1
|
Wang N, Gao Z, Zhan H, Jing L, Meng F, Chen M. Salidroside alleviates doxorubicin-induced hepatotoxicity via Sestrin2/AMPK-mediated pyroptotic inhibition. Food Chem Toxicol 2025; 199:115335. [PMID: 39993461 DOI: 10.1016/j.fct.2025.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Doxorubicin (DOX) is a potent anticancer drug, while its toxic side effects involve multi-organ toxicity, including hepatotoxicity. This study aims to investigate the therapeutic potential of salidroside against DOX-induced hepatotoxicity and elucidate its underlying mechanisms. Result showed that salidroside exhibited a liver protective effect in DOX-induced hepatotoxicity in mice, represented by the decreased serum ALT, AST and LDH levels, as well as the rescue of pathological changes in mice livers. Further study showed salidroside reduced the expression level of pyroptosis-associated proteins, including NLRP3, cleaved-caspase 1, gasdermin D (GSDMD-N) and mature IL-1β in mice liver tissues. In vitro study confirmed salidroside exerted a similar effect in AML12 cells. Mechanistically, salidroside alleviated mitochondrial dysfunction by activating the PGC-1α/Mfn2 signaling pathway, and restrained the endoplasmic reticulum (ER) stress, represented by the downregulation of GRP78 and p-PERK/PERK level. Subsequent investigations revealed that salidroside activated the Sestrin2/AMPK pathway, while the application of AMPK inhibitors, PGC-1α siRNA or Sestrain2 siRNA reversed the effects of salidroside on ameliorating mitochondrial dysfunction and ER stress, suggesting salidroside could be a promising therapeutic strategy for alleviating DOX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Nan Wang
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, PR China
| | - Zhengshan Gao
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Honghong Zhan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lin Jing
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Fancheng Meng
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Min Chen
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
2
|
Wang L, Li HD, Sun X, Ni JH, Feng GZ, Shen XY, Weng HB, Fang H. The Protective Effects of Vanillic Acid on LPS-induced Acute Lung Injury by Inhibiting STIM1-mediated NLRP3 Inflammasome Activation. Inflammation 2025:10.1007/s10753-025-02293-6. [PMID: 40195181 DOI: 10.1007/s10753-025-02293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025]
Abstract
Acute lung injury (ALI), which can progress to acute respiratory distress syndrome (ARDS), has inflammation as a crucial factor, especially the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome involvement. Stromal interaction molecule 1 (STIM1) can block NLRP3 activation, but the mechanism is unclear. Vanillic acid, possessing anti-inflammatory properties, has a role in acute lung injury (ALI) whose specific mechanism remains unclear. This study aimed to investigate the effectiveness of vanillic acid in ALI induced by lipopolysaccharides (LPS) and to elucidate the potential mechanisms. In vitro and in vivo experiments were conducted using cells and a mouse model to find out the impact and underlying mechanisms. We found that vanillic acid demonstrated significant inhibition of IL-1β and IL-18 release triggered by LPS and nigericin in J774A.1 cells. The in vivo findings indicated that vanillic acid not only mitigated acute lung injury but also suppressed NLRP3 inflammasome activation in mice. Mechanistically, vanillic acid inhibited the LPS-induced increase in STIM1 expression through the lysosomal degradation pathway. The reduced STIM1 expression diminished intracellular Ca2+ levels, thereby suppressing inflammasome activation and impeding the cleavage and maturation of Caspase-1 and GSDMD, and eventually attenuating cell pyroptosis. Vanillic acid exerts its inhibitory effects on NLRP3 inflammasome activation by promoting STIM1 degradation, thereby ameliorates ALI through impeding NLRP3-GSDMD mediated pyroptosis. The STIM1-NLRP3 signaling axis represents a promising avenue for potential therapeutic interventions in ALI.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Hai-Dong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
- Research and Translational Laboratory of Acute Injury and Secondary Infection, Minhang Hospital, Fudan University, Shanghai, China
| | - Xia Sun
- Department of Anesthesiology, Shanghai Geriatic Medical Center, Shanghai, 201104, China
| | - Jia-Hui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Gui-Ze Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Hong-Bo Weng
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China.
| | - Hao Fang
- Department of Anesthesiology, Shanghai Geriatic Medical Center, Shanghai, 201104, China.
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Liu C, Qiu S, Liu X, Huang R, Fang Z. Chrysophanol Attenuates Cardiac Fibrosis and Arrhythmia by Suppressing the Endoplasmic Reticulum Stress/Pyroptosis Axis and Inflammation. Phytother Res 2025. [PMID: 40186437 DOI: 10.1002/ptr.8476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 04/07/2025]
Abstract
Chrysophanol (CHR), one of the principal bioactive compounds extracted from the rhizome of Rheum palmatum L., is known for its anti-inflammatory, antioxidative, anti-cancer, and cardioprotective effects. However, the effect of CHR on cardiac fibrosis remains elusive. In this study, mice were administered isoproterenol (ISO) to induce cardiac fibrosis in vivo, and cardiac fibroblasts were pretreated with transforming growth factor-β1 (TGF-β1) to induce the transformation of fibroblasts into myofibroblasts in vitro. Western blot and reverse transcription-quantitative polymerase chain reaction analyses were performed to evaluate the endoplasmic reticulum (ER) stress and pyroptosis. Immunohistochemistry staining and ELISA analyses were used to detect the inflammation level. In vivo electrophysiological studies were conducted to assess arrhythmia susceptibility. Our findings revealed that CHR treatment ameliorated cardiac dysfunction and fibrosis in ISO-challenged mice. Moreover, CHR reduced susceptibility to ventricular fibrillation by reducing ventricular electrical remodeling and increasing the expression of gap junction proteins and ion channels. Additionally, CHR inhibited the TGF-β1-stimulated transformation of cardiac fibroblasts into myofibroblasts in vitro. CHR inhibited ER stress, pyroptosis, and inflammation in vivo and in vitro. Furthermore, tunicamycin (TM)-induced activation of ER stress abolished the protective effects of CHR. CHR treatment attenuates cardiac fibrosis and arrhythmia by suppressing the ER stress/pyroptosis axis and inflammation.
Collapse
Affiliation(s)
- Chengyin Liu
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Shuang Qiu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqiong Liu
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
4
|
Cai M, Zhang X, Gao X, Huo Q, Sun Y, Dai X. Chitooligosaccharide ameliorates cognitive deficits and neuroinflammation in APP/PS1 mice associated with the regulation of Nrf2/NF-κB axis. Int J Biol Macromol 2025; 303:140683. [PMID: 39914538 DOI: 10.1016/j.ijbiomac.2025.140683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Mounting evidence suggests that neuroinflammation is involved in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Amyloid β peptide (Aβ) could recruit and activate microglia, leading to the generation of pro-inflammatory factors, and ultimately neuroinflammation. Chitooligosaccharide (COS) is widely recognized as anti-inflammation bioactive substance, though whether it exerts beneficial effect on AD is unclear. In this study, we explored the effect of COS on AD prevention and treatment. We found that COS ameliorated cognitive deficiency, increased the expression of Nrf2 but decreased Aβ levels and the activation of NF-κB in APP/PS1 mice. In vitro, COS decreased the secretions of IL-6, IL-1β and TNF-α in Aβ25-35 + lipopolysaccharides (LPS) -exposed BV2 microglia. Meanwhile, COS down-regulated the expressions of iNOS, COX-2, NLRP3, caspase 1 and the nuclear translocation of NF-κB p65, while upregulated the expressions of Nrf2 and HO-1. Further, COS improved the viability of SK-N-SH cells that exposed to Aβ25-35 + LPS-stimulated microglial conditioned media, and the repressive effect of COS on NLRP3, iNOS, and phospho-NF-κB p65 expressions were markedly compromised upon Nrf2-siRNA transfection. Collectively, COS improved cognitive decline and suppressed neuroinflammation via the Nrf2/NF-κB signaling axis, suggesting COS might be a promising candidate in down-regulating inflammatory responses during AD progression.
Collapse
Affiliation(s)
- Mingyang Cai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; Department of Food Science and Biomedicine, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Xiaoxia Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Xiaohan Gao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Qing Huo
- Department of Food Science and Biomedicine, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; Department of Food Science and Biomedicine, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; Department of Food Science and Biomedicine, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| |
Collapse
|
5
|
Sasikala M, Mohan S, Karuppaiah A, Karthick V, Ragul PA, Nagarajan A. NanoFlora: Unveiling the therapeutic potential of Ipomoea aquatica nanoparticles. J Genet Eng Biotechnol 2025; 23:100470. [PMID: 40074444 PMCID: PMC11915003 DOI: 10.1016/j.jgeb.2025.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Improving the pharmacokinetics of drugs is achieved through nano formulations and the role of natural product in the synthesis of nanomaterials is gaining prominence due to its eco-friendly nature, cost-effectiveness, and demonstrated efficacy. Metal nanoparticles (NPs) derived from Ipomoea aquatica Forsskal have been synthesized and evaluated for their antioxidant and antidiabetic properties towards enhancing the anticancer activity of the plant extracts. METHODOLOGY Hydroalcoholic extract was obtained from the entire Ipomoea aquatica plant and utilized as a key ingredient in the green synthesis of metal NPs. The characterization of the synthesized NPs involved UV/visible and FT-IR spectroscopic analyses, along with particle size determination using Zetasizer technology. Antioxidant activity was assessed through DPPH radical scavenging assays, while antidiabetic potential was evaluated via alpha-amylase inhibitory activity using HPTLC bioautography. RESULTS The formation of silver nanoparticles (AgNPs) was confirmed by a color change from light brown to dark brown. UV-VIS spectrum analysis showed strong absorbance between 380 and 400 nm, with a peak at 428 nm, indicating successful synthesis via bioreduction by Ipomoea aquatica extract. FT-IR spectra revealed phytochemicals like flavonoids and proteins, with shifts in peak positions confirming AgNP formation. DLS showed an average particle size of 36.27 nm, and TEM images confirmed spherical morphology. The AgNPs exhibited significant antioxidant and antidiabetic activities, outperforming standards such as ascorbic acid and Glibenclamide. Toxicity prediction identified the extract as slightly toxic, guiding safe dose administration. CONCLUSION The study underscores the potential of plant-based nanoparticles in scavenging free radicals and supporting cytotoxicity, thus hinting at their potential role in cancer therapy. Moreover, the nanoparticles derived from Ipomoea aquatica exhibit promising antioxidant and antidiabetic activities compared to the crude plant extract. This research paves the way for further exploration of Ipomoea aquatica nanoparticles as a novel therapeutic intervention for various diseases.
Collapse
Affiliation(s)
- Manickavasagam Sasikala
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| | - Sellappan Mohan
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| | - Arjunan Karuppaiah
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India; PSG College of Pharmacy, Peelamedu, Avinashi Road, Coimbatore 641004, India
| | - Vedi Karthick
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India
| | - Palanigoundar Atheyannan Ragul
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India
| | - Arumugam Nagarajan
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| |
Collapse
|
6
|
Guan X, Zhao R, Wang Y, Li W, Pan L, Yang Y, Mu W, Hou TZ. Ginsenoside Rb1 ameliorates apical periodontitis via suppressing macrophage pyroptosis. Oral Dis 2025; 31:541-554. [PMID: 39155466 DOI: 10.1111/odi.15103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES The objectives of current study were to investigate the role and related mechanism of Ginsenoside Rb1 (GRb1) on regulating apical periodontitis (AP) prognosis. MATERIALS AND METHODS Clinical specimens were used to determine the involvement of calcium overload-induced macrophage pyroptosis in periapical tissues. Next, a calcium ion-chelating agent (BAPTA-AM) was applied to detect the suppression of intracellular calcium overload in macrophage pyroptosis. Then, network pharmacology, western blot (WB) analysis, and Fluo-4 calcium assay were conducted to explore the role of GRb1 on intracellular calcium overload. To gain a better understanding of GRb1 in calcium overload-induced macrophage pyroptosis linked AP, GRb1-treated AP models were established. RESULTS We discovered clinically and experimentally that calcium overload-dependent macrophage pyroptosis is involved in AP pathogenesis, and reducing calcium overload greatly decreased macrophage pyroptosis in an AP cell model. Next, based on GRb1's inhibitory role in aberrant intracellular calcium accumulation, we discovered that GRb1 alleviates AP by suppressing calcium-dependent macrophage pyroptosis in both in vitro and in vivo models. CONCLUSIONS GRb1 is an effective therapeutic strategy to rescue the periapical tissues from inflammation due to its anti-pyroptosis function. Thus, the present study supports further investigation of GRb1 as an adjuvant therapy for AP.
Collapse
Affiliation(s)
- Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, Baoji Stomatological Hospital of Shaanxi, Baoji, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Wenlan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lifei Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Wenli Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tie Zhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Nie L, Wu XY, Zhao ZY, Fei CJ, Zhu TF, Shao JZ, Chen J. Palmitoylation-mediated NLRP3 inflammasome activation in teleosts highlights evolutionary divergence in immune regulation. Zool Res 2025; 46:3-14. [PMID: 39757016 DOI: 10.24272/j.issn.2095-8137.2024.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
NLRP3 inflammasome activation is pivotal for cytokine secretion and pyroptosis in response to diverse stimuli, playing a crucial role in innate immunity. While extensively studied in mammals, the regulatory mechanisms governing NLRP3 activation in non-mammalian vertebrates remain largely unexplored. Teleosts, as basal vertebrates, represent an ideal model for exploring the evolutionary trajectory of inflammasome regulation. In this study, ABE assays, confocal microscopy, and biochemical analyses were applied to systematically characterize the mechanisms underlying NLRP3 inflammasome in teleosts, using large yellow croakers ( Larimichthys crocea, Lc) and zebrafish ( Danio rerio, Dr) as representative models. Our findings revealed a previously unrecognized palmitoylation-dependent regulatory mechanism essential for teleost NLRP3 activation. Specifically, zDHHC18-mediated palmitoylation at a teleost-specific cysteine residue (C946 in LcNLRP3, C1037 in DrNLRP3) was required for the translocation of NLRP3 to the dispersed trans-Golgi network, facilitating its subsequent recruitment to the microtubule-organizing center. This membrane trafficking was crucial for inflammasome assembly and downstream inflammatory responses. These findings provide new insights into the distinct regulatory mechanisms of NLRP3 activation in teleosts, highlighting an evolutionary divergence that contributes to innate immunity adaptation in early vertebrates.
Collapse
Affiliation(s)
- Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail:
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zi-Yue Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting-Fang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquaculture Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail:
| |
Collapse
|
8
|
Chen S, Qi Z, Bai Y, Zhang Y, Zhan Q, Xia J. Inhibition of lncEPS by TLR4/NF-κB pathway induces ventilator-induced lung injury by decreasing its binding to and upregulating Hspa5. Int J Biol Macromol 2025; 286:138238. [PMID: 39617220 DOI: 10.1016/j.ijbiomac.2024.138238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Whether LincRNA erythroid prosurvival (LncEPS) reduces VILI remains unclear. A GSE200932 microarray was used to screen differentially expressed genes (DEGs). A VILI mouse model was constructed by mechanical ventilation (MV), with or without TAK242 or SN50 pretreatment. Airway transfection with adeno-associated virus (AAV) was used to overexpress lncEPS in alveolar macrophages (AMs). Lung tissues were collected to assess pathological injury and macrophage polarization. NLRP3 inflammasome, TLR4/NF-κB pathway activation and heat shock protein family A member 5 (Hspa5) in lung tissue and AMs wre evaluated. LncEPS localization and regulatory changes were assessed using in situ hybridization and RT-PCR. Lung tissues after lncEPS overexpression were subjected to transcriptomics. Chromatin isolation and mass spectrometry (MS) were performed to identify proteins interacting with lncEPS. GSE200932 microarray showed that the DEGs were related to NF-κB pathway, Toll-like receptor pathway and NOD-like receptor pathway. TAK242 or SN50 treatment increased polarization of M2 macrophages and decreased NLRP3 inflammasome activation by inhibiting TLR4/NF-κB pathway in VILI. Inhibition of TLR4/NF-κB pathway upregulated lncEPS expression in AMs. Overexpression of lncEPS increased polarization of M2 macrophages and decreased NLRP3 inflammasome activation, eventually alleviating VILI in mice. Mechanistically, lncEPS bound to Hspa5 and downregulated its expression to inhibit inflammatory response.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Peking Union Medical College, Chinese Academy of Medical Sciences, No 9, Dongdan Santiao, Dongcheng District, Beijing 100730, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China
| | - Zhijiang Qi
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China
| | - Yu Bai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Peking Union Medical College, Chinese Academy of Medical Sciences, No 9, Dongdan Santiao, Dongcheng District, Beijing 100730, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China.
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Peking Union Medical College, Chinese Academy of Medical Sciences, No 9, Dongdan Santiao, Dongcheng District, Beijing 100730, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China.
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China; WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
9
|
Brettner FEB, Gier S, Haessler A, Schreiner J, Vogel-Kindgen S, Windbergs M. Anti-inflammatory effects of cyclodextrin nanoparticles enable macrophage repolarization and reduce inflammation. DISCOVER NANO 2024; 19:211. [PMID: 39707045 DOI: 10.1186/s11671-024-04175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Inflammation plays a critical role in the pathophysiology of many diseases, and dysregulation of the involved signaling cascades often culminates in uncontrollable disease progression and, ultimately, chronic manifestation. Addressing these disorders requires balancing inflammation control while preserving essential immune functions. Cyclodextrins (CDs), particularly β-CD, have gained attention as biocompatible biomaterials with intrinsic anti-inflammatory properties, and chemical modification of their backbone offers a promising strategy to enhance their physicochemical properties, adaptability, and therapeutic potential. This study evaluated and characterized the immunomodulatory effects of amphiphilic CD derivatives, which self-assemble into nanoparticles, compared to soluble parent β-CD. In a human macrophage model, CD nanoparticles demonstrated superior anti-inflammatory activity, with derivative-specific effects tied to their physicochemical properties, surpassing the soluble β-CD control. Alongside the downregulation of key pro-inflammatory markers, significant reductions in inflammasome activation and changes in lipid profiles were observed. The findings of this study underscore the potential of cyclodextrin-based nanoparticles as versatile biomaterials for treating the complex pathophysiology of various acute and chronic inflammation-associated disorders.
Collapse
Affiliation(s)
- Felix E B Brettner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Stefanie Gier
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Annika Haessler
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Chuang DM, Wei H. Intranasal Delivery of Lithium Salt Suppresses Inflammatory Pyroptosis in the brain and Ameliorates Memory Loss and Depression-like Behavior in 5XFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613794. [PMID: 39345574 PMCID: PMC11430220 DOI: 10.1101/2024.09.18.613794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Alzheimer's disease (AD) is a devastating neurodegenerative disease (AD) and has no treatment that can cure or halt the disease progression. This study explored the therapeutic potential of lithium salt dissolved in Ryanodex formulation vehicle (RFV) and delivered to the brain by intranasal application. We first compared lithium concentrations in the brain and blood of wild-type mice following intranasal or oral administration of lithium chloride (LiCl) dissolved in either RFV or water. The beneficial and side effects of intranasal versus oral LiCl in RFV in these mice were assessed and potential mechanisms underlying the efficacy of anti-inflammation and anti-pyroptosis in the brains were also investigated in both wild-type (WT) and 5XFAD Alzheimer's Disease (AD) mice brains. Methods For the study of brain versus blood lithium concentrations, WT B6SJLF1/J mice at 2 months of age were treated with intranasal or oral LiCl (3 mmol/kg) dissolved in RFV or in water. Brain and blood lithium concentrations were measured at various times after drugs administration. Brain/blood lithium concentration ratios were then determined. For studying therapeutic efficacy versus side effects and their underlying mechanisms, 5XFAD and WT B6SJLF1/J mice were treated with intranasal LiCl (3 mmol/kg) daily, Monday to Friday each week, in RFV beginning at 2 or 9 months of age with a 12-week treatment duration. Animal behaviors were assessed for depression (tail suspension), cognition (fear conditioning and Y maze), olfaction (buried food test), and motor functions (rotarod) at the age of 5 and 12 months. Blood and brain tissue were harvested from these mice at 13 months. Blood biomarkers for the functions of thyroid (thyroid stimulating hormone, TSH) and kidney (creatinine) were measured using ELISA. Changes in protein expression levels of the endoplasmic reticulum Ca2+ release channels type 1 InsP3 receptors (InsP3R-1), malondialdehyde (MDA)-modified proteins and 4-hydroxy-2-nonenal (4-HNE), pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, N-terminal of Gasdermin D (GSDMD)), cytotoxic (IL-1β, IL-18, IL-6, TNF-α) and cytoprotective (IL-10) cytokines and synapse proteins (PSD-95, synapsin-1) were determined using immunoblotting. Mouse body weights were monitored regularly. Results Compared to oral LiCl in RFV nanoparticles, intranasal treatment of WT mice with LiCl in RFV markedly decreased blood concentrations at the time frame of 30-120 minutes. The ratio of brain/blood lithium concentration after Intranasal lithium chloride in RFV significantly increased, in comparison to those after oral administration lithium chloride in RFV or intranasal administration of lithium chloride in water. Intranasal lithium chloride in RFV inhibited both memory loss and depressive behavior in adult and aged 5XFAD mice. Additionally intranasal treatment of aged 5XFAD mice with LiCl in RFV effectively suppressed the increases in InsP3R-1, intracellular oxidative stress markers (4-HNE-bound and MDA-modified proteins), pyroptosis activation proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD) and cytotoxic cytokines (IL-1β, IL-6, TNF-α), but reversed the down-regulation of cytoprotective cytokine IL-10. Intranasal LiCl in RFV also alleviated the loss of the postsynaptic synapse protein PSD-95, but not synapsin-1, in aged 5XFAD mice. Blood level of the kidney function marker creatinine was significantly increased in 5XFAD than in WT mice in an age-dependent manner and this elevation was abolished by intranasal delivery of LiCl in RFV. Intranasal LiCl in RFV for 12 weeks in both WT or 5XFAD mice did not affect blood biomarkers for thyroid function, nor did it affect smell or muscle function or body weight. Conclusion Intranasal administration of LiCl in RFV significantly decreased lithium blood concentrations and increased brain/blood lithium concentration ratio, in comparison to its oral administration. Intranasal administration of LiCl in RFV robustly protected against both memory loss and depressive-like behavior, while had no side effects concerning thyroid and kidney toxicity in 5XFAD mice. These lithium-induced beneficial effects were strongly associated with lithium's suppression of InsP3R-1 Ca2+ channel receptor increase, pathological neuroinflammation and activation of the pyroptosis pathway, as well as the loss of some synaptic proteins. Intranasal delivery of lithium salt in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and serve as a new treatment for both AD-associated dementia and depression with minimal unwanted side effects including peripheral organ toxicity.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Bailin Jiang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China
| | - Robert Vera
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Rebecca Chae
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Kyulee Kim
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Lauren St. Louis
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Ying Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jia Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, P. R. China
| | - De-Maw Chuang
- Scientist Emeritus, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
11
|
Wang Y, Gao S, Gao S, Li N, Huang H, Liu X, Yao H, Shen X. Pigment epithelium-derived factor exerts neuroprotection in oxygen-induced retinopathy by targeting endoplasmic reticulum stress and oxidative stress. Exp Eye Res 2024; 249:110147. [PMID: 39510404 DOI: 10.1016/j.exer.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress have been involved in the occurrence of neuronal apoptosis in ischemic retinopathy. Pigment epitheliu-derived factor (PEDF) is well known for its multifunctional properties, including neuroprotection, anti-inflammation and antioxidant. However, the association between PEDF and ER stress or oxidative stress in ischemic retinopathy remain incompletely understood. In this study, the concentration of the key factor of ER stress C/EBP homologous protein (CHOP) in aqueous humor (AqH) and vitreous samples of proliferative diabetic retinopathy (PDR) patients were measured by ELISA assays. Oxygen-induced retinopathy (OIR) mice model was established and PEDF intravitreal injections were conducted. Primary bone marrow derived macrophages (BMDMs) were isolated and cultured under hypoxic conditions in vitro. Western blotting, real-time RT-PCR, immunofluorescence, transmission electron microscopy (TEM), TUNEL assays were performed to explore roles of PEDF on ER stress and oxidative stress, as well as subsequently neuronal apoptosis under hypoxic conditions in vivo and in vitro. The results revealed that ER stress and oxidative stress were notably activated under hypoxic conditions. We also observed that hypoxia evoked ultrastructural damage of ER and mitochondrion in the retina. However, PEDF significantly prevented ER stress and oxidative stress, as well as the damage of ultrastructure, resulting in diminution of photoreceptor apoptosis in OIR retinas. These results indicate that PEDF may play its neuroprotection role through inhibiting ER stress and oxidative stress in ischemic retinopathy, which is a novel molecular mechanism of PEDF protecting photoreceptors from ischemic damage, thereby suggesting that PEDF is an effective therapeutic agent for the treatment of neuron damage in ischemic retinal diseases.
Collapse
Affiliation(s)
- Ya'nuo Wang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hanwen Huang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiping Yao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Ophthalmology, Ruijin Hospital, Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
13
|
Liu J, Zhang Z, Zhong S, Zhang X, Yang J, Zhou Q, Wang D, Chang X, Wang H. Fecal microbiome transplantation alleviates manganese-induced neurotoxicity by altering the composition and function of the gut microbiota via the cGAS-STING/NLRP3 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175681. [PMID: 39173756 DOI: 10.1016/j.scitotenv.2024.175681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Manganese (Mn) is an environmental pollutant, and overexposure can cause neurodegenerative disorders similar to Alzheimer's disease and Parkinson's disease that are characterized by β-amyloid (Aβ) overexpression, Tau hyperphosphorylation and neuroinflammation. However, the mechanisms of Mn neurotoxicity are not clearly defined. In our study, a knockout mouse model of Mn exposure combined with gut flora-induced neurotoxicity was constructed to investigate the effect of gut flora on Mn neurotoxicity. The results showed that the levels of Tau, p-Tau and Aβ in the hippocampus of C57BL/6 mice were greater than those in the hippocampus of control mice after 5 weeks of continuous exposure to manganese chloride (Mn content of 200 mg/L). Transplanted normal and healthy fecal microbiota from mice significantly downregulated Tau, p-Tau and Aβ expression and ameliorated brain pathology. Moreover, Mn exposure activated the cGAS-STING pathway and altered the cecal microbiota profile, characterized by an increase in Clostridiales, Pseudoflavonifractor, Ligilactobacillus and Desulfovibrio, and a decrease in Anaerotruncus, Eubacterium_ruminantium_group, Fusimonas and Firmicutes, While fecal microbiome transplantation (FMT) treatment inhibited this pathway and restored the microbiota profile. FMT alleviated Mn exposure-induced neurotoxicity by inhibiting activation of the NLRP3 inflammasome triggered by overactivation of the cGAS-STING pathway. Deletion of the cGAS and STING genes and FMT altered the gut microbiota composition and its predictive function. Phenotypic prediction revealed that FMT markedly decreased the abundances of anaerobic and stress-tolerant bacteria and significantly increased the abundances of facultative anaerobic bacteria and biofilm-forming bacteria after blocking the cGAS-STING pathway compared to the Mn-exposed group. FMT from normal and healthy mice ameliorated the neurotoxicity of Mn exposure, possibly through alterations in the composition and function of the microbiome associated with the cGAS-STING/NLRP3 pathway. This study provides a prospective direction for future research on the mechanism of Mn neurotoxicity.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
14
|
Huo M, Guo W, Ding L. Benidipine Hydrochloride Inhibits NLRP3 Inflammasome Activation by Inhibiting LPS-Induced NF-κB Signaling in THP-1 Macrophages. J Inflamm Res 2024; 17:6307-6316. [PMID: 39281771 PMCID: PMC11402351 DOI: 10.2147/jir.s467796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction NLRP3, ASC, and procaspase-1 form the multiprotein complex known as the NLRP3 inflammasome. Following the priming of NLRP3 by TLR4 ligand, the activation of the NLRP3 inflammasome causes caspase-1 maturation, which results in the release of IL-1β. Calcium channel antagonists are commonly employed as antihypertensive medications and have anti-inflammatory properties through the inhibition of cytokine release, specifically IL-1β. The impact of calcium channel antagonists on NLRP3 inflammasomes, however, has not been well studied. This study aimed to investigate the effect of the calcium channel blocker benidipine hydrochloride on LPS-induced NLRP3 inflammasome activation in THP-1 macrophages and its possible mechanism. Methods Firstly, the cytotoxicity of benidipine hydrochloride was determined by MTT. The effect of benidipine hydrochloride on LPS-induced IL-1β release was determined by ELISA. Then, the effect of benidipine hydrochloride on the expression of IL-1β, NLRP3, ASC, and Caspase-1 induced by LPS was determined by QPCR, and the expression of IL-1β, GSDMD, Caspase-1, and their active forms was determined by Western blot, and the activation of NF-κB was determined by Western blot and immunofluorescence. Finally, the production of ROS was determined by flow cytometry and fluorescence microscopy. Results Benidipine hydrochloride was found to drastically lower the expression of NLRP3, ASC, and caspase 1, which in turn decreased the amount of IL-1β secreted by THP-1 macrophages. Benidipine hydrochloride dramatically reduced the phosphorylation level of NF-κB p65 and its nuclear translocation in THP-1 macrophages. Furthermore, benidipine hydrochloride significantly decreased the generation of ROS. Discussion Based on these results, we deduced that benidipine hydrochloride prevents ROS formation in THP-1 macrophages and LPS-induced NF-κB signaling, which in turn prevents the activation of NLRP3 inflammasomes and the release of IL-1β.
Collapse
Affiliation(s)
- Mengmeng Huo
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, People's Republic of China
| | - Wanying Guo
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, People's Republic of China
| | - Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, People's Republic of China
| |
Collapse
|
15
|
Wang QY, Yu XF, Ji WL. Repression of BRD4 mitigates NLRP3 inflammasome-mediated pyroptosis in Mycobacterium-infected macrophages by repressing endoplasmic reticulum stress. Tuberculosis (Edinb) 2024; 148:102542. [PMID: 39024987 DOI: 10.1016/j.tube.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Tuberculosis (TB) is the leading cause of human death worldwide due to Mycobacterium tuberculosis (Mtb) infection. Multiple lines of evidences have illuminated the emerging role of NLRP3 inflammasome-mediated pyroptosis in the clearance of pathogenic infection. In the current study, we sought to investigate the functional role and feasible potential mechanism of BRD4 in Mtb-infected macrophages. We observed that BRD4 was distinctly ascended in THP-1 macrophages upon Mtb infection. Functionally, intervention of BRD4 or pretreated with JQ1 obviously restricted Mtb-triggered cell pyroptosis, as evidenced by declination of protein level of the specific pyroptosis markers including Cleaved Caspase 1, gasdermin D (GSDMD-N) and Cleaved-IL-1β. In the meanwhile, disruption of BRD4 or JQ1 application remarkably prohibited excessive inflammatory responses as characterized by reduce the production of the inflammatory factors such as IL-1β and IL-18. Concomitantly, disruption of BRD4 or administrated with JQ1 manifestly repressed Mtb-aroused Nod-like receptor family pyrindomain-containing 3 (NLRP3) inflammasome activation, as witnessed by attenuation of protein levels of NLRP3, Pro-Caspase1 and apoptosis-associated speck-like protein (ASC). The above findings clearly demonstrated that suppression of BRD4 exerted great influence on regulating Mtb-elicited inflammatory response by coordinating NLRP3 inflammasome-mediated pyroptosis. More importantly, perturbation of BRD4 or JQ1 employment notably restrained endoplasmic reticulum (ER) stress triggered by Mtb-infection, as reflected by noticeably lessened the levels of GRP78, CHOP and ATF6. In terms of mechanism, ER stress agonist tunicamycin profoundly abrogated the favorable effects of BRD4 inhibition on Mtb-triggered pyroptosis, inflammation reaction and inflammasome activation. Collectively, these preceding outcomes strongly illuminated that inhibition of BRD4 targeted ER stress to retard NLRP3 inflammasome activation and subsequent cell pyroptosis and prevention of inflammatory response in Mtb-infected macrophages, highlighting that blocking BRD4 might serve as a promising candidate for protection against Mtb-triggered inflammatory injury.
Collapse
Affiliation(s)
- Qi-Yuan Wang
- Department of Fourth Medicine, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, 710100, Shaanxi, PR China
| | - Xiu-Feng Yu
- Department of Fourth Medicine, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, 710100, Shaanxi, PR China
| | - Wen-Lan Ji
- Department of Fourth Medicine, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, 710100, Shaanxi, PR China.
| |
Collapse
|
16
|
Chen H, Chen E, Liu M, Wang J, Yin J, Zhao P, Xu Y. Identification of immune-related endoplasmic reticulum stress genes in proliferative diabetic retinopathy using bioinformatics analysis. Front Endocrinol (Lausanne) 2024; 15:1341206. [PMID: 39280014 PMCID: PMC11392777 DOI: 10.3389/fendo.2024.1341206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Background Proliferative diabetic retinopathy (PDR) is a severe complication of diabetes, and understanding its molecular mechanisms is crucial. Endoplasmic reticulum (ER) stress has been implicated in various diseases, including diabetic complications. This study aims to elucidate ER stress-related biomarkers in PDR, providing insights into the underlying molecular pathways. Methods We analyzed two independent PDR datasets, GSE102485 and GSE60436. The GSE102485 dataset (22 PDR and 3 normal samples) was the primary dataset for comprehensive analyses, including differential expression, functional enrichment, PPI network construction, immune cell infiltration, and drug prediction. The GSE60436 dataset (6 PDR and 3 normal samples) was used for validation. In vitro experiments using human umbilical vein endothelial cells (HUVECs) in a high-glucose environment were conducted to validate key bioinformatics outcomes. Western blotting assessed protein levels of ER stress markers (TRAM1 and TXNIP). Results Differential expression analysis identified 2451 genes, including 328 ER stress-related genes. Functional analysis revealed enrichment in ER stress-related processes and pathways. Hub genes (BCL2, CCL2, IL-1β, TLR4, TNF, TP53) were identified, and immune infiltration analysis showed altered immune cell proportions. Validation in GSE60436 and in vitro confirmed ER stress gene dysregulation. Drug prediction suggested potential small molecules targeting ER stress markers. Conclusion This study provides a comprehensive molecular characterization of ER stress in PDR, highlighting altered biological processes, immune changes, and potential therapeutic targets. The identified hub genes and small molecules offer avenues for further investigation and therapy development, enhancing understanding of PDR pathogenesis and aiding targeted intervention creation.
Collapse
Affiliation(s)
- Han Chen
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enguang Chen
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miaomiao Liu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhui Wang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Yin
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Yuan C, Yu C, Sun Q, Xiong M, Ren B, Zhong M, Peng Q, Zeng M, Meng P, Li L, Song H. Atractylenolide I Alleviates Indomethacin-Induced Gastric Ulcers in Rats by Inhibiting NLRP3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14165-14176. [PMID: 38872428 DOI: 10.1021/acs.jafc.3c08188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.
Collapse
Affiliation(s)
- Chengzhi Yuan
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chang Yu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qifang Sun
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meng Xiong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Pan Meng
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Li
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
18
|
Zhang X, Huo Z, Jia X, Xiong Y, Li B, Zhang L, Li X, Li X, Fang Y, Dong X, Chen G. (+)-Catechin ameliorates diabetic nephropathy injury by inhibiting endoplasmic reticulum stress-related NLRP3-mediated inflammation. Food Funct 2024; 15:5450-5465. [PMID: 38687305 DOI: 10.1039/d3fo05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Endoplasmic reticulum (ER) stress and chronic sterile inflammation are associated with the pathogenesis of diabetic nephropathy (DN). Catechins are natural polyphenolic compounds found in green tea that possess some health benefits. However, whether (+)-catechin can reduce tubular injury in DN by regulating ER stress and NLRP3-associated inflammation remains uncertain. This study examined the effects of (+)-catechin on streptozotocin (STZ)-induced diabetic mice and on palmitic acid (PA)-treated HK-2 cells. In vivo, a DN mouse model was generated by injecting STZ. The biochemical indicators of serum and urine, as well as renal histopathology and ultrastructure were analysed. To predict the mechanisms associated with (+)-catechin, network pharmacology and molecular docking were used. Finally, quantitative real-time PCR (qPCR), western blot analysis and immunofluorescence analysis were performed to measure the mRNA and protein expressions of specific targets in the renal tissue of DN mice and PA-treated HK-2 cells to validate the predicted results. (+)-Catechin significantly ameliorated renal function and pathological changes associated with tubular injury by inhibiting ER stress by downregulating of GRP78, PEAK, CHOP, ATF6 and XBP1. In addition, (+)-catechin inhibited renal inflammation by suppressing NLRP3 associated inflammation, which was characterized by the downregulation of NLRP3, ASC, AIM2, Caspase1, IL-1β and IL-18 in DN mice and PA-treated HK-2 cells. Collectively, these findings suggested that (+)-catechin exerted a renoprotective effect against DN by inhibiting ER stress and NLRP3-related inflammation to ameliorate tubular injury, suggesting the therapeutic potential of (+)-catechin.
Collapse
Affiliation(s)
- Xiwen Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zhihao Huo
- Guangdong Clinical Research Academy of Chinese Medicine, Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiaotong Jia
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yuanyuan Xiong
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Baohua Li
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangyou Zhang
- Guangdong Clinical Research Academy of Chinese Medicine, Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xin Li
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Xianhong Li
- Guangdong Clinical Research Academy of Chinese Medicine, Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yinrui Fang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xin Dong
- Guangdong Clinical Research Academy of Chinese Medicine, Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Gangyi Chen
- Guangdong Clinical Research Academy of Chinese Medicine, Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Zhong Y, Li XY, Liang TJ, Ding BZ, Ma KX, Ren WX, Liang WJ. Effects of NLRP3 Inflammasome Mediated Pyroptosis on Cardiovascular Diseases and Intervention Mechanism of Chinese Medicine. Chin J Integr Med 2024; 30:468-479. [PMID: 38329654 DOI: 10.1007/s11655-024-3655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/09/2024]
Abstract
Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathway is an important mechanism underlying myocardial pyroptosis and plays an important role in inflammatory damage to myocardial tissue in patients with cardiovascular diseases (CVDs), such as diabetic cardiomyopathy, ischemia/reperfusion injury, myocardial infarction, heart failure and hypertension. Noncoding RNAs (ncRNAs) are important regulatory factors. Many Chinese medicine (CM) compounds, including their effective components, can regulate pyroptosis and exert myocardium-protecting effects. The mechanisms underlying this protection include inhibition of inflammasome protein expression, Toll-like receptor 4-NF-κB signal pathway activation, oxidative stress, endoplasmic reticulum stress (ERS), and mixed lineage kinase 3 expression and the regulation of silent information regulator 1. The NLRP3 protein is an important regulatory target for CVD prevention and treatment with CM. Exploring the effects of the interventions mediated by CM and the related mechanisms provides new ideas and perspectives for CVD prevention and treatment.
Collapse
Affiliation(s)
- Yi Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Liver and Kidney Diseases, Institute of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050200, China
- Department of Cardiovascular Internal Medicine, the Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, 332000, China
| | - Xin-Yue Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tian-Jun Liang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bao-Zhu Ding
- Rural Physician College, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ke-Xin Ma
- Medical Department, the First Hospital of Hebei Medical University, Shijiazhuang, 050030, China
| | - Wen-Xuan Ren
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wen-Jie Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Liver and Kidney Diseases, Institute of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
20
|
Correia da Silva D, Valentão P, Pereira DM. Naturally occurring small molecules with dual effect upon inflammatory signaling pathways and endoplasmic reticulum stress response. J Physiol Biochem 2024; 80:421-437. [PMID: 38502466 DOI: 10.1007/s13105-024-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
The endoplasmic reticulum (ER) is determinant to maintain cellular proteostasis. Upon unresolved ER stress, this organelle activates the unfolded protein response (UPR). Sustained UPR activates is known to occur in inflammatory processes, deeming the ER a potential molecular target for the treatment of inflammation. This work characterizes the inflammatory/UPR-related molecular machinery modulated by an in-house library of natural products, aiming to pave the way for the development of new selective drugs that act upon the ER to counter inflammation-related chronic diseases. Starting from a library of 134 compounds of natural occurrence, mostly occurring in medicinal plants, nontoxic molecules were screened for their inhibitory capacity against LPS-induced nuclear factor kappa B (NF-κB) activation in a luciferase-based reporter gene assay. Since several natural products inhibited NF-κB expression in THP-1 macrophages, their effect on reactive oxygen species (ROS) production and inflammasome activation was assessed, as well as their transcriptional outcome regarding ER stress. The bioactivities of several natural products are described herein for the first time. We report the anti-inflammatory potential of guaiazulene and describe 5-deoxykaempferol as a novel inhibitor of inflammasome activation. Furthermore, we describe the dual potential of 5-deoxykaempferol, berberine, guaiazulene, luteolin-4'-O-glucoside, myricetin, quercetagetin and sennoside B to modulate inflammatory signaling ER stress. Our results show that natural products are promising molecules for the discovery and pharmaceutical development of chemical entities able to modulate the inflammatory response, as well as proteostasis and the UPR.
Collapse
Affiliation(s)
- Daniela Correia da Silva
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, Nº 228, 4050-213, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, Nº 228, 4050-213, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, Nº 228, 4050-213, Porto, Portugal.
| |
Collapse
|
21
|
Ding P, Song Y, Yang Y, Zeng C. NLRP3 inflammasome and pyroptosis in cardiovascular diseases and exercise intervention. Front Pharmacol 2024; 15:1368835. [PMID: 38681198 PMCID: PMC11045953 DOI: 10.3389/fphar.2024.1368835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that possesses NACHT, leucine-rich repeat, and pyrin domain, playing a crucial role in innate immunity. Activation of the NLRP3 inflammasome leads to the production of pro-inflammatory cellular contents, such as interleukin (IL)-1β and IL-18, and induction of inflammatory cell death known as pyroptosis, thereby amplifying or sustaining inflammation. While a balanced inflammatory response is beneficial for resolving damage and promoting tissue healing, excessive activation of the NLRP3 inflammasome and pyroptosis can have harmful effects. The involvement of the NLRP3 inflammasome has been observed in various cardiovascular diseases (CVD). Indeed, the NLRP3 inflammasome and its associated pyroptosis are closely linked to key cardiovascular risk factors including hyperlipidemia, diabetes, hypertension, obesity, and hyperhomocysteinemia. Exercise compared with medicine is a highly effective measure for both preventing and treating CVD. Interestingly, emerging evidence suggests that exercise improves CVD and inhibits the activity of NLRP3 inflammasome and pyroptosis. In this review, the activation mechanisms of the NLRP3 inflammasome and its pathogenic role in CVD are critically discussed. Importantly, the purpose is to emphasize the crucial role of exercise in managing CVD by suppressing NLRP3 inflammasome activity and proposes it as the foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Ping Ding
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanming Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Yang
- Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, China
| | - Cheng Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
22
|
Lee S, Yun S, Yang H, Lee N, Kim Y, Lee S, Zamora NA, Montero SS, Yi DK, Kim SY, Choi S, Choi T, Kim MS, Lee Y, Park YH. Guarea microcarpa C. DC. extract inhibits NLRP3 inflammasome by suppressing its ATPase activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117711. [PMID: 38176663 DOI: 10.1016/j.jep.2024.117711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guarea genus comprises tropical and subtropical terrestrial herbs inhabiting Central and South America. These plants, including Guarea guidonia (L.) Sleumer, have anti-inflammatory, analgesic, antibacterial, antiviral, and immune-enhancing properties. AIM OF THE STUDY Although various species of the Guarea genus are known for their medicinal properties, comprehensive data on their anti-inflammatory effects remain limited. Therefore, we investigated the NLRP3 inflammasome-inhibiting effects of the Guarea genus in this study. MATERIALS AND METHODS To evaluate the anti-inflammatory activities of 18 members of the Guarea genus, we treated NLRP3 inflammasome activators with their extracts in LPS-primed J774A.1 and THP-1 cells. Cell viability was determined by water soluble tetrazolium salt (WST) and cytokine production, protein expression, and nuclear fractionation were determined by western blotting. Reactive oxygen species (ROS) production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization were measured using confocal microscopic analysis. Inflammation-induced zebrafish was used in the in vivo experiments. RESULTS Among the 18 Guarea members tested, Guarea microcarpa C. DC. extract (GM) exhibited no cytotoxicity and specifically suppressed the activation of the NLRP3 inflammasome, but not of the AIM2 or NLRC4 inflammasomes, by inhibiting the ATPase activity of NLRP3. This was achieved without affecting NF-κB signaling, potassium efflux, or intracellular ROS production, all of which are involved in NLRP3 activation. The reduced ATPase activity of NLRP3 led to decreased ASC oligomerization. Furthermore, GM exhibited anti-inflammatory effects in vivo. Additionally, GM treatment alleviated inflammation at the organismal level in an LPS-induced inflammation model using zebrafish embryos. CONCLUSION Our results demonstrate the anti-inflammatory effects of GM via suppressing the NLRP3 inflammasome. Therefore, GM can be a potential therapeutic candidate for various inflammatory diseases caused by aberrant NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Sojung Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea.
| | - Sojin Yun
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul, 05278, Republic of Korea.
| | - Hyeyun Yang
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea.
| | - Nahyun Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| | - YeJi Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea.
| | - Sumin Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea.
| | - Nelson A Zamora
- Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, 22-3100, Costa Rica.
| | - Silvia Soto Montero
- Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, 22-3100, Costa Rica.
| | - Dong-Keun Yi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Taesoo Choi
- Department of Urology, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| | - Man S Kim
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
23
|
Li F, Guan Z, Gao Y, Bai Y, Zhan X, Ji X, Xu J, Zhou H, Rao Z. ER stress promotes mitochondrial calcium overload and activates the ROS/NLRP3 axis to mediate fatty liver ischemic injury. Hepatol Commun 2024; 8:e0399. [PMID: 38497930 PMCID: PMC10948136 DOI: 10.1097/hc9.0000000000000399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Fatty livers are widely accepted as marginal donors for liver transplantation but are more susceptible to liver ischemia and reperfusion (IR) injury. Increased macrophage-related inflammation plays an important role in the aggravation of fatty liver IR injury. Here, we investigate the precise mechanism by which endoplasmic reticulum (ER) stress activates macrophage NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) signaling by regulating mitochondrial calcium overload in fatty liver IR. METHODS Control- and high-fat diet-fed mice were subjected to a partial liver IR model. The ER stress, mitochondrial calcium levels, and NLRP3 signaling pathway in macrophages were analyzed. RESULTS Liver steatosis exacerbated liver inflammation and IR injury and enhanced NLRP3 activation in macrophages. Myeloid NLRP3 deficiency attenuated intrahepatic inflammation and fatty liver injury following IR. Mechanistically, increased ER stress and mitochondrial calcium overload were observed in macrophages obtained from mouse fatty livers after IR. Suppression of ER stress by tauroursodeoxycholic acid effectively downregulated mitochondrial calcium accumulation and suppressed NLRP3 activation in macrophages, leading to decreased inflammatory IR injury in fatty livers. Moreover, Xestospongin-C-mediated inhibition of mitochondrial calcium influx decreased reactive oxygen species (ROS) expression in macrophages after IR. Scavenging of mitochondrial ROS by mito-TEMPO suppressed macrophage NLRP3 activation and IR injury in fatty livers, indicating that excessive mitochondrial ROS production was responsible for macrophage NLRP3 activation induced by mitochondrial calcium overload. Patients with fatty liver also exhibited upregulated activation of NLRP3 and the ER stress signaling pathway after IR. CONCLUSIONS Our findings suggest that ER stress promotes mitochondrial calcium overload to activate ROS/NLRP3 signaling pathways within macrophages during IR-stimulated inflammatory responses associated with fatty livers.
Collapse
Affiliation(s)
- Fei Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhu Guan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiyun Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Yan Bai
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Zhan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xingyue Ji
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Zhuqing Rao
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Que X, Zheng S, Song Q, Pei H, Zhang P. Fantastic voyage: The journey of NLRP3 inflammasome activation. Genes Dis 2024; 11:819-829. [PMID: 37692521 PMCID: PMC10491867 DOI: 10.1016/j.gendis.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/07/2023] [Indexed: 09/12/2023] Open
Abstract
NLRP3 inflammasome, an intracellular multiprotein complex, can be activated by a range of pathogenic microbes or endogenous hazardous chemicals. Its activation results in the release of cytokines such as IL-1β and IL-18, as well as Gasdermin D which eventually causes pyroptosis. The activation of NLRP3 inflammasome is under strict control and regulation by numerous pathways and mechanisms. Its excessive activation can lead to a persistent inflammatory response, which is linked to the onset and progression of severe illnesses. Recent studies have revealed that the subcellular localization of NLRP3 changes significantly during the activation process. In this review, we review the current understanding of the molecular mechanism of NLRP3 inflammasome activation, focusing on the subcellular localization of NLRP3 and the associated regulatory mechanisms. We aim to provide a comprehensive understanding of the dynamic transportation, activation, and degradation processes of NLRP3.
Collapse
Affiliation(s)
- Xiangyong Que
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
25
|
Cheng C, Yuan Y, Yuan F, Li X. Acute kidney injury: exploring endoplasmic reticulum stress-mediated cell death. Front Pharmacol 2024; 15:1308733. [PMID: 38434710 PMCID: PMC10905268 DOI: 10.3389/fphar.2024.1308733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is a global health problem, given its substantial morbidity and mortality rates. A better understanding of the mechanisms and factors contributing to AKI has the potential to guide interventions aimed at mitigating the risk of AKI and its subsequent unfavorable outcomes. Endoplasmic reticulum stress (ERS) is an intrinsic protective mechanism against external stressors. ERS occurs when the endoplasmic reticulum (ER) cannot deal with accumulated misfolded proteins completely. Excess ERS can eventually cause pathological reactions, triggering various programmed cell death (autophagy, ferroptosis, apoptosis, pyroptosis). This article provides an overview of the latest research progress in deciphering the interaction between ERS and different programmed cell death. Additionally, the report consolidates insights into the roles of ERS in AKI and highlights the potential avenues for targeting ERS as a treatment direction toward for AKI.
Collapse
Affiliation(s)
- Cong Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Emergency, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| |
Collapse
|
26
|
Mazzarda F, Chittams-Miles AE, Pittaluga J, Sözer EB, Vernier PT, Muratori C. Inflammasome Activation and IL-1β Release Triggered by Nanosecond Pulsed Electric Fields in Murine Innate Immune Cells and Skin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:335-345. [PMID: 38047899 PMCID: PMC10752860 DOI: 10.4049/jimmunol.2200881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Although electric field-induced cell membrane permeabilization (electroporation) is used in a wide range of clinical applications from cancer therapy to cardiac ablation, the cellular- and molecular-level details of the processes that determine the success or failure of these treatments are poorly understood. Nanosecond pulsed electric field (nsPEF)-based tumor therapies are known to have an immune component, but whether and how immune cells sense the electroporative damage and respond to it have not been demonstrated. Damage- and pathogen-associated stresses drive inflammation via activation of cytosolic multiprotein platforms known as inflammasomes. The assembly of inflammasome complexes triggers caspase-1-dependent secretion of IL-1β and in many settings a form of cell death called pyroptosis. In this study we tested the hypothesis that the nsPEF damage is sensed intracellularly by the NLRP3 inflammasome. We found that 200-ns PEFs induced aggregation of the inflammasome adaptor protein ASC, activation of caspase-1, and triggered IL-1β release in multiple innate immune cell types (J774A.1 macrophages, bone marrow-derived macrophages, and dendritic cells) and in vivo in mouse skin. Efflux of potassium from the permeabilized cell plasma membrane was partially responsible for nsPEF-induced inflammasome activation. Based on results from experiments using both the NRLP3-specific inhibitor MCC950 and NLRP3 knockout cells, we propose that the damage created by nsPEFs generates a set of stimuli for the inflammasome and that more than one sensor can drive IL-1β release in response to electrical pulse stimulation. This study shows, to our knowledge, for the first time, that PEFs activate the inflammasome, suggesting that this pathway alarms the immune system after treatment.
Collapse
Affiliation(s)
- Flavia Mazzarda
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | | | - Julia Pittaluga
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Esin B. Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - P. Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA
| |
Collapse
|
27
|
Li L, Wei XF, Yang ZY, Zhu R, Li DL, Shang GJ, Wang HT, Meng ST, Wang YT, Liu SY, Wu LF. Alleviative effect of poly-β-hydroxybutyrate on lipopolysaccharide-induced oxidative stress, inflammation and cell apoptosis in Cyprinus carpio. Int J Biol Macromol 2023; 253:126784. [PMID: 37690640 DOI: 10.1016/j.ijbiomac.2023.126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
In this study, the alleviative effects of poly-β-hydroxybutyrate (PHB) in bioflocs on oxidative stress, inflammation and apoptosis of common carp (Cyprinus carpio) induced by lipopolysaccharide (LPS) were evaluated. Common carp were irregularity divided into 5 groups and fed five diets with 0 % (CK), 2 %, 4 %, 6 % and 8 % PHB. After 8-week feeding trial, LPS challenge was executed. Results showed that appropriate level of PHB enhanced serum immune function by reversing LPS-induced the decrease of C3, C4, IgM, AKP, ACP and LZM in serum, alleviated LPS-induced intestinal barrier dysfunction by decreasing the levels of 5-HT, D-LA, ET-1 and DAO in serum, increasing ZO-1, Occludin, Claudin-3 and Claudin-7 mRNA, improving intestinal morphology. Moreover, dietary PHB reversed LPS-induced the decrease of AST and ALT in hepatopancreas, while in serum exhibited the opposite trend. Suitable level of PHB reversed LPS-induced the reduction of GSH-PX, CAT, T-SOD and T-AOC in intestines and hepatopancreas, whereas MDA showed the opposite result. PHB alleviated LPS-induced the decrease of Nrf2, HO-1, CAT, SOD and GSH-PX mRNA, the increase of Keap1 mRNA. Appropriate level of PHB alleviated LPS-induced inflammation and apoptosis by up-regulating TGF-β, IL-10 and Bcl-2 mRNA, down-regulating NF-κB, TNF-α, IL-6, Bax, Caspase-3, Caspase-8 and Caspase-9 mRNA. Furthermore, PHB inhibited activation of NLRP3 inflammasomes by reducing the levels of NLRP3, Caspase-1, ASC, IL-1β and IL-18 mRNA and protein. In addition, the increases of dietary PHB linearly and quadratically affected LPS-induced adverse effects on common carp. Summary, this study suggested that appropriate level of dietary PHB alleviated LPS-induced oxidative stress, inflammation, apoptosis and the activation of NLRP3 inflammasome in common carp. And the appropriate level of PHB in common carp diets was 4 %.
Collapse
Affiliation(s)
- Liang Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xiao-Fang Wei
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Zhi-Yong Yang
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Rui Zhu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Deng-Lai Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Guo-Jun Shang
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Hao-Tong Wang
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Si-Tong Meng
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Yin-Tao Wang
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Si-Ying Liu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Li-Fang Wu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
28
|
Kwak C, Finan GM, Park YR, Garg A, Harari O, Mun JY, Rhee HW, Kim TW. Proximity Proteome Analysis Reveals Novel TREM2 Interactors in the ER-Mitochondria Interface of Human Microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533722. [PMID: 38014048 PMCID: PMC10680561 DOI: 10.1101/2023.03.21.533722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays a central role in microglial biology and the pathogenesis of Alzheimer's disease (AD). Besides DNAX-activating protein 12 (DAP12), a communal adaptor for TREM2 and many other receptors, other cellular interactors of TREM2 remain largely elusive. We employed a 'proximity labeling' approach using a biotin ligase, TurboID, for mapping protein-protein interactions in live mammalian cells. We discovered novel TREM2-proximal proteins with diverse functions, including those localized to the Mitochondria-ER contact sites (MERCs), a dynamic subcellular 'hub' implicated in a number of crucial cell physiology such as lipid metabolism. TREM2 deficiency alters the thickness (inter-organelle distance) of MERCs, a structural parameter of metabolic state, in microglia derived from human induced pluripotent stem cells. Our TurboID-based TREM2 interactome study suggest novel roles for TREM2 in the structural plasticity of the MERCs, raising the possibility that dysregulation of MERC-related TREM2 functions contribute to AD pathobiology.
Collapse
|
29
|
Peng T, Zhang C, Chen WJ, Zhao XF, Wu WB, Yang WJ, Liang RJ. Pyroptosis: the dawn of a new era in endometrial cancer treatment. Front Oncol 2023; 13:1277639. [PMID: 37965452 PMCID: PMC10642841 DOI: 10.3389/fonc.2023.1277639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Endometrial cancer (EC) is a malignancy of the inner epithelial lining of the uterus. While early-stage EC is often curable through surgery, the management of advanced, recurrent and metastatic EC poses significant challenges and is associated with a poor prognosis. Pyroptosis, an emerging form of programmed cell death, is characterized by the cleavage of gasdermin proteins, inducing the formation of extensive gasdermin pores in the cell membrane and the leakage of interleukin-1β (IL-1β) and interleukin-18 (IL-18), consequently causing cell swelling, lysis and death. It has been found to be implicated in the occurrence and progression of almost all tumors. Recent studies have demonstrated that regulating tumor cells pyroptosis can exploit synergies function with traditional tumor treatments. This paper provides an overview of the research progress made in molecular mechanisms of pyroptosis. It then discusses the role of pyroptosis and its components in initiation and progression of endometrial cancer, emphasizing recent insights into the underlying mechanisms and highlighting unresolved questions. Furthermore, it explores the potential value of pyroptosis in the treatment of endometrial cancer, considering its current application in tumor radiotherapy, chemotherapy, targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Tian Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wen-Jun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Bo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Ji Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruo-Jia Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
31
|
Yao Y, Cao Y, Xu Y, Chen G, Liu Y, Jiang H, Fan R, Qin W, Wang X, Chai H, Chen X, Qiu Z, Chen W. CARMA3 Deficiency Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysm Development Interacting Between Endoplasmic Reticulum and Mitochondria. Can J Cardiol 2023; 39:1449-1462. [PMID: 37030515 DOI: 10.1016/j.cjca.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is life threatening and associated with vascular walls' chronic inflammation. However, a detailed understanding of the underlying mechanisms is yet to be elucidated. CARMA3 assembles the CARMA3-BCL10-MALT1 (CBM) complex in inflammatory diseases and is proven to mediate angiotensin II (Ang II) response to inflammatory signals by modulating DNA damage-induced cell pyroptosis. In addition, interaction between endoplasmic reticulum (ER) stress and mitochondrial damage is one of the main causes of cell pyroptosis. METHODS Male wild type (WT) or CARMA3-/- mice aged 8 to 10 weeks were subcutaneously implanted with osmotic minipumps, delivering saline or Ang II at the rate of 1 μg/kg/min for 1, 2, and 4 weeks. RESULTS We discovered that CARMA3 knockout promoted formation of AAA and prominently increased diameter and severity of the mice abdominal aorta infused with Ang II. Moreover, a significant increase in the excretion of inflammatory cytokines, expression levels of matrix metalloproteinases (MMPs) and cell death was found in the aneurysmal aortic wall of CARMA3-/- mice infused with Ang II compared with WT mice. Further studies found that the degree of ER stress and mitochondrial damage in the abdominal aorta of CARMA3-/- mice was more severe than that in WT mice. Mechanistically, CARMA3 deficiency exacerbates the interaction between ER stress and mitochondrial damage by activating the p38MAPK pathway, ultimately contributing to the pyroptosis of vascular smooth muscle cells (VSMCs). CONCLUSIONS CARMA3 appears to play a key role in AAA formation and might be a potential target for therapeutic interventions of AAA.
Collapse
Affiliation(s)
- Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Fan
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Qin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaodi Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Chai
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
Di Conza G, Ho PC, Cubillos-Ruiz JR, Huang SCC. Control of immune cell function by the unfolded protein response. Nat Rev Immunol 2023; 23:546-562. [PMID: 36755160 DOI: 10.1038/s41577-023-00838-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Initiating and maintaining optimal immune responses requires high levels of protein synthesis, folding, modification and trafficking in leukocytes, which are processes orchestrated by the endoplasmic reticulum. Importantly, diverse extracellular and intracellular conditions can compromise the protein-handling capacity of this organelle, inducing a state of 'endoplasmic reticulum stress' that activates the unfolded protein response (UPR). Emerging evidence shows that physiological or pathological activation of the UPR can have effects on immune cell survival, metabolism, function and fate. In this Review, we discuss the canonical role of the adaptive UPR in immune cells and how dysregulation of this pathway in leukocytes contributes to diverse pathologies such as cancer, autoimmunity and metabolic disorders. Furthermore, we provide an overview as to how pharmacological approaches that modulate the UPR could be harnessed to control or activate immune cell function in disease.
Collapse
Affiliation(s)
- Giusy Di Conza
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
33
|
Han YH, Liu XD, Jin MH, Sun HN, Kwon T. Role of NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflamm Res 2023; 72:1839-1859. [PMID: 37725102 DOI: 10.1007/s00011-023-01790-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases are a common group of neurological disorders characterized by progressive loss of neuronal structure and function leading to cognitive impairment. Recent studies have shown that neuronal pyroptosis mediated by the NLRP3 inflammasome plays a crucial role in the pathogenesis of neurodegenerative diseases. OBJECTIVE AND METHOD The NLRP3 inflammasome is a multiprotein complex that, when activated within cells, triggers an inflammatory response, ultimately leading to pyroptotic cell death of neurons. Pyroptosis is a typical pro-inflammatory programmed cell death process occurring downstream of NLRP3 inflammasome activation, characterized by the formation of pores on the cell membrane by the GSDMD protein, leading to cell lysis and the release of inflammatory factors. It has been found that NLRP3 inflammasome-mediated neuronal pyroptosis is closely associated with the development of various neurodegenerative diseases, such as Alzheimer's disease, traumatic brain injury, and Parkinson's disease. Therefore, inhibiting NLRP3 inflammasome activation and attenuating neuronal pyroptosis could potentially serve as novel strategies for the treatment of neurodegenerative diseases. RESULTS The aim of this review is to explore the role of NLRP3 activation-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Firstly, we extensively discuss the relationship between NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in various neurodegenerative diseases. Subsequently, we further explore the mechanisms driving NLRP3 activation and assembly, as well as the post-translational modifications regulating NLRP3 inflammasome activation. CONCLUSION Understanding these mechanisms will contribute to a deeper understanding of the link between neuronal pyroptosis and neurodegenerative diseases, and hold significant implications for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xiao-Dong Liu
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
34
|
Zhu M, Dagah OMA, Silaa BB, Lu J. Thioredoxin/Glutaredoxin Systems and Gut Microbiota in NAFLD: Interplay, Mechanism, and Therapeutical Potential. Antioxidants (Basel) 2023; 12:1680. [PMID: 37759983 PMCID: PMC10525532 DOI: 10.3390/antiox12091680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common clinical disease, and its pathogenesis is closely linked to oxidative stress and gut microbiota dysbiosis. Recently accumulating evidence indicates that the thioredoxin and glutaredoxin systems, the two thiol-redox dependent antioxidant systems, are the key players in the NAFLD's development and progression. However, the effects of gut microbiota dysbiosis on the liver thiol-redox systems are not well clarified. This review explores the role and mechanisms of oxidative stress induced by bacteria in NAFLD while emphasizing the crucial interplay between gut microbiota dysbiosis and Trx mediated-redox regulation. The paper explores how dysbiosis affects the production of specific gut microbiota metabolites, such as trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), amino acids, bile acid, and alcohol. These metabolites, in turn, significantly impact liver inflammation, lipid metabolism, insulin resistance, and cellular damage through thiol-dependent redox signaling. It suggests that comprehensive approaches targeting both gut microbiota dysbiosis and the thiol-redox antioxidant system are essential for effectively preventing and treating NAFLD. Overall, comprehending the intricate relationship between gut microbiota dysbiosis and thiol-redox systems in NAFLD holds significant promise in enhancing patient outcomes and fostering the development of innovative therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.Z.); (O.M.A.D.); (B.B.S.)
| |
Collapse
|
35
|
Xie Y, Li X, Deng W, Nan N, Zou H, Gong L, Chen M, Yu J, Chen P, Cui D, Zhang F. Knockdown of USF2 inhibits pyroptosis of podocytes and attenuates kidney injury in lupus nephritis. J Mol Histol 2023; 54:313-327. [PMID: 37341818 DOI: 10.1007/s10735-023-10135-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
As an essential factor in the prognosis of Systemic lupus erythematosus (SLE), lupus nephritis (LN) can accelerate the rate at which patients with SLE can transition to chronic kidney disease or even end-stage renal disease (ESRD). Proteinuria due to decreased glomerular filtration rate following podocyte injury is LN's most common clinical manifestation. Podocyte pyroptosis and related inflammatory factors in its process can promote lupus to involve kidney cells and worsen the occurrence and progression of LN, but its regulatory mechanism remains unknown. Accumulating evidence has shown that upstream stimulatory factor 2 (USF2) plays a vital role in the pathophysiology of kidney diseases. In this research, multiple experiments were performed to investigate the role of USF2 in the process of LN. USF2 was abnormally highly expressed in MRL/lpr mice kidney tissues. Renal function impairment and USF2 mRNA levels were positively correlated. Silencing of USF2 in MRL/lpr serum-stimulated cells significantly reduced serum-induced podocyte pyroptosis. USF2 enhanced NLRP3 expression at the transcriptional level. Silencing of USF2 in vivo attenuated kidney injury in MRL/lpr mice, which suggests that USF2 is important for LN development and occurrence.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaoying Li
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Wenli Deng
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Nan Nan
- Department of Pathology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- School of Nursing, Guizhou Medical University, Guiyang, 550025, China
| | - Lei Gong
- Department of Basic Medicine, Qujing Medical College, Qujing, 655000, China
| | - Min Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Jie Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Peilei Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Daolin Cui
- Department of Basic Medicine, Qujing Medical College, Qujing, 655000, China.
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
36
|
Chen Q, He J, Liu H, Huang Q, Wang S, Yin A, Chen S, Shen X, Xiao Y, Hu H, Jiang J, Chen W, Wang S, Huang Z, Li J, Peng Y, Wang X, Yang X, Wang Z, Zhong M. Small extracellular vesicles-transported lncRNA TDRKH-AS1 derived from AOPPs-treated trophoblasts initiates endothelial cells pyroptosis through PDIA4/DDIT4 axis in preeclampsia. J Transl Med 2023; 21:496. [PMID: 37488572 PMCID: PMC10364420 DOI: 10.1186/s12967-023-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Substantial studies have demonstrated that oxidative stress placenta and endothelial injury are considered to inextricably critical events in the pathogenesis of preeclampsia (PE). Systemic inflammatory response and endothelial dysfunction are induced by the circulating factors released from oxidative stress placentae. As a novel biomarker of oxidative stress, advanced oxidation protein products (AOPPs) levels are strongly correlated with PE characteristics. Nevertheless, the molecular mechanism underlying the effect of factors is still largely unknown. METHODS With the exponential knowledge on the importance of placenta-derived extracellular vesicles (pEVs), we carried out lncRNA transcriptome profiling on small EVs (sEVs) secreted from AOPPs-treated trophoblast cells and identified upregulated lncRNA TDRKH-AS1 as a potentially causative factor for PE. We isolated and characterized sEVs from plasma and trophoblast cells by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting. The expression and correlation of lncRNA TDRKH-AS1 were evaluated using qRT-PCR in plasmatic sEVs and placentae from patients. Pregnant mice injected with TDRKH-AS1-riched trophoblast sEVs was performed to detect the TDRKH-AS1 function in vivo. To investigate the potential effect of sEVs-derived TDRKH-AS1 on endothelial function in vitro, transcriptome sequencing, scanning electron Microscopy (SEM), immunofluorescence, ELISA and western blotting were conducted in HUVECs. RNA pulldown, mass spectrometry, RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP) and coimmunoprecipitation (Co-IP) were used to reveal the latent mechanism of TDRKH-AS1 on endothelial injury. RESULTS The expression level of TDRKH-AS1 was significantly increased in plasmatic sEVs and placentae from patients, and elevated TDRKH-AS1 in plasmatic sEVs was positively correlated with clinical severity of the patients. Moreover, pregnant mice injected with TDRKH-AS1-riched trophoblast sEVs exhibited a hallmark feature of PE with increased blood pressure and systemic inflammatory responses. Pyroptosis, an inflammatory form of programmed cell death, is involved in the development of PE. Indeed, our in vitro study indicated that sEVs-derived TDRKH-AS1 secreted from AOPPs-induced trophoblast elevated DDIT4 expression levels to trigger inflammatory response of pyroptosis in endothelial cells through interacting with PDIA4. CONCLUSIONS Herein, results in the present study supported that TDRKH-AS1 in sEVs isolated from oxidative stress trophoblast may be implicated in the pathogenesis of PE via inducing pyroptosis and aggravating endothelial dysfunction.
Collapse
Affiliation(s)
- Qian Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiexing He
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haihua Liu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyu Huang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuoshi Wang
- Department of Obstetrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Ailan Yin
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuying Chen
- Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Xinyang Shen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanxuan Xiao
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haoyue Hu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayi Jiang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqian Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Song Wang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenqin Huang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Li
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - You Peng
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaocong Wang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinping Yang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhijian Wang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
37
|
Li B, Guo J, Zhou X, Li W, Wang N, Cao R, Cui S. The emerging role of pyroptosis in neuropathic pain. Int Immunopharmacol 2023; 121:110562. [PMID: 37364324 DOI: 10.1016/j.intimp.2023.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Neuropathic pain caused by somatosensory system injuries is notoriously difficult to treat. Previous research has shown that neuroinflammation and cell death have been implicated in the pathophysiology of neuropathic pain. Pyroptosis is a form of programmed cell death associated with inflammatory processes, as it can enhance or sustain the inflammatory response by releasing pro-inflammatory cytokines. This review presents the current knowledge on pyroptosis and its underlying mechanisms, including the canonical and noncanonical pathways. Moreover, we discuss recent findings on the role of pyroptosis in neuropathic pain and its potential as a therapeutic target. In conclusion, this review highlights the potential significance of pyroptosis as a promising target for developing innovative therapies to treat neuropathic pain.
Collapse
Affiliation(s)
- Baolong Li
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Jin Guo
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiongyao Zhou
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Ningning Wang
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| |
Collapse
|
38
|
Fu JN, Liu SC, Chen Y, Zhao J, Lu N, Ma T. Forsythiaside A alleviates Lipopolysacchrride-induced acute liver Injury through inhibiting endoplasmic reticulum stress and NLRP3 inflammasome activation. Biol Pharm Bull 2023. [PMID: 37183023 DOI: 10.1248/bpb.b23-00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The liver is the primary site of inflammation caused by bacterial endotoxins in sepsis, and septic acute liver injury (SALI) is usually associated with poor outcomes in sepsis. Forsythiaside A (FTA), an active constituent of Forsythia suspensa, has been reported to have anti-inflammatory properties, antioxidant properties, and protective properties against neuroinflammation, sepsis, and edema.Therefore, the purpose of the present study was to examine FTA's potential effects on lipopolysaccharide (LPS)-induced SALI in mice.Our results indicated that pretreatment with FTA significantly attenuated aspartate aminotransferase (AST) and aminoleucine transferase (ALT) levels in plasma, ameliorated histopathological damage, inhibited hepatocyte apoptosis, diminished the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the liver from mice exposed to LPS. Furthermore, our data showed that the administration of LPS resulted in robust endoplasmic reticulum (ER) stress response, as evidenced by GRP78 upregulation, p-PERK activation, elF2α phosphorylation, and ATF4 and CHOP overexpression in the liver. This, in turn, led to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation, including the cleavage of caspase-1, secretion of IL-1β, and pyroptotic cell death in the liver specimens. Importantly, the ER stress response induced by the LPS challenge was blocked by FTA administration. Correspondingly, NLRP3 inflammasome activation was significantly ameliorated by the pretreatment with FTA. Thus, we demonstrated that FTA pretreatment could protect mice from LPS-induced SALI, and its protective effects were possibly mediated by inhibiting ER stress response and subsequent NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jing-Nan Fu
- Department of General Surgery, Tianjin Medical University General Hospital
- Department of Minimally Invasive Surgery, Characteristics Medical Center of Chinese People Armed Police Force
| | - Shu-Chang Liu
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Yi Chen
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Jie Zhao
- Department of Intensive Care Unit, Tianjin Medical University General Hospital
| | - Ning Lu
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital
| |
Collapse
|
39
|
He W, Hu Z, Zhong Y, Wu C, Li J. The Potential of NLRP3 Inflammasome as a Therapeutic Target in Neurological Diseases. Mol Neurobiol 2023; 60:2520-2538. [PMID: 36680735 DOI: 10.1007/s12035-023-03229-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
NLRP3 (NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is the best-described inflammasome that plays a crucial role in the innate immune system and a wide range of diseases. The intimate association of NLRP3 with neurological disorders, including neurodegenerative diseases and strokes, further emphasizes its prominence as a clinical target for pharmacological intervention. However, after decades of exploration, the mechanism of NLRP3 activation remains indefinite. This review highlights recent advances and gaps in our insights into the regulation of NLRP3 inflammasome. Furthermore, we present several emerging pharmacological approaches of clinical translational potential targeting the NLRP3 inflammasome in neurological diseases. More importantly, despite small-molecule inhibitors of the NLRP3 inflammasome, we have focused explicitly on Chinese herbal medicine and botanical ingredients, which may be splendid therapeutics by inhibiting NLRP3 inflammasome for central nervous system disorders. We expect that we can contribute new perspectives to the treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
40
|
Yang Y, Jiang G, Huang R, Liu Y, Chang X, Fu S. Targeting the NLRP3 inflammasome in diabetic retinopathy: From Pathogenesis to Therapeutic Strategies. Biochem Pharmacol 2023; 212:115569. [PMID: 37100255 DOI: 10.1016/j.bcp.2023.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Diabetic retinopathy (DR) is a common diabetic microvascular complication and the main cause of vision loss in working-aged people. The NLRP3 inflammasome is a cytosolic multimeric complex that plays a significant role in innate immunity. After sensing injury, the NLRP3 inflammasome induces inflammatory mediator secretion and triggers a form of inflammatory cell death known as pyroptosis. Studies over the past five years have shown increased expression of NLRP3 and related inflammatory mediators in vitreous samples from DR patients at different clinical stages. Many NLRP3-targeted inhibitors have shown great antiangiogenic and anti-inflammatory effects in diabetes mellitus models, suggesting that the NLRP3 inflammasome is involved in the progression of DR. This review covers the molecular mechanisms of NLRP3 inflammasome activation. Furthermore, we discuss the implications of the NLRP3 inflammasome in DR, including the induction of pyroptosis and inflammation and the promotion of microangiopathy and retinal neurodegeneration. We also summarize the research progress on targeting the NLRP3 inflammasome in DR therapeutics with the expectation of providing new insights into DR progression and treatment.
Collapse
Affiliation(s)
- Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Gengchen Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Yi Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Songbo Fu
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou, Gansu, The People's Republic of China, 730000; Gansu Province Clinical Research Center for Endocrine Disease, Gansu, The People's Republic of China, 730000.
| |
Collapse
|
41
|
Li L, Ye K, Wang D. Upregulation of HTRA1 mediated by the lncRNA NEAT1/miR-141-3p axis contributes to endometriosis development through activating NLRP3 inflammasome-mediated pyroptotic cell death and cellular inflammation. In Vitro Cell Dev Biol Anim 2023; 59:166-178. [PMID: 37017808 DOI: 10.1007/s11626-023-00760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
The present study identified a novel upstream long chain non-coding (lncRNA) NEAT1/miR-141-3p/HTRA1 axis that regulated the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome to modulate endometriosis (EM) development. Specifically, clinical data suggested that the expression of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), the cleavage of caspase-1 and gasdermin D (GSDMD), and the production of inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-18) were all significantly increased in the ectopic endometrium (EE) tissues, compared to the normal endometrium (NE) tissues. Then, through analyzing the datasets from GEO database (GSE2339, GSE58178, and GSE7305) using the GEO2R bioinformatics tools, we verified that HtrA Serine Peptidase 1 (HTRA1) was especially enriched in the EE tissues compared to the NE tissues. To further confirm the biological functions of HTRA1, HTRA1 was overexpressed or downregulated in primary human endometrial stromal cells (hESCs) isolated from NE tissues or EE tissues, respectively. The results showed that upregulation of HTRA1 activated NLRP3 inflammasome-mediated pyroptotic cell death and cellular inflammation in NE-derived hESCs, whereas silencing of HTRA1 played an opposite role in EE-derived hESCs. In addition, the lncRNA NEAT1/miR-141-3p axis was screened as the upstream regulator of HTRA1. Mechanistically, lncRNA NEAT1 sponged miR-141-3p to positively regulate HTRA1 in a competing endogenous RNA (ceRNA) mechanisms-dependent manner. The recovery experiments in hESCs from NE and EE tissues confirmed that lncRNA NEAT1 overexpression promoted NLRP3 inflammasome-mediated pyroptotic cell death through regulating the miR-141-3p/HTRA1 axis. Taken together, this study firstly uncovered the underlying mechanisms by which a novel lncRNA NEAT1/miR-141-3p/HTRA1-NLRP3 pathway contributed to the development of EM, which provided novel diagnostic and therapeutic biomarkers for this disease.
Collapse
Affiliation(s)
- Lingchuan Li
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Kefan Ye
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Dongjie Wang
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
- Department of Gynaecology, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
42
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
43
|
Crocin Attenuates NLRP3 Inflammasome Activation by Inhibiting Mitochondrial Reactive Oxygen Species and Ameliorates Monosodium Urate-Induced Mouse Peritonitis. Curr Issues Mol Biol 2023; 45:2090-2104. [PMID: 36975504 PMCID: PMC10047758 DOI: 10.3390/cimb45030134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Crocin is a hydrophilic carotenoid pigment found in the stigma of Crocus sativus or the fruit of Gardenia jasminoides. In this study, we investigated the effects of Crocin on the activation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome in J774A.1 murine macrophage cells and monosodium urate (MSU)-induced peritonitis. Crocin significantly inhibited Nigericin-, adenosine triphosphate (ATP)-, MSU-induced interleukin (IL)-1β secretion, and caspase-1 cleavage without affecting pro-IL-1β and pro-caspase-1. Crocin also suppressed gasdermin-D cleavage and lactate dehydrogenase release and enhanced cell viability, indicating that Crocin reduces pyroptosis. Similar effects were observed in primary mouse macrophages. However, Crocin did not affect poly(dA:dT)-induced absent in melanoma 2 (AIM2) and muramyl dipeptide-induced NLRP1 inflammasomes. Crocin decreased Nigericin-induced oligimerization and the speck formation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Crocin also dramatically alleviated the ATP-induced production of mitochondrial reactive oxygen species (mtROS). Finally, Crocin ameliorated the MSU-induced production of IL-1β and IL-18 and the recruitment of neutrophils during peritoneal inflammation. These results suggest that Crocin suppresses NLRP3 inflammasome activation by blocking mtROS production and ameliorates MSU-induced mouse peritonitis. Thus, Crocin may have therapeutic potential in various NLRP3 inflammasome-related inflammatory diseases.
Collapse
|
44
|
Singh S, Sharma A, Ahmad S, Guru B, Gulzar F, Kumar P, Ahmad I, Tamrakar AK. Convergence of Fructose-Induced NLRP3 Activation with Oxidative Stress and ER Stress Leading to Hepatic Steatosis. Inflammation 2023; 46:217-233. [PMID: 35941320 DOI: 10.1007/s10753-022-01727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022]
Abstract
High fructose flux enhances hepatocellular triglyceride accumulation (hepatic steatosis), which is a prime trigger in the emergence of hepatic ailments. Nevertheless, the pathophysiology underlying the process is not completely understood. Emerging evidences have revealed the inputs from multiple cues including inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in the development of hepatic steatosis. Here, we substantiated the role of NLRP3 inflammasome and its convergence with oxidative and ER stress leading to hepatic steatosis under high fructose diet feeding. Male SD rats were fed on 60% high fructose diet (HFrD) for 10 weeks and treated with antioxidant quercetin or NLRP3 inflammasome inhibitor glyburide during the last 6 weeks, followed by metabolic characterization and analysis of hepatic parameters. HFrD-induced hepatic steatosis was associated with the activation of NLRP3 inflammasome, pro-inflammatory response, oxidative, and ER stress in liver. Treatment with quercetin abrogated HFrD-induced oxidative stress, along with attenuation of NLRP3 activation in the liver. On the other hand, inhibition of NLRP3 signaling by glyburide suppressed HFrD-induced oxidative and ER stress. Both glyburide or quercetin treatment significantly attenuated hepatic steatosis, associated with mitigated expression of the lipogenic markers in liver. Our findings verified the association of NLRP3 inflammasome with oxidative and ER stress in fructose-induced lipogenic response and indicate that in addition to be a target of oxidative/ER stress, NLRP3 can act as a trigger for oxidative/ER stress to activate a vicious cycle where these cues act in a complex manner to propagate inflammatory response, leading to hepatic steatosis.
Collapse
Affiliation(s)
- Sushmita Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditya Sharma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhavimani Guru
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ishbal Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sec-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
45
|
Zhu J, Zhou F, Zhou Q, Xu Y, Li Y, Huang D, Chen L, Liu A, Zou F, Meng X. NLRP3 activation in microglia contributes to learning and memory impairment induced by chronic lead exposure in mice. Toxicol Sci 2023; 191:179-191. [PMID: 36308466 DOI: 10.1093/toxsci/kfac115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lead (Pb)-induced microglial activation and neuroinflammation has been considered as one of the main pathological events of Pb neurotoxicity. The NLRP3 inflammasome signaling pathway is a major contributor to the neuroinflammatory process in the central nervous system. However, the relationship between chronic Pb exposure and neurogenic NLRP3 inflammasome is unclear. Therefore, the aim of this study was to characterize the role of NLRP3 inflammasome activation during the chronic Pb exposure using in vitro and in vivo models. Our results showed that chronic Pb exposure induce learning and memory impairment in mice, mainly related to the activation of microglia and NLRP3 inflammasome. This phenomenon was reversed in mice by treating with the NLRP3 inhibitor MCC950 and using NLRP3-/- mice. In addition, Pb caused the activation of NLRP3 inflammasome, the production of mitochondrial ROS (mtROS), and mitochondrial Ca2+ overload in BV2 cells. Amelioration of mtROS abolished Pb-induced NLRP3 inflammasome activation. Moreover, after regulation of Ca2+ redistribution, mtROS and NLRP3 inflammasome activation was restored. In conclusion, NLRP3 inflammasome activation in microglia plays a vital role in Pb neurotoxicity, by a novel mechanism of enhancing mtROS production and Ca2+ redistribution.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fan Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dingbang Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
46
|
Zhang J, Guo J, Yang N, Huang Y, Hu T, Rao C. Endoplasmic reticulum stress-mediated cell death in liver injury. Cell Death Dis 2022; 13:1051. [PMID: 36535923 PMCID: PMC9763476 DOI: 10.1038/s41419-022-05444-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum is an important intracellular organelle that plays an important role in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are induced when the body is exposed to adverse external stimuli. It has been established that ERS can induce different cell death modes, including autophagy, apoptosis, ferroptosis, and pyroptosis, through three major transmembrane receptors on the ER membrane, including inositol requirement enzyme 1α, protein kinase-like endoplasmic reticulum kinase and activating transcription factor 6. These different modes of cell death play an important role in the occurrence and development of various diseases, such as neurodegenerative diseases, inflammation, metabolic diseases, and liver injury. As the largest metabolic organ, the liver is rich in enzymes, carries out different functions such as metabolism and secretion, and is the body's main site of protein synthesis. Accordingly, a well-developed endoplasmic reticulum system is present in hepatocytes to help the liver perform its physiological functions. Current evidence suggests that ERS is closely related to different stages of liver injury, and the death of hepatocytes caused by ERS may be key in liver injury. In addition, an increasing body of evidence suggests that modulating ERS has great potential for treating the liver injury. This article provided a comprehensive overview of the relationship between ERS and four types of cell death. Moreover, we discussed the mechanism of ERS and UPR in different liver injuries and their potential therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Jiafu Guo
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Nannan Yang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Yan Huang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Tingting Hu
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Chaolong Rao
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XState Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| |
Collapse
|
47
|
Li X, Zhang D, Shi H, Jing B, Chen Z, Zheng Y, Chang S, Gao L, Zhao G. Identification of pyroptosis‑related genes in neuropathic pain based on bioinformatics analysis. Exp Ther Med 2022; 25:46. [PMID: 36588812 PMCID: PMC9780700 DOI: 10.3892/etm.2022.11745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
Pyroptosis is defined as inflammation-induced programmed cell death. However, gene expression levels related to pyroptosis and their role in neuropathic pain (NP) remain unclear. The present study aimed to develop and validate an NP-predictive signature based on the genes associated with pyroptosis. Gene expression level profiles were downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis was used to identify the pyroptotic genes most highly associated with NP. NP-related pyroptosis gene signature was constructed using multivariate logistic regression. A rat model of neuropathic pain was established through chronic constriction injury to analyse the inflammatory infiltration and myelin damage around the sciatic nerve, and examine the expression levels of macrophage markers S100 calcium-binding protein β (S100β) and ionized calcium-binding adapter molecule 1 (Iba-1). Finally, flow cytometry analysis was used to examine the lipopolysaccharide (LPS)-induced cell death ratio of RSC96 cells (Schwann cells), while the expression levels of LPS-induced pyroptosis-related genes in RSC96 cells were measured via reverse transcription-quantitative PCR. The results demonstrated that pyroptosis-related genes (gasdermin D, NLR family pyrin domain containing 3, neuronal apoptosis inhibitory protein and NLR family CARD domain containing 4) were identified to increase the risk of NP. NP-related pyroptosis signatures were constructed based on these four genes. Moreover, the high-risk group had a higher level of macrophage infiltration compared with the low-risk group, as determined by the CIBERSORT algorithm. H&E staining results showed that the myelin structure of the sciatic nerve tissue of chronic constriction injury (CCI) rats was destroyed and inflammatory cells infiltrated around neurons. The results of immunohistochemistry showed that compared with in the sham group, the expression levels of Iba-1 and sS100β in the sciatic nerve of the CCI group were increased. Furthermore, the expression levels of cell death and pyroptosis-related genes in Schwann cells induced by LPS were increased compared with in the control group. In conclusion, an NP-related pyroptosis gene signature was constructed based on four pyroptosis-related genes and it was found that the expression of pyroptosis-related genes was upregulated in the early steps of the neuroinflammatory process in RSC96 cells.
Collapse
Affiliation(s)
- Xin Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Huimei Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhenni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yachun Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shiquan Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li Gao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China,Correspondence to: Professor Guoping Zhao or Dr Li Gao, College of Traditional Chinese Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, P.R. China
| | - Guoping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China,Correspondence to: Professor Guoping Zhao or Dr Li Gao, College of Traditional Chinese Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
48
|
Role of Pyroptosis in Intervertebral Disc Degeneration and Its Therapeutic Implications. Biomolecules 2022; 12:biom12121804. [PMID: 36551232 PMCID: PMC9775394 DOI: 10.3390/biom12121804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IDD), a progressive and multifactorial pathological process, is predominantly associated with low back pain and permanent disability. Pyroptosis is a type of lytic programmed cell death triggered by the activation of inflammasomes and caspases. Unlike apoptosis, pyroptosis is characterized by the rupture of the plasma membrane and the release of inflammatory mediators, accelerating the destruction of the extracellular matrix (ECM). Recent studies have shown that pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis in nucleus pulposus (NP) cells is activated in the progression of IDD. Furthermore, targeting pyroptosis in IDD demonstrates the excellent capacity of ECM remodeling and its anti-inflammatory properties, suggesting that pyroptosis is involved in the IDD process. In this review, we briefly summarize the molecular mechanism of pyroptosis and the pathogenesis of IDD. We also focus on the role of pyroptosis in the pathological progress of IDD and its targeted therapeutic application.
Collapse
|
49
|
Astorga J, Gasaly N, Dubois-Camacho K, De la Fuente M, Landskron G, Faber KN, Urra FA, Hermoso MA. The role of cholesterol and mitochondrial bioenergetics in activation of the inflammasome in IBD. Front Immunol 2022; 13:1028953. [PMID: 36466902 PMCID: PMC9716353 DOI: 10.3389/fimmu.2022.1028953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.
Collapse
Affiliation(s)
- Jessica Astorga
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Naschla Gasaly
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Karen Dubois-Camacho
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marjorie De la Fuente
- Laboratory of Biomedicine Research, School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Biomedicine Research, School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Félix A. Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
50
|
Han B, Liu Q, Su X, Zhou L, Zhang B, Kang H, Ning J, Li C, Zhao B, Niu Y, Chen W, Chen L, Zhang R. The role of PP2A /NLRP3 signaling pathway in ambient particulate matter 2.5 induced lung injury. CHEMOSPHERE 2022; 307:135794. [PMID: 35926746 DOI: 10.1016/j.chemosphere.2022.135794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ambient particulate matter 2.5 (PM2.5) exposure has been linked to pulmonary fibrosis. However, the key signaling pathways remained unclear. In the present study, we applied a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit) to identify the key signaling pathways involved in PM2.5-induced pulmonary fibrosis. PP2A Aα-/- homozygote mice and matched wild-type (WT) littermates were exposed to filtered air (FA), unfiltered air (UA), and concentrated PM2.5 (CA) in a real-ambient PM exposure system for 8 weeks and 16 weeks, respectively. The mice exposed to PM2.5 displayed a progressive inflammation and pulmonary fibrosis. Moreover, the expressions of NLRP3, pro-caspase-1, caspase-1, ASC and IL-1β were increased in mice lung following PM2.5 exposure, indicating PM2.5 exposure caused pulmonary inflammation by the NLRP3 pathways activation. Furthermore, the effects of PM exposure on pulmonary inflammation, pulmonary fibrosis, oxidative stress, and pulmonary function damage were significantly enhanced in PP2A-/- mice compared to WT mice, indicating the role of PP2A in the regulation of pulmonary injury induced by PM exposure. In vitro study confirmed that PP2A was involved in the PM2.5-induced inflammation response and NLRP3 inflammasome activation. Importantly, we identified PP2A regulated the activation of NLRP3 pathways by direct dephosphorylating IRE1α in response to PM2.5 exposure. Taken together, our results demonstrated that PP2A-IRE1α-NLRP3 signaling pathway played a crucial role in regulating the inflammation response, triggering the lung fibrogenesis upon PM2.5 exposure. Our findings provide new insights into regulatory role of PP2A in human diseases upon the PM exposure.
Collapse
Affiliation(s)
- Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Xuan Su
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Hui Kang
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Chen Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Bo Zhao
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|