mykiss) were intracerebroventricularly (ICV) injected with valine alone or in the presence of rapamycin as the mTOR inhibitor, and two experiments were performed. In the first experiment, we evaluated feed intake levels. In the second experiment, we evaluated in the hypothalamus and telencephalon the following: (1) the phosphorylation status of mTOR and its downstream effectors ribosomal protein S6 and p70 S6 kinase 1 (S6K1), (2) the abundance and phosphorylation status of transcription factors involved in appetite regulation, and (3) the mRNA levels of key neuropeptides associated with homeostatic regulation of feed intake in fish. Rising central levels of valine clearly resulted in an orexigenic response in rainbow trout. This response occurred in parallel with mTOR activation in both the hypothalamus and telencephalon, as supported by depressant changes in proteins involved in mTOR signalling (S6 and S6K1). Also, these changes disappeared in the presence of rapamycin. However, it is not clear which precise mechanisms link the activation of mTOR and the alteration in feed intake levels since we did not observe changes in mRNA levels of appetite-regulatory neuropeptides as well as in the phosphorylation status and levels of integrative proteins.
Collapse
Affiliation(s)
- Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Ayelén M. Blanco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - María Alborja-Valado
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Jessica Calo
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Marta Conde-Sieira
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - José L. Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| |
Collapse
|
14
|
Yang H, Xu Z, Tan S, Zhang C, Li X, Leng X. In vitro effects of Eucommia ulmoides and its active components on the growth, lipid metabolism and collagen metabolism of grass carp (Ctenopharyngodon idellus) hepatocyte and intramuscular fibroblast. JOURNAL OF FISH BIOLOGY 2022; 101:597-612. [PMID: 35662011 DOI: 10.1111/jfb.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Two experiments were conducted to investigate the in vitro effects of Eucommia ulmoides (E. ulmoides) and its active components on the growth, lipid metabolism and collagen metabolism of grass carp's (Ctenopharyngodon idellus) hepatocytes and intramuscular fibroblasts. In experiments 1 and 2 (Expt. 1, 2), hepatocytes and intramuscular fibroblasts were treated with 2.5, 5, 10, 20, 40 and 80 μg ml-1 of Eucommia bark extract (EBE), Eucommia leaf extract (ELE), pinoresinol diglucoside (PDG), chlorogenic acid (CGA), quercetin (QC) and aucubin (AU) for 24 h, respectively, then the cell growth, lipid and collagen metabolism-related gene expressions were evaluated. The results showed that the cell proliferation rate of hepatocytes and intramuscular fibroblasts was significantly improved by the supplementation of EBE, ELE, CGA, QC and AU. Moreover, triglyceride concentration of hepatocytes was significantly decreased by the EBE, ELE, CGA and QC supplementations compared to the control. Meanwhile, EBE, ELE, CGA, QC and AU supplementations significantly upregulated the relative gene expressions of insulin-like growth factor-1 (igf1), protein kinase B (akt), target of rapamycin (tor) and eukaryotic initiation factor 4E binding protein 1 (4ebp1) in hepatocytes, and ribosomal protein S6 kinase 1 (s6k1) transcription was significantly activated by ELE, CGA and QC supplementations. Nonetheless, phosphatidylinositol 3-kinase (pi3k) was unaffected by any of the supplements. In addition, the mRNA expressions of genes associated with lipid metabolism (peroxisome proliferator activated receptor α pparα, carnitine palmitoyltransferase 1 cpt1, adipose triglyceride lipase atgl, hormone-sensitive lipase hsl, peroxisome proliferator activated receptor γ pparγ) were significantly upregulated by EBE, ELE, CGA and QC. In intramuscular fibroblasts, the EBE, ELE, CGA, QC and AU supplementations significantly increased in vitro hydroxyproline concentrations, promoted the relative expressions of transforming growth factor-β1 (tgfβ1), connective tissue growth factor (ctgf), collagen type I alpha 1/2 chain (col1a1, col1a2), lysine oxidase (lox) and tissue inhibitor of matrix metalloproteinase-2 (timp2), and decreased matrix metalloproteinase-2 (mmp2) gene expression. Also, the gene expressions of drosophila mothers against decapentaplegic protein 2/4 (smad2, smad4) and proline hydroxylase (phd) were significantly upregulated by ELE, CGA, QC and AU supplementations. Based on the present in vitro results of grass carp, EBE, ELE, CGA, QC and AU improved the growth and lipid metabolism (except AU) in hepatocytes, and promoted the collagen deposition in intramuscular fibroblast, which is partly attributed to the signalling pathways of AKT/TOR, PPARα and TGF-β/Smads/CTGF.
Collapse
Affiliation(s)
- Hang Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, People's Republic of China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Zhen Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, People's Republic of China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Sumei Tan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, People's Republic of China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Chunyan Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, People's Republic of China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Xiaoqin Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, People's Republic of China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Xiangjun Leng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, People's Republic of China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Dietary isoleucine affects muscle fatty acid and amino acid profiles through regulating lipid metabolism and autophagy in hybrid catfish Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂. ANIMAL NUTRITION 2022; 11:369-380. [PMID: 36329685 PMCID: PMC9618983 DOI: 10.1016/j.aninu.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/07/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
The present study explored the impacts of Ile on muscle fatty acid and amino acid profiles, lipid metabolism, and autophagy in hybrid catfish. Seven isonitrogenous (387.8 g/kg protein) semi-purified diets were formulated to contain 5.0 (control), 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile/kg diet respectively. The fish (initial weight of 33.11 ± 0.09 g) were randomly assigned to 7 groups for a 56-day trial. Each group has 3 replicates with 30 fish per replicate, fed at 08:00 and 18:00 each day. Results showed that muscle protein and lipid, C14:0, C18:0, C22:0, C14:1, C18:1n-9, polyunsaturated fatty acid (PUFA), Arg, Ile, Ala, Cys, Gly, Tyr, essential amino acid (EAA), and total amino acid (TAA) contents and flavor amino acid (FAA)/TAA in muscle had positive linear and/or quadratic responses to dietary Ile levels (P < 0.05). Fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), acetyl-CoA carboxylase (ACC), and lipoprotein lipase (LPL) activities had positive linear and/or quadratic responses, but carnitine palmitoyl transferase 1 (CPT1) activity had a negative response with increasing dietary Ile levels (P < 0.05). The mRNA expressions of FAS, SCD, ACC, LPL, fatty acid binding protein 4 (FABP4), FATP1, sterol response element-binding protein 1c (SREBP-1c), sequestosome 1 (SQSTM1), and adenosine 5′-monophosphate-activated protein kinase (AMPK) had positive linear and/or quadratic responses to dietary Ile levels (P < 0.05). The mRNA expressions of hormone-sensitive lipase (HSL), CPT1, peroxisome proliferator-activated receptor α (PPARα), PPARγ, uncoordinated 51-like kinase 1 (ULK1), beclin1 (Becn1), autophagy-related protein 9α (Atg9α), Atg4b, Atg7, autophagy marker light chain 3 B (LC3B), and SQSTM1 in muscle had negative linear and/or quadratic responses to dietary Ile levels (P < 0.05). The p-AMPK and ULK1 protein levels, and p-AMPK/AMPK were decreased by 12.5 g Ile/kg in the diet (P < 0.05). Finally, SQSTM1 protein level had the opposite effect (P < 0.05). The above results indicate that dietary Ile improves fish muscle fatty acid and amino acid profiles potentially via respectively regulating lipid metabolism and autophagy. The Ile requirement of hybrid catfish (33 to 72 g) were estimated to be 12.63, 13.77, 13.75, 11.45, 10.50, 12.53 and 12.21 g/kg diet based on the regression analysis of protein, lipid, SFA, PUFA, FAA, EAA, and TAA muscle contents, respectively.
Collapse
|
16
|
Effects of dietary tryptophan on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Br J Nutr 2022; 127:1761-1773. [PMID: 34321122 DOI: 10.1017/s0007114521002828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2·6 (control), 3·1, 3·7, 4·2, 4·7 and 5·6 g Trp/kg diet for 56 d, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fibre density and frequency of fibre diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1 and S6K1; (3) increased phosphorylation levels of AKT, TOR and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element-binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors, IGF/PIK3Ca/AKT/TOR and Keap1/Nrf2 signalling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21·82-39·64 g) were estimated to be 3·94 and 3·93 g Trp/kg diet (9·57 and 9·54 g/kg of dietary protein), respectively.
Collapse
|
17
|
Cao S, Xiao Y, Huang R, Zhao D, Xu W, Li S, Tang J, Qu F, Jin J, Xie S, Liu Z. Dietary Supplementation With Hydroxyproline Enhances Growth Performance, Collagen Synthesis and Muscle Quality of Carassius auratus Triploid. Front Physiol 2022; 13:913800. [PMID: 35721560 PMCID: PMC9198714 DOI: 10.3389/fphys.2022.913800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 01/26/2023] Open
Abstract
An eight-week experiment was undertaken to examine the effect of dietary hydroxyproline (Hyp) supplementation on growth performance, collagen synthesis, muscle quality of an improved triploid crucian carp (Carassius auratus Triploid) (ITCC). Six isonitrogenous (340 g/kg diet), isolipidic (60 g/kg diet) and isocaloric (17.80 MJ/kg diet) diets were formulated containing a certain amount of Hyp: 0.09% (the control group), 0.39, 0.76, 1.14, 1.53 and 1.90%. Each diet was randomly assigned to three tanks and each group was fed two times daily until apparent satiation. The results showed that growth performance and feed utilization of ITCC were significantly improved with the dietary Hyp level was increased from 0.09 to 0.76%. Crude protein, threonine and arginine content in the dorsal muscle in 0.76% hydroxyproline group were significantly higher than those in basic diet group (p < 0.05). The muscle textural characteristics increased remarkably with the amount of Hyp in the diet rising from 0.09 to 1.53% (p < 0.05). Meanwhile, the contents of type I collagen (Col I) and Pyridinium crosslink (PYD) in the muscle of fish were significantly increased by dietary Hyp (p < 0.05). The muscle fiber diameter and density of the fish were significantly increased when fed with 0.76% Hyp (p < 0.05). Furthermore, dietary supplementation with an appropriate concentration of Hyp substantially increased the expression of genes involved in collagen synthesis (col1a1, col1a2, p4hα1, p4hβ, smad4, smad5, smad9, and tgf-β) and muscle growth (igf-1, tor, myod, myf5, and myhc) (p < 0.05). In conclusion, dietary supplementation of Hyp can enhance fish growth performance, collagen production, muscle textural characteristics and muscle growth of ITCC. According to the SGR broken-line analysis, the recommended supplementation level of Hyp was 0.74% in the diet for ITCC, corresponding to 2.2% of dietary protein.
Collapse
Affiliation(s)
- Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yangbo Xiao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Rong Huang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Shitao Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
- *Correspondence: Zhen Liu,
| |
Collapse
|
18
|
Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model. BIOLOGY 2022; 11:biology11060840. [PMID: 35741361 PMCID: PMC9220191 DOI: 10.3390/biology11060840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/03/2023]
Abstract
Simple Summary This study investigated the effects of the antagonization of ghrelin on muscle protein deposition, eating patterns and gut microbiota in pigs by injecting ghrelin antagonist ([D-Lys3]-GHRP-6) in a short term. We found that the antagonization of ghrelin affected the eating patterns of animals, which resulted in changes in the absorption of amino acids and gut microbiota, and it reduced protein deposition in muscles. We emphasize the important role of ghrelin in promoting muscle protein deposition and provide new clues for future research on improving muscle loss. Abstract Ghrelin is an appetite-stimulating hormone that can increase food intake and has been reported to prevent muscle loss; however, the mechanism is not yet fully understood. In this study, [D-Lys3]-GHRP-6 (GHRP) was used to investigate the effects of the antagonization of ghrelin on muscle protein deposition, eating patterns and gut microbiota in a pig model. We found that the growth performance and muscle fiber cross-sectional area of pigs treated with GHRP were significantly reduced compared with the control (CON) group. Moreover, the levels of serum isoleucine, methionine, arginine and tyrosine in the GHRP group were lower than that of the CON group. The abundance of acetate-producing bacteria (Oscillospiraceae UCG-005, Parabacteroides and Oscillospiraceae NK4A214 group) and acetate concentration in the colons of pigs treated with GHRP were significantly reduced. In addition, the injection of GHRP down-regulated the mRNA expression of MCT-1 and mTOR, and it up-regulated the mRNA expression of HDAC1, FOXO1 and Beclin-1. In summary, the antagonization of ghrelin reduced the concentration of important signal molecules (Arg, Met and Ile) that activate the mTOR pathway, concurrently reduce the concentration of HDAC inhibitors (acetate), promote autophagy and finally reduce protein deposition in muscles.
Collapse
|
19
|
Zhao Y, Jiang Q, Zhang X, Zhu X, Dong X, Shen L, Zhang S, Niu L, Chen L, Zhang M, Jiang J, Chen D, Zhu L. l-Arginine Alleviates LPS-Induced Oxidative Stress and Apoptosis via Activating SIRT1-AKT-Nrf2 and SIRT1-FOXO3a Signaling Pathways in C2C12 Myotube Cells. Antioxidants (Basel) 2021; 10:antiox10121957. [PMID: 34943060 PMCID: PMC8750292 DOI: 10.3390/antiox10121957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
l-arginine (l-Arg) has been reported to possess a wide range of functions, including anti-inflammatory, anti-oxidative, and anti-apoptosis. However, the role of l-Arg in LPS-induced muscle injury and its potential protective mechanism has not been well elucidated. This study aimed to investigate the effects of l-Arg on the LPS-induced oxidative stress and apoptosis in differentiated C2C12 myotube cells. Our results demonstrated that myotube cells treated with 0.2 mg/mL LPS significantly decreased cell viability. l-Arg treatment significantly suppressed LPS induced ROS accumulation and cell apoptosis. Furthermore, l-Arg improved antioxidant-related enzymes’ activities; increased antioxidant ability via Akt-Nrf2 signaling pathway; maintained the mitochondrial membrane potential (MMP); and enhanced FOXO3a expression, leading to a decrease in the mitochondrial-associated apoptotic proteins. In addition, l-Arg exposure dramatically increased the mRNA and protein expressions of SIRT1. The cytoprotective effect of l-Arg was restricted by the SIRT1 inhibitor EX527, which led to an increase in ROS level, apoptosis rate, and decreased cell MMP. The results also demonstrated that EX527 treatment significantly eliminated the effect of l-Arg on LPS-induced oxidative damage and mitochondria-mediated cell apoptosis. Our findings revealed that l-Arg could be used as a potential nutraceutical in reducing muscle injury via regulating SIRT1-Akt-Nrf2 and SIRT1-FOXO3a-mitochondria apoptosis signaling pathways.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Xuefei Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Xiaoxiao Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Xia Dong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an 625014, China
- Correspondence: (D.C.); (L.Z.)
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Q.J.); (X.Z.); (X.Z.); (X.D.); (L.S.); (S.Z.); (L.N.); (L.C.); (M.Z.); (J.J.)
- Correspondence: (D.C.); (L.Z.)
| |
Collapse
|
20
|
Wang N, Zhang X, Liu C, Wang X, Zhou H, Mai K, He G. Fine-Tuning of Postprandial Responses via Feeding Frequency and Leucine Supplementation Affects Dietary Performance in Turbot (Scophthalmus maximus L.). J Nutr 2021; 151:2957-2966. [PMID: 34255073 DOI: 10.1093/jn/nxab221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Feeding-induced cell signaling and metabolic responses affect utilization of dietary nutrients but are rarely taken advantage of to improve animal nutrition. OBJECTIVES We hypothesized that by modulating postprandial kinetics and signaling, improved dietary utilization and growth performance could be achieved in animals. METHODS Juvenile turbot (Scophthalmus maximus L.) with an initial mean ± SD weight of 10.1 ± 0.01 g were used. Two feeding frequencies (FFs), either 1 or 3 meals/d at a fixed 2.4% daily body weight ration, and 2 diets that were or were not supplemented with 1% crystalline leucine (Leu), were used in the 10-wk feeding trial. At the end of the trial, a 1-d force-feeding experiment was conducted using the aforementioned FF and experimental diets. Samples were collected for the analysis of postprandial kinetics of aminoacidemia, mechanistic target of rapamycin (mTOR) signaling activities, protein deposition, as well as the mRNA expression levels of key metabolic checkpoints at consecutive time points after feeding. RESULTS Increased FF and leucine supplementation significantly enhanced fish growth by 7.68% ± 0.53% (means ±SD) and 7.89% ± 1.25%, respectively, and protein retention by 4.01% ± 0.59% and 4.44% ± 1.63%, respectively, in feeding trial experiments. The durations of postprandial aminoacidemia and mTOR activation were extended by increased FF, whereas leucine supplementation enhanced mTOR signaling without influencing the postprandial free amino acids kinetics. Increased FF and leucine supplementation enhanced muscle protein deposition 21.6% ± 6.85% and 22.3% ± 1.52%, respectively, in a 24-h postfeeding period. CONCLUSIONS We provided comprehensive characterization of the postprandial kinetics of nutrient sensing and metabolic responses under different feeding regimens and leucine supplementation in turbot. Fine-tuning of postprandial kinetics could provide a new direction for better dietary utilization and animal performances in aquaculture.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xuemin Zhang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Chengdong Liu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Huihui Zhou
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Gen He
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Effects of dietary methionine on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis of on-growing grass carp ( Ctenopharyngodon idella). Br J Nutr 2021; 126:321-336. [PMID: 32718370 DOI: 10.1017/s0007114520002998] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the current research, a 60-d experiment was conducted with the purpose of exploring the impacts of methionine (Met) on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis as well as the related signalling pathway. Six diets (iso-nitrogenous) differing in Met concentrations (2·54, 4·85, 7·43, 10·12, 12·40 and 15·11 g/kg diets) were fed to 540 grass carp (178·47 (SD 0·36) g). Results showed (P < 0·05) that compared with Met deficiency, optimal level of dietary Met (1) increased feed intake, feed efficiency, specific growth rate and percentage weight gain (PWG); (2) increased fish muscle protein, lipid and free amino acid contents and improved fish muscle fatty acid profile as well as increased protein content in part associated with the target of rapamycin complex 1 (TORC1)/S6K1 signalling pathway; (3) increased the frequency distribution of muscle fibre with >50 µm of diameter; (4) increased type I collagen synthesis partly related to the transforming growth factor-β1/Smads and CK2/TORC1 signalling pathways. In conclusion, dietary Met improved muscle growth, which might be due to the regulation of muscle nutritive deposition, muscle fibre growth and type I collagen synthesis-related signal molecules. Finally, according to PWG and muscle collagen content, the Met requirements for on-growing grass carp (178-626 g) were estimated to be 9·56 g/kg diet (33·26 g/kg protein of diet) and 9·28 g/kg diet (32·29 g/kg of dietary protein), respectively.
Collapse
|
22
|
Pan M, Liu J, Huang D, Guo Y, Luo K, Yang M, Gao W, Xu Q, Zhang W, Mai K. FoxO3 Modulates LPS-Activated Hepatic Inflammation in Turbot ( Scophthalmus maximus L.). Front Immunol 2021; 12:679704. [PMID: 34276667 PMCID: PMC8281027 DOI: 10.3389/fimmu.2021.679704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, forkhead box O3 (foxo3) plays important roles in liver immune system. The foxo3 can regulate cell cycle, DNA repair, hypoxia, apoptosis and so on. However, as such an important transcription factor, few studies on foxo3 in fish have been reported. The present study characterized the foxo3 in turbot (Scophthalmus maximus L.). Lipopolysaccharide (LPS) incubated in vitro (hepatocytes) and injected in vivo (turbot liver) were used to construct inflammatory models. The foxo3 was interfered and overexpressed to investigate its functions in liver inflammation. The open reading frame (ORF) of foxo3 was 1998 bp (base pair), encoding 665 amino acids. Sequence analysis showed that foxo3 of turbot was highly homologous to other fishes. Tissue distribution analysis revealed that the highest expression of foxo3 was in muscle. Immunofluorescence result showed that foxo3 was expressed in cytoplasm and nucleus. Knockdown of foxo3 significantly increased mRNA levels of tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β), interleukin-6 (il-6), myeloid-differentiation factor 88 (myd88), cd83, toll-like receptor 2 (tlr-2) and protein level of c-Jun N-terminal kinase (JNK) in sifoxo3 + LPS (siRNA of foxo3+ LPS) group compared with NC + LPS (negative control + LPS) group in turbot hepatocytes. Overexpressed foxo3 significantly decreased mRNA levels of tnf-α, il-6, nuclear transcription factor-kappa B (nf-κb), cd83, tlr-2 and the protein level of JNK in vitro. In vivo analysis, foxo3 knockdown significantly increased levels of GOT in serum after LPS injection compared with NC+LPS group. Overexpressed foxo3 significantly decreased levels of GPT and GOT in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in vivo. Foxo3 knockdown significantly increased mRNA levels of tnf-α, il-1β, il-6, nf-κb, myd88 and protein level of JNK in vivo in sifoxo3+LPS group compared with NC+LPS group in turbot liver. Overexpressed foxo3 significantly decreased mRNA levels of il-1β, il-6, myd88, cd83, jnk and protein level of JNK in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in turbot liver. The results indicated that foxo3 might modulate LPS-activated hepatic inflammation in turbot by decreasing the proinflammatory cytokines, the levels of GOT and GPT as well as activating JNK/caspase-3 and tlr-2/myd88/nf-κb pathways. Taken together, these findings indicated that FoxO3 may play important roles in liver immune responses to LPS in turbot and the research of FoxO3 in liver immunity enriches the studies on immune regulation, and provides theoretical basis and molecular targets for solving liver inflammation and liver injury in fish.
Collapse
Affiliation(s)
- Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Yanlin Guo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Weihua Gao
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Qiaoqing Xu
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
23
|
Jiang Q, Yan M, Zhao Y, Zhou X, Yin L, Feng L, Liu Y, Jiang W, Wu P, Wang Y, Chen D, Yang S, Huang X, Jiang J. Dietary isoleucine improved flesh quality, muscle antioxidant capacity, and muscle growth associated with AKT/TOR/S6K1 and AKT/FOXO3a signaling in hybrid bagrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). J Anim Sci Biotechnol 2021; 12:53. [PMID: 33866964 PMCID: PMC8054373 DOI: 10.1186/s40104-021-00572-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Muscle is the complex and heterogeneous tissue, which comprises the primary edible part of the trunk of fish and mammals. Previous studies have shown that dietary isoleucine (Ile) exerts beneficial effects on growth in aquatic animals. However, there were limited studies regarding the benefits of Ile on fish muscle and their effects on flesh quality and muscle growth. Thus, this study was conducted to explore whether dietary Ile had affected flesh quality and muscle growth in hybrid bagrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). METHODS A total of 630 hybrid fish, with an initial average body weight of 33.11 ± 0.09 g, were randomly allotted into seven experimental groups with three replicates each, and respectively fed seven diets with 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile/kg diets for 8 weeks. RESULTS In the present study, we demonstrated that Ile significantly: (1) increased muscle protein and lipid contents and the frequency distribution of myofibers with ≤ 20 μm and ≥ 50 μm of diameter; (2) improved pH value, shear force, cathepsin B and L activities, hydroxyproline content, resilience, cohesiveness, and decreased cooking loss, lactate content, hardness, springiness, gumminess, and chewiness; (3) decreased reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC) contents, GCLC and Keap1 mRNA levels, and up-regulated CuZnSOD, CAT, GPX1a, GST, and Nrf2 mRNA levels; (4) up-regulated the insulin-like growth factor 1, 2 (IGF-1, IGF-2), insulin-like growth factor 1 receptor (IGF-1R), proliferating cell nuclear antigen (PCNA), Myf5, Myod, Myog, Mrf4, and MyHC mRNA levels, and decreased MSTN mRNA level; (5) increased muscle protein deposition by activating AKT-TOR-S6K1 and AKT-FOXO3a signaling pathways. CONCLUSION These results revealed that dietary Ile improved flesh quality, which might be due to increasing nutritional content, physicochemical, texture parameters, and antioxidant ability; promoting muscle growth by affecting myocytes hyperplasia and hypertrophy, and muscle protein deposition associated with protein synthesis and degradation signaling pathways. Finally, the quadratic regression analysis of chewiness, ROS, and protein contents against dietary Ile levels suggested that the optimal dietary Ile levels for hybrid bagrid catfish was estimated to be 14.19, 12.36, and 12.78 g/kg diet, corresponding to 36.59, 31.87, and 32.96 g/kg dietary protein, respectively.
Collapse
Affiliation(s)
- Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingyao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Long Yin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiyong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
24
|
Zhao Y, Yan MY, Jiang Q, Yin L, Zhou XQ, Feng L, Liu Y, Jiang WD, Wu P, Zhao J, Jiang J. Isoleucine improved growth performance, and intestinal immunological and physical barrier function of hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. FISH & SHELLFISH IMMUNOLOGY 2021; 109:20-33. [PMID: 32991991 DOI: 10.1016/j.fsi.2020.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
This study was performed to determine effects of dietary isoleucine (Ile) on growth performance, and intestinal immunological and physical barrier function of hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. Six hundred and thirty fish (33.11 ± 0.09 g) were randomly divided into seven experimental groups with three replicates each, and respectively fed seven diets with 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile kg-1 diets for 8 weeks. The results showed improvement of growth performance, feed intake, feed utilization, relative gut length (RGL), and intestinal fold height and width by dietary Ile (P < 0.05). Meanwhile, dietary Ile (12.5 g kg-1 diet) improved the activities of lysozyme (LZM), acid phosphatase, alkaline phosphatase and the contents of complement 3 (C3), C4, and immunoglobulin M (IgM) (P < 0.05). The c-type-lectin, c-LZM, g-LZM, and hepcidin mRNA expressions in the intestine were up-regulated in fish fed diets with 10.0-20.0 g Ile kg-1 diet (P < 0.05). Dietary Ile (10.0-12.5 g Ile kg-1 diet) increased intestinal β-defensin mRNA expression partially in association with Sirt1/ERK/90RSK signaling pathway. Dietary Ile (12.5-15.0 g Ile kg-1 diet) decreased oxidative damage and improved antioxidant ability by increasing activities and expressions of superoxide dismutase, glutathione peroxidase, and glutathione reductase, glutathione-S-transferase (P < 0.05). The occludin, ZO-1, ZO-2, claudin3, and claudin 7 mRNA expressions in the intestine were up-regulated in fish fed diets with 10.0 and 12.5 g Ile kg-1 diet (P < 0.05), whereas the myosin light chain kinase gene expression was decreased in fish fed diets with 7.5-17.5 g Ile kg-1 diet. Dietary Ile (10-12.5 g Ile kg-1 diet) decreased apoptotic responses by reducing the expression of caspase3 and caspase 9 via the AKT/TOR signaling pathway. Based on the quadratic regression analysis of PWG, the dietary Ile requirement of hybrid catfish was estimated to be 12.43 g Ile kg-1 diet, corresponding to 32.05 g Ile kg-1 dietary protein. Collectively, dietary Ile improved growth performance and immunological and physical barrier function of intestine in hybrid catfish.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Yao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Yin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
25
|
Yin L, Zhao Y, Zhou XQ, Yang C, Feng L, Liu Y, Jiang WD, Wu P, Zhou J, Zhao J, Jiang J. Effect of dietary isoleucine on skin mucus barrier and epithelial physical barrier functions of hybrid bagrid catfish Pelteobagrus vachelli × Leiocassis longirostris. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1759-1774. [PMID: 32654084 DOI: 10.1007/s10695-020-00826-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The study investigated the effects of dietary isoleucine (Ile) on skin mucus barrier and epithelial physical barrier functions of hybrid bagrid catfish Pelteobagrus vachelli × Leiocassis longirostris. A total of 630 fish (33.11 ± 0.09 g) were fed semi-purified isonitrogenous diets containing 5.0 (control), 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile kg -1 diet for 8 weeks. The results indicated that dietary Ile increased (P < 0.05) in skin (1) mucus protein content and antimicrobial activity against three gram-negative bacteria (Aeromonas hydrophila, Escherichia coli, and Yersinia ruckeri) and two gram-positive bacteria (Streptococcus agalactiae and Staphylococcus aureus), (2) mucus lysofew information is available about the influencezyme (LZM), acid phosphatase (ACP), and alkaline phosphatase (AKP) activities, and complement 3 and 4 (C3 and C4) and immunoglobulin M (IgM) contents, (3) intelectin 1 (intl1), intelectin 2 (intl2), c-type-lysozyme (c-LZM), g-type-lysozyme (g-LZM), and β-defensin mRNA levels. Dietary Ile decreased (P < 0.05) reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC) contents, and up-regulated (P < 0.05) CuZnSOD, GST, GPX1a, muc5ac, muc5b, zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), occludin, and claudin 3 mRNA levels in skin. These results indicated that Ile improved skin mucus barrier function via increasing mucus protein, C3 and C4, and IgM contents and antibacterial factors activities, and promoted epithelial physical barrier function via decreasing skin antioxidant damage and improving tight junction structure in hybrid bagrid catfish.
Collapse
Affiliation(s)
- Long Yin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Chao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jian Zhou
- Fisheries Institute of Sichuan Academy of Agricultural Science, Chengdu, 611731, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|