1
|
Valenzano G, Russell SN, Go S, O'Neill E, Jones KI. Using Spectral Flow Cytometry to Characterize Anti-Tumor Immunity in Orthotopic and Subcutaneous Mouse Models of Cancer. Curr Protoc 2024; 4:e70032. [PMID: 39432378 DOI: 10.1002/cpz1.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Mouse models remain at the forefront of immuno-oncology research, providing invaluable insights into the complex interactions between the immune system and developing tumors. While several flow cytometry panels have been developed to study cancer immunity in mice, most are limited in their capacity to address the complexity of anti-cancer immune responses. For example, many of the panels developed to date focus on a restricted number of leukocyte populations (T cells or antigen-presenting cells), failing to include the multitude of other subsets that participate in anti-cancer immunity. In addition, these panels were developed using blood or splenic leukocytes. While the immune composition of the blood or spleen can provide information on systemic immune responses to cancer, it is in the tumor microenvironment (TME) that local immunity takes place. Therefore, we optimized this spectral flow cytometry panel to identify the chief cell types that take part in cancer immunity using immune cells from cancer tissue. We used pancreatic tumors implanted both orthotopically and subcutaneously to demonstrate the panel's flexibility and suitability in diverse mouse models. The panel was also validated in peripheral immune districts (the blood, spleen, and liver of tumor-bearing mice) to allow comparisons between local and systemic anti-tumor immunity. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tumor induction-Orthotopic Alternate Protocol: Tumor induction-Subcutaneous Basic Protocol 2: Preparation of single-cell suspensions from the tumor, spleen, liver, and blood of tumor-bearing mice Basic Protocol 3: Staining single-cell suspensions from the tumor, spleen, liver, and blood of tumor-bearing mice.
Collapse
Affiliation(s)
| | | | - Simei Go
- Department of Oncology, University of Oxford, Oxford, UK
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Keaton I Jones
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Chen J, Duan Y, Che J, Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun (Lond) 2024; 44:1047-1070. [PMID: 39051512 PMCID: PMC11492303 DOI: 10.1002/cac2.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Dendritic cells (DCs) comprise diverse cell populations that play critical roles in antigen presentation and triggering immune responses in the body. However, several factors impair the immune function of DCs and may promote immune evasion in cancer. Understanding the mechanism of DC dysfunction and the diverse functions of heterogeneous DCs in the tumor microenvironment (TME) is critical for designing effective strategies for cancer immunotherapy. Clinical applications targeting DCs summarized in this report aim to improve immune infiltration and enhance the biological function of DCs to modulate the TME to prevent cancer cells from evading the immune system. Herein, factors in the TME that induce DC dysfunction, such as cytokines, hypoxic environment, tumor exosomes and metabolites, and co-inhibitory molecules, have been described. Furthermore, several key signaling pathways involved in DC dysfunction and signal-relevant drugs evaluated in clinical trials were identified. Finally, this review provides an overview of current clinical immunotherapies targeting DCs, especially therapies with proven clinical outcomes, and explores future developments in DC immunotherapies.
Collapse
Affiliation(s)
- Jie Chen
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Yuhang Duan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| | - Junye Che
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Jianwei Zhu
- Jecho Institute Co., LtdShanghaiP. R. China
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| |
Collapse
|
3
|
Ye Z, Zhang Y, Xu J, Li K, Zhang J, Ivanova D, Zhang X, Liao S, Duan L, Li F, Chen X, Wang Y, Wang M, Xie B. Integrating Bulk and Single-Cell RNA-Seq Data to Identify Prognostic Features Related to Activated Dendritic Cells in Clear-Cell Renal-Cell Carcinoma. Int J Mol Sci 2024; 25:9235. [PMID: 39273185 PMCID: PMC11395106 DOI: 10.3390/ijms25179235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Dendritic cells (DCs) serve as key regulators in tumor immunity, with activated DCs potentiating antitumor responses through the secretion of pro-inflammatory cytokines and the expression of co-stimulatory molecules. Most current studies focus on the relationship between DC subgroups and clear-cell renal-cell carcinoma (ccRCC), but there is limited research on the connection between DCs and ccRCC from the perspective of immune activation. In this study, activated DC genes were identified in both bulk and single-cell RNA-seq data. A prognostic model related to activated DCs was constructed using univariate, multivariate Cox regression and LASSO regression. The prognostic model was validated in three external validation sets: GSE167573, ICGC, and E-MTAB-1980. The prognostic model consists of five genes, PLCB2, XCR1, IFNG, HLA-DQB2, and SMIM24. The expression of these genes was validated in tissue samples using qRT-PCR. Stratified analysis revealed that the prognostic model was able to better predict outcomes in advanced ccRCC patients. The risk scores were associated with tumor progression, tumor mutation burden, immune cell infiltration, and adverse outcomes of immunotherapy. Notably, there was a strong correlation between the expression of the five genes and the sensitivity to JQ1, a BET inhibitor. Molecular docking indicated high-affinity binding of the proteins encoded by these genes with JQ1. In conclusion, our study reveals the crucial role of activated DCs in ccRCC, offering new insights into predicting immune response, targeted therapy effectiveness, and prognosis for ccRCC patients.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yifan Zhang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jialiang Xu
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Kun Li
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Jianning Zhang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Deyana Ivanova
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Zhang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Siqi Liao
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Liqi Duan
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Meijiao Wang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Zhu W, Liu C, Xi K, Li A, Shen LA, Li Y, Jia M, He Y, Chen G, Liu C, Chen Y, Chen K, Sun F, Zhang D, Duan C, Wang H, Wang D, Zhao Y, Meng X, Zhu D. Discovery of Novel 1-Phenylpiperidine Urea-Containing Derivatives Inhibiting β-Catenin/BCL9 Interaction and Exerting Antitumor Efficacy through the Activation of Antigen Presentation of cDC1 Cells. J Med Chem 2024; 67:12485-12520. [PMID: 38912577 DOI: 10.1021/acs.jmedchem.3c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Aberrant activation of the Wnt/β-catenin signaling is associated with tumor development, and blocking β-catenin/BCL9 is a novel strategy for oncogenic Wnt/β-catenin signaling. Herein, we presented two novel β-catenin variations and exposed conformational dynamics in several β-catenin crystal structures at the BCL9 binding site. Furthermore, we identified a class of novel urea-containing compounds targeting β-catenin/BCL9 interaction. Notably, the binding modalities of inhibitors were greatly affected by the conformational dynamics of β-catenin. Among them, 28 had a strong affinity for β-catenin (Kd = 82 nM), the most potent inhibitor reported. In addition, 13 and 35 not only activate T cells but also promote the antigen presentation of cDC1, showing robust antitumor efficacy in the CT26 model. Collectively, our study demonstrated a series of potent small-molecule inhibitors targeting β-catenin/BCL9, which can enhance antigen presentation and activate cDC1 cells, delivering a potential strategy for boosting innate and adaptive immunity to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Wenhua Zhu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Cuiting Liu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Kang Xi
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Anqi Li
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | - Li-An Shen
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | - Yana Li
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Miaomiao Jia
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Yangbo He
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Gang Chen
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Chenglong Liu
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | - Yangqiang Chen
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Kai Chen
- Shanghai Jiao Tong University, Shanghai 201210, China
| | - Fan Sun
- Shanghai Jiao Tong University, Shanghai 201210, China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Chonggang Duan
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Heng Wang
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | | | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai 201203, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Di Zhu
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| |
Collapse
|
5
|
Wu W, Bao Z, Zhu K, Song D, Yang W, Luo J, Zheng J, Shao G, Huang J. XCR1: A promising prognostic marker that pinpoints targeted and immune-based therapy in hepatocellular carcinoma. Heliyon 2024; 10:e31968. [PMID: 38868008 PMCID: PMC11167355 DOI: 10.1016/j.heliyon.2024.e31968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Objectives The lymphotactin receptor X-C motif chemokine receptor 1 (XCR1) is an essential member of the chemokine receptor family and is related to tumor development and progression. Nevertheless, further investigation is required to explore its expression patterns, prognostic values, and functions related to target or immune therapies in patients with hepatocellular carcinoma (HCC). Materials and methods The differential expression patterns of XCR1 and its prognostic influences were performed through The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Subsequently, immunohistochemistry (IHC) staining and univariate and multivariate Cox regressions were performed to validate the prognostic values in different subgroups. Furthermore, the potential roles of XCR1 in predicting target and immune therapeutic responses were also investigated. Results Increased expression level of XCR1 was associated with favorable overall survival (OS) and recurrence-free survival (RFS). Subgroup analysis revealed that a high expression level of XCR1 or positive immune cell proportion score (iCPS) were associated with favorable OS in the HCC patients with favorable tumor characteristics. In addition, the enhanced XCR1 expression was associated with the tumor environment scores, immune cell infiltration levels, and the expression levels of immune checkpoint genes. Further analysis revealed that improved expression of XCR1 was linked to better OS and RFS in HCC patients who received sorafenib. Conclusion This study identified that XCR1 is a valuable prognostic biomarker in the HCC population, especially in those with favorable tumor characteristics. The combination of iCPS status and BCLC status has a synergistic effect on stratifying patients' OS and RFS. Further analyses showed that XCR1 has the potential ability to predict treatment responses to sorafenib and immune-based therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Pathology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhen Bao
- Department of Pathology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Kai Zhu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Danjun Song
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Weijian Yang
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of General Surgery, The People's Hospital of Pingyang County, Pingyang Hospital Affiliated to Wenzhou Medical University, Wenzhou 325400, China
| | - Jun Luo
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiaping Zheng
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guoliang Shao
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Junfeng Huang
- Liver Surgery Intensive Care Unit, Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Liu L, Xu L, Wu D, Zhu Y, Li X, Xu C, Chen K, Lin Y, Lao J, Cai P, Li X, Luo Y, Li X, Huang J, Lin T, Zhong W. Impact of tumour stroma-immune interactions on survival prognosis and response to neoadjuvant chemotherapy in bladder cancer. EBioMedicine 2024; 104:105152. [PMID: 38728838 PMCID: PMC11090066 DOI: 10.1016/j.ebiom.2024.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The tumour stroma is associated with unfavourable prognosis in diverse solid tumours, but its prognostic and predictive value in bladder cancer (BCa) is unclear. METHODS In this multicentre, retrospective study, we included 830 patients with BCa from six independent cohorts. Differences in overall survival (OS) and cancer-specific survival (CSS) were investigated between high-tumour stroma ratio (TSR) and low-TSR groups. Multi-omics analyses, including RNA sequencing, immunohistochemistry, and single-cell RNA sequencing, were performed to study stroma-immune interactions. TSR prediction models were developed based on pelvic CT scans, and the best performing model was selected based on receiver operator characteristic analysis. FINDINGS Compared to low-TSR tumours, high-TSR tumours were significantly associated with worse OS (HR = 1.193, 95% CI: 1.046-1.361, P = 0.008) and CSS (HR = 1.337, 95% CI: 1.139-1.569, P < 0.001), and lower rate of pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). High-TSR tumours exhibited higher infiltration of immunosuppressive cells, including Tregs and tumour-associated neutrophils, while low-TSR tumours exhibited higher infiltration of immune-activating cells such as CD8+ Teff and XCR1+ dendritic cells. The TSR prediction model was developed by combining the intra-tumour and tumour base radiomics features, and showed good performance to predict high-TSR, as indicted by area under the curve of 0.871 (95% CI: 0.821-0.921), 0.821 (95% CI: 0.731-0.911), and 0.801 (95% CI: 0.737-0.865) in the training, internal validation, and external validation cohorts, respectively. In patients with low predicted TSR, 92.3% (12/13) achieved pCR, while only 35.3% (6/17) of patients with high predicted TSR achieved pCR. INTERPRETATION The tumour stroma was found to be significantly associated with clinical outcomes in patients with BCa as a result of tumour stroma-immune interactions. The radiomics prediction model provided non-invasive evaluation of TSR and was able to predict pCR in patients receiving NAC for BCa. FUNDING This work was supported by National Natural Science Foundation of China (Grant No. 82373254 and 81961128027), Guangdong Provincial Natural Science Foundation (Grant No. 2023A1515010258), Science and Technology Planning Project of Guangdong Province (Grant No. 2023B1212060013). Science and Technology Program of Guangzhou (SL2022A04J01754), Sun Yat-Sen Memorial Hospital Clinical Research 5010 Program (Grant No. SYS-5010Z-202401).
Collapse
Affiliation(s)
- Libo Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Longhao Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Daqin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Yingying Zhu
- Clinical Research Design Division, Clinical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoyang Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, PR China
| | - Ke Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Yi Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Jianwen Lao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Peicong Cai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, PR China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiang Li
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China.
| | - Wenlong Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China.
| |
Collapse
|
7
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
8
|
Zhang K, Wuri Q, Cai Z, Qu X, Zhang S, Wu H, Wu J, Wang C, Yu X, Kong W, Zhang H. The XCL1-Mediated DNA Vaccine Targeting Type 1 Conventional Dendritic Cells Combined with Gemcitabine and Anti-PD1 Antibody Induces Potent Antitumor Immunity in a Mouse Lung Cancer Model. Int J Mol Sci 2024; 25:1880. [PMID: 38339158 PMCID: PMC10855623 DOI: 10.3390/ijms25031880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
With the advent of cancer immunotherapy, there is a growing interest in vaccine development as a means to activate the cellular immune system against cancer. Despite the promise of DNA vaccines in this regard, their effectiveness is hindered by poor immunogenicity, leading to modest therapeutic outcomes across various cancers. The role of Type 1 conventional dendritic cells (cDC1), capable of cross-presenting vaccine antigens to activate CD8+T cells, emerges as crucial for the antitumor function of DNA vaccines. To address the limitations of DNA vaccines, a promising approach involves targeting antigens to cDC1 through the fusion of XCL1, a ligand specific to the receptor XCR1 on the surface of cDC1. Here, female C57BL/6 mice were selected for tumor inoculation and immunotherapy. Additionally, recognizing the complexity of cancer, this study explored the use of combination therapies, particularly the combination of cDC1-targeted DNA vaccine with the chemotherapy drug Gemcitabine (Gem) and the anti-PD1 antibody in a mouse lung cancer model. The study's findings indicate that fusion antigens with XCL1 effectively enhance both the immunogenicity and antitumor effects of DNA vaccines. Moreover, the combination of the cDC1-targeted DNA vaccine with Gemcitabine and anti-PD1 antibody in the mouse lung cancer model demonstrates an improved antitumor effect, leading to the prolonged survival of mice. In conclusion, this research provides important support for the clinical investigation of cDC1-targeting DNA vaccines in combination with other therapies.
Collapse
Affiliation(s)
- Ke Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Qimuge Wuri
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Zongyu Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Xueli Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Shiqi Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| |
Collapse
|
9
|
Tan Y, Chen H, Gou X, Fan Q, Chen J. Tumor vaccines: Toward multidimensional anti-tumor therapies. Hum Vaccin Immunother 2023; 19:2271334. [PMID: 37905395 PMCID: PMC10760370 DOI: 10.1080/21645515.2023.2271334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
For decades, immunotherapies have offered hope for patients with advanced cancer. However, they show distinct benefits and limited clinical effects. Tumor vaccines have the potential to prime tumor-antigen-specific T cells and induce broad subsets of immune responses, ultimately eradicating tumor cells. Here, we classify tumor vaccines by their anti-tumor mechanisms, which include boosting the immune system, overcoming tumor immunosuppression, and modulating tumor angiogenesis. We focus on multidimensional tumor vaccine strategies using combinations of two or three of the above mechanisms, as these are superior to single-dimensional treatments. This review offers a perspective on tumor vaccine strategies and the future role of vaccine therapies in cancer treatment.
Collapse
Affiliation(s)
- Yuanfang Tan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huiyuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Eshetie S, Jullian P, Benyamin B, Lee SH. Host genetic determinants of COVID-19 susceptibility and severity: A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2466. [PMID: 37303119 DOI: 10.1002/rmv.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Genome-wide association studies (GWASs) have identified single nucleotide polymorphisms (SNPs) associated with susceptibility and severity of coronavirus disease 2019 (COVID-19). However, identified SNPs are inconsistent across studies, and there is no compelling consensus that COVID-19 status is determined by genetic factors. Here, we conducted a systematic review and meta-analysis to determine the effect of genetic factors on COVID-19. A random-effect meta-analysis was performed to estimate pooled odds ratios (ORs) of SNP effects, and SNP-based heritability (SNP-h2 ) of COVID-19. The analyses were performed using meta-R package, and Stata version 17. The meta-analysis included a total of 96,817 COVID-19 cases and 6,414,916 negative controls. The meta-analysis showed that a cluster of highly correlated 9 SNPs (R2 > 0.9) at 3p21.31 gene locus covering LZTFL1 and SLC6A20 genes was significantly associated with COVID-19 severity, with a pooled OR of 1.8 [1.5-2.0]. Meanwhile, another 3 SNPs (rs2531743-G, rs2271616-T, and rs73062389-A) within the locus was associated with COVID-19 susceptibility, with pooled estimates of 0.95 [0.93-0.96], 1.23 [1.19-1.27] and 1.15 [1.13-1.17], respectively. Interestingly, SNPs associated with susceptibility and SNPs associated with severity in this locus are in linkage equilibrium (R2 < 0.026). The SNP-h2 on the liability scale for severity and susceptibility was estimated at 7.6% (Se = 3.2%) and 4.6% (Se = 1.5%), respectively. Genetic factors contribute to COVID-19 susceptibility and severity. In the 3p21.31 locus, SNPs that are associated with susceptibility are not in linkage disequilibrium (LD) with SNPs that are associated with severity, indicating within-locus heterogeneity.
Collapse
Affiliation(s)
- Setegn Eshetie
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| | - Pastor Jullian
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| | - S Hong Lee
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Tong C, Liang Y, Han X, Zhang Z, Zheng X, Wang S, Song B. Research Progress of Dendritic Cell Surface Receptors and Targeting. Biomedicines 2023; 11:1673. [PMID: 37371768 DOI: 10.3390/biomedicines11061673] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Dendritic cells are the only antigen-presenting cells capable of activating naive T cells in humans and mammals and are the most effective antigen-presenting cells. With deepening research, it has been found that dendritic cells have many subsets, and the surface receptors of each subset are different. Specific receptors targeting different subsets of DCs will cause different immune responses. At present, DC-targeted research plays an important role in the treatment and prevention of dozens of related diseases in the clinic. This article focuses on the current status of DC surface receptors and targeted applications.
Collapse
Affiliation(s)
- Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Yimin Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Xianle Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Zhelin Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Xiaohui Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Sen Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Bocui Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| |
Collapse
|
12
|
van Vlerken-Ysla L, Tyurina YY, Kagan VE, Gabrilovich DI. Functional states of myeloid cells in cancer. Cancer Cell 2023; 41:490-504. [PMID: 36868224 PMCID: PMC10023509 DOI: 10.1016/j.ccell.2023.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
Myeloid cells, comprised of macrophages, dendritic cells, monocytes, and granulocytes, represent a major component of the tumor microenvironment (TME) and are critically involved in regulation of tumor progression and metastasis. In recent years, single-cell omics technologies have identified multiple phenotypically distinct subpopulations. In this review, we discuss recent data and concepts suggesting that the biology of myeloid cells is largely defined by a very limited number of functional states that transcend the narrowly defined cell populations. These functional states are primarily centered around classical and pathological states of activation, with the latter state commonly defined as myeloid-derived suppressor cells. We discuss the concept that lipid peroxidation of myeloid cells represents a major mechanism that governs their pathological state of activation in the TME. Lipid peroxidation is associated with ferroptosis mediating suppressive activity of these cells and thus could be considered an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
13
|
Swan SL, Mehta N, Ilich E, Shen SH, Wilkinson DS, Anderson AR, Segura T, Sanchez-Perez L, Sampson JH, Bellamkonda RV. IL7 and IL7 Flt3L co-expressing CAR T cells improve therapeutic efficacy in mouse EGFRvIII heterogeneous glioblastoma. Front Immunol 2023; 14:1085547. [PMID: 36817432 PMCID: PMC9936235 DOI: 10.3389/fimmu.2023.1085547] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy in glioblastoma faces many challenges including insufficient CAR T cell abundance and antigen-negative tumor cells evading targeting. Unfortunately, preclinical studies evaluating CAR T cells in glioblastoma focus on tumor models that express a single antigen, use immunocompromised animals, and/or pre-treat with lymphodepleting agents. While lymphodepletion enhances CAR T cell efficacy, it diminishes the endogenous immune system that has the potential for tumor eradication. Here, we engineered CAR T cells to express IL7 and/or Flt3L in 50% EGFRvIII-positive and -negative orthotopic tumors pre-conditioned with non-lymphodepleting irradiation. IL7 and IL7 Flt3L CAR T cells increased intratumoral CAR T cell abundance seven days after treatment. IL7 co-expression with Flt3L modestly increased conventional dendritic cells as well as the CD103+XCR1+ population known to have migratory and antigen cross-presenting capabilities. Treatment with IL7 or IL7 Flt3L CAR T cells improved overall survival to 67% and 50%, respectively, compared to 9% survival with conventional or Flt3L CAR T cells. We concluded that CAR T cells modified to express IL7 enhanced CAR T cell abundance and improved overall survival in EGFRvIII heterogeneous tumors pre-conditioned with non-lymphodepleting irradiation. Potentially IL7 or IL7 Flt3L CAR T cells can provide new opportunities to combine CAR T cells with other immunotherapies for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Sheridan L Swan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nalini Mehta
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Ekaterina Ilich
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Steven H Shen
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Alexa R Anderson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States.,Clinical Science Departments of Neurology and Dermatology, Duke University, Durham, NC, United States
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Ravi V Bellamkonda
- Department of Biology, Emory University, Atlanta, GA, United States.,Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Poirier A, Tremblay ML. Pharmacological potentiation of monocyte-derived dendritic cell cancer immunotherapy. Cancer Immunol Immunother 2022; 72:1343-1353. [DOI: 10.1007/s00262-022-03333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
|
15
|
Li PH, Kong XY, He YZ, Liu Y, Peng X, Li ZH, Xu H, Luo H, Park J. Recent developments in application of single-cell RNA sequencing in the tumour immune microenvironment and cancer therapy. Mil Med Res 2022; 9:52. [PMID: 36154923 PMCID: PMC9511789 DOI: 10.1186/s40779-022-00414-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
The advent of single-cell RNA sequencing (scRNA-seq) has provided insight into the tumour immune microenvironment (TIME). This review focuses on the application of scRNA-seq in investigation of the TIME. Over time, scRNA-seq methods have evolved, and components of the TIME have been deciphered with high resolution. In this review, we first introduced the principle of scRNA-seq and compared different sequencing approaches. Novel cell types in the TIME, a continuous transitional state, and mutual intercommunication among TIME components present potential targets for prognosis prediction and treatment in cancer. Thus, we concluded novel cell clusters of cancer-associated fibroblasts (CAFs), T cells, tumour-associated macrophages (TAMs) and dendritic cells (DCs) discovered after the application of scRNA-seq in TIME. We also proposed the development of TAMs and exhausted T cells, as well as the possible targets to interrupt the process. In addition, the therapeutic interventions based on cellular interactions in TIME were also summarized. For decades, quantification of the TIME components has been adopted in clinical practice to predict patient survival and response to therapy and is expected to play an important role in the precise treatment of cancer. Summarizing the current findings, we believe that advances in technology and wide application of single-cell analysis can lead to the discovery of novel perspectives on cancer therapy, which can subsequently be implemented in the clinic. Finally, we propose some future directions in the field of TIME studies that can be aided by scRNA-seq technology.
Collapse
Affiliation(s)
- Pei-Heng Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xiang-Yu Kong
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Ya-Zhou He
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610044, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Diseases Centre, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xi Peng
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Zhi-Hui Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre, Chengdu, 610044, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Centre for Disease-Related Molecular Network, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
16
|
Laureano RS, Sprooten J, Vanmeerbeerk I, Borras DM, Govaerts J, Naulaerts S, Berneman ZN, Beuselinck B, Bol KF, Borst J, Coosemans A, Datsi A, Fučíková J, Kinget L, Neyns B, Schreibelt G, Smits E, Sorg RV, Spisek R, Thielemans K, Tuyaerts S, De Vleeschouwer S, de Vries IJM, Xiao Y, Garg AD. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 2022; 11:2096363. [PMID: 35800158 PMCID: PMC9255073 DOI: 10.1080/2162402x.2022.2096363] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/01/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Raquel S Laureano
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M Borras
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Zwi N Berneman
- Department of Haematology, Antwerp University Hospital, Edegem, Belgium
- Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | - Kalijn F Bol
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - an Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Ku Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jitka Fučíková
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Lisa Kinget
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
| | - Gerty Schreibelt
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Smits
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - I Jolanda M de Vries
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Sasaki I, Kato T, Hemmi H, Fukuda-Ohta Y, Wakaki-Nishiyama N, Yamamoto A, Kaisho T. Conventional Type 1 Dendritic Cells in Intestinal Immune Homeostasis. Front Immunol 2022; 13:857954. [PMID: 35693801 PMCID: PMC9184449 DOI: 10.3389/fimmu.2022.857954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Dendritic cells (DC) play critical roles in linking innate and adaptive immunity. DC are heterogenous and there are subsets with various distinct functions. One DC subset, conventional type 1 DC (cDC1), can be defined by expression of CD8α/CD103 in mice and CD141 in humans, or by expression of a chemokine receptor, XCR1, which is a conserved marker in both mice and human. cDC1 are characterized by high ability to ingest dying cells and to cross-present antigens for generating cytotoxic CD8 T cell responses. Through these activities, cDC1 play crucial roles in immune responses against infectious pathogens or tumors. Meanwhile, cDC1 involvement in homeostatic situations is not fully understood. Analyses by using mutant mice, in which cDC1 are ablated in vivo, revealed that cDC1 are critical for maintaining intestinal immune homeostasis. Here, we review the homeostatic roles of cDC1, focusing upon intestinal immunity.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Izumi Sasaki, ; Tsuneyasu Kaisho,
| | - Takashi Kato
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Yuri Fukuda-Ohta
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naoko Wakaki-Nishiyama
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Asumi Yamamoto
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute for Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Izumi Sasaki, ; Tsuneyasu Kaisho,
| |
Collapse
|
18
|
Zhu C, Wu Q, Yang N, Zheng Z, Zhou F, Zhou Y. Immune Infiltration Characteristics and a Gene Prognostic Signature Associated With the Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:848841. [PMID: 35586567 PMCID: PMC9108548 DOI: 10.3389/fgene.2022.848841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Immunotherapy has become the new standard of care for recurrent and metastatic head and neck squamous cell carcinoma (HNSCC), and PD-L1 is a widely used biomarker for immunotherapeutic response. However, PD-L1 expression in most cancer patients is low, and alternative biomarkers used to screen the population benefiting from immunotherapy are still being explored. Tumor microenvironment (TME), especially tumor immune-infiltrating cells, regulates the body’s immunity, affects the tumor growth, and is expected to be a promising biomarker for immunotherapy. Purpose: This article mainly discussed how the immune-infiltrating cell patterns impacted immunity, thereby affecting HNSCC patients’ prognosis. Method: The immune-infiltrating cell profile was generated by the CIBERSORT algorithm based on the transcriptomic data of HNSCC. Consensus clustering was used to divide groups with different immune cell infiltration patterns. Differentially expressed genes (DEGs) obtained from the high and low immune cell infiltration (ICI) groups were subjected to Kaplan–Meier and univariate Cox analysis. Significant prognosis-related DEGs were involved in the construction of a prognostic signature using multivariate Cox analysis. Results: In our study, 408 DEGs were obtained from high- and low-ICI groups, and 59 of them were significantly associated with overall survival (OS). Stepwise multivariate Cox analysis developed a 16-gene prognostic signature, which could distinguish favorable and poor prognosis of HNSCC patients. An ROC curve and nomogram verified the sensitivity and accuracy of the prognostic signature. The AUC values for 1 year, 2 years, and 3 years were 0.712, 0.703, and 0.700, respectively. TCGA-HNSCC cohort, GSE65858 cohort, and an independent GSE41613 cohort proved a similar prognostic significance. Notably, the prognostic signature distinguished the expression of promising immune inhibitory receptors (IRs) well and could predict the response to immunotherapy. Conclusion: We established a tumor immune cell infiltration (TICI)-based 16-gene signature, which could distinguish patients with different prognosis and help predict the response to immunotherapy.
Collapse
Affiliation(s)
- Chunmei Zhu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ningning Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhewen Zheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fuxiang Zhou, ; Yunfeng Zhou,
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fuxiang Zhou, ; Yunfeng Zhou,
| |
Collapse
|
19
|
García-González P, Fernández D, Gutiérrez D, Parra-Cordero M, Osorio F. Human cDC1 display constitutive activation of the UPR Sensor IRE1. Eur J Immunol 2022; 52:1069-1076. [PMID: 35419836 PMCID: PMC9541385 DOI: 10.1002/eji.202149774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022]
Abstract
The intracellular mechanisms safeguarding DC function are of biomedical interest in several immune‐related diseases. Type 1 conventional DCs (cDC1s) are prominent targets of immunotherapy typified by constitutive activation of the unfolded protein response (UPR) sensor IRE1. Through its RNase domain, IRE1 regulates key processes in cDC1s including survival, ER architecture and function. However, most evidence linking IRE1 RNase with cDC1 biology emerges from mouse studies and it is currently unknown whether human cDC1s also activate the enzyme to preserve cellular homeostasis. In this work, we report that human cDC1s constitutively activate IRE1 RNase in steady state, which is evidenced by marked expression of IRE1, XBP1s, and target genes, and low levels of mRNA substrates of the IRE1 RNase domain. On a functional level, pharmacological inhibition of the IRE1 RNase domain curtailed IL‐12 and TNF production by cDC1s upon stimulation with TLR agonists. Altogether, this work demonstrates that activation of the IRE1/XBP1s axis is a conserved feature of cDC1s across species and suggests that the UPR sensor may also play a relevant role in the biology of the human lineage.
Collapse
Affiliation(s)
- Paulina García-González
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Dominique Fernández
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diane Gutiérrez
- Fetal Medicine Unit, Clinical Hospital of University of Chile, Santiago, Chile
| | - Mauro Parra-Cordero
- Fetal Medicine Unit, Clinical Hospital of University of Chile, Santiago, Chile
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
20
|
Xie Y, Fu R, Xiao Z, Li G. A Risk Model Based on Immune-Related Genes Predicts Prognosis and Characterizes the Immune Landscape in Esophageal Cancer. Pathol Oncol Res 2022; 28:1610030. [PMID: 35356506 PMCID: PMC8958959 DOI: 10.3389/pore.2022.1610030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
Abstract
Aberrant immune gene expression has been shown to have close correlations with the occurrence and progression of esophageal cancer (EC). We aimed to generate a prognostic signature based on immune-related genes (IRGs) capable of predicting prognosis, immune checkpoint gene (ICG) expressions, and half-inhibitory concentration (IC50) for chemotherapy agents for EC patients. Transcriptome, clinical, and mutation data on tumorous and paratumorous tissues from EC patients were collected from The Cancer Genome Atlas (TCGA) database. Then, we performed differential analysis to identify IRGs differentially expressed in EC. Their biofunctions and related pathways were explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. These gene expression profiling data were merged with survival information and subjected to univariate Cox regression to select prognostic genes, which were then included in a Lasso-Cox model for signature generation (risk score calculation). Patients were divided into the high- and low-risk groups using the median risk score as a cutoff. The accuracy of the signature in overall survival prediction was assessed, so were its performances in predicting ICG expressions and IC50 for chemotherapy and targeted therapy agents and immune cell landscape characterization. Fifteen prognostic IRGs were identified, seven of which were optimal for risk score calculation. As expected, high-risk patients had worse overall survival than low-risk individuals. Significant differences were found in tumor staging, immune cell infiltration degree, frequency of tumor mutations, tumor mutation burden (TMB), and immune checkpoint gene expressions between high- vs. low-risk patients. Further, high-risk patients exhibited high predicted IC50 for paclitaxel, cisplatin, doxorubicin, and erlotinib compared to low-risk patients. The seven-IRG-based signature can independently and accurately predict overall survival and tumor progression, characterize the tumor immune microenvironment (TIME) and estimate ICG expressions and IC50 for antitumor therapies. It shows the potential of guiding personalized treatment for EC patients.
Collapse
Affiliation(s)
- Yan Xie
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Ruimin Fu
- College of Health Management, Henan Finance University, Zhengzhou, China
| | - Zheng Xiao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Recombinant MUC1-MBP fusion protein vaccine combined with CpG2006 induces antigen-specific CTL responses through cDC1-mediated cross-priming mainly regulated by type I IFN signaling in mice. Immunol Lett 2022; 245:38-50. [DOI: 10.1016/j.imlet.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
|
22
|
Integrative transcriptomic, evolutionary, and causal inference framework for region-level analysis: Application to COVID-19. NPJ Genom Med 2022; 7:24. [PMID: 35318325 PMCID: PMC8940898 DOI: 10.1038/s41525-022-00296-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
We developed an integrative transcriptomic, evolutionary, and causal inference framework for a deep region-level analysis, which integrates several published approaches and a new summary-statistics-based methodology. To illustrate the framework, we applied it to understanding the host genetics of COVID-19 severity. We identified putative causal genes, including SLC6A20, CXCR6, CCR9, and CCR5 in the locus on 3p21.31, quantifying their effect on mediating expression and on severe COVID-19. We confirmed that individuals who carry the introgressed archaic segment in the locus have a substantially higher risk of developing the severe disease phenotype, estimating its contribution to expression-mediated heritability using a new summary-statistics-based approach we developed here. Through a large-scale phenome-wide scan for the genes in the locus, several potential complications, including inflammatory, immunity, olfactory, and gustatory traits, were identified. Notably, the introgressed segment showed a much higher concentration of expression-mediated causal effect on severity (0.9–11.5 times) than the entire locus, explaining, on average, 15.7% of the causal effect. The region-level framework (implemented in publicly available software, SEGMENT-SCAN) has important implications for the elucidation of molecular mechanisms of disease and the rational design of potentially novel therapeutics.
Collapse
|
23
|
Newnes HV, Armitage JD, Audsley KM, Bosco A, Waithman J. Directing the Future Breakthroughs in Immunotherapy: The Importance of a Holistic Approach to the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13235911. [PMID: 34885021 PMCID: PMC8656826 DOI: 10.3390/cancers13235911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Immunotherapies have changed the way we treat cancer and, while some patients have benefitted greatly, there are still those that do not respond to therapy. Understanding why some patients respond to therapy and others do not is critical in developing new immunotherapeutic strategies. The increasing awareness of the importance of investigating the tumour in its entirety, including the surrounding tissue and role of various immune cells is helping to differentiate responders and non-responders. In addition, the resolution gained by the development of sophisticated bioinformatic technologies allows for a deeper understanding of the complex roles of individual cells in the tumour. This advancement will be critical for the development of novel therapies to treat cancer. Abstract Immunotherapy has revolutionised the treatment of cancers by exploiting the immune system to eliminate tumour cells. Despite the impressive response in a proportion of patients, clinical benefit has been limited thus far. A significant focus to date has been the identification of specific markers associated with response to immunotherapy. Unfortunately, the heterogeneity between patients and cancer types means identifying markers of response to therapy is inherently complex. There is a growing appreciation for the role of the tumour microenvironment (TME) in directing response to immunotherapy. The TME is highly heterogeneous and contains immune, stromal, vascular and tumour cells that all communicate and interact with one another to form solid tumours. This review analyses major cell populations present within the TME with a focus on their diverse and often contradictory roles in cancer and how this informs our understanding of immunotherapy. Furthermore, we discuss the role of integrated omics in providing a comprehensive view of the TME and demonstrate the potential of leveraging multi-omics to decipher the underlying mechanisms of anti-tumour immunity for the development of novel immunotherapeutic strategies.
Collapse
|
24
|
Pei Y, Zhu Y, Wang X, Xu L. The expression and clinical value of tumor infiltrating dendritic cells in tumor tissues of patients with esophageal cancer. J Gastrointest Oncol 2021; 12:1996-2003. [PMID: 34790367 DOI: 10.21037/jgo-21-578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 11/06/2022] Open
Abstract
Background As dendritic cells (DCs) are the major antigen-presenting cells of the immune system, understanding their role in esophageal cancer is essential for the development of preventative and treatment strategies. This study investigated the expression level and clinical value of tumor infiltrating dendritic cells (TIDCs) in tumor tissues of patients with esophageal cancer. Methods From January 2019 to January 2021, 184 patients with esophageal cancer treated were prospectively enrolled as the observation group and 184 patients with benign esophageal tumors were selected as the control group. Tumor tissue samples were obtained and the expression level and phenotypes of the TIDCs were analyzed. The correlation between TIDC expression and clinical characteristics of patients with esophageal cancer was investigated. Results The density of the TIDCs in the observation group was lower than that in the control group (8.76±2.25 vs. 9.97±2.19; P=0.000). Furthermore, the percentage of major histocompatibility complex-II (MHC-II) positive DCs and the percentage of CD54 positive DCs were relatively lower in the observation group compared to the control group (6.60%±2.12% vs. 9.34%±2.41%; P=0.000 and 7.41%±2.36% vs. 9.98%±2.47%; P=0.000, respectively). Esophageal cancer patients with lymph node metastasis had lower TIDC density, lower percentage of MHC-II positive DCs, and lower percentage of CD54 positive DCs compared to patients without node metastasis (P<0.05). Patients with stage III esophageal cancer also showed significantly lower TIDC density, lower percentage of MHC-II positive DCs, and lower percentage of CD54 positive DCs compared to patients with stage I/II esophageal cancer (P<0.05). Esophageal cancer patients with tumor diameter ≥4 cm presented with decreased TIDC density, decreased percentage of MHC-II positive DCs, and decreased percentage of CD54 positive DCs compared to patients with tumor diameter <4 cm (P<0.05). In addition, the density of TIDCs, the percentage of MHC-II positive DCs, and the percentage of CD54 positive DCs were significantly negatively correlated with the percentage of CD4+ T-lymphocytes and positively correlated with the percentage of CD8+ T-lymphocytes (P<0.05). Conclusions Patients with esophageal cancer had low expression and function of TIDCs, and this was related to the imbalance of T-lymphocyte subsets, lymph node metastasis, TNM stage, and lesion size.
Collapse
Affiliation(s)
- Yanzhi Pei
- Department of Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yanzhi Zhu
- Hepatobiliary and Pancreatic Surgery, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, China
| | - Xiaolin Wang
- Department of Pathology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lin Xu
- Department of Gastroenterology, Xuzhou Cancer Hospital, Xuzhou, China
| |
Collapse
|
25
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
26
|
Moreira TG, Mangani D, Cox LM, Leibowitz J, Lobo ELC, Oliveira MA, Gauthier CD, Nakagaki BN, Willocq V, Song A, Guo L, Lima DCA, Murugaiyan G, Butovsky O, Gabriely G, Anderson AC, Rezende RM, Faria AMC, Weiner HL. PD-L1 + and XCR1 + dendritic cells are region-specific regulators of gut homeostasis. Nat Commun 2021; 12:4907. [PMID: 34389726 PMCID: PMC8363668 DOI: 10.1038/s41467-021-25115-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal mucosa constitutes an environment of closely regulated immune cells. Dendritic cells (DC) interact with the gut microbiome and antigens and are important in maintaining gut homeostasis. Here, we investigate DC transcriptome, phenotype and function in five anatomical locations of the gut lamina propria (LP) which constitute different antigenic environments. We show that DC from distinct gut LP compartments induce distinct T cell differentiation and cytokine secretion. We also find that PD-L1+ DC in the duodenal LP and XCR1+ DC in the colonic LP comprise distinct tolerogenic DC subsets that are crucial for gut homeostasis. Mice lacking PD-L1+ and XCR1+ DC have a proinflammatory gut milieu associated with an increase in Th1/Th17 cells and a decrease in Treg cells and have exacerbated disease in the models of 5-FU-induced mucositis and DSS-induced colitis. Our findings identify PD-L1+ and XCR1+ DC as region-specific physiologic regulators of intestinal homeostasis.
Collapse
Affiliation(s)
- Thais G Moreira
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Davide Mangani
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Leibowitz
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eduardo L C Lobo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariana A Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christian D Gauthier
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenda N Nakagaki
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerie Willocq
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anya Song
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Guo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David C A Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gopal Murugaiyan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina Gabriely
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Maria C Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Howard L Weiner
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Recent Progress in Dendritic Cell-Based Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13102495. [PMID: 34065346 PMCID: PMC8161242 DOI: 10.3390/cancers13102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer immunotherapy has now attracted much attention because of the recent success of immune checkpoint inhibitors. However, they are only beneficial in a limited fraction of patients most probably due to lack of sufficient CD8+ cytotoxic T-lymphocytes against tumor antigens in the host. In this regard, dendritic cells are useful tools to induce host immune responses against exogenous antigens. In particular, recently characterized cross-presenting dendritic cells are capable of inducing CD8+ cytotoxic T-lymphocytes against exogenous antigens such as tumor antigens and uniquely express the chemokine receptor XCR1. Here we focus on the recent progress in DC-based cancer vaccines and especially the use of the XCR1 and its ligand XCL1 axis for the targeted delivery of cancer vaccines to cross-presenting dendritic cells. Abstract Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.
Collapse
|
28
|
Lee JW, Lee IH, Sato T, Kong SW, Iimura T. Genetic variation analyses indicate conserved SARS-CoV-2-host interaction and varied genetic adaptation in immune response factors in modern human evolution. Dev Growth Differ 2021; 63:219-227. [PMID: 33595856 PMCID: PMC8013644 DOI: 10.1111/dgd.12717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/11/2023]
Abstract
Coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is a pandemic as of early 2020. Upon infection, SARS‐CoV‐2 attaches to its receptor, that is, angiotensin‐converting enzyme 2 (ACE2), on the surface of host cells and is then internalized into host cells via enzymatic machineries. This subsequently stimulates immune response factors. Since the host immune response and severity of COVID‐19 vary among individuals, genetic risk factors for severe COVID‐19 cases have been investigated. Our research group recently conducted a survey of genetic variants among SARS‐CoV‐2‐interacting molecules across populations, noting near absence of difference in allele frequency spectrum between populations in these genes. Recent genome‐wide association studies have identified genetic risk factors for severe COVID‐19 cases in a segment of chromosome 3 that involves six genes encoding three immune‐regulatory chemokine receptors and another three molecules. The risk haplotype seemed to be inherited from Neanderthals, suggesting genetic adaptation against pathogens in modern human evolution. Therefore, SARS‐CoV‐2 uses highly conserved molecules as its virion interaction, whereas its immune response appears to be genetically biased in individuals to some extent. We herein review the molecular process of SARS‐CoV‐2 infection as well as our further survey of genetic variants of its related immune effectors. We also discuss aspects of modern human evolution.
Collapse
Affiliation(s)
- Ji-Won Lee
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - In-Hee Lee
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Takanori Sato
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Watanabe A, Togi M, Koya T, Taniguchi M, Sakamoto T, Iwabuchi K, Kato T, Shimodaira S. Identification of CD56 dim subpopulation marked with high expression of GZMB/PRF1/PI-9 in CD56 + interferon-α-induced dendritic cells. Genes Cells 2021; 26:313-327. [PMID: 33662167 DOI: 10.1111/gtc.12844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/08/2023]
Abstract
As the sentinels of innate and adaptive immune system, dendritic cells (DCs) have been considered to hold a great promise for medical application. Among the diverse types of DCs, monocyte-derived DCs (mo-DCs) generated in vitro have been most commonly employed. We have been improving the culture protocol and devised a protocol to produce mature interferon-α-induced DCs (IFN-DCs), hereinafter called (mat)IFN-DCs. While exploring the relationship between the expression of CD56 and the cytotoxic activity of (mat)IFN-DCs, we unexpectedly found that sorting of (mat)IFN-DCs with CD56 antibody-coated microbeads (MB) resulted in fractionating cells with tumoricidal activity into the flow-through (FT) but not MB-bound fraction. We uncovered that the FT fraction contains cells expressing low but substantial level of CD56. Moreover, those cells express granzyme B (GrB), perforin (PFN), and serpin B9 at high levels. By employing a specific inhibitor of PFN, we confirmed that direct tumoricidal activity relies on the GrB/PFN pathway. We designated subpopulation in FT fraction as CD56dim and that in CD56 positively sorted fraction as CD56bright , respectively. This is the first time, to our knowledge, to identify subpopulations of CD56-positive IFN-DCs with distinct tumoricidal activity which is ascribed to high expression of the components of GrB/PFN pathway.
Collapse
Affiliation(s)
- Asuka Watanabe
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Misa Togi
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan.,Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan
| | - Terutsugu Koya
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Makoto Taniguchi
- Division of Genome Damage Response Research, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan
| | - Takuya Sakamoto
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Kuniyoshi Iwabuchi
- Division of Genome Damage Response Research, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan.,Department of Biochemistry I, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Tomohisa Kato
- Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan.,Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan
| |
Collapse
|
30
|
Xue D, Zheng Y, Wen J, Han J, Tuo H, Liu Y, Peng Y. Role of chemokines in hepatocellular carcinoma (Review). Oncol Rep 2021; 45:809-823. [PMID: 33650640 PMCID: PMC7859922 DOI: 10.3892/or.2020.7906] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges for the treatment of HCC is the prevention or management of recurrence and metastasis of HCC. It has been found that chemokines and their receptors serve a pivotal role in HCC progression. In the present review, the literature on the multifactorial roles of exosomes in HCC from PubMed, Cochrane library and Embase were obtained, with a specific focus on the functions and mechanisms of chemokines in HCC. To date, >50 chemokines have been found, which can be divided into four families: CXC, CX3C, CC and XC, according to the different positions of the conserved N‑terminal cysteine residues. Chemokines are involved in the inflammatory response, tumor immune response, proliferation, invasion and metastasis via modulation of various signaling pathways. Thus, chemokines and their receptors directly or indirectly shape the tumor cell microenvironment, and regulate the biological behavior of the tumor. In addition, the potential application of chemokines in chemotaxis of exosomes as drug vehicles is discussed. Exosomes containing chemokines or expressing receptors for chemokines may improve chemotaxis to HCC and may thus be exploited for targeted drug delivery.
Collapse
Affiliation(s)
- Dongdong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Ya Zheng
- Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Junye Wen
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Jingzhao Han
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yifan Liu
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yanhui Peng
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| |
Collapse
|
31
|
Rückert M, Deloch L, Frey B, Schlücker E, Fietkau R, Gaipl US. Combinations of Radiotherapy with Vaccination and Immune Checkpoint Inhibition Differently Affect Primary and Abscopal Tumor Growth and the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13040714. [PMID: 33572437 PMCID: PMC7916259 DOI: 10.3390/cancers13040714] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy (RT) is known to have immune-modulatory properties. We hypothesized that RT and inactivated whole tumor cell vaccines generated with high hydrostatic pressure (HHP) synergize to retard the tumor growth which can be additionally improved with anti-PD-1 treatment. In abscopal tumor models, we injected mice with B16-F10 melanoma or TS/A mammary tumors. To evaluate the efficiency of RT in combination with HHP vaccines, we locally irradiated only one tumor with 2 × 8 Gy or 3 × 8 Gy. HHP vaccines further retarded the growth of locally irradiated (2 × 8 Gy) tumors. However, HHP vaccination combined with RT failed to induce abscopal anti-tumor immune responses, namely those to non-irradiated tumors, and even partly abrogated those which were induced with RT plus anti-PD-1. In the latter group, the abscopal effects were accompanied by an elevated infiltration of CD8+ T cells, monocytes/macrophages, and dendritic cells. 3 × 8 Gy failed to induce abscopal effects in association with increased expression of immunosuppressive checkpoint molecules compared to 2 × 8 Gy. We conclude that HHP vaccines induce anti-tumor effects, but only if the tumor microenvironment was previously modulated by hypofractionated RT with not too many fractions, but failed to improve RT plus anti-PD-induced abscopal responses that are characterized by distinct immune alterations.
Collapse
Affiliation(s)
- Michael Rückert
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.R.); (L.D.); (B.F.); (R.F.)
| | - Lisa Deloch
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.R.); (L.D.); (B.F.); (R.F.)
| | - Benjamin Frey
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.R.); (L.D.); (B.F.); (R.F.)
| | - Eberhard Schlücker
- Institute of Process Machinery and Systems Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Rainer Fietkau
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.R.); (L.D.); (B.F.); (R.F.)
| | - Udo S. Gaipl
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.R.); (L.D.); (B.F.); (R.F.)
- Correspondence: ; Tel.: +49-(0)9131-85-44258
| |
Collapse
|
32
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Ugolini A, Tyurin VA, Tyurina YY, Tcyganov EN, Donthireddy L, Kagan VE, Gabrilovich DI, Veglia F. Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer. JCI Insight 2020; 5:138581. [PMID: 32584791 DOI: 10.1172/jci.insight.138581] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 01/29/2023] Open
Abstract
DCs are a critical component of immune responses in cancer primarily due to their ability to cross-present tumor-associated antigens. Cross-presentation by DCs in cancer is impaired, which may represent one of the obstacles for the success of cancer immunotherapies. Here, we report that polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) blocked cross-presentation by DCs without affecting direct presentation of antigens by these cells. This effect did not require direct cell-cell contact and was associated with transfer of lipids. Neutrophils (PMN) and PMN-MDSC transferred lipid to DCs equally well; however, PMN did not affect DC cross-presentation. PMN-MDSC generate oxidatively truncated lipids previously shown to be involved in impaired cross-presentation by DCs. Accumulation of oxidized lipids in PMN-MDSC was dependent on myeloperoxidase (MPO). MPO-deficient PMN-MDSC did not affect cross-presentation by DCs. Cross-presentation of tumor-associated antigens in vivo by DCs was improved in MDSC-depleted or tumor-bearing MPO-KO mice. Pharmacological inhibition of MPO in combination with checkpoint blockade reduced tumor progression in different tumor models. These data suggest MPO-driven lipid peroxidation in PMN-MDSC as a possible non-cell autonomous mechanism of inhibition of antigen cross-presentation by DCs and propose MPO as potential therapeutic target to enhance the efficacy of current immunotherapies for patients with cancer.
Collapse
Affiliation(s)
- Alessio Ugolini
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Departments of Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pennsylvania, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, Departments of Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pennsylvania, USA
| | - Evgenii N Tcyganov
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Laxminarasimha Donthireddy
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Departments of Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
34
|
Del Prete A, Sozio F, Barbazza I, Salvi V, Tiberio L, Laffranchi M, Gismondi A, Bosisio D, Schioppa T, Sozzani S. Functional Role of Dendritic Cell Subsets in Cancer Progression and Clinical Implications. Int J Mol Sci 2020; 21:ijms21113930. [PMID: 32486257 PMCID: PMC7312661 DOI: 10.3390/ijms21113930] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) constitute a complex network of cell subsets with common functions but also with many divergent aspects. All dendritic cell subsets share the ability to prime T cell response and to undergo a complex trafficking program related to their stage of maturation and function. For these reasons, dendritic cells are implicated in a large variety of both protective and detrimental immune responses, including a crucial role in promoting anti-tumor responses. Although cDC1s are the most potent subset in tumor antigen cross-presentation, they are not sufficient to induce full-strength anti-tumor cytotoxic T cell response and need close interaction and cooperativity with the other dendritic cell subsets, namely cDC2s and pDCs. This review will take into consideration different aspects of DC biology, including the functional role of dendritic cell subsets in both fostering and suppressing tumor growth, the mechanisms underlying their recruitment into the tumor microenvironment, as well as the prognostic value and the potentiality of dendritic cell therapeutic targeting. Understanding the specificity of dendritic cell subsets will allow to gain insights on role of these cells in pathological conditions and to design new selective promising therapeutic approaches.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Mattia Laffranchi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Angela Gismondi
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
- Correspondence: ; Tel.: +39-06-4434-0632
| |
Collapse
|