1
|
Lu W, Wen J. Metabolic reprogramming and astrocytes polarization following ischemic stroke. Free Radic Biol Med 2025:S0891-5849(25)00002-4. [PMID: 39756488 DOI: 10.1016/j.freeradbiomed.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Astrocytes are critical for maintaining neuronal activity. Activation of astrocytes, occurs within minutes from ischemic stroke onset due to ischemic causes and subsequent inflammatory damage. Activated astrocytes, also known as reactive astrocytes, are divided into two different phenotypes: A1 (pro-inflammatory) and A2 (anti-inflammatory) astrocytes. A2 astrocytes support neuronal survival and promote tissue healing, while A1 astrocytes have neurotoxic effects. Thus, polarization of reactive astrocyte into A1 or A2 genotype is closely correlated with the development of cerebral ischemia/reperfusion (I/R) injury. Metabolic reprogramming is a process that various metabolic pathways upregulate in cells to balance energy, alter their phenotype, and produce building-block requirements. A1 and A2 astrocytes display different metabolic reprogramming, such as glycolysis, glutamate uptake, and glycogenolysis. Accumulating evidence suggested that manipulation of energy metabolism homeostasis can induce astrocytes to switch from A1 to A2 phenotype. This review disucss the potential factors in affecting astrocytic polarization, emphasizes metabolic reprogramming in reactive astrocytes within the pathophysiological context of cerebral I/R, and explores the relationship between metabolic reprogramming and astrocytic polarization. Importantly, we reveal that regulating metabolic reprogramming in reactive astrocytes may be a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Liu W, Shen Y, Pan R, Qi X. mir-330-5p from mesenchymal stem cell-derived exosomes targets SETD7 to reduce inflammation in rats with cerebral ischemia-reperfusion injury. J Mol Histol 2024; 56:63. [PMID: 39738925 DOI: 10.1007/s10735-024-10347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
This study was to investigate the role of microRNA (miR)-330-5p derived from mesenchymal stem cells-secreted exosomes (MSCs-Exo) in cerebral ischemia-reperfusion injury (CI/RI) through targeting lysine N-methyltransferase SET domain containing 7 (SETD7). MSCs-Exo were separated and identified. MSCs-Exo were used to treat the middle cerebral artery occlusion (MCAO) rat model. By using the nerve injury score, Nissl, hematoxylin and eosin, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, the neural function, pathological alterations, and neuronal death in MCAO rats were examined. Using an enzyme-linked immunosorbent test, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in brain homogenate were tested. Rat brain expression levels of SETD7 and miR-330-5p were examined. Subsequently, the effects of MSCs-Exo, miR-330-5p, and SETD7 on neurological function and pathological alterations were assessed using gain and loss function tests. miR-330-5p expression was decreased and SETD7 expression was increased in the brain tissue of MCAO rats. Both MSCs-Exo and MSCs-Exo-derived miR-330-5p reduced inflammation in MCAO rats. miR-330-5p targeted SETD7, and SETD7 upregulation blocked the therapeutic effect of MSCs-Exo-derived miR-330-5p on MCAO rats. MSCs-Exo-derived miR-330-5p targets SETD7 to reduce inflammation in MCAO rats, providing a new therapeutic target for CI/RI therapy.
Collapse
Affiliation(s)
- WenTao Liu
- The Second Clinical Medical College, Southern Medical University, Guangzhou City, Guangdong Province, 510515, China
- Department of Emergency Medicine, Hohhot First Hospital, Inner Mongolia Autonomous Region, Hohhot City, 010030, China
- Department of Neurology, The Sixth Medical Centre of PLA General Hospital, No.6, Fucheng Road, Haidian District, Beijing City, 100048, China
| | - YouJin Shen
- Department of Neurology, Deqing County People's Hospital, Zhaoqing City, Guangdong Province, 526600, China
| | - RuiChun Pan
- Department of Neurology, Hebei Yanda Hospital, Langfang City, Hebei Province, 065201, China
| | - XiaoKun Qi
- The Second Clinical Medical College, Southern Medical University, Guangzhou City, Guangdong Province, 510515, China.
- Department of Neurology, The Sixth Medical Centre of PLA General Hospital, No.6, Fucheng Road, Haidian District, Beijing City, 100048, China.
| |
Collapse
|
3
|
Yang HH, Chien WC, Liaw JJ, Yang CC, Chung CH, Huang SH, Huang YC, Wang BL, Chung RJ, Chen PC, Lin TT, Yu PC, Chen YJ. Impact of glycemic treatment and blood glucose monitoring on outcomes in patients with acute ischemic stroke without prior diabetes: a longitudinal cohort study. Diabetol Metab Syndr 2024; 16:302. [PMID: 39696458 DOI: 10.1186/s13098-024-01542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES To explore the short- and long-term effects of glycemic management-through glycemic treatment and blood glucose monitoring (BGM)-on stroke recurrence and mortality specifically in patients experiencing a first-ever ischemic stroke (FIS) with hyperglycemia (FISHG) who have not previously been diagnosed with diabetes mellitus (DM). METHODS We gathered data on patients who were registered on Taiwan's National Health Insurance Research Database from 2000 to 2015. We one-fold propensity-score-matched (by sex, age, and index date) 207,054 patients into 3 cohorts: those with FIS (1) without hyperglycemia, (2) hyperglycemia without glycemic treatment, and (3) hyperglycemia with glycemic treatment. We used Cox proportional hazard regression to evaluate the short- (within 1 year after FIS) and long-term (9.3 ± 8.6 years after FIS) prognostic effects of glycemic management on stroke recurrence and mortality of FISHG. RESULTS Stroke recurrence and mortality were significantly more likely in the patients with FISHG than their counterparts without hyperglycemia (p < 0.05). Under glycemic treatment, patients with FISHG demonstrated lower risk of mortality at every follow-up than those without (p < 0.001) but were not less likely to have stroke recurrence (p > 0.05). Integrating BGM with glycemic treatment in the FISHG cohort significantly reduced the risk of stroke recurrence compared to patients receiving only glycemic treatment at 1-month, 3-month, 6-month, and 1-year post-stroke follow-ups (adjusted hazard ratios = 0.84, 0.90, 0.88, and 0.92, respectively); additionally, this approach significantly decreased mortality risk at each post-stroke follow-up period (p < 0.05). CONCLUSIONS BGM combined with glycemic treatment significantly improves prognosis in patients with FISHG who have not been previously diagnosed with DM, reducing the risks of stroke recurrence and mortality.
Collapse
Affiliation(s)
- Hsi-Hsing Yang
- Department of Intensive Care Medicine, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, 71005, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan.
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan.
| | - Jen-Jiuan Liaw
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chia-Chen Yang
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shi-Hao Huang
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yao-Ching Huang
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Bing-Long Wang
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Peng-Ciao Chen
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Ting-Ti Lin
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Pi-Ching Yu
- Graduate Institute of Medicine, National Defense Medical Center, Taipei, 11490, Taiwan
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Far-Eastern Memorial Hospital, New Taipei City, 10602, Taiwan
| | - Yu-Ju Chen
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
4
|
Huang S, Dong W, Lin X, Bian J. Na+/K+-ATPase: ion pump, signal transducer, or cytoprotective protein, and novel biological functions. Neural Regen Res 2024; 19:2684-2697. [PMID: 38595287 PMCID: PMC11168508 DOI: 10.4103/nrr.nrr-d-23-01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 12/09/2023] [Indexed: 04/11/2024] Open
Abstract
Na+/K+-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na+ out of and two K+ into cells. Additionally, Na+/K+-ATPase participates in Ca2+-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane. Na+/K+-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells. Therefore, it is not surprising that Na+/K+-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases. However, published studies have so far only elucidated the important roles of Na+/K+-ATPase dysfunction in disease development, and we are lacking detailed mechanisms to clarify how Na+/K+-ATPase affects cell function. Our recent studies revealed that membrane loss of Na+/K+-ATPase is a key mechanism in many neurological disorders, particularly stroke and Parkinson's disease. Stabilization of plasma membrane Na+/K+-ATPase with an antibody is a novel strategy to treat these diseases. For this reason, Na+/K+-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein, participating in signal transduction such as neuronal autophagy and apoptosis, and glial cell migration. Thus, the present review attempts to summarize the novel biological functions of Na+/K+-ATPase and Na+/K+-ATPase-related pathogenesis. The potential for novel strategies to treat Na+/K+-ATPase-related brain diseases will also be discussed.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jinsong Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Zhao X, Yang X, Du C, Hao H, Liu S, Liu G, Zhang G, Fan K, Ma J. Up-regulated succinylation modifications induce a senescence phenotype in microglia by altering mitochondrial energy metabolism. J Neuroinflammation 2024; 21:296. [PMID: 39543710 PMCID: PMC11566524 DOI: 10.1186/s12974-024-03284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The aging of the central nervous system(CNS) is a primary contributor to neurodegenerative diseases in older individuals and significantly impacts their quality of life. Neuroinflammation, characterized by activation of microglia(MG) and release of cytokines, is closely associated with the onset of these neurodegenerative diseases. The activated status of MG is modulated by specifically programmed metabolic changes under various conditions. Succinylation, a novel post-translational modification(PTM) mainly involved in regulating mitochondrial energy metabolism pathways, remains unknown in its role in MG activation and aging. In the present study, we found that succinylation levels were significantly increased both during aging and upon lipopolysaccharide-induced(LPS-induced) MG activation undergoing metabolic reprogramming. Up-regulated succinylation induced by sirtuin 5 knockdown(Sirt5 KD) in microglial cell line BV2 resulted in significant up-regulation of aging-related genes, accompanied by impaired mitochondrial adaptability and a shift towards glycolysis as a major metabolic pathway. Furthermore, after LPS treatment, Sirt5 KD BV2 cells exhibited increased generation of reactive oxygen species(ROS), accumulation of lipid droplets, and elevated levels of lipid peroxidation. By employing immunoprecipitation, introducing point mutation to critical succinylation sites, and conducting enzyme activity assays for succinate dehydrogenase(SDH) and trifunctional enzyme subunit alpha(ECHA), we demonstrated that succinylation plays a regulatory role in modulating the activities of these mitochondrial enzymes. Finally, down-regulation the succinylation levels achieved through administration of succinyl phosphonate(SP) led to amelioration of MG senescence in vitro and neuroinflammation in vivo. To our knowledge, our data provide preliminary evidence indicating that up-regulated succinylation modifications elicit a senescence phenotype in MG through alterations in energy metabolism. Moreover, these findings suggest that manipulation of succinylation levels may offer valuable insights into the treatment of aging-related neuroinflammation.
Collapse
Affiliation(s)
- Xinnan Zhao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaohan Yang
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
- Department of Morphology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Cong Du
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Huimin Hao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Shuang Liu
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Gang Liu
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Guangyin Zhang
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Kai Fan
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
6
|
Pang M, Hou S, Xia X, Wang G, Wang Y, Wang L, Li X. Global, regional, and national burden of ischemic stroke attributable to active smoking, 1990-2021. Tob Induc Dis 2024; 22:TID-22-176. [PMID: 39512527 PMCID: PMC11541932 DOI: 10.18332/tid/194697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Ischemic stroke is a major global health issue, with active smoking identified as a key modifiable risk factor. This study examines the burden of ischemic stroke due to active smoking from 1990 to 2021, across different sociodemographic contexts. METHODS Data from the Global Burden of Disease (GBD) 2021 database were used to extract information on mortality and disability-adjusted life years (DALYs) attributable to active smoking-related ischemic stroke. Countries and regions were categorized by the sociodemographic index (SDI) into five levels. Statistical analyses were conducted using R Studio, including the calculation of estimated annual percentage change (EAPC) and joinpoint regression models. RESULTS In 2021, there were 342674 deaths globally due to ischemic stroke caused by active smoking, with an age-standardized mortality rate (ASMR) of 4.06 and a population-attributable fraction (PAF) of 9.54%. The number of deaths increased by 35.59% from 1990 to 2021, with males aged ≥70 years experiencing the largest increase. The global age-standardized DALY rate in 2021 was 98.29, with an overall increase in DALYs by 33.55% from 1990. Regional analysis revealed significant disparities, with the middle SDI region reporting the highest number of deaths and DALYs, while the high SDI region reported the lowest. Geographically, East Asia had the highest burden in 2021. Nationally, China had the highest number of deaths and DALYs due to smoking-related ischemic stroke. CONCLUSIONS This study highlights the significant global burden of ischemic stroke attributable to active smoking and the critical need for targeted smoking cessation programs and stroke prevention strategies. Despite overall declines in ASMR and age-standardized DALY rates, the burden varies significantly across different regions and sociodemographic groups. Effective public health interventions, particularly in low- to middle-SDI regions, are essential to mitigate the impact of smoking-related ischemic stroke and improve global health outcomes.
Collapse
Affiliation(s)
- Meng Pang
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department II of Neurology, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Shuai Hou
- Emergency Department, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gang Wang
- Emergency Department, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yanqiang Wang
- Department II of Neurology, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Hunt RD, Cipolla MJ. Chronic hypertension alters the relationship between collateral blood flow cortical cerebral blood flow, and brain tissue oxygenation. J Cereb Blood Flow Metab 2024; 44:1227-1237. [PMID: 38806143 PMCID: PMC11542142 DOI: 10.1177/0271678x241258569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
This study measured the relationship between pial collateral (leptomeningeal anastomoses, LMA) flow, intraparenchymal cortical cerebral blood flow (cCBF) and brain tissue oxygenation (btO2) during acute ischemic stroke to investigate how pial flow translates to downstream cCBF and btO2 and examined how this relationship is altered in hypertension. Proximal transient middle cerebral artery occlusion (tMCAO) was performed in male Wistar (n = 8/group) and Spontaneously Hypertensive Rats (SHR, n = 8/group). A combination laser Doppler-oxygen probe was placed within the expected cortical peri-infarct in addition to a surface laser doppler probe which measured LMA flow. Phenylephrine (PE) was infused 30 minutes into tMCAO to increase blood pressure (BP) by 30% for 10 minutes and assessed CBF autoregulation. During the initial 30-minute period of tMCAO, btO2 and cCBF were lower in SHR compared to Wistar rats (btO2: 11.5 ± 10.5 vs 17.5 ± 10.8 mmHg and cCBF: -29.7 ± 23.3% vs -17.8 ± 41.9%); however, LMA flow was similar between groups. The relationship between LMA flow, cCBF and btO2 were interdependent in Wistar rats. However, this relationship was disrupted in SHR rats and partially restored by induced hypertension. This study provides evidence that cCBF and btO2 were diminished during tMCAO in chronic hypertension, and that induced hypertension was beneficial regardless of hypertensive status.
Collapse
Affiliation(s)
- Ryan D Hunt
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
- Department of Electrical and Biomedical Engineering, University of Vermont, College of Engineering and Mathematical Sciences, Burlington, VT, USA
- Department of Pharmacology, University of Vermont, Larner College of Medicine, Burlington, VT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
8
|
Yang Q, Jiang P, Tang H, Wen J, Zhou L, Zhao Y, Wang L, Wang J, Yang Q. Shh regulates M2 microglial polarization and fibrotic scar formation after ischemic stroke. Neurochem Int 2024; 180:105862. [PMID: 39307461 DOI: 10.1016/j.neuint.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Fibrotic scar formation is a critical pathological change impacting tissue reconstruction and functional recovery after ischemic stroke. The regulatory mechanisms behind fibrotic scarring in the central nervous system (CNS) remain largely unknown. While macrophages are known to play a role in fibrotic scar formation in peripheral tissues, the involvement of microglia, the resident immune cells of the CNS, in CNS fibrosis requires further exploration. The Sonic Hedgehog (Shh) signaling pathway, pivotal in embryonic development and tissue regeneration, is also crucial in modulating fibrosis in peripheral tissues. However, the impact and regulatory mechanisms of Shh on fibrotic scar formation post-ischemic stroke have not been thoroughly investigated. METHODS This study explores whether Shh can regulate fibrotic scar formation post-ischemic stroke and its underlying mechanisms through in vivo and in vitro manipulation of Shh expression. RESULTS Our results showed that Shh expression was upregulated in the serum of acute ischemic stroke patients, as well as in the serum, CSF, and ischemic regions of MCAO/R mice. Moreover, the upregulation of Shh expression was positively correlated with fibrotic scar formation and M2 microglial polarization. Shh knockdown inhibited fibrotic scar formation and M2 microglial polarization while aggravating neurological deficits in MCAO/R mice. In vitro, adenoviral knockdown or Smoothened Agonist (SAG) activation of Shh expression in BV2 cells following OGD/R regulated their polarization and influenced the expression of TGFβ1 and PDGFA, subsequently affecting fibroblast activation. CONCLUSION These results suggest that Shh regulates M2 microglial polarization and fibrotic scar formation after cerebral ischemia.
Collapse
Affiliation(s)
- Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiani Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Zhan M, Sun LJ, Zhang YH, Gao JM, Liu JX. Correlation and predictive value of platelet biological indicators and recurrence of large-artery atherosclerosis type of ischemic stroke. Biotechnol Genet Eng Rev 2024; 40:1836-1854. [PMID: 37038758 DOI: 10.1080/02648725.2023.2196879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Large-artery atherosclerosis type of ischemic stroke happens when a blood clot forms in a major artery that carries blood to the brain. This causes a blockage and a decrease in blood flow to the brain tissue making up approximately 15-20% of all cases. This type of stroke is more prevalent in older adults and those with risk factors such as high blood pressure, high cholesterol, diabetes, smoking, and a family history of stroke. To investigate the correlation and predictive value of platelet-related biological indicators with recurrence of large-artery atherosclerosis type of ischemic stroke (LAA-IS)2. The patients were divided into a relapse group (R, n = 40) and non-relapse group (NR, n = 45). Platelet-related biological indicators were collected from both groups to analyze their correlation with neurological impairment score (NIHSS score). Risk factors were analyzed using binary logistic regression and a survival curve (ROC) was drawn to evaluate the predictive effect of clinical platelet-related biological indicators on LAA-IS recurrence. This study confirmed that PAg-ADP, PAg-COL, and FIB are closely related to the formation of LAA-IS due to carotid atherosclerosis, and the combined PAg-ADP, PAg-COL, and FIB index levels are the most promising for assessing the prognostic development of recurrence in patients with LAA-IS. Combined monitoring of platelet aggregation rate and FIB index is of important evaluation value in judging the recurrence prognosis of LAA-IS patients.
Collapse
Affiliation(s)
- Min Zhan
- Institute of Basic Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Encephalopathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin-Juan Sun
- Department of Encephalopathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye-Hao Zhang
- Institute of Basic Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Ming Gao
- Institute of Basic Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Xun Liu
- Institute of Basic Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Moustakas D, Mani I, Pouliakis A, Iacovidou N, Xanthos T. The Effects of IRL-1620 in Post-ischemic Brain Injury: A Systematic Review and Meta-analysis of Experimental Studies. Neurocrit Care 2024; 41:665-680. [PMID: 38724864 DOI: 10.1007/s12028-024-01994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Sovateltide (IRL-1620), an endothelin B receptor agonist, has previously demonstrated neuroprotective and neuroregenerative effects in animal models of acute ischemic stroke. Recently, clinical trials indicated that it could also be effective in humans with stroke. Here, we systematically investigate whether IRL-1620 may be used for the treatment of ischemia-induced brain injury. METHODS A systematic review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. MEDLINE (PubMed) and Scopus databases were searched for eligible studies up to December 2022. The databases ClinicalTrials.gov and Pharmazz Inc. were screened for unpublished or ongoing trials. Only studies in English were evaluated for eligibility. Meta-analysis of the included studies was also conducted. RESULTS Finally, seven studies were included in the review, all in animal rat models because of scarcity of clinical trials. Six studies, all in middle cerebral artery occlusion (MCAO) models, were selected for meta-analysis. In the two studies assessing mortality, no deaths were reported in the IRL-1620 group 24 h after MCAO, whereas the vehicle group had almost a five times higher mortality risk (risk ratio 5.3, 95% confidence interval 0.7-40.1, I2 = 0%). In all five studies evaluating outcome on day 7 after MCAO, IRL-1620 was associated with statistically significantly lower neurological deficit and improved motor performance compared with the vehicle. Infract volume, differentiation potential of neuronal progenitor cells, and mitochondrial fate also improved with IRL-1620 administration. CONCLUSIONS According to the above, in animal MCAO models, IRL-1620 enhanced neurogenesis and neuroprotection and improved outcome. Future studies are needed to expand our understanding of its effects in human study participants with acute ischemic stroke as well as in other common causes of cerebral ischemia including cardiac arrest.
Collapse
Affiliation(s)
- Dimitris Moustakas
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iliana Mani
- 2d Department of Internal Medicine, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527, Athens, Greece.
| | - Abraham Pouliakis
- 2d Department of Pathology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Xanthos
- School of Health Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
11
|
Sui C, Liu Y, Jiang J, Tang J, Yu L, Lv G. Ginsenoside Rg1 ameliorates cerebral ischemia-reperfusion injury by regulating Pink1/ Parkin-mediated mitochondrial autophagy and inhibiting microglia NLRP3 activation. Brain Res Bull 2024; 216:111043. [PMID: 39134096 DOI: 10.1016/j.brainresbull.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE This study aimed to further elucidate the mechanism of ginsenoside Rg1 in the treatment of cerebral ischemia-reperfusion. METHODS In this study, we observed the apoptosis of RM cells (microglia) after oxygen-glucose deprivation/reoxygenation (OGD/R) modeling before and after Rg1 administration, changes in mitochondrial membrane potential, changes in the content of Reactive oxygen species (ROS) and inflammatory vesicles NLR Family Pyrin Domain Containing 3 (NLRP3), and the expression levels of autophagy-related proteins, inflammatory factors, and apoptosis proteins. We further examined the pathomorphological changes in brain tissue, neuronal damage, changes in mitochondrial morphology and mitochondrial structure, and the autophagy-related proteins, inflammatory factors, and apoptosis proteins expression levels in CI/RI rats before and after administration of Rg1 in vivo experiments. RESULTS In vitro experiments showed that Rg1 induced mitochondrial autophagy, decreased mitochondrial membrane potential, and reduced ROS content thereby inhibiting NLRP3 activation, decreasing secretion of inflammatory factors and RM cell apoptosis by regulating the PTEN induced putative kinase 1(Pink1) /Parkin signaling pathway. In vivo experiments showed that Rg1 induced mitochondrial autophagy, inhibited NLRP3 activation, improved inflammatory response, and reduced apoptosis by regulating the Pink1/Parkin signaling pathway, and Rg1 significantly reduced the area of cerebral infarcts, improved the pathological state of brain tissue, and attenuated the neuronal damage, thus improving cerebral ischemia/reperfusion injury in rats. CONCLUSION Our results suggest that ginsenoside Rg1 can ameliorate cerebral ischemia-reperfusion injury by modulating Pink1/ Parkin-mediated mitochondrial autophagy in microglia and inhibiting microglial NLRP3 activation.
Collapse
Affiliation(s)
- Changbai Sui
- Department of Neurology, Yantaishan Hospital, Yantai 264001, China
| | - Ying Liu
- Department of Neurology, Yantaishan Hospital, Yantai 264001, China
| | - Jun Jiang
- Key Laboratory of Genetics Research and Evaluation of the National Drug Administration, Shandong Institute for Food and Drug Control, Shandong, Jinan 250033, China
| | - Jianhua Tang
- Department of Neurology, Yantaishan Hospital, Yantai 264001, China
| | - Ling Yu
- Department of Neurology, Yantaishan Hospital, Yantai 264001, China
| | - Guoying Lv
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
12
|
Liu J, Li J, Jin X, Ren J, Li R, Zhang J, Gao Y, Wang X, Wang G. Association between base excess and mortality in critically ill patients with ischemic stroke: a retrospective cohort study. BMC Neurol 2024; 24:351. [PMID: 39294569 PMCID: PMC11409610 DOI: 10.1186/s12883-024-03763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/15/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Base excess (BE) is associated with mortality from many diseases. However, the relationship between BE and mortality in patients with ischemic stroke remains uncertain. Our aim is to investigate the relationship between BE values upon admission to the ICU and mortality rates in critically ill stroke patients. METHODS The current study enrolled 1,572 patients with ischemic stroke (863 males and 709 females). The associations of BE with intensive care unit (ICU), hospital, 28-day, and 1-year mortalities were assessed using multivariable logistic regression or Cox proportional hazards model. The potential impact of the Sequential Organ Failure Assessment (SOFA) score (< 5 or ≥ 5) on the prognostic value of BE was further evaluated with interaction and subgroup analyses. RESULTS BE values less than - 3 mmol/L, greater than 3 mmol/L, and within - 3 to 3 mmol/L (normal BE) were observed in 316 (20.1%), 175 (11.1%), and 1,081 (68.8%) patients, respectively. The restricted cubic splines analyses revealed that a U-shaped curve between BE and the mortality risk. Multivariable analysis indicated that patients with low BE (<-3 mmol/L) had higher rates of ICU mortality (odds ratio [OR], 1.829; 95% confidence interval [CI], 1.281-2.612; P = 0.001), hospital mortality (OR, 1.484; 95% CI, 1.077-2.045; P = 0.016), 28-day mortality (hazard ratio [HR], 1.522; 95% CI, 1.200-1.929; P = 0.001), and 1-year mortality (HR, 1.399; 95% CI, 1.148-1.705; P = 0.001) than patients with normal BE. Subgroup analyses showed consistent results pertaining to SOFA scores ≥ 5. CONCLUSIONS In critically ill patients with ischemic stroke, an initial BE of <-3 mmol/L at ICU admission may indicate an increased risk of ICU, hospital, 28-day, and 1-year mortalities.
Collapse
Affiliation(s)
- Jueheng Liu
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiamei Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuting Jin
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiajia Ren
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruohan Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Zhang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaochuang Wang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China.
| |
Collapse
|
13
|
Tang Z, Xu B, Wang J, Wang W, Sha S, Sun Y. Novel metabolic biomarkers for the diagnosis of acute ischemic stroke. Biomark Med 2024; 18:727-737. [PMID: 39235047 PMCID: PMC11457651 DOI: 10.1080/17520363.2024.2389033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: To identify novel metabolic biomarkers for patients with acute ischemic stroke (AIS).Methods: The metabolites in the sera of 63 patients with AIS aged 45∼77 years and 60 healthy individuals were analyzed by liquid chromatography (LC)-mass spectrometry (MS)/MS. The efficiency of significantly altered metabolites as biomarkers of AIS was evaluated by ROC curve analysis.Results: Different metabolic profiles were revealed in AIS patients' sera compared with healthy persons. Twelve significantly altered metabolites had an area under the curve (AUC) value >0.80, demonstrating their potential as a biomarker of AIS. Among them, six metabolites are firstly reported to distinguish between AIS patients and healthy individuals.Conclusion: These 12 metabolites can be further researched as potential diagnostic biomarkers of AIS.
Collapse
Affiliation(s)
- Zhenzhen Tang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Baoli Xu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Junjun Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Wenzhen Wang
- Department of Biochemistry & Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Shanshan Sha
- Department of Biochemistry & Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Yongjin Sun
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
14
|
Carreira RB, Dos Santos CC, de Oliveira JVR, da Silva VDA, David JM, Butt AM, Costa SL. Neuroprotective Effect of Flavonoid Agathisflavone in the Ex Vivo Cerebellar Slice Neonatal Ischemia. Molecules 2024; 29:4159. [PMID: 39275007 PMCID: PMC11396859 DOI: 10.3390/molecules29174159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which glial fibrillary acidic protein (GFAP) and SOX10 drive expression of enhanced green fluorescent protein (EGFP), were used to identify astrocytes and oligodendrocytes, respectively. Agathisflavone (10 μM) was administered preventively for 60 min before inducing ischemia by oxygen and glucose deprivation (OGD) for 60 min and compared to controls maintained in normal oxygen and glucose (OGN). The density of SOX-10+ oligodendrocyte lineage cells and NG2 immunopositive oligodendrocyte progenitor cells (OPCs) were not altered in OGD, but it resulted in significant oligodendroglial cell atrophy marked by the retraction of their processes, and this was prevented by agathisflavone. OGD caused marked axonal demyelination, determined by myelin basic protein (MBP) and neurofilament (NF70) immunofluorescence, and this was blocked by agathisflavone preventative treatment. OGD also resulted in astrocyte reactivity, exhibited by increased GFAP-EGFP fluorescence and decreased expression of glutamate synthetase (GS), and this was prevented by agathisflavone pretreatment. In addition, agathisflavone protected Purkinje neurons from ischemic damage, assessed by calbindin (CB) immunofluorescence. The results demonstrate that agathisflavone protects neuronal and myelin integrity in ischemia, which is associated with the modulation of glial responses in the face of ischemic damage.
Collapse
Affiliation(s)
- Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Jorge Maurício David
- Department of General and Inorganic Chemistry, Institute of Chemistry, University Federal da Bahia, Salvador 40170-110, BA, Brazil
| | - Arthur Morgan Butt
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
15
|
Gu C, Kang X, Chen X, Sun Y, Li X. Intracerebroventricular infusion of secretoneurin inhibits neuronal NLRP3-Apoptosis pathway and preserves learning and memory after cerebral ischemia. Neurochem Int 2024; 178:105770. [PMID: 38761854 DOI: 10.1016/j.neuint.2024.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Transient global cerebral ischemia (GCI) results in delayed neuronal death, primarily apoptosis, in the hippocampal CA1 subregion, which leads to severe cognitive deficits. While therapeutic hypothermia is an approved treatment for patients following cardiac arrest, it is associated with various adverse effects. Secretoneurin (SN) is an evolutionarily conserved neuropeptide generated in the brain, adrenal medulla and other endocrine tissues. In this study, SN was infused into the rat brain by intracerebroventricular injection 1 day after GCI, and we demonstrated that SN could significantly preserve spatial learning and memory in the Barnes maze tasks examined on days 14-17 after GCI. To further investigate underlying pathways involved, we demonstrated that, on day 5 after GCI, SN could significantly inhibit GCI-induced expression levels of Apoptosis Inducing Factor (AIF) and cleaved-PARP1, as well as neuronal apoptosis and synaptic loss in the hippocampal CA1 region. Additionally, SN could attenuate GCI-induced activation of both caspase-1 and caspase-3, and the levels of pro-inflammatory cytokines IL-1β and IL-18 in the CA1 region. Mechanically, we observed that treatment with SN effectively inhibited NLRP3 protein elevation and the bindings of NLRP3-ASC and ASC-caspase-1 in hippocampal neurons after GCI. In summary, our data indicate that SN could effectively attenuate NLRP3 inflammasome formation, as well as the activation of caspase-1 and -3, the production of pro-inflammatory cytokines, and ultimately the neuronal apoptotic loss induced by GCI. Potential neuronal pyroptosis, or caspase-1-dependent cell death, could also be involved in ischemic neuronal death, which needs further investigation.
Collapse
Affiliation(s)
- Caihong Gu
- Department of Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China.
| | - Xiuwen Kang
- Department of Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China
| | - Xiaobing Chen
- Department of Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China
| | - Yan Sun
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China
| | - Xiaomin Li
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, PR China.
| |
Collapse
|
16
|
Guo C, Han X, Zhang T, Zhang H, Li X, Zhou X, Feng S, Tao T, Yin C, Xia J. Lipidomic analyses reveal potential biomarkers for predicting death and heart failure after acute myocardial infarction. Clin Chim Acta 2024; 562:119892. [PMID: 39068962 DOI: 10.1016/j.cca.2024.119892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Background Acute myocardial infarction (AMI) and postmyocardial infarction heart failure (pMIHF) have high mortality rates worldwide. This study aimed to explore lipidomic profiles and identify potential biomarkers for the prediction of death and heart failure (HF) after AMI. Methods All serum samples were collected at Xuanwu Hospital, Capital Medical University, and their clinical characteristics and lipidomic profiles were analyzed in different groups. LC-MS/MS was used for lipidomic analyses, and underlying biomarkers were screened by receiver operating characteristic (ROC) curve analysis. Results Lipidomic analyses of the survival and nonsurvival groups revealed that the decrease of the content of SM (d18:1/22:0), PE (P-20:1/18:0), PC (18:2), LPE (18:2), PE (P-20:0/18:0), LPC (18:0) and PC (20:0/20:3) while increase of the content of PG (18:1/18:1) could increase the risk of death after AMI. In parallel, the lipidomic analysis of the HF and non-HF groups revealed that the decrease of the content of PC (20:3/20:4), LPC (20:3), LPC (18:0), LPC (18:2), LPC (20:0), LPC (18:3), LPE (16:1) and PC (18:2/20:3) could increase the risk of HF after AMI. Conclusion Several lipids could be potential biomarkers for the prediction of death and HF after AMI.
Collapse
Affiliation(s)
- Chenglong Guo
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xuexue Han
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tianxing Zhang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Zhang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xue Li
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xingzhu Zhou
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuhui Feng
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tianqi Tao
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Chunlin Yin
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jinggang Xia
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
17
|
Song C, Li Y, Han H, Zhang Y, Wang N. Lipid nanoparticle-encapsulated lncRNA DLX6-AS1 knockdown ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis. Neurol Res 2024; 46:706-716. [PMID: 38735062 DOI: 10.1080/01616412.2024.2345024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/13/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis. METHODS LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed. RESULTS LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis. CONCLUSION Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.
Collapse
Affiliation(s)
- Chang Song
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huiying Han
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yueyue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
18
|
Guo P, Wang W, Liang Z, Li Y, Ou X, Li M, Wang B, Wei X, Huang L, Qi S. Disintegration of Cav-1/β-catenin complex attenuates neuronal death after ischemia-reperfusion injury by promoting β-catenin nuclear translocation. Mol Biol Rep 2024; 51:829. [PMID: 39037581 DOI: 10.1007/s11033-024-09798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The roles of Caveolin-1 (Cav-1) and the Wnt/β-catenin signaling pathways in cerebral ischemia-reperfusion (I/R) injury are well established. The translocation of β-catenin into the nucleus is critical for regulating neuronal apoptosis, repair, and neurogenesis within the ischemic brain. It has been reported that the scaffold domain of Caveolin-1 (Cav-1) (residues 95-98) interacts with β-catenin (residues 330-337). However, the specific contribution of the Cav-1/β-catenin complex to I/R injury remains unknown. METHODS AND RESULTS To investigate the mechanism underlying the involvement of the Cav-1/β-catenin complex in the subcellular translocation of β-catenin and its subsequent effects on cerebral I/R injury, we treated ischemic brains with ASON (Cav-1 antisense oligodeoxynucleotides) or FTVT (a competitive peptide antagonist of the Cav-1 and β-catenin interaction). Our study demonstrated that the binding of Cav-1 to β-catenin following I/R injury prevented the nuclear accumulation of β-catenin. Treatment with ASON or FTVT after I/R injury significantly increased the levels of nuclear β-catenin. Furthermore, ASON reduced the phosphorylation of β-catenin at Ser33, Ser37, and Thr41, which contributes to its proteasomal degradation, while FTVT increased phosphorylation at Tyr333, which is associated with its nuclear translocation. CONCLUSIONS The above results indicate that the formation of the Cav-1/β-catenin complex anchors β-catenin in the cytoplasm following I/R injury. Additionally, both ASON and FTVT treatments attenuated neuronal death in ischemic brains. Our study suggests that targeting the interaction between Cav-1 and β-catenin serve as a novel therapeutic strategy to protect against neuronal damage during cerebral injury.
Collapse
Affiliation(s)
- Peng Guo
- Department of Laboratory Medicine, Jinhu County People's Hospital, Huai'an, 211600, People's Republic of China
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Wan Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zhiyan Liang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yihang Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xiangling Ou
- Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Ming Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Bin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Xuewen Wei
- Department of Laboratory Medicine, Affiliated Municipal First People's Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Linyan Huang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Suhua Qi
- Department of Laboratory Medicine, Jinhu County People's Hospital, Huai'an, 211600, People's Republic of China.
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
19
|
Li L, Wang Y. Identification of Potential Biomarkers for Patients with DWI-Negative Ischemic Stroke. J Mol Neurosci 2024; 74:68. [PMID: 38995420 PMCID: PMC11245437 DOI: 10.1007/s12031-024-02229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Ischemic stroke is the leading cause of long-term disability in adults, accounting for 80% of stroke cases. Diffusion weighted imaging (DWI) examination is the main test for acute ischemic stroke, but in recent years, several studies have shown that some patients show negative DWI examination after the onset of ischemic stroke with symptoms of significant neurological deficits. In this study, we investigated potential biomarkers related to immune metabolism in the peripheral blood of DWI-negative versus DWI-positive patients after ischemic stroke and explored their possible regulatory processes in ischemic stroke. The datasets related to ischemic stroke were downloaded from the GEO database, immune-related genes and metabolism-related genes were obtained from the ImmPort database and MSigDB database, respectively, and immune-related differential genes were obtained based on immune scores using the algorithm of the R software package "GSVA." Candidate genes were selected based on intersections, hub genes were screened using the algorithm in Cytoscape software, and finally, GeneMANIA analysis, GSEA enrichment analysis, subcellular localization, gene transcription factor and gene-drug interaction networks, and disease correlation analyses were performed for the hub genes. Five hub genes (GART, TYMS, PPAT, CTPS1, and PAICS) were obtained by PPI network analysis and software analysis. Among them, PPAT and PAICS may be the real hub genes with consistent and significantly differentiated results from the discovery and validation sets. The functions of these hub genes may be related to pathways such as nucleotide biosynthetic processes. The constructed hub gene ceRNA network showed that hsa-10a-5p is the key miRNA connecting PAICS and multiple lncRNAs in this study. Differential genes related to immunity and metabolism in DWI-negative and DWI-positive patients after IS were identified using bioinformatics analysis, and their pathways and related TF-RNAs, miRNAs, and lncRNAs were identified. These genes may be considered effective targets for the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 6500032, China
| | - Ying Wang
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 6500032, China.
| |
Collapse
|
20
|
Dong H, Ma YP, Cui MM, Qiu ZH, He MT, Zhang BG. Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 2024; 30:128. [PMID: 38785160 PMCID: PMC11134507 DOI: 10.3892/mmr.2024.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis‑associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.
Collapse
Affiliation(s)
- Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mei-Mei Cui
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Zheng-Hao Qiu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| |
Collapse
|
21
|
Sun D, Wu L, Lan S, Chi X, Wu Z. β-asarone induces viability and angiogenesis and suppresses apoptosis of human vascular endothelial cells after ischemic stroke by upregulating vascular endothelial growth factor A. PeerJ 2024; 12:e17534. [PMID: 38948219 PMCID: PMC11214739 DOI: 10.7717/peerj.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Ischemic stroke (IS) is a disease with a high mortality and disability rate worldwide, and its incidence is increasing per year. Angiogenesis after IS improves blood supply to ischemic areas, accelerating neurological recovery. β-asarone has been reported to exhibit a significant protective effect against hypoxia injury. The ability of β-asarone to improve IS injury by inducing angiogenesis has not been distinctly clarified. The experimental rats were induced with middle cerebral artery occlusion (MCAO), and oxygen-glucose deprivation (OGD) model cells were constructed using human microvascular endothelial cell line (HMEC-1) cells. Cerebral infarction and pathological damage were first determined via triphenyl tetrazolium chloride (TTC) and hematoxylin and eosin (H&E) staining. Then, cell viability, apoptosis, and angiogenesis were assessed by utilizing cell counting kit-8 (CCK-8), flow cytometry, spheroid-based angiogenesis, and tube formation assays in OGD HMEC-1 cells. Besides, angiogenesis and other related proteins were identified with western blot. The study confirms that β-asarone, like nimodipine, can ameliorate cerebral infarction and pathological damage. β-asarone can also upregulate vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) and induce phosphorylation of p38. Besides, the study proves that β-asarone can protect against IS injury by increasing the expression of VEGFA. In vitro experiments affirmed that β-asarone can induce viability and suppress apoptosis in OGD-mediated HMEC-1 cells and promote angiogenesis of OGD HMEC-1 cells by upregulating VEGFA. This establishes the potential for β-asarone to be a latent drug for IS therapy.
Collapse
Affiliation(s)
- Dazhong Sun
- Department of Acupuncture and Moxibustion Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Lulu Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyuan Lan
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangfeng Chi
- Department of Acupuncture and Moxibustion Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Zhibing Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Wei L, Chen S, Deng X, Liu Y, Wang H, Gao X, Huang Y. Metabolomic discoveries for early diagnosis and traditional Chinese medicine efficacy in ischemic stroke. Biomark Res 2024; 12:63. [PMID: 38902829 PMCID: PMC11188286 DOI: 10.1186/s40364-024-00608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Ischemic stroke (IS), a devastating cerebrovascular accident, presents with high mortality and morbidity. Following IS onset, a cascade of pathological changes, including excitotoxicity, inflammatory damage, and blood-brain barrier disruption, significantly impacts prognosis. However, current clinical practices struggle with early diagnosis and identifying these alterations. Metabolomics, a powerful tool in systems biology, offers a promising avenue for uncovering early diagnostic biomarkers for IS. By analyzing dynamic metabolic profiles, metabolomics can not only aid in identifying early IS biomarkers but also evaluate Traditional Chinese Medicine (TCM) efficacy and explore its mechanisms of action in IS treatment. Animal studies demonstrate that TCM interventions modulate specific metabolite levels, potentially reflecting their therapeutic effects. Identifying relevant metabolites in cerebral ischemia patients holds immense potential for early diagnosis and improved outcomes. This review focuses on recent metabolomic discoveries of potential early diagnostic biomarkers for IS. We explore variations in metabolites observed across different ages, genders, disease severity, and stages. Additionally, the review examines how specific TCM extracts influence IS development through metabolic changes, potentially revealing their mechanisms of action. Finally, we emphasize the importance of integrating metabolomics with other omics approaches for a comprehensive understanding of IS pathophysiology and TCM efficacy, paving the way for precision medicine in IS management.
Collapse
Affiliation(s)
- Liangzhe Wei
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Siqi Chen
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China
| | - Xinpeng Deng
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Yuchun Liu
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| | - Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
23
|
Chen Q, Zhang S, Liu W, Sun X, Luo Y, Sun X. Application of emerging technologies in ischemic stroke: from clinical study to basic research. Front Neurol 2024; 15:1400469. [PMID: 38915803 PMCID: PMC11194379 DOI: 10.3389/fneur.2024.1400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Stroke is a primary cause of noncommunicable disease-related death and disability worldwide. The most common form, ischemic stroke, is increasing in incidence resulting in a significant burden on patients and society. Urgent action is thus needed to address preventable risk factors and improve treatment methods. This review examines emerging technologies used in the management of ischemic stroke, including neuroimaging, regenerative medicine, biology, and nanomedicine, highlighting their benefits, clinical applications, and limitations. Additionally, we suggest strategies for technological development for the prevention, diagnosis, and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
24
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
25
|
Yu J, Chen T, Li X, Chen J, Wei W, Zhang J. Liquid chromatography coupled to mass spectrometry metabolomic analysis of cerebrospinal fluid revealed the metabolic characteristics of moyamoya disease. Front Neurol 2024; 15:1298385. [PMID: 38426176 PMCID: PMC10902010 DOI: 10.3389/fneur.2024.1298385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Metabolomics has found extensive applications in the field of neurological diseases, significantly contributing to their diagnosis and treatment. However, there has been limited research applying metabolomics to moyamoya disease (MMD). This study aims to investigate and identify differential metabolites associated with MMD. Methods We employed a liquid chromatography coupled with mass spectrometry (LC-MS) approach, complemented by univariate and multivariate analyses, to discern metabolic biomarkers in cerebrospinal fluid samples. We then compared these biomarkers between MMD patients and healthy controls (Ctl). Results Sixteen patients diagnosed with MMD via cerebral angiography and eight healthy controls were enrolled in this study. Comparative analyses, including univariate and multivariate analyses, correlation studies, heatmaps, Volcano Plots, and KEGG pathway enrichment, were performed between MMD patients and controls. As a result, we identified 129 significant differential metabolites in the cerebrospinal fluid between MMD patients and controls. These metabolic biomarkers are associated with various pathways, with notable involvement in purine and pyrimidine metabolism. Conclusion Utilizing an LC-MS-based metabolomics approach holds promise for enhancing the clinical diagnosis of MMD. The identified biomarkers offer potential avenues for the development of novel diagnostic methods for MMD and offer fresh insights into the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tongyu Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
26
|
Doshi M, Natori Y, Ishii A, Saigusa D, Watanabe S, Hosoyamada M, Hirashima-Akae Y. Hypothermia increases adenosine monophosphate and xanthosine monophosphate levels in the mouse hippocampus, preventing their reduction by global cerebral ischemia. Sci Rep 2024; 14:3187. [PMID: 38326353 PMCID: PMC10850059 DOI: 10.1038/s41598-024-53530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Global cerebral ischemia (GCI) caused by clinical conditions such as cardiac arrest leads to delayed neuronal death in the hippocampus, resulting in physical and mental disability. However, the mechanism of delayed neuronal death following GCI remains unclear. To elucidate the mechanism, we performed a metabolome analysis using a mouse model in which hypothermia (HT) during GCI, which was induced by the transient occlusion of the bilateral common carotid arteries, markedly suppressed the development of delayed neuronal death in the hippocampus after reperfusion. Fifteen metabolites whose levels were significantly changed by GCI and 12 metabolites whose levels were significantly changed by HT were identified. Furthermore, the metabolites common for both changes were narrowed down to two, adenosine monophosphate (AMP) and xanthosine monophosphate (XMP). The levels of both AMP and XMP were found to be decreased by GCI, but increased by HT, thereby preventing their decrease. In contrast, the levels of adenosine, inosine, hypoxanthine, xanthine, and guanosine, the downstream metabolites of AMP and XMP, were increased by GCI, but were not affected by HT. Our results may provide a clue to understanding the mechanism by which HT during GCI suppresses the development of delayed neuronal death in the hippocampus.
Collapse
Affiliation(s)
- Masaru Doshi
- Department of Human Physiology and Pathology, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Yujin Natori
- Department of Legal Medicine and Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Ishii
- Department of Legal Medicine and Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Daisuke Saigusa
- Department of Biomedical and Analytical Sciences, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shiro Watanabe
- Division of Nutritional Biochemistry, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Makoto Hosoyamada
- Department of Human Physiology and Pathology, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | | |
Collapse
|
27
|
Li X, Lu L, Min Y, Fu X, Guo K, Yang W, Li H, Xu H, Guo H, Huang Z. Efficacy and safety of hyperbaric oxygen therapy in acute ischaemic stroke: a systematic review and meta-analysis. BMC Neurol 2024; 24:55. [PMID: 38308217 PMCID: PMC10837997 DOI: 10.1186/s12883-024-03555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE This study aims to evaluate the efficacy and safety of adjunctive hyperbaric oxygen therapy (HBOT) in acute ischaemic stroke (AIS) based on existing evidence. METHODS We conducted a comprehensive search through April 15, 2023, of seven major databases for randomized controlled trials (RCTs) comparing adjunctive hyperbaric HBOT with non-HBOT (no HBOT or sham HBOT) treatments for AIS. Data extraction and assessment were independently performed by two researchers. The quality of included studies was evaluated using the tool provided by the Cochrane Collaboration. Meta-analysis was conducted using Rev Man 5.3. RESULTS A total of 8 studies involving 493 patients were included. The meta-analysis showed no statistically significant differences between HBOT and the control group in terms of NIHSS score (MD = -1.41, 95%CI = -7.41 to 4.58), Barthel index (MD = 8.85, 95%CI = -5.84 to 23.54), TNF-α (MD = -5.78, 95%CI = -19.93 to 8.36), sICAM (MD = -308.47, 95%CI = -844.13 to 13227.19), sVCAM (MD = -122.84, 95%CI = -728.26 to 482.58), sE-selectin (MD = 0.11, 95%CI = -21.86 to 22.08), CRP (MD = -5.76, 95%CI = -15.02 to 3.51), adverse event incidence within ≤ 6 months of follow-up (OR = 0.98, 95%CI = 0.25 to 3.79). However, HBOT showed significant improvement in modified Rankin score (MD = 0.10, 95%CI = 0.03 to 0.17), and adverse event incidence at the end of treatment (OR = 0.42, 95%CI = 0.19 to 0.94) compared to the control group. CONCLUSION While our findings do not support the routine use of HBOT for improving clinical outcomes in AIS, further research is needed to explore its potential efficacy within specific therapeutic windows and for different cerebral occlusion scenarios. Therefore, the possibility of HBOT offering clinical benefits for AIS cannot be entirely ruled out.
Collapse
Affiliation(s)
- Xuezheng Li
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou Guangdong, China
| | - Lijun Lu
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou Guangdong, China
| | - Yu Min
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou Guangdong, China
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No. 8, Fuyu East Road, South Bridge Street, Panyu District, Guangzhou, China
| | - Xuefeng Fu
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou Guangdong, China
| | - Kaifeng Guo
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No. 8, Fuyu East Road, South Bridge Street, Panyu District, Guangzhou, China
| | - Wen Yang
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou Guangdong, China
| | - Hao Li
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou Guangdong, China
| | - Haoming Xu
- South China Normal University, Guangzhou Guangdong, China
| | - Hua Guo
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No. 8, Fuyu East Road, South Bridge Street, Panyu District, Guangzhou, China
| | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No. 8, Fuyu East Road, South Bridge Street, Panyu District, Guangzhou, China.
| |
Collapse
|
28
|
Yadav S, Kumar A, Singh S, Ahmad S, Singh G, Khan AR, Chaurasia RN, Kumar D. NMR based Serum metabolomics revealed metabolic signatures associated with oxidative stress and mitochondrial damage in brain stroke. Metab Brain Dis 2024; 39:283-294. [PMID: 38095788 DOI: 10.1007/s11011-023-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024]
Abstract
Brain stroke (BS, also known as a cerebrovascular accident), represents a serious global health crisis. It has been a leading cause of permanent disability and unfortunately, frequent fatalities due to lack of timely medical intervention. While progress has been made in prevention and management, the complexities and consequences of stroke continue to pose significant challenges, especially, its impact on patient's quality of life and independence. During stroke, there is a substantial decrease in oxygen supply to the brain leading to alteration of cellular metabolic pathways, including those involved in mitochondrial-damage, leading to mitochondrial-dysfunction. The present proof-of-the-concept metabolomics study has been performed to gain insights into the metabolic pathways altered following a brain stroke and discover new potential targets for timely interventions to mitigate the effects of cellular and mitochondrial damage in BS. The serum metabolic profiles of 108 BS-patients were measured using 800 MHz NMR spectroscopy and compared with 60 age and sex matched normal control (NC) subjects. Compared to NC, the serum levels of glutamate, TCA-cycle intermediates (such as citrate, succinate, etc.), and membrane metabolites (betaine, choline, etc.) were found to be decreased BS patients, whereas those of methionine, mannose, mannitol, phenylalanine, urea, creatine and organic acids (such as 3-hydroxybutyrate and acetone) were found to be elevated in BS patients. These metabolic changes hinted towards hypoxia mediated mitochondrial dysfunction in BS-patients. Further, the area under receiver operating characteristic curve (ROC) values for five metabolic features (methionine, mannitol, phenylalanine, mannose and urea) found to be more than 0.9 suggesting their high sensitivity and specificity for differentiating BS from NC subjects.
Collapse
Affiliation(s)
- Sachin Yadav
- Department of Chemistry, Integral University, Lucknow, 226026, India
| | - Abhai Kumar
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| | - Smita Singh
- Department of Zoology, Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Shahnawaz Ahmad
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gurvinder Singh
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
29
|
Chung S, Yi Y, Ullah I, Chung K, Park S, Lim J, Kim C, Pyun SH, Kim M, Kim D, Lee M, Rhim T, Lee SK. Systemic Treatment with Fas-Blocking Peptide Attenuates Apoptosis in Brain Ischemia. Int J Mol Sci 2024; 25:661. [PMID: 38203830 PMCID: PMC10780202 DOI: 10.3390/ijms25010661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Apoptosis plays a crucial role in neuronal injury, with substantial evidence implicating Fas-mediated cell death as a key factor in ischemic strokes. To address this, inhibition of Fas-signaling has emerged as a promising strategy in preventing neuronal cell death and alleviating brain ischemia. However, the challenge of overcoming the blood-brain barrier (BBB) hampers the effective delivery of therapeutic drugs to the central nervous system (CNS). In this study, we employed a 30 amino acid-long leptin peptide to facilitate BBB penetration. By conjugating the leptin peptide with a Fas-blocking peptide (FBP) using polyethylene glycol (PEG), we achieved specific accumulation in the Fas-expressing infarction region of the brain following systemic administration. Notably, administration in leptin receptor-deficient db/db mice demonstrated that leptin facilitated the delivery of FBP peptide. We found that the systemic administration of leptin-PEG-FBP effectively inhibited Fas-mediated apoptosis in the ischemic region, resulting in a significant reduction of neuronal cell death, decreased infarct volumes, and accelerated recovery. Importantly, neither leptin nor PEG-FBP influenced apoptotic signaling in brain ischemia. Here, we demonstrate that the systemic delivery of leptin-PEG-FBP presents a promising and viable strategy for treating cerebral ischemic stroke. Our approach not only highlights the therapeutic potential but also emphasizes the importance of overcoming BBB challenges to advance treatments for neurological disorders.
Collapse
Affiliation(s)
- Sungeun Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Yujong Yi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Seongjun Park
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Jaeyeoung Lim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Chaeyeon Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Seon-Hong Pyun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Minkyung Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Minhyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Taiyoun Rhim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea (Y.Y.); (M.L.)
| |
Collapse
|
30
|
Xiao X, Xu L, Lu H, Liu X, Sun H, Guo Z, Sun J, Qi F, Niu X, Wang A, Ge Q, Zhuang Y, Geng X, Chen X, Lan Y, He J, Sun W. Untargeted Metabolomic Analyses of Body Fluids to Differentiate TBI DOC and NTBI DOC. Curr Mol Med 2024; 24:1183-1193. [PMID: 37817528 DOI: 10.2174/0115665240249826230928104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE To investigate the metabolomic differences between Traumatic brain injury (TBI) disorder of consciousness (DOC) patients and non-traumatic brain injury (NTBI) DOC patients by using cerebrospinal fluid (CSF), serum and urine samples beneficial to understand the pathological mechanism differences between the two etiologies, provide potential clues for the subsequent treatment and prognosis, and investigate the metabolome differences and similarities between TBI and NTBI among three different body fluids. METHODS In total, 24 TBI DOC subjects and 29 NTBI DOC subjects were enrolled. CSF, serum and urine samples from TBI DOC and NTBI DOC patients were collected and analyzed by performing UPLC-MS. The statistical methods and pathway analyses were applied to discover potential biomarkers and altered metabolic functions. RESULTS When comparing TBI DOC and NTBI DOC, 36, 31 and 52 differential metabolites were obtained in CSF, serum and urine, respectively. The functional analysis of differential metabolites obtained in CSF, serum and urine were all related to amino acid metabolism. Except for amino acid metabolism, metabolic biomarkers in CSF, serum and urine mainly focus on central function, cognitive function, necrosis and apoptosis and neurological function, respectively. In CSF, the highest AUC was 0.864 (Isoproturon) and 0.816 (Proline betaine). Then, the AUC of NFurfurylformamide in serum was 0.941, while the AUC of Dihydronepetalactone and Doxepin N-oxide glucuronide were 1.0 in urine. CONCLUSION CSF, serum and urine metabolomic analyses could differentiate TBI DOC from NTBI DOC and functional analyses showed a metabolic change difference between TBI DOC and NTBI DOC.
Collapse
Affiliation(s)
- Xiaoping Xiao
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Medical College, Beijing, China
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Hezhen Lu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaoyan Liu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Jiameng Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Feng Qi
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Xia Niu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Aiwei Wang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Zhuang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| |
Collapse
|
31
|
Djite M, Chao de la Barca JM, Bocca C, Gaye NM, Barry NOK, Mbacke MN, Cissé O, Kandji PM, Thioune NM, Coly-Gueye NF, Ndour EHM, Gueye-Tall F, Diop AG, Simard G, Mirebeau-Prunier D, Gueye PM, Reynier P. A Metabolomic Signature of Ischemic Stroke Showing Acute Oxidative and Energetic Stress. Antioxidants (Basel) 2023; 13:60. [PMID: 38247484 PMCID: PMC10812657 DOI: 10.3390/antiox13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolomics is a powerful data-driven tool for in-depth biological phenotyping that could help identify the specific metabolic profile of cryptogenic strokes, for which no precise cause has been identified. We performed a targeted quantitative metabolomics study in West African patients who had recently suffered an ischemic stroke, which was either cryptogenic (n = 40) or had a clearly identified cause (n = 39), compared to a healthy control group (n = 40). Four hundred fifty-six metabolites were accurately measured. Multivariate analyses failed to reveal any metabolic profile discriminating between cryptogenic ischemic strokes and those with an identified cause but did show superimposable metabolic profiles in both groups, which were clearly distinct from those of healthy controls. The blood concentrations of 234 metabolites were significantly affected in stroke patients compared to controls after the Benjamini-Hochberg correction. Increased methionine sulfoxide and homocysteine concentrations, as well as an overall increase in saturation of fatty acids, were indicative of acute oxidative stress. This signature also showed alterations in energetic metabolism, cell membrane integrity, monocarbon metabolism, and neurotransmission, with reduced concentrations of several metabolites known to be neuroprotective. Overall, our results show that cryptogenic strokes are not pathophysiologically distinct from ischemic strokes of established origin, and that stroke leads to intense metabolic remodeling with marked oxidative and energetic stresses.
Collapse
Affiliation(s)
- Moustapha Djite
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Juan Manuel Chao de la Barca
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
- Unité Mixte de Recherche (UMR) MITOVASC, Institut National de la Santé et de la Recherche Médicale (INSERM U-1083), Centre National de la Recherche Scientifique (CNRS 6015), Université d’Angers, 49933 Angers, France
| | - Cinzia Bocca
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
- Unité Mixte de Recherche (UMR) MITOVASC, Institut National de la Santé et de la Recherche Médicale (INSERM U-1083), Centre National de la Recherche Scientifique (CNRS 6015), Université d’Angers, 49933 Angers, France
| | - Ndiaga Matar Gaye
- Clinique Neurologique, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (N.M.G.); (O.C.); (A.G.D.)
| | - Néné Oumou Kesso Barry
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Mame Ndoumbé Mbacke
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Ousmane Cissé
- Clinique Neurologique, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (N.M.G.); (O.C.); (A.G.D.)
| | - Pape Matar Kandji
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Ndèye Marème Thioune
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | | | - El Hadji Malick Ndour
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
| | - Fatou Gueye-Tall
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
| | - Amadou Gallo Diop
- Clinique Neurologique, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (N.M.G.); (O.C.); (A.G.D.)
| | - Gilles Simard
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
| | - Delphine Mirebeau-Prunier
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
- Unité Mixte de Recherche (UMR) MITOVASC, Institut National de la Santé et de la Recherche Médicale (INSERM U-1083), Centre National de la Recherche Scientifique (CNRS 6015), Université d’Angers, 49933 Angers, France
| | - Papa Madieye Gueye
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Pascal Reynier
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
- Unité Mixte de Recherche (UMR) MITOVASC, Institut National de la Santé et de la Recherche Médicale (INSERM U-1083), Centre National de la Recherche Scientifique (CNRS 6015), Université d’Angers, 49933 Angers, France
| |
Collapse
|
32
|
Baranovicova E, Kalenska D, Kaplan P, Kovalska M, Tatarkova Z, Lehotsky J. Blood and Brain Metabolites after Cerebral Ischemia. Int J Mol Sci 2023; 24:17302. [PMID: 38139131 PMCID: PMC10743907 DOI: 10.3390/ijms242417302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The study of an organism's response to cerebral ischemia at different levels is essential to understanding the mechanism of the injury and protection. A great interest is devoted to finding the links between quantitative metabolic changes and post-ischemic damage. This work aims to summarize the outcomes of the most studied metabolites in brain tissue-lactate, glutamine, GABA (4-aminobutyric acid), glutamate, and NAA (N-acetyl aspartate)-regarding their biological function in physiological conditions and their role after cerebral ischemia/reperfusion. We focused on ischemic damage and post-ischemic recovery in both experimental-including our results-as well as clinical studies. We discuss the role of blood glucose in view of the diverse impact of hyperglycemia, whether experimentally induced, caused by insulin resistance, or developed as a stress response to the cerebral ischemic event. Additionally, based on our and other studies, we analyze and critically discuss post-ischemic alterations in energy metabolites and the elevation of blood ketone bodies observed in the studies on rodents. To complete the schema, we discuss alterations in blood plasma circulating amino acids after cerebral ischemia. So far, no fundamental brain or blood metabolite(s) has been recognized as a relevant biological marker with the feasibility to determine the post-ischemic outcome or extent of ischemic damage. However, studies from our group on rats subjected to protective ischemic preconditioning showed that these animals did not develop post-ischemic hyperglycemia and manifested a decreased metabolic infringement and faster metabolomic recovery. The metabolomic approach is an additional tool for understanding damaging and/or restorative processes within the affected brain region reflected in the blood to uncover the response of the whole organism via interorgan metabolic communications to the stressful cerebral ischemic challenge.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| |
Collapse
|
33
|
Sun XR, Yao ZM, Chen L, Huang J, Dong SY. Metabolic reprogramming regulates microglial polarization and its role in cerebral ischemia reperfusion. Fundam Clin Pharmacol 2023; 37:1065-1078. [PMID: 37339781 DOI: 10.1111/fcp.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
The brain is quite sensitive to changes in energy supply because of its high energetic demand. Even small changes in energy metabolism may be the basis of impaired brain function, leading to the occurrence and development of cerebral ischemia/reperfusion (I/R) injury. Abundant evidence supports that metabolic defects of brain energy during the post-reperfusion period, especially low glucose oxidative metabolism and elevated glycolysis levels, which play a crucial role in cerebral I/R pathophysiology. Whereas research on brain energy metabolism dysfunction under the background of cerebral I/R mainly focuses on neurons, the research on the complexity of microglia energy metabolism in cerebral I/R is just emerging. As resident immune cells of the central nervous system, microglia activate rapidly and then transform into an M1 or M2 phenotype to correspond to changes in brain homeostasis during cerebral I/R injury. M1 microglia release proinflammatory factors to promote neuroinflammation, while M2 microglia play a neuroprotective role by secreting anti-inflammatory factors. The abnormal brain microenvironment promotes the metabolic reprogramming of microglia, which further affects the polarization state of microglia and disrupts the dynamic equilibrium of M1/M2, resulting in the aggravation of cerebral I/R injury. Increasing evidence suggests that metabolic reprogramming is a key driver of microglial inflammation. For example, M1 microglia preferentially produce energy through glycolysis, while M2 microglia provide energy primarily through oxidative phosphorylation. In this review, we highlight the emerging significance of regulating microglial energy metabolism in cerebral I/R injury.
Collapse
Affiliation(s)
- Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| |
Collapse
|
34
|
Miller A, York EM, Stopka SA, Martínez-François JR, Hossain MA, Baquer G, Regan MS, Agar NYR, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. Nat Metab 2023; 5:1820-1835. [PMID: 37798473 PMCID: PMC10626993 DOI: 10.1038/s42255-023-00890-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices, coupled with fast metabolite preservation and followed by mass spectrometry (MS) imaging, to generate spatially resolved metabolomics and isotope-tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, because inhibition of PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MS imaging on brain slices bridges the gap between live-cell physiology and the deep chemical analysis enabled by MS.
Collapse
Affiliation(s)
- Anne Miller
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Elisa M York
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Md Amin Hossain
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Sun Z, Zhou Y, Liu Y, Luo R, Tian C, Chen Q. Transcriptome-Wide Analysis of Neutrophil-Related Circ_22232 in Neuroinflammation from Ischemic Stroke Mice. Brain Sci 2023; 13:1283. [PMID: 37759884 PMCID: PMC10526308 DOI: 10.3390/brainsci13091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke (IS) often leads to high rates of disability and mortality worldwide with secondary damage due to neuroinflammation. Identification of potential therapeutic targets via the novel circular RNAs (circRNAs) would advance the field and provide a better treatment option for neuroinflammation after IS. Gene Ontology Term Enrichment (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to identify differentially expressed genes/miRNAs/circRNAs in the genome-wide RNA-seq profiles of ischemic mice. Meanwhile, relevant circRNAs were screened by differential expression analysis and coexpression RNA regulation network analysis. To explore the function of circ_22232 (Specc1l), we generated circ_22232 knockdown mice and applied middle cerebral artery occlusion (MCAO) to study IS. Cytokine levels were detected by enzyme-linked immunosorbent assay. Morphological changes were observed with immunohistochemical staining and hematoxylin-eosin staining. The circ_22232/miR-847-3p/Bmp1 axis was found to be highly correlated with neutrophil-associated neuroinflammation in cerebral tissue of mice. Immunohistochemical showed a progressive increase in the proportion of neutrophils after IS. In in vivo experiments, the circ_22232 knockdown alleviated cerebral injury by reducing the activation of neutrophils and inflammatory cytokine production. This suggests that circ_22232 is associated with inflammation, which may serve as a potential therapeutic target for IS.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Youdong Zhou
- Department of Neurosurgery, Yichang Center People’s Hospital, Yichang 443003, China; (Y.Z.); (Y.L.); (R.L.)
| | - Yanting Liu
- Department of Neurosurgery, Yichang Center People’s Hospital, Yichang 443003, China; (Y.Z.); (Y.L.); (R.L.)
| | - Ran Luo
- Department of Neurosurgery, Yichang Center People’s Hospital, Yichang 443003, China; (Y.Z.); (Y.L.); (R.L.)
| | - Chunlei Tian
- Department of Neurosurgery, Yichang Center People’s Hospital, Yichang 443003, China; (Y.Z.); (Y.L.); (R.L.)
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| |
Collapse
|
36
|
Dieu X, Tamareille S, Herbreteau A, Lebeau L, Chao De La Barca JM, Chabrun F, Reynier P, Mirebeau-Prunier D, Prunier F. Combined Metabolipidomic and Machine Learning Approach in a Rat Model of Stroke Reveals a Deleterious Impact of Brain Injury on Heart Metabolism. Int J Mol Sci 2023; 24:12000. [PMID: 37569376 PMCID: PMC10418865 DOI: 10.3390/ijms241512000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiac complications are frequently found following a stroke in humans whose pathophysiological mechanism remains poorly understood. We used machine learning to analyse a large set of data from a metabolipidomic study assaying 630 metabolites in a rat stroke model to investigate metabolic changes affecting the heart within 72 h after a stroke. Twelve rats undergoing a stroke and 28 rats undergoing the sham procedure were investigated. A plasmatic signature consistent with the literature with notable lipid metabolism remodelling was identified. The post-stroke heart showed a discriminant metabolic signature, in comparison to the sham controls, involving increased collagen turnover, increased arginase activity with decreased nitric oxide synthase activity as well as an altered amino acid metabolism (including serine, asparagine, lysine and glycine). In conclusion, these results demonstrate that brain injury induces a metabolic remodelling in the heart potentially involved in the pathophysiology of stroke heart syndrome.
Collapse
Affiliation(s)
- Xavier Dieu
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Sophie Tamareille
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
| | - Aglae Herbreteau
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
| | - Lucie Lebeau
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
| | - Juan Manuel Chao De La Barca
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Floris Chabrun
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Pascal Reynier
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Delphine Mirebeau-Prunier
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Fabrice Prunier
- MITOVASC, SFR ICAT, CNRS, INSERM, Université d’Angers, F-49000 Angers, France; (S.T.); (A.H.); (L.L.); (J.M.C.D.L.B.); (F.C.); (P.R.); (D.M.-P.); (F.P.)
- Service de Cardiologie, CHU Angers, F-49000 Angers, France
| |
Collapse
|
37
|
Geisler F, Haacke L, Lorenz M, Schwabauer E, Wendt M, Bernhardt L, Dashti E, Freitag E, Kunz A, Hofmann-Shen C, Zuber M, Waldschmidt C, Kandil FI, Kappert K, Dang-Heine C, Lorenz-Meyer I, Audebert HJ, Weber JE. Prospective collection of blood plasma samples to identify potential biomarkers for the prehospital stroke diagnosis (ProGrEss-Bio): study protocol for a multicenter prospective observational study. Front Neurol 2023; 14:1201130. [PMID: 37483444 PMCID: PMC10359480 DOI: 10.3389/fneur.2023.1201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Intravenous thrombolysis (IVT) and mechanical thrombectomy (MT) are well-established, evidence-based, time-critical therapies that reduce morbidity and mortality in acute ischemic stroke (AIS) patients. The exclusion of intracerebral hemorrhage (ICH) is mandatory and has been performed by cerebral imaging to date. Mobile stroke units (MSUs) have been shown to improve functional outcomes by bringing cerebral imaging and IVT directly to the patient, but they have limited coverage. Blood biomarkers clearly distinguishing between AIS, ICH, and stroke mimics (SM) could provide an alternative to cerebral imaging if concentration changes are detectable in the hyperacute phase after stroke with high diagnostic accuracy. In this study, we will take blood samples in a prehospital setting to evaluate potential biomarkers. The study was registered in the German Clinical Trials Register (https://drks.de/search/de) with the identifier DRKS00023063. Methods and analysis We plan a prospective, observational study involving 300 patients with suspected stroke and symptom onset of ≤4.5 h before the collection of biomarkers. Study participants will be recruited from three sites in Berlin, Germany during MSU deployments. The focus of the study is the collection of blood samples from participants at the prehospital scene and from participants with AIS or ICH at a second-time point. All samples will be analyzed using targeted and untargeted analytical approaches. Study-related information about participants, including medical information and discharge diagnoses from the subsequent treating hospital, will be collected and documented in an electronic case report form (eCRF). Discussion This study will evaluate whether a single blood biomarker or a combination of biomarkers can distinguish patients with AIS and ICH from patients with stroke and SM in the early phase after symptom onset in the prehospital setting. In addition, the kinetics of blood biomarkers in AIS and ICH patients will be investigated. Our goal is to evaluate new ways to reliably diagnose stroke in the prehospital setting and thus accelerate the application of evidence-based therapies to stroke patients.
Collapse
Affiliation(s)
- Frederik Geisler
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lisa Haacke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maren Lorenz
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Schwabauer
- Department of Neurology, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Matthias Wendt
- Department of Neurology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Lydia Bernhardt
- Department of Neurology, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Eman Dashti
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erik Freitag
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Kunz
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Hofmann-Shen
- Kliniken Beelitz, Teaching Hospital of Brandenburg Medical School Theodor Fontane, Beelitz-Heilstätten, Germany
| | - Martina Zuber
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Farid I. Kandil
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai Kappert
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chantip Dang-Heine
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Irina Lorenz-Meyer
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heinrich J. Audebert
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joachim E. Weber
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
38
|
Ossanna R, Veronese S, Quintero Sierra LA, Conti A, Conti G, Sbarbati A. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): An Easily Accessible, Pluripotent Stem Cell Niche with Unique and Powerful Properties for Multiple Regenerative Medicine Applications. Biomedicines 2023; 11:1587. [PMID: 37371682 DOI: 10.3390/biomedicines11061587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Cell-based therapy in regenerative medicine is a powerful tool that can be used both to restore various cells lost in a wide range of human disorders and in renewal processes. Stem cells show promise for universal use in clinical medicine, potentially enabling the regeneration of numerous organs and tissues in the human body. This is possible due to their self-renewal, mature cell differentiation, and factors release. To date, pluripotent stem cells seem to be the most promising. Recently, a novel stem cell niche, called multilineage-differentiating stress-enduring (Muse) cells, is emerging. These cells are of particular interest because they are pluripotent and are found in adult human mesenchymal tissues. Thanks to this, they can produce cells representative of all three germ layers. Furthermore, they can be easily harvested from fat and isolated from the mesenchymal stem cells. This makes them very promising, allowing autologous treatments and avoiding the problems of rejection typical of transplants. Muse cells have recently been employed, with encouraging results, in numerous preclinical studies performed to test their efficacy in the treatment of various pathologies. This review aimed to (1) highlight the specific potential of Muse cells and provide a better understanding of this niche and (2) originate the first organized review of already tested applications of Muse cells in regenerative medicine. The obtained results could be useful to extend the possible therapeutic applications of disease healing.
Collapse
Affiliation(s)
- Riccardo Ossanna
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Sheila Veronese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | | | - Anita Conti
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Giamaica Conti
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| |
Collapse
|
39
|
Kalra P, Khan H, Singh TG, Grewal AK. Mechanistic insights on impact of Adenosine monophosphate-activated protein kinase (AMPK) mediated signalling pathways on cerebral ischemic injury. Neurosci Res 2023; 190:17-28. [PMID: 36403790 DOI: 10.1016/j.neures.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/23/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Cerebral ischemia is the primary cause of morbidity and mortality worldwide due to the perturbations in the blood supply to the brain. The brain triggers a cascade of complex metabolic and cellular defects in response to ischemic stress. However, due to the disease heterogeneity and complexity, ischemic injury's metabolic and cellular pathologies remain elusive, and the link between various pathological mechanisms is difficult to determine. Efforts to develop effective treatments for these disorders have yielded limited efficacy, with no proper cure available to date. Recent clinical and experimental research indicates that several neuronal diseases commonly coexist with metabolic dysfunction, which may aggravate neurological symptoms. As a result, it stands to a reason that metabolic hormones could be a potential therapeutic target for major NDDs. Moreover, fasting signals also influence the circadian clock, as AMPK phosphorylates and promotes the degradation of the photo-sensing receptor (cryptochrome). Here, the interplay of AMPK signaling between metabolic regulation and neuronal death and its role for pathogenesis and therapeutics has been studied. We have also highlighted a significant signaling pathway, i.e., the adenosine monophosphate-activated protein kinase (AMPK) involved in the relationship between the metabolism and ischemia, which could be used as a target for future studies therapeutics, and review some of the clinical progress in this area.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
40
|
Huang J, Chen L, Yao ZM, Sun XR, Tong XH, Dong SY. The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed Pharmacother 2023; 162:114671. [PMID: 37037094 DOI: 10.1016/j.biopha.2023.114671] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Stroke is one of the leading causes of death and long-term disability worldwide. More than 80 % of strokes are ischemic, caused by an occlusion of cerebral arteries. Without question, restoration of blood supply as soon as possible is the first therapeutic strategy. Nonetheless paradoxically, reperfusion can further aggravate the injury through a series of reactions known as cerebral ischemia-reperfusion injury (CIRI). Mitochondria play a vital role in promoting nerve survival and neurological function recovery and mitochondrial dysfunction is considered one of the characteristics of CIRI. Neurons often die due to oxidative stress and an imbalance in energy metabolism following CIRI, and there is a strong association with mitochondrial dysfunction. Altered mitochondrial dynamics is the first reaction of mitochondrial stress. Mitochondrial dynamics refers to the maintenance of the integrity, distribution, and size of mitochondria as well as their ability to resist external stimuli through a continuous cycle of mitochondrial fission and fusion. Therefore, improving mitochondrial dynamics is a vital means of treating CIRI. This review discusses the relationship between mitochondria and CIRI and emphasizes improving mitochondrial dynamics as a potential therapeutic approach to improve the prognosis of CIRI.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China; Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China.
| |
Collapse
|
41
|
Yu Y, Wen X, Lin JG, Liu J, Liang HF, Lin SW, Xu QG, Li JC. Identification of three potential novel biomarkers for early diagnosis of acute ischemic stroke via plasma lipidomics. Metabolomics 2023; 19:32. [PMID: 36997715 DOI: 10.1007/s11306-023-01990-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/05/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Acute ischemic stroke (AIS) accounts for the majority of all stroke, globally the second leading cause of death. Due to its rapid development after onset, its early diagnosis is crucial. OBJECTIVES We aim to identify potential highly reliable blood-based biomarkers for early diagnosis of AIS using quantitative plasma lipid profiling via a machine learning approach. METHODS Lipidomics was used for quantitative plasma lipid profiling, based on ultra-performance liquid chromatography tandem mass spectrometry. Our samples were divided into a discovery and a validation set, each containing 30 AIS patients and 30 health controls (HC). Differentially expressed lipid metabolites were screened based on the criteria VIP > 1, p < 0.05, and fold change > 1.5 or < 0.67. The least absolute shrinkage and selection operator (LASSO) and random forest algorithms in machine learning were used to select differential lipid metabolites as potential biomarkers. RESULTS Three key differential lipid metabolites, CarnitineC10:1, CarnitineC10:1-OH and Cer(d18:0/16:0), were identified as potential biomarkers for early diagnosis of AIS. The former two, associated with thermogenesis, were down-regulated, whereas the latter, associated with necroptosis and sphingolipd metabolism, was upregulated. Univariate and multivariate logistic regressions showed that these three lipid metabolites and the resulting diagnostic model exhibited a strong ability in discriminating between AIS patients and HCs in both the discovery and validation sets, with an area under the curve above 0.9. CONCLUSIONS Our work provides valuable information on the pathophysiology of AIS and constitutes an important step toward clinical application of blood-based biomarkers for diagnosing AIS.
Collapse
Affiliation(s)
- Yi Yu
- Center for Analyses and Measurements, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xue Wen
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China
| | - Jin-Guang Lin
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China
| | - Jun Liu
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China
| | - Hong-Feng Liang
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China
| | - Shan-Wen Lin
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China
| | - Qiu-Gui Xu
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China
| | - Ji-Cheng Li
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China.
- The Central Hospital of Taizhou, Taizhou, 318000, Zhejiang, China.
- Institute of Cell Biology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
42
|
Yao X, Li C. Lactate dehydrogenase A mediated histone lactylation induced the pyroptosis through targeting HMGB1. Metab Brain Dis 2023; 38:1543-1553. [PMID: 36870018 DOI: 10.1007/s11011-023-01195-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Cerebral ischemia (CI), as the cerebrovascular disease with the highest incidence rate, is treated by limited intravenous thrombolysis and intravascular therapy to recanalize the embolized vessels. Recently, the discovery of histone lactylation proposes a potential molecular mechanism for the role of lactate in physiological and pathological processes. This study aimed to analyze the lactate dehydrogenase A (LDHA) mediated histone lactylation in CI reperfusion (CI/R) injury. Oxygen-glucose deprivation/reoxygenation (OGD/R) treated N2a cells and middle cerebral artery occlusion (MCAO) treated rats was used as the CI/R model in vivo and in vitro. Cell viability and pyroptosis was assessed using CCK-8 and flow cytometry. RT-qPCR was performed to detect the relative expression. The relationship between histone lactylation and HMGB1 was verified by CHIP assay. LDHA, HMGB1, lactate and histone lactylation was up-regulated in the OGD/R treated N2a cells. Additionally, LDHA knockdown decreased HMGB1 levels in vitro, and relieved CI/R injury in vivo. Besides, LDHA silencing declined the histone lactylation mark enrichment on HMGB1 promoter, and lactate supplement rescued it. What?s more, LDHA knockdown decreased the IL-18 and IL-1β contents, and the cleaved-caspase-1 and GSDMD-N protein levels in the OGD/R treated N2a cells, which was reversed by HMGB1 overexpression. Knockdown of LDHA suppressed the pyroptosis in the N2a cells induced by OGD/R, which was reversed by HMGB1 overexpression. Mechanistically, LDHA mediated the histone lactylation induced pyroptosis through targeting HMGB1 in the CI/R injury.
Collapse
Affiliation(s)
- Xuan Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, 150001, Heilongjiang Province, China.
- The Key Laboratory of Anesthesiology and lntensive Care Research of Heilongjiang Province, Harbin, China.
| | - Chao Li
- The Second Department of Operating Room, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| |
Collapse
|
43
|
Luo G, Xie W, Gao R, Zheng T, Chen L, Sun H. Unsupervised anomaly detection in brain MRI: Learning abstract distribution from massive healthy brains. Comput Biol Med 2023; 154:106610. [PMID: 36708653 DOI: 10.1016/j.compbiomed.2023.106610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE To develop a general unsupervised anomaly detection method based only on MR images of normal brains to automatically detect various brain abnormalities. MATERIALS AND METHODS In this study, a novel method based on three-dimensional deep autoencoder network is proposed to automatically detect and segment various brain abnormalities without being trained on any abnormal samples. A total of 578 normal T2w MR volumes without obvious abnormalities were used for model training and validation. The proposed 3D autoencoder was evaluated on two different datasets (BraTs dataset and in-house dataset) containing T2w volumes from patients with glioblastoma, multiple sclerosis and cerebral infarction. Lesions detection and segmentation performance were reported as AUC, precision-recall curve, sensitivity, and Dice score. RESULTS In anomaly detection, AUCs for three typical lesions were as follows: glioblastoma, 0.844; multiple sclerosis, 0.858; cerebral infarction, 0.807. In anomaly segmentation, the mean Dice for glioblastomas was 0.462. The proposed network also has the ability to generate an anomaly heatmap for visualization purpose. CONCLUSION Our proposed method was able to automatically detect various brain anomalies such as glioblastoma, multiple sclerosis, and cerebral infarction. This work suggests that unsupervised anomaly detection is a powerful approach to detect arbitrary brain abnormalities without labeled samples. It has the potential to support diagnostic workflow in radiology as an automated tool for computer-aided image analysis.
Collapse
Affiliation(s)
- Guoting Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Xie
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ronghui Gao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Zheng
- IT Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
45
|
A Novel 5-Chloro- N-phenyl-1H-indole-2-carboxamide Derivative as Brain-Type Glycogen Phosphorylase Inhibitor: Validation of Target PYGB. Molecules 2023; 28:molecules28041697. [PMID: 36838691 PMCID: PMC9958726 DOI: 10.3390/molecules28041697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Brain-type glycogen phosphorylase (PYGB) inhibitors are recognized as prospective drugs for treating ischemic brain injury. We previously reported compound 1 as a novel glycogen phosphorylase inhibitor with brain-protective properties. In this study, we validated whether PYGB could be used as the therapeutic target for hypoxic-ischemic diseases and investigated whether compound 1 exerts a protective effect against astrocyte hypoxia/reoxygenation (H/R) injury by targeting PYGB. A gene-silencing strategy was initially applied to downregulate PYGB proteins in mouse astrocytes, which was followed by a series of cellular experiments with compound 1. Next, we compared relevant indicators that could prove the protective effect of compound 1 on brain injury, finding that after PYGB knockdown, compound 1 could not obviously alleviate astrocytes H/R injury, as evidenced by cell viability, which was not significantly improved, and lactate dehydrogenase (LDH) leakage rate, intracellular glucose content, and post-ischemic reactive oxygen species (ROS) level, which were not remarkably reduced. At the same time, cellular energy metabolism did not improve, and the degree of extracellular acidification was not downregulated after administration of compound 1 after PYGB knockdown. In addition, it could neither significantly increase the level of mitochondrial aerobic energy metabolism nor inhibit the expression of apoptosis-associated proteins. The above results indicate that compound 1 could target PYGB to exert its protective effect against cellular H/R injury in mouse astrocytes. Simultaneously, we further demonstrated that PYGB could be an efficient therapeutic target for ischemic-hypoxic diseases. This study provides a new reference for further in-depth study of the action mechanism of the efficacy of compound 1.
Collapse
|
46
|
Chen S, Wang L, Yuan Y, Wen Y, Shu S. Electroacupuncture regulates microglia polarization via lncRNA-mediated hippo pathway after ischemic stroke. Biotechnol Genet Eng Rev 2023:1-17. [PMID: 36760060 DOI: 10.1080/02648725.2023.2177046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Microglia polarization and microglia-mediated inflammation play a crucial role in the development of ischaemic brain injury. Electroacupuncture (EA) has the function of anti-inflammatory, which has been thoroughly validated and utilized to treat ischemic brain damage. The fundamental mechanism by which EA alleviates ischemic brain damage by decreasing microglia polarization and microglia-mediated inflammation, however, remains unknown. In the current study, the activation of microglia and inflammatory cytokines was analyzed to confirm the anti-inflammatory function of EA in middle cerebral artery occlusion (MCAO) rats. Whole-transcriptome sequencing was used to examine the differentially expressed lncRNAs in the control, MCAO, and MCAO +EA groups. Our findings demonstrated that EA treatment reduced microglia activation and inflammatory cytokine production. In addition, there are 44 lncRNAs were found significantly different in three groups, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the predicted targets of these lncRNAs suggested that the Hippo pathway may contribute to the development of ischaemic brain injury and to the anti-inflammatory function of EA. Moreover, our data showed that lncRNA TCONS_00022826 (Lnc826) was upregulated in MCAO group, whereas blocked by EA treatment. Furthermore, in vitro OGD cell model data showed that Lnc826 promoted M1 polarization of microglia by regulating the Hippo pathway. Our data suggested that regulating microglia polarization via Lnc826-mediated hippo pathway is a possible mechanism of the EA treatment on ischemic brain injury.
Collapse
Affiliation(s)
- Shenxu Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of TCM, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linmei Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Yuan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Acupuncture and Tuina, Changhai Hospital, Shanghai China
| | - Yunfan Wen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
Chen Q, Zhou T, Yuan JJ, Xiong XY, Liu XH, Qiu ZM, Hu LL, Lu H, He Q, Liu C, Yang QW. Metabolomics profiling to characterize cerebral ischemia-reperfusion injury in mice. Front Pharmacol 2023; 14:1091616. [PMID: 36814490 PMCID: PMC9939521 DOI: 10.3389/fphar.2023.1091616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Cerebral ischemia, resulting from compromised blood flow, is one of the leading causes of death worldwide with limited therapeutic options. Potential deleterious injuries resulting from reperfusion therapies remain a clinical challenge for physicians. This study aimed to explore the metabolomic alterations during ischemia-reperfusion injury by employing metabolomic analysis coupled with gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography quadrupole (UPLC/Q)-TOF-MS. Metabolomic data from mice subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion (MCAO/R) were compared to those of the sham and MCAO groups. A total of 82 simultaneously differentially expressed metabolites were identified among each group. The top three major classifications of these differentially expressed metabolites were organic acids, lipids, and organooxygen compounds. Metabolomics pathway analysis was conducted to identify the underlying pathways implicated in MCAO/R. Based on impactor scores, the most significant pathways involved in the response to the reperfusion after cerebral ischemia were glycerophospholipid metabolism, linoleic acid metabolism, pyrimidine metabolism, and galactose metabolism. 17 of those 82 metabolites were greatly elevated in the MCAO/Reperfusion group, when compared to those in the sham and MCAO groups. Among those metabolites, glucose-6-phosphate 1, fructose-6-phosphate, cellobiose 2, o-phosphonothreonine 1, and salicin were the top five elevated metabolites in MCAO/R group, compared with the MCAO group. Glycolysis, the pentose phosphate pathway, starch and sucrose metabolism, and fructose and mannose degradation were the top four ranked pathways according to metabolite set enrichment analysis (MSEA). The present study not only advances our understanding of metabolomic changes among animals in the sham and cerebral ischemia groups with or without reperfusion via metabolomic profiling, but also paves the way to explore potential molecular mechanisms underlying metabolic alteration induced by cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Ting Zhou
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun-jie Yuan
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-yi Xiong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China,Sichuan Provincial Key Laboratory for Acupuncture & Chronobiology, Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue-hui Liu
- Department of Medicinal Chemistry, College of Pharmacy, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Zong-ming Qiu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin-lin Hu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Lu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian He
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang Liu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China,*Correspondence: Chang Liu, ; Qing-wu Yang,
| | - Qing-wu Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China,*Correspondence: Chang Liu, ; Qing-wu Yang,
| |
Collapse
|
48
|
Song X, Xing W, Zhang X, Wang X, Ji J, Lu J, Yu B, Ruan M. Exploring the synergic mechanism of Ligusticum striatum DC. and borneol in attenuating BMECs injury and maintaining tight junctions against cerebral ischaemia based on the HIF-1α/VEGF signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115764. [PMID: 36183951 DOI: 10.1016/j.jep.2022.115764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum striatum DC., also known as Ligusticum chuanxiong Hort. (LCH), is widely used in China for its excellent effect in ischaemic stroke (IS) patients, and borneol (BO) has been confirmed to maintain the blood‒brain barrier (BBB) after stroke. They are often used as a combination in the prescriptions of IS patients. Although the advantage of their combined treatment in improving brain ischaemia has been verified, their synergistic mechanism on BBB maintenance is still unclear. AIM OF THE STUDY This study was designed to evaluate the synergistic effect of maintaining the BBB between LCH and BO against IS and to further explore the potential mechanism. MATERIALS AND METHODS After primary mouse brain microvascular endothelial cells (BMECs) were extracted and identified, the duration of oxygen-glucose deprivation (OGD) and the doses of LCH and BO were optimized. Then, the cells were divided into five groups: control, model, LCH, BO, and LCH + BO. Cell viability, injury degree, proliferation and migration were detected by CCK-8, LDH, EdU and wound-healing assays, respectively. Hoechst 33342 staining was adopted to detect the apoptosis rate, and western blotting was employed to observe the expressions of Bax, Bcl-2, caspase-3 and cleaved caspase-3. The TEER value and NaF permeability were measured to assess tight junction (TJ) function, while ZO-1, occludin and claudin-5 were also probed by western blotting. Moreover, the HIF-1α/VEGF pathway was observed to explore the underlying mechanism of BBB maintenance. In vivo, global cerebral ischaemia/reperfusion (GCIR) surgery was performed to establish an IS model. After treatment with LCH (200 mg/kg) and/or BO (160 mg/kg), histopathological structure and BMECs repair were observed by HE staining and immunohistochemistry of vWF. Meanwhile, TJ-associated proteins in vivo were also detected by western blotting. RESULTS Basically, LCH and BO had different emphases. LCH significantly attenuated the vacuolar structure, nuclear pyknosis and neuronal loss of GCIR mice, while BO focused on promoting BMECs proliferation and angiogenesis and inhibiting the degradation of TJ-associated proteins in vivo after IS. Interestingly, their combination further enhanced these effects. OGD injury markedly reduced the viability, proliferation and migration of primary BMECs; decreased the ratio of Bcl-2/Bax, TEER value, and the expressions of ZO-1, occludin and claudin-5; induced LDH release and apoptosis; and increased the cleaved caspase-3/caspase-3 ratio and NaF permeability. Meanwhile, BO might be the main contributor to the combinative treatment in ameliorating OGD-induced damage of BMECs and degradation of TJ-related proteins, and the potential mechanism might be involved in upregulating the HIF-1α/VEGF signalling pathway. Although LCH showed no obvious improvement, it could enhance the therapeutic effect of BO. Interestingly, their combination even produced some new improvements, including the reduction of cleaved caspase-3 and increase in TEER value, none of which were exhibited in their monotherapies. CONCLUSIONS LCH and BO exhibited complementary therapeutic features in alleviating cerebral ischaemic injury by inhibiting BMECs apoptosis, maintaining the BBB and attenuating the loss of neurons. LCH preferred to protect ischaemic neurons, while BO played a key role in protecting BMECs, maintaining the BBB and TJs by activating the HIF-1α/VEGF signalling pathway.
Collapse
Affiliation(s)
- Xiaoxiong Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wanqing Xing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xiaofeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xueqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jing Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jinfu Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bin Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming Ruan
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China.
| |
Collapse
|
49
|
Qian W, Wu M, Qian T, Xie C, Gao Y, Qian S. The roles and mechanisms of gut microbiome and metabolome in patients with cerebral infarction. Front Cell Infect Microbiol 2023; 13:1112148. [PMID: 36761896 PMCID: PMC9905239 DOI: 10.3389/fcimb.2023.1112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
As the most common type of stroke, ischemic stroke, also known as cerebral infarction (CI), with its high mortality and disability rate, has placed a huge burden on social economy and public health. Treatment methods for CI mainly include thrombectomy, thrombolysis, drug therapy, and so on. However, these treatments have certain timeliness and different side effects. In recent years, the gut-brain axis has become a hot topic, and its role in nervous system diseases has been confirmed by increasing evidences. The intestinal microbiota, as an important part of the gut-brain axis, has a non-negligible impact on the progression of CI through mechanisms such as inflammatory response and damage-associated molecular patterns, and changes in the composition of intestinal microbiota can also serve as the basis for predicting CI. At the same time, the diagnosis of CI requires more high-throughput techniques, and the analysis method of metabolomics just fits this demand. This paper reviewed the changes of intestinal microbiota in patients within CI and the effects of the intestinal microbiota on the course of CI, and summarized the therapeutic methods of the intervention with the intestinal microbiota. Furthermore, metabolic changes of CI patients were also discussed to reveal the molecular characteristics of CI and to elucidate the potential pathologic pathway of its interference.
Collapse
Affiliation(s)
| | | | - Tingting Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chen Xie
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yaxin Gao
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | | |
Collapse
|
50
|
Liu M, Mu J, Gong W, Zhang K, Yuan M, Song Y, Li B, Jin N, Zhang W, Zhang D. In Vitro Diagnosis and Visualization of Cerebral Ischemia/Reperfusion Injury in Rats and Protective Effects of Ferulic Acid by Raman Biospectroscopy and Machine Learning. ACS Chem Neurosci 2023; 14:159-169. [PMID: 36516359 DOI: 10.1021/acschemneuro.2c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is a major cause of mortality with complicated pathophysiological mechanisms, and hematoxylin and eosin (HE) staining is a histochemical diagnosis technique heavily relying on subjective observation. In this study, we developed a noninvasive assay using Raman spectroscopy for in vitro diagnosis and visualization of cerebral ischemia/reperfusion injury and protective effects of ferulic acid. By establishing a middle cerebral artery occlusion (MCAO) model in Sprague-Dawley male rats, we found effective interventions by ferulic acid using the neurological function score and HE staining. Raman spectra of neuronal and neuroglial cells exhibited significant intensity changes of protein, nucleotide, lipid, and carbohydrate at 780, 814, 1002, 1012, 1176, 1224, 1402, 1520, 1586, 1614, and 1752 cm-1. Cluster vector analysis highlighted the alterations at 1002, 1080, 1298, 1430, 1478, 1508, 1586, and 1676 cm-1. To evaluate the levels of neuron injury and intervention performance, a random forest model was developed on Raman spectral data and achieved satisfactory accuracy (0.9846), sensitivity (0.9679-0.9932), and specificity (0.9945-0.9989), ranking peaks around 1002 cm-1 as key fingerprint for classification. Spectral phenylalanine-to-tryptophan ratio was the biomarker to visualize neuronal injury and intervention performance of ferulic acid with a resolution of 1 μm. Our results unravel the biochemical changes in neuronal cells with cerebral ischemia/reperfusion injury and ferulic acid treatment, and prove Raman spectroscopy coupled with machine learning as a power tool to classify neuron viability and evaluate the intervention performance in pharmacological research.
Collapse
Affiliation(s)
- Mingying Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Ju Mu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Wan Gong
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Kena Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Maoyun Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou310053, P. R. China
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, P. R. China
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, P. R. China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing100875, P. R. China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun130021, P. R. China.,College of New Energy and Environment, Jilin University, Changchun130021, P. R. China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun130021, P. R. China.,College of New Energy and Environment, Jilin University, Changchun130021, P. R. China
| |
Collapse
|