1
|
Menon NA, Kumar CD, Ramachandran P, Blaize B, Gautam M, Cordani M, Lekha Dinesh Kumar. Small-molecule inhibitors of WNT signalling in cancer therapy and their links to autophagy and apoptosis. Eur J Pharmacol 2025; 986:177137. [PMID: 39551337 DOI: 10.1016/j.ejphar.2024.177137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cancer represents an intricate and heterogeneous ailment that evolves from a multitude of epigenetic and genetic variations that disrupt normal cellular function. The WNT/β-catenin pathway is essential in maintaining the balance between cell renewal and differentiation in various tissues. Abnormal activation of this pathway can lead to uncontrolled cell growth and initiate cancer across a variety of tissues such as the colon, skin, liver, and ovary. It enhances characteristics that lead to cancer progression, including angiogenesis, invasion and metastasis. Processes like autophagy and apoptosis which regulate cell death and play a crucial role in maintaining cellular equilibrium are also intimately linked with WNT/ β-catenin pathway. Thus, targeting WNT pathway has become a key strategy in developing antitumor therapies. Employing small molecule inhibitors has emerged as a targeted therapy to improve the clinical outcome compared to conventional cancer treatments. Many strategies using small molecule inhibitors for modulating the WNT/β-catenin pathway, such as hindering WNT ligands' secretion or interaction, disrupting receptor complex, and blocking the nuclear translocation of β-catenin have been investigated. These interventions have shown promise in both preclinical and clinical settings. This review provides a comprehensive understanding of the role of WNT/β-catenin signalling pathway's role in cancer, emphasizing its regulation of autophagy and apoptosis. Our goal is to highlight the potential of specific small molecule inhibitors targeting this pathway, fostering the development of novel, tailored cancer treatments.
Collapse
Affiliation(s)
- Nayana A Menon
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore, 632004, Tamil Nadu, India
| | - Pournami Ramachandran
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Britny Blaize
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Mridul Gautam
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
2
|
Yue Y, An G, Cao S, Li X, Du L, Xu D, Jin T, Liu L. PLEKHA4 upregulation regulates KIRC cell proliferation through β‑catenin signaling. Mol Med Rep 2025; 31:30. [PMID: 39540374 PMCID: PMC11582527 DOI: 10.3892/mmr.2024.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
In the present study, pleckstrin homology domain‑containing family A member 4 (PLEKHA4) was identified as being upregulated in renal cell carcinoma, particularly within the kidney renal clear cell carcinoma (KIRC) subtype. The present study conducted bioinformatics analysis, Cell Counting Kit‑8 and cell migration assays, flow cytometry, western blotting and in vivo experiments with the aim of uncovering the role of PLEKHA4 in β‑catenin signaling in KIRC cells. Notably, PLEKHA4 upregulation was revealed to be associated with enhanced cell proliferation, indicating its potential role as an oncogene in KIRC. Mechanistically, knockdown of PLEKHA4 in KIRC cells led to decreased β‑catenin signaling and cyclin D1 expression and the induction of cell cycle arrest at the G1/S phase, suggesting that PLEKHA4 facilitated tumorigenesis through modulation of the Wnt/β‑catenin pathway. PLEKHA4 knockdown also inhibited cell viability, migration and colony formation, further emphasizing its role in cancer progression. Notably, overexpression of PLEKHA4 activated Wnt/β‑catenin signaling, reinforcing its role in promoting β‑catenin nuclear translocation and signaling activity. The present findings suggested that PLEKHA4 could serve as a potential therapeutic target for KIRC; inhibiting PLEKHA4 or modulating Wnt/β‑catenin signaling could provide new avenues for treatment strategies in KIRC.
Collapse
Affiliation(s)
- Yuyang Yue
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Guangqi An
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuxia Cao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Toufeng Jin
- Department of General Surgery, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Lan Liu
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
3
|
Li Y, Sun X, Huang Z. USP7 facilitates deubiquitination of LRRC42 in colorectal cancer to accelerate tumorigenesis and augment Wnt/β-catenin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119859. [PMID: 39393471 DOI: 10.1016/j.bbamcr.2024.119859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Colorectal cancer is a prevalent malignancy with an increasing incidence worldwide. Leucine-rich repeat-containing protein 42 (LRRC42) is known to be dysregulated in tumor tissues, yet its role in colorectal cancer remains largely unexplored. Herein, the function of LRRC42 in colorectal cancer was investigated using clinical samples, cellular experiments, animal models, and multiple omics techniques. The results demonstrated that LRRC42 was highly expressed in colorectal cancer tissues and was associated with poor clinical outcomes. Silencing LRRC42 suppressed cell proliferation, induced G0/G1 phase arrest, and promoted apoptosis by reducing Bcl2 expression while elevating the expression of Bax, cleaved PARP and cleaved caspase 3. Conversely, LRRC42 overexpression exhibited the opposite effects. Consistent findings were observed in vivo. Additionally, ubiquitin specific peptidase 7 was identified as a potential LRRC42-interacting protein through immunoprecipitation-mass spectrometry, with ubiquitin specific peptidase 7 stabilizing LRRC42 expression by promoting its deubiquitination. Notably, LRRC42 overexpression partially reversed the effects of ubiquitin specific peptidase 7 silencing on tumor cell proliferation and apoptosis. mRNA sequencing analysis revealed that differentially expressed genes in LRRC42 overexpressing cells were linked to Wnt signaling pathway, suggesting that LRRC42 overexpression may activate this pathway. Furthermore, LRRC42 was proved to elevate the levels of ki67, cyclin D1 and WNT3, while reducing the level of p-β-catenin. These findings suggest that LRRC42 perhaps serve as a potential oncogenic factor in colorectal cancer, regulated by ubiquitin specific peptidase 7 and capable of activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yunze Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xin Sun
- Department of Digestive Diseases 2, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Zhe Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
4
|
Jian W, Zhang L. POLE2 silencing inhibits the progression of colorectal carcinoma cells via wnt signaling axis. Cancer Biol Ther 2024; 25:2392339. [PMID: 39155507 PMCID: PMC11340749 DOI: 10.1080/15384047.2024.2392339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant carcinoma worldwide. DNA polymerase epsilon 2, accessory subunit (POLE2) participates in DNA replication, repair, and cell cycle control, but its association with CRC development remains unclear. In the present study, the differentially expressed genes (DEGs) in CRC were screened from bioinformatics analysis based on GEO database. RT-qPCR was used to assess mRNA expression. CCK-8 and colony formation assays were applied for the evaluation of cell proliferation. Wound healing and transwell assays were used to detect cell migration and invasion. Protein levels were determined by Western blotting assay. We found that POLE2 was highly expressed in CRC tissues and cell lines. Inhibition of POLE2 suppressed the proliferation, migration and invasion of CRC cells. Mechanistically, Wnt/β-catenin signaling pathway was inactivated by inhibition of POLE2. Activation of Wnt/β-catenin pathway can reverse the function of POLE2 knockdown on CRC cells. In vivo studies demonstrated that POLE2 silencing could notably inhibit the growth of tumors, which was consistent with the results in vitro. In conclusion, we found POLE2 as a novel oncogene in CRC, providing a potential therapeutic or diagnostic target in CRC.
Collapse
Affiliation(s)
- Weihua Jian
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of General Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Zhang
- Department of Second General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
5
|
Luo P, Huang C, Guo J, Yao X, Pan C, Bao A, Li F, Li YY. Network pharmacology and anticancer mechanism study of Dendrobium nobile dendrobine in the treatment of colorectal cancer. Discov Oncol 2024; 15:768. [PMID: 39692955 DOI: 10.1007/s12672-024-01641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE This study aims to explore the potential targets and anticancer mechanisms of dendrobine from Dendrobium nobile in the treatment of colorectal cancer through network pharmacology, and to experimentally validate its specific effects. METHODS Initially, potential targets of dendrobine were identified using the ITCM Traditional Chinese Medicine database, while colorectal cancer-related genes were obtained from the NCBI Gene database, with the intersection of these datasets taken for further analysis. Functional enrichment analysis was conducted using the Metascape database, and a protein-protein interaction (PPI) network was constructed. Additionally, cell culture, cell proliferation assays, and wound healing assays were performed. The Wnt/β-catenin and NF-κB/COX-2/PGE2 signaling pathways were analyzed using PCR and Western blot experiments. RESULTS The PPI network constructed from 152 intersecting genes revealed that these genes play crucial roles in processes such as cell proliferation, apoptosis, and signal transduction. Cell-based assays demonstrated that dendrobine significantly inhibits the proliferation and migration of colorectal cancer cells. Furthermore, PCR and Western blot results indicated that dendrobine suppresses colorectal cancer cell proliferation and migration by modulating the Wnt/β-catenin and NF-κB/COX-2/PGE2 signaling pathways. CONCLUSION Dendrobine exhibits significant anticancer potential against colorectal cancer by regulating the Wnt/β-catenin and NF-κB/COX-2/PGE2 signaling pathways, providing a theoretical foundation and experimental evidence for its therapeutic application in colorectal cancer.
Collapse
Affiliation(s)
- Pei Luo
- Department of Gastroenterology, People's Hospital of Qianxinan Prefecture, Xingyi, 562400, Guizhou, China
| | - Can Huang
- Department of Gastroenterology, People's Hospital of Qianxinan Prefecture, Xingyi, 562400, Guizhou, China
| | - Jun Guo
- Department of Gastroenterology, People's Hospital of Qianxinan Prefecture, Xingyi, 562400, Guizhou, China
| | - Xin Yao
- Department of Gastroenterology, People's Hospital of Qianxinan Prefecture, Xingyi, 562400, Guizhou, China
| | - Chao Pan
- Department of Gastroenterology, People's Hospital of Qianxinan Prefecture, Xingyi, 562400, Guizhou, China
| | - Aijin Bao
- Department of Gastroenterology, People's Hospital of Qianxinan Prefecture, Xingyi, 562400, Guizhou, China
| | - Fei Li
- Department of Gastroenterology, People's Hospital of Qianxinan Prefecture, Xingyi, 562400, Guizhou, China
| | - Ying-Ying Li
- Department of Gerontology, People's Hospital of Qianxinan Prefecture, Xingyi, 562400, Guizhou, China.
| |
Collapse
|
6
|
Zhang X, Yang L, Liu J, Wang T, Wang Z, Liu C. FEV-mediated WNT2 transcription is involved in the progression of colorectal cancer via the Wnt signaling. Cytotechnology 2024; 76:683-696. [PMID: 39435428 PMCID: PMC11490473 DOI: 10.1007/s10616-024-00643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/12/2024] [Indexed: 10/23/2024] Open
Abstract
Colorectal cancer (CRC) remains the third leading cause of cancer-related death worldwide. Here, we aimed to uncover the mechanism underlying the transcription factor fifth Ewing variant protein (FEV) in CRC. Transcriptome differential expression in human CRC and adjacent tissues was analyzed using GSE143939, GSE142279, GSE196006, and GSE200427 datasets, and the intersecting genes were screened by comparing them with the list of transcription factors in the Human TFBD database, followed by KEGG enrichment analysis. FEV expression was significantly reduced in CRC, and upregulation of FEV inhibited cell growth and tumor progression in CRC. The highly expressed genes in CRC were mainly enriched to the Wnt signaling pathway, and WNT2 is the core initiator of the Wnt signaling pathway. Two binding sites for FEV are present on the WNT2 promoter. WNT2 promoted the proliferation, migration, and invasion of CRC cells. FEV repressed WNT2 transcription by binding to the WNT2 promoter. Collectively, our data revealed that a novel FEV/WNT2 axis is critical for CRC progression. Strategies targeting this specific signaling axis might be developed to treat patients with CRC. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00643-0.
Collapse
Affiliation(s)
- Xia Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Lingshu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Jianing Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Tianlin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Zhe Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Chang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| |
Collapse
|
7
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
8
|
Xu Y, Xie K, Li L, Li Z, Lu Q, Feng J. FOXN3 Downregulation in Colorectal Cancer Enhances Tumor Cell Stemness by Promoting EP300-Mediated Epigenetic Upregulation of SOX12. Mol Carcinog 2024. [PMID: 39607349 DOI: 10.1002/mc.23852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Cancer stemness plays a crucial role in promoting the progression of colorectal cancer (CRC). Forkhead box N3 (FOXN3) is a tumor suppressor protein. Herein, we investigated the role of FOXN3 in the regulation of CRC cell stemness. Cell viability, proliferation, migration, and invasion were assessed utilizing cell counting kit-8 assay, 5-ethynyl-20-deoxyuridine assay, and Transwell assay, respectively. Cell-sphere formation was assessed using a sphere-forming assay. The enrichment of H3K27ac modifications at the SRY-related HMG-box 12 (SOX12) promoter, interactions among FOXN3, SOX12, and E1A binding protein p300 (EP300) were analyzed using chromatin immunoprecipitation or dual luciferase reporter assays. We found that FOXN3 overexpression inhibited CRC cell proliferation, migration, invasion, stemness, and tumor formation in mice by inactivating the Wnt/β-catenin signaling, while these effects of FOXN3 overexpression were reversed by the overexpression of SOX12. Mechanistically, EP300 increased SOX12 expression in CRC cells by promoting H3K27ac enrichment in the SOX12 promoter. In addition, FOXN3 transcriptionally inhibited EP300 expression in CRC cells by binding to the EP300 promoter. As expected, EP300 overexpression weakened the inhibitory effect of FOXN3 overexpression on CRC cell stemness. Collectively, FOXN3 upregulation inhibited CRC cell stemness by suppressing EP300-mediated epigenetic upregulation of SOX12.
Collapse
Affiliation(s)
- Yanjie Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ke Xie
- Department of Gastrointestinal Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ling Li
- Department of Gastrointestinal Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhong Li
- Department of Gastrointestinal Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qicheng Lu
- Department of Gastrointestinal Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jin Feng
- Department of Gastrointestinal Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
9
|
Puxeddu M, Ling L, Ripa S, D'Ambrosio M, Nalli M, Parisi A, Sciò P, Coluccia A, Granese A, Santelli M, Masci D, Cuřínová P, Naro C, Sette C, Pastore A, Stornaiuolo M, Bigogno C, Dondio G, Di Magno L, Canettieri G, Liu T, Silvestri R, La Regina G. Development of N-(4-(1 H-Imidazol-1-yl)phenyl)-4-chlorobenzenesulfonamide, a Novel Potent Inhibitor of β-Catenin with Enhanced Antitumor Activity and Metabolic Stability. J Med Chem 2024; 67:20298-20314. [PMID: 39508273 DOI: 10.1021/acs.jmedchem.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The potential as a cancer therapeutic target of the recently reported hotspot binding region close to Lys508 of the β-catenin armadillo repeat domain was not exhaustively explored. In order to get more insight, we synthesized novel N-(heterocyclylphenyl)benzenesulfonamides 6-28. The new compounds significantly inhibited Wnt-dependent transcription as well as SW480 and HCT116 cancer cell proliferation. Compound 25 showed binding mode consistent with this hotspot binding region. Compound 25 inhibited the growth of SW480 and HCT116 cancer cells with IC50's of 2 and 0.12 μM, respectively, and was superior to the reference compounds 5 and 5-FU. 25 inhibited the growth of HCT-116 xenografted in BALB/Cnu/nu mice, reduced the expression of the proliferation marker Ki67, and significantly affected the expression of cancer-related genes. After incubation with human and mouse liver microsomes, 25 showed a higher metabolic stability than 5. Compound 25 aims to be a promising lead for the development of colorectal cancer anticancer therapies.
Collapse
Affiliation(s)
- Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Lele Ling
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 200086 Shanghai, China
| | - Silvia Ripa
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Michele D'Ambrosio
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Anastasia Parisi
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Pietro Sciò
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Arianna Granese
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Martina Santelli
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Petra Cuřínová
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Chiara Naro
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Claudio Sette
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Arianna Pastore
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Chiara Bigogno
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Laura Di Magno
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Gianluca Canettieri
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, 200031 Shanghai, China
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
10
|
Godizzi F, Armando F, Boracchi P, Avallone G, Stefanello D, Ferrari R, Chiti LE, Cappelleri A, Zamboni C, Dell'Aere S, Corradi A, Roccabianca P. Survivin, β-catenin, and ki-67 immunohistochemical expression in canine perivascular wall tumors: Preliminary assessment of prognostic significance. Vet Pathol 2024; 61:912-927. [PMID: 38727195 DOI: 10.1177/03009858241246981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
High survivin expression has been correlated with poor outcomes in several canine tumors but not in soft tissue tumors (STTs). Survivin is a target gene of the Wnt/β-catenin pathway, which is involved in human STT oncogenesis. Immunohistochemistry for survivin, β-catenin, and Ki-67 was performed on 41 canine perivascular wall tumors (cPWTs), and statistical associations of protein expression and histopathologic and clinical variables with clinical outcomes were investigated. Immunohistochemically, there was nuclear positivity (0.9%-12.2% of tumor cells) for survivin in 41/41 (100%), cytoplasmic positivity (0 to > 75% of tumor cells) for survivin in 31/41 (76%), nuclear positivity (2.9%-67.2% of tumor cells) for β-catenin in 24/41 (59%), and cytoplasmic positivity (0% to > 75% of tumor cells) for β-catenin in 23/41 (56%) of cPWTs. All tumors expressed nuclear Ki-67 (2.2%-23.5%). In univariate analysis and multivariate analysis (UA and MA, respectively), every 1% increase of nuclear survivin was associated with an increase of the instantaneous death risk by a factor of 1.15 [hazard ratio (HR) = 1.15; P = .007]. Higher nuclear survivin was associated with grade II/III neoplasms (P = .043). Expression of cytoplasmic survivin, nuclear and cytoplasmic β-catenin, and nuclear Ki-67 were not significantly associated with prognosis in UA nor MA. Tumor size was a significant prognostic factor for local recurrence in UA [subdistribution HR (SDHR) = 1.19; P = .02] and for reduced overall survival time in MA. According to UA and MA, a unitary increase of mitotic count was associated with an increase of the instantaneous death risk by a factor of 1.05 (HR = 1.05; P = .014). Nuclear survivin, mitotic count, and tumor size seem to be potential prognostic factors for cPWTs. In addition, survivin and β-catenin may represent promising therapeutic targets for cPWTs.
Collapse
Affiliation(s)
- Francesco Godizzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Patrizia Boracchi
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Giancarlo Avallone
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Italy
| | - Damiano Stefanello
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Roberta Ferrari
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Lavinia E Chiti
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Andrea Cappelleri
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy
| | - Clarissa Zamboni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Silvia Dell'Aere
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Paola Roccabianca
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| |
Collapse
|
11
|
Zheng J, Yang H, Liu C, Zhang R, Yibulayimu N, Jin X. Ethanol Extract of Anacyclus pyrethrum Root Ameliorates Cough-Variant Asthma Through the TLR4/NF-κB Pathway and Wnt/β-Catenin Pathway. Mol Biotechnol 2024; 66:3274-3284. [PMID: 37910337 DOI: 10.1007/s12033-023-00935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Cough-variant asthma (CVA) has been recognized as the initial stage or pre-asthmatic state of classic asthma, which characterized by cough as the primary clinical presentation. Inhaled glucocorticoids, oral leukotriene receptor antagonists and antihistamines are the clinical treatments, but their efficacy is not satisfactory. Some traditional Chinese medicine (TCM) has been reported to have certain advantages in the treatment of CVA, but the underlying molecular mechanisms are still unclear. Recent research has indicated that Anacyclus pyerhrurm (L) DC. is commonly used in the treatment of human diseases. The aim of our study was to evaluate the anti-inflammatory and anti-oxidative mechanism of the ethanol extract of Anacyclus pyrethrum (L) DC. root (EEAP) in a model of CVA. In our study, we indicated that EEAP ameliorated CVA by reducing cough frequency and inflammatory effect and oxidative stress in an in vivo rat model of CVA. In addition, EEAP ameliorated LPS-induced cell apoptosis and regulated inflammatory effect and oxidative stress in vitro. Mechanistically, EEAP exerted anti-inflammatory effects through regulating the TLR4/NF-κB pathway and Wnt/β-catenin pathway, and overexpressing TLR4 or activating the Wnt/β-catenin pathway by SKL2001 reversed EEAP-exerted effects in LPS-exposed BEAS-2B and 16-HBE cells. In conclusion, EEAP attenuated cell apoptosis, inflammation and oxidative stress through restraining the TLR4/NF-κB pathway and Wnt/β-catenin pathway in CVA, which shown that EEAP might be a promising therapeutic agent for CVA and may provide a theoretical basis for clinical treatment with CVA patients.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hao Yang
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, No. 39, Wuxing South Road, TianShan District, Urumqi, 830000, China
| | - Changjiang Liu
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, No. 39, Wuxing South Road, TianShan District, Urumqi, 830000, China
| | - Rui Zhang
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, No. 39, Wuxing South Road, TianShan District, Urumqi, 830000, China
| | - Nadire Yibulayimu
- Market Supervision and Administration Bureau of Huocheng County, HuoCheng, Ili, China
| | - Xiaoyue Jin
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, No. 39, Wuxing South Road, TianShan District, Urumqi, 830000, China.
| |
Collapse
|
12
|
Lin C, Li H, Gao H, Zheng S, Wang Y, Wang Y, Chen Y, Zhu Z, Xia P, Shi H, Han A. Hsa_circ_0004194 suppresses colorectal cancer progression via hsa-miR-27a-3p. Heliyon 2024; 10:e39549. [PMID: 39498085 PMCID: PMC11532888 DOI: 10.1016/j.heliyon.2024.e39549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
Aims To investigate the functional role and the underlying molecular mechanisms associated with hsa_circ_0004194 in the context of colorectal cancer (CRC) and to elucidate its impact on cancer progression. Results A notable and statistically significant decrease in the expression levels of hsa_circ_0004194 was observed specifically within CRC tissues when compared to non-tumor colorectal mucosa tissues. Functional evaluations, such as CCK8 assays, plate clone formation analysis, and transwell migration assays, our study revealed hsa_circ_0004194 significantly reduced the activity behavior of CRC cells. This overexpression of hsa_circ_0004194 effectively hindered these key cellular processes, demonstrating its role in suppressing the aggressive behaviors of CRC cells. Additionally, in vivo experiments utilizing mouse xenograft models exhibited that the upregulation of hsa_circ_0004194 significantly attenuated tumor growth, reduced tumor volume, and diminished liver metastasis. Further mechanistic investigation, through the utilization of RNA pull-down and luciferase reporter assays, uncovered that hsa_circ_0004194 sequestered hsa-miR-27a-3p, thereby enhancing retinoic acid X receptor α (RXRα)' expression which is in CRC cells. Moreover, this circular RNA also impeded the signaling pathway of Wnt/β-catenin. Conclusion Our study is the first to demonstrate that hsa_circ_0004194 exhibits downregulated expression in CRC and functions as a ceRNA by binding to and sequestering hsa-miR-27a-3p, thereby modulating the RXRα/β-catenin signaling pathway to inhibit CRC progression. This discovery suggests that hsa_circ_0004194 holds significant potential as a therapeutic biomarker for patients with CRC.
Collapse
Affiliation(s)
- Chen Lin
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Hongjun Li
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Huabin Gao
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Shuai Zheng
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Yu Wang
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Yuting Wang
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Yongyu Chen
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Zhenwei Zhu
- The Oncology Department at Shenzhen Hospital of Southern Medical University in Shenzhen, China
| | - Pei Xia
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Hujuan Shi
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Anjia Han
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| |
Collapse
|
13
|
La Vecchia M, Sala G, Sculco M, Aspesi A, Dianzani I. Genetics, diet, microbiota, and metabolome: partners in crime for colon carcinogenesis. Clin Exp Med 2024; 24:248. [PMID: 39470880 PMCID: PMC11522171 DOI: 10.1007/s10238-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant tumors worldwide, with a multifactorial etiology encompassing genetic, environmental, and life-style factors, as well as the intestinal microbiota and its metabolome. These risk factors often work together in specific groups of patients, influencing how CRC develops and progresses. Importantly, alterations in the gut microbiota act as a critical nexus in this interplay, significantly affecting susceptibility to CRC. This review highlights recent insights into unmodifiable and modifiable risk factors for CRC and how they might interact with the gut microbiota and its metabolome. Understanding the mechanisms of these interactions will help us develop targeted, precision-medicine strategies that can adjust the composition of the gut microbiota to meet individual health needs, preventing or treating CRC more effectively.
Collapse
Affiliation(s)
- Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Gloria Sala
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
14
|
Shahgoli VK, Noorolyai S, Ahmadpour Youshanlui M, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int J Colorectal Dis 2024; 39:173. [PMID: 39465427 PMCID: PMC11513726 DOI: 10.1007/s00384-024-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Chronic inflammation is a significant driver in the development of various diseases, including cancer. Colitis-associated colorectal cancer (CA-CRC) refers to the increased risk of colorectal cancer in individuals with chronic inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. METHODS This narrative review examines the link between chronic inflammation and CA-CRC. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2000 and 2024. Studies were selected based on relevance to the role of inflammation in CA-CRC, specifically targeting molecular pathways and clinical implications. Both clinical and mechanistic studies were reviewed. CONCLUSION Sustained inflammation in the colon fosters a pro-tumorigenic environment, leading to the initiation and progression of CA-CRC. Prevention strategies must focus on controlling chronic inflammation, optimizing IBD management, and implementing regular screenings. Emerging therapies targeting key inflammatory pathways and immune responses, along with microbiome modulation, hold promise for reducing CA-CRC risk. Understanding these molecular mechanisms provides a path toward personalized treatment and better outcomes for patients with IBD at risk of colorectal cancer.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Saeed Noorolyai
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeidi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Jiang F, Chen Z, Wang X, Huang C, Li Y, Liu N. Activation of the WNT7B/β-Catenin Pathway Initiates GLUT1 Expression and Promotes Aerobic Glycolysis in Colorectal Cancer Cells. Nutr Cancer 2024; 77:311-323. [PMID: 39434562 DOI: 10.1080/01635581.2024.2418607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Glucose is an important energy source for tumors, however the molecular mechanisms by which tumor cells regulate glucose uptake remain unclear. In this study, we aimed to investigate the regulation mechanism of the WNT7B/β-catenin pathway for glucose transporter 1 (GLUT1)-mediated glucose metabolism in colorectal cancer. Here, we found that WNT7B expression levels were significantly increased in colorectal cancer tissues and closely associated with the clinical stage and lymph node metastasis in patients with colorectal cancer. Next, we confirmed that WNT7B significantly increased the glucose consumption and lactic acid levels in SW480 cells by overexpressing WNT7B. Additionally, gene and protein levels of GLUT1 were increased in WNT7B-overexpressing SW480 cells. However, WNT7B knockdown reversed these effects. WNT7B also enhanced GLUT1-mediated cell proliferation, invasion, and migration. WNT7B overexpression inhibited the effect of glucose deprivation on apoptosis. The WNT/β-catenin signaling pathway inhibitor, LGK974, inhibited WNT7B secretion, leading to GLUT1 levels downregulation and promotion of cell apoptosis. Ectopic tumor xenograft model experiments revealed that WNT7B promoted tumor progression in mice. Overall, our results suggest that WNT7B promotes β-catenin entry into the nucleus to initiates GLUT1 transcription, increases glucose transport and consumption, and enhances aerobic glycolysis, thus promoting tumor progression in colorectal cancer cells.
Collapse
Affiliation(s)
- Fan Jiang
- Department of the Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Zhiju Chen
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Xiang Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Chuangyu Huang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Yiwei Li
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| |
Collapse
|
16
|
Chakraborty A, Midde A, Chakraborty P, Adhikary S, Kumar S, Arri N, Chandra Das N, Sen Gupta PS, Banerjee A, Mukherjee S. Revisiting Luteolin Against the Mediators of Human Metastatic Colorectal Carcinoma: A Biomolecular Approach. J Cell Biochem 2024:e30654. [PMID: 39300917 DOI: 10.1002/jcb.30654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Metastatic colorectal carcinoma (mCRC) is one of the prevalent subtypes of human cancers and is caused by the alterations of various lifestyle and diet-associated factors. β-catenin, GSK-3β, PI3K-α, AKT1, and NF-κB p50 are known to be the critical regulators of tumorigenesis and immunopathogenesis of mCRC. Unfortunately, current drugs have limited efficacy, side effects and can lead to chemoresistance. Therefore, searching for a nontoxic, efficacious anti-mCRC agent is crucial and of utmost interest. The present study demonstrates the identification of a productive and nontoxic anti-mCRC agent through a five-targets (β-catenin, GSK-3β, PI3K-α, AKT1, and p50)-based and three-tier (binding affinity, pharmacokinetics, and pharmacophore) screening strategy involving a series of 30 phytocompounds having a background of anti-inflammatory/anti-mCRC efficacy alongside 5-fluorouracil (FU), a reference drug. Luteolin (a phyto-flavonoid) was eventually rendered as the most potent and safe phytocompound. This inference was verified through three rounds of validation. Firstly, luteolin was found to be effective against the different mCRC cell lines (HCT-15, HCT-116, DLD-1, and HT-29) without hampering the viability of non-tumorigenic ones (RWPE-1). Secondly, luteolin was found to curtail the clonogenicity of CRC cells, and finally, it also disrupted the formation of colospheroids, a characteristic of metastasis. While studying the mechanistic insights, luteolin was found to inhibit β-catenin activity (a key regulator of mCRC) through direct physical interactions, promoting its degradation by activating GSK3-β and ceasing its activation by inactivating AKT1 and PI3K-α. Luteolin also inhibited p50 activity, which could be useful in mitigating mCRC-associated proinflammatory milieu. In conclusion, our study provides evidence on the efficacy of luteolin against the critical key regulators of immunopathogenesis of mCRC and recommends further studies in animal models to determine the effectiveness efficacy of this natural compound for treating mCRC in the future.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Advaitha Midde
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sourin Adhikary
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Simran Kumar
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Navpreet Arri
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, Maharashtra, India
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
17
|
Song J, Ke B, Fang X. APC and ZBTB2 May Mediate M2 Macrophage Infiltration to Promote the Development of Renal Fibrosis: A Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5674711. [PMID: 39328595 PMCID: PMC11424844 DOI: 10.1155/2024/5674711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Background and Purpose: The continuous accumulation of M2 macrophages may potentially contribute to the development of kidney fibrosis in chronic kidney disease (CKD). The purpose of this study was to analyze the infiltration of M2 macrophages in uremic patients and to seek new strategies to slow down the progression of renal fibrosis. Methods: We conducted a comprehensive search for expression data pertaining to uremic samples within the Gene Expression Omnibus (GEO) database, encompassing the time frame from 2010 to 2022. Control and uremic differentially expressed genes (DEGs) were identified. Immune cell infiltration was investigated by CIBERSORT and modules associated with M2 macrophage infiltration were identified by weighted gene coexpression network analysis (WGCNA). Consistent genes were identified using the least absolute shrinkage and selection operator (LASSO) and selection and visualization of the most relevant features (SVM-RFE) methods to search for overlapping genes. Receiver operating characteristic (ROC) curves were examined for the diagnostic value of candidate genes. Quantitative real-time PCR (qPCR) examined the expression levels of candidate genes obtained from uremic patients in M2 macrophage. Results: A total of 1298 DEGs were identified within the GSE37171 dataset. Significant enrichment of DEGs was observed in 20 biological processes (BP), 19 cellular components (CC), 6 molecular functions (MF), and 70 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. CIBERSORT analysis observed a significant increase in B-cell memory, dendritic cell activation, M0, M1, M2, and plasma cell numbers in uremic samples. We identified the 10 most interrelated genes. In particular, adenomatous polyposis coli (APC) and zinc finger and BTB structural domain 2 (ZBTB2) were adversely associated with the infiltration of M2 macrophages. Importantly, the expression levels of APC and ZBTB2 were far lower in M2 macrophages from uremic patients than those in healthy individuals. Conclusion: The development of renal fibrosis may be the result of M2 macrophage infiltration promoted by APC and ZBTB2.
Collapse
Affiliation(s)
- Jianling Song
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Ben Ke
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Xiangdong Fang
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
18
|
Su Z, El Hage M, Linnebacher M. Mutation patterns in colorectal cancer and their relationship with prognosis. Heliyon 2024; 10:e36550. [PMID: 39263143 PMCID: PMC11387246 DOI: 10.1016/j.heliyon.2024.e36550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent malignancy and a leading cause of cancer-related mortality. Extensive research into the aetiology of CRC has revealed that somatic mutations in certain genes play a crucial role in CRC development.AIM: In this study, we utilized data from public databases to investigate prevalent mutation patterns in CRC and developed a prognostic predictive model for CRC patients based on mutant genetic characteristics and other relevant clinical features. Methods We initially gathered mutation information from CRC patients by analysing data from 15 datasets to identify genes with a mutation frequency of ≥10 %. Next, log-rank analyses were used to determine the relationship between prognosis and the mutational status of the most commonly mutated genes; the SIGnaling database was utilized to generate a protein‒protein interaction network. We consolidated and classified the gene mutation patterns of CRC patients in the database based on frequently mutated genes related to prognosis. A predictive nomogram was constructed, including age, sex, TNM stage, and mutation partner, based on available clinical, mutational, and prognostic information for CRC patients at our institution. Finally, the reliability of the model was verified using time-dependent ROC curve analysis. Results The top 7 genes somatically mutated ≥10 % in 4477 samples from 4255 patients were TP53 (67 %), APC (66 %), KRAS (43 %), PIK3CA (18 %), FBXW7 (14 %), SMAD4 (14 %), and BRAF (10 %). Log-rank analysis demonstrated that the mutation status of 5 genes, namely, TP53, APC, PIK3CA, SMAD4, and BRAF, correlated significantly with prognosis. Protein‒protein interaction analysis confirmed functional interactions between these 5 genes, implicating them in tumorigenesis. We exhaustively enumerated the mutation patterns involving these five genes in 4255 patients, resulting in identification of 32 mutational patterns. After consolidation and classification, these patterns were divided into 3 grades based on patient prognosis. Next, a predictive nomogram based on the clinical, mutational, and prognostic information of 107 CRC patients treated at University Medical Center Rostock was constructed. The area under the curve (AUC) values for the model for predicting 1-, 3-, and 5-year overall survival were 0.779, 0.721, and 0.815, respectively. Conclusion Common mutational patterns based on frequently mutated genes are associated with prognosis in CRC patients. Our study provides a valuable and concise prognostic predictor for determining outcomes in patients with CRC.
Collapse
Affiliation(s)
- Zhaoran Su
- Department of Gastrointestinal Surgery, People's Hospital of Tongling City, China
- College of Mathematics and Computer Science, Tongling University, Tongling 244000, China
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock 18057, Germany
| | - Maria El Hage
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
19
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
20
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
21
|
Bai Y, Li R, Hao JF, Chen LW, Liu ST, Zhang XL, Lip GYH, Yang JK, Zou YX, Wang H. Accumulated β-catenin is associated with human atrial fibrosis and atrial fibrillation. J Transl Med 2024; 22:734. [PMID: 39103891 PMCID: PMC11302159 DOI: 10.1186/s12967-024-05558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is associated with increased risk of stroke and mortality. It has been reported that the process of atrial fibrosis was regulated by β-catenin in rats with AF. However, pathophysiological mechanisms of this process in human with AF remain unclear. This study aims to investigate the possible mechanisms of β-catenin in participating in the atrial fibrosis using human right atrial appendage (hRAA) tissues . METHODS We compared the difference of β-catenin expression in hRAA tissues between the patients with AF and sinus rhythm (SR). The possible function of β-catenin in the development of AF was also explored in mice and primary cells. RESULTS Firstly, the space between the membrane of the gap junctions of cardiomyocytes was wider in the AF group. Secondly, the expression of the gap junction function related proteins, Connexin40 and Connexin43, was decreased, while the expression of β-catenin and its binding partner E-cadherin was increased in hRAA and cardiomyocytes of the AF group. Thirdly, β-catenin colocalized with E-cadherin on the plasma membrane of cardiomyocytes in the SR group, while they were dissociated and accumulated intracellularly in the AF group. Furthermore, the expression of glycogen synthase kinase 3β (GSK-3β) and Adenomatous Polyposis Coli (APC), which participated in the degradation of β-catenin, was decreased in hRAA tissues and cardiomyocytes of the AF group. Finally, the development of atrial fibrosis and AF were proved to be prevented after inhibiting β-catenin expression in the AF model mice. CONCLUSIONS Based on human atrial pathological and molecular analyses, our findings provided evidence that β-catenin was associated with atrial fibrosis and AF progression.
Collapse
Affiliation(s)
- Ying Bai
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Rui Li
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jun-Feng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lian-Wan Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si-Tong Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xi-Lin Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yi-Xi Zou
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Hao Wang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
22
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
23
|
Lim SH, Lee H, Lee HJ, Kim K, Choi J, Han JM, Min DS. PLD1 is a key player in cancer stemness and chemoresistance: Therapeutic targeting of cross-talk between the PI3K/Akt and Wnt/β-catenin pathways. Exp Mol Med 2024; 56:1479-1487. [PMID: 38945955 PMCID: PMC11297275 DOI: 10.1038/s12276-024-01260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The development of chemoresistance is a major challenge in the treatment of several types of cancers in clinical settings. Stemness and chemoresistance are the chief causes of poor clinical outcomes. In this context, we hypothesized that understanding the signaling pathways responsible for chemoresistance in cancers is crucial for the development of novel targeted therapies to overcome drug resistance. Among the aberrantly activated pathways, the PI3K-Akt/Wnt/β-catenin signaling pathway is clinically implicated in malignancies such as colorectal cancer (CRC) and glioblastoma multiforme (GBM). Aberrant dysregulation of phospholipase D (PLD) has been implicated in several malignancies, and oncogenic activation of this pathway facilitates tumor proliferation, stemness, and chemoresistance. Crosstalk involving the PLD and Wnt/β-catenin pathways promotes the progression of CRC and GBM and reduces the sensitivity of cancer cells to standard therapies. Notably, both pathways are tightly regulated and connected at multiple levels by upstream and downstream effectors. Thus, gaining deeper insights into the interactions between these pathways would help researchers discover unique therapeutic targets for the management of drug-resistant cancers. Here, we review the molecular mechanisms by which PLD signaling stimulates stemness and chemoresistance in CRC and GBM. Thus, the current review aims to address the importance of PLD as a central player coordinating cross-talk between the PI3K/Akt and Wnt/β-catenin pathways and proposes the possibility of targeting these pathways to improve cancer therapy and overcome drug resistance.
Collapse
Affiliation(s)
- Seong Hun Lim
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyesung Lee
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun Ji Lee
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kuglae Kim
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Junjeong Choi
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jung Min Han
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Do Sik Min
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea.
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
24
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
25
|
Mahajan M, Sarkar A, Mondal S. Integrative network analysis of transcriptomics data reveals potential prognostic biomarkers for colorectal cancer. Cancer Med 2024; 13:e7391. [PMID: 38872418 PMCID: PMC11176588 DOI: 10.1002/cam4.7391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Cross-talk among biological pathways is essential for normal biological function and plays a significant role in cancer progression. Through integrated network analysis, this study explores the significance of pathway cross-talk in colorectal cancer (CRC) development at both the pathway and gene levels. METHODS In this study, we integrated the gene expression data with domain knowledge to construct state-dependent pathway cross-talk networks. The significance of the genes involved in pathway cross-talk was assessed by analyzing their association with cancer hallmarks, disease-gene relation, genetic alterations, and survival analysis. We also analyzed the gene regulatory network to identify the dysregulated genes and their role in CRC progression. RESULTS Cross-talk was observed between immune-related pathways and pathways associated with cell communication and signaling. The PTPRC gene was identified as a mediator, facilitating interactions within the immune system and other signaling pathways. The rewired interactions of ITGA7 were identified as influential in the epithelial-mesenchymal transition in CRC. This study also highlighted the crucial link between cell communication and vascular smooth muscle contraction pathway in CRC progression. The survival analysis of identified gene clusters showed their significant prognostic value in distinguishing high-risk from low-risk CRC groups, and L1000CDS2 revealed seven potential drug molecules in CRC. Nine dysregulated genes (CTNNB1, EP300, JUN, MYC, NFKB1, RELA, SP1, STAT1, and TP53) emerge as transcription factors acting as common regulators across various pathways. CONCLUSIONS This study highlights the crucial role of pathway cross-talk in CRC progression and identified the potential prognostic biomarkers and potential drug molecules.
Collapse
Affiliation(s)
- Mohita Mahajan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K.K. Birla Goa campus, Goa, India
| | - Angshuman Sarkar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K.K. Birla Goa campus, Goa, India
| | - Sukanta Mondal
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K.K. Birla Goa campus, Goa, India
| |
Collapse
|
26
|
Sun L, Xing J, Zhou X, Song X, Gao S. Wnt/β-catenin signalling, epithelial-mesenchymal transition and crosslink signalling in colorectal cancer cells. Biomed Pharmacother 2024; 175:116685. [PMID: 38710151 DOI: 10.1016/j.biopha.2024.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Colorectal cancer (CRC), with its significant incidence and metastatic rates, profoundly affects human health. A common oncogenic event in CRC is the aberrant activation of the Wnt/β-catenin signalling pathway, which drives both the initiation and progression of the disease. Persistent Wnt/β-catenin signalling facilitates the epithelial-mesenchymal transition (EMT), which accelerates CRC invasion and metastasis. This review provides a summary of recent molecular studies on the role of the Wnt/β-catenin signalling axis in regulating EMT in CRC cells, which triggers metastatic pathogenesis. We present a comprehensive examination of the EMT process and its transcriptional controllers, with an emphasis on the crucial functions of β-catenin, EMT transcription factors (EMT-TFs). We also review recent evidences showing that hyperactive Wnt/β-catenin signalling triggers EMT and metastatic phenotypes in CRC via "Destruction complex" of β-catenin mechanisms. Potential therapeutic and challenges approache to suppress EMT and prevent CRC cells metastasis by targeting Wnt/β-catenin signalling are also discussed. These include direct β-catenin inhibitors and novel targets of the Wnt pathway, and finally highlight novel potential combinational treatment options based on the inhibition of the Wnt pathway.
Collapse
Affiliation(s)
- Luanbiao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Jianpeng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xuanpeng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xinyuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong Special Administrative Region of China
| | - Shuohui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
27
|
Wang Z, Chang Y, Sun H, Li Y, Tang T. Advances in molecular mechanisms of inflammatory bowel disease‑associated colorectal cancer (Review). Oncol Lett 2024; 27:257. [PMID: 38646499 PMCID: PMC11027113 DOI: 10.3892/ol.2024.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
The link between inflammation and cancer is well documented and colonic inflammation caused by inflammatory bowel disease (IBD) is thought to be a high-risk factor for the development of colorectal cancer (CRC). The complex crosstalk between epithelial and inflammatory cells is thought to underlie the progression from inflammation to cancer. The present review collates and summarises recent advances in the understanding of the pathogenesis of IBD-associated CRC (IBD-CRC), including the oncogenic mechanisms of the main inflammatory signalling pathways and genetic alterations induced by oxidative stress during colonic inflammation, and discusses the crosstalk between the tumour microenvironment, intestinal flora and host immune factors during inflammatory oncogenesis in colitis-associated CRC. In addition, the therapeutic implications of anti-inflammatory therapy for IBD-CRC were discussed, intending to provide new insight into improve clinical practice.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Haibo Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
28
|
Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res 2024; 38:2764-2799. [PMID: 38522945 DOI: 10.1002/ptr.8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune inflammatory disease characterized by immune response overexpression, causing pain and swelling in the synovial joints. This condition is caused by auto-reactive antibodies that attack self-antigens due to their incapacity to distinguish between self and foreign molecules. Dysregulated activity within numerous signalling and immunological pathways supports the disease's development and progression, elevating its complexity. While current treatments provide some alleviation, their effectiveness is accompanied by a variety of adverse effects that are inherent in conventional medications. As a result, there is a deep-rooted necessity to investigate alternate therapeutic strategies capable of neutralizing these disadvantages. Medicinal herbs display a variety of potent bioactive phytochemicals that are effective in the complementary management of disease, thus generating an enormous potency for the researchers to delve deep into the development of novel phytomedicine against autoimmune diseases, although additional evidence and understanding are required in terms of their efficacy and pharmacodynamic mechanisms. This literature-based review highlights the dysregulation of immune tolerance in rheumatoid arthritis, analyses the pathophysiology, elucidates relevant signalling pathways involved, evaluates present and future therapy options and underscores the therapeutic attributes of a diverse array of medicinal herbs in addressing this severe disease.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Monisha Jayaprakasan
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | | | | | | | | |
Collapse
|
29
|
Li T, Fan L, Jia Y, Xu C, Guo W, Wang Y, Li Y. Colorectal cancer cells with stably expressed SIRT3 demonstrate proliferating retardation by Wnt/β-catenin cascade inactivation. Clin Exp Pharmacol Physiol 2024; 51:e13856. [PMID: 38621772 DOI: 10.1111/1440-1681.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Colorectal cancer (CRC) is a typical and lethal digestive system malignancy. In this study, we investigated the effect of sirtuin 3 (SIRT3) expression, a fidelity mitochondrial protein, on the proliferation of CRC cells and the mechanisms involved. Using the University of Alabama at Birmingham Cancer Data Analysis Portal database and the Clinical Proteomic Tumour Analysis Consortium database, we discovered that low expression of SIRT3 in CRC was a negative factor for survival prognosis (P < .05). Meanwhile, SIRT3 expression was correlated with distant metastasis and tumour, node, metastasis stage of CRC patients (P < .05). Subsequently, we observed that CRC cells with stable SIRT3 expression exhibited a significant decrease in proliferative capacities both in vitro and in vivo, compared to their counterparts (P < .05). Further investigation using western blot, immunoprecipitation and TOPflash/FOPflash assay showed the mechanism of growth retardation of these cells was highly associated with the degradation of β-catenin in cytosol, and the localization of β-catenin/α-catenin complex in the nucleus. In conclusion, our findings suggest that the inhibition of CRC cell proliferation by SIRT3 is closely associated with the inactivation of the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Leqi Fan
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Yijiang Jia
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Chen Xu
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yuji Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Haddad N, Gamaethige SM, Wehida N, Elbediwy A. Drug Repurposing: Exploring Potential Anti-Cancer Strategies by Targeting Cancer Signalling Pathways. BIOLOGY 2024; 13:386. [PMID: 38927266 PMCID: PMC11200741 DOI: 10.3390/biology13060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The repurposing of previously clinically approved drugs as an alternative therapeutic approach to treating disease has gained significant attention in recent years. A multitude of studies have demonstrated various and successful therapeutic interventions with these drugs in a wide range of neoplastic diseases, including multiple myeloma, leukaemia, glioblastoma, and colon cancer. Drug repurposing has been widely encouraged due to the known efficacy, safety, and convenience of already established drugs, allowing the bypass of the long and difficult road of lead optimization and drug development. Repurposing drugs in cancer therapy is an exciting prospect due to the ability of these drugs to successfully target cancer-associated genes, often dysregulated in oncogenic signalling pathways, amongst which are the classical cancer signalling pathways; WNT (wingless-related integration type) and Hippo signalling. These pathways play a fundamental role in controlling organ size, tissue homeostasis, cell proliferation, and apoptosis, all hallmarks of cancer initiation and progression. Prolonged dysregulation of these pathways has been found to promote uncontrolled cellular growth and malignant transformation, contributing to carcinogenesis and ultimately leading to malignancy. However, the translation of cancer signalling pathways and potential targeted therapies in cancer treatment faces ongoing challenges due to the pleiotropic nature of cancer cells, contributing to resistance and an increased rate of incomplete remission in patients. This review provides analyses of a range of potential anti-cancer compounds in drug repurposing. It unravels the current understanding of the molecular rationale for repurposing these drugs and their potential for targeting key oncogenic signalling pathways.
Collapse
Affiliation(s)
| | | | - Nadine Wehida
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
| |
Collapse
|
31
|
Li X, Chen Y, Lu R, Hu M, Gu L, Huang Q, Meng W, Zhu H, Fan C, Zhou Z, Mo X. Colorectal cancer cells secreting DKK4 transform fibroblasts to promote tumour metastasis. Oncogene 2024; 43:1506-1521. [PMID: 38519641 PMCID: PMC11090838 DOI: 10.1038/s41388-024-03008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Wnt/β-catenin signalling is aberrantly activated in most colorectal cancer (CRC) and is one key driver involved in the initiation and progression of CRC. However, mutations of APC gene in CRC patients retain certain activity of APC protein with decreased β-catenin signalling and DKK4 expression significantly upregulates and represses Wnt/β-catenin signalling in human CRC tissues, suggesting that a precisely modulated activation of the Wnt/β-catenin pathway is essential for CRC formation and progression. The underlying reasons why a specifically reduced degree, not a fully activating degree, of β-catenin signalling in CRC are unclear. Here, we showed that a soluble extracellular inhibitor of Wnt/β-catenin signalling, DKK4, is an independent factor for poor outcomes in CRC patients. DKK4 secreted from CRC cells inactivates β-catenin in fibroblasts to induce the formation of stress fibre-containing fibroblasts and myofibroblasts in culture conditions and in mouse CRC xenograft tissues, resulting in restricted expansion in tumour masses at primary sites and enhanced CRC metastasis in mouse models. Reduced β-catenin activity by a chemical inhibitor MSAB promoted the CRC metastasis. Our findings demonstrate why reduced β-catenin activity is needed for CRC progression and provide a mechanism by which interactions between CRC cells and stromal cells affect disease promotion.
Collapse
Affiliation(s)
- Xue Li
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yulin Chen
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ran Lu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Hu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiaorong Huang
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wentong Meng
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyan Zhu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuanwen Fan
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xianming Mo
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
33
|
Harasym J, Dziendzikowska K, Kopiasz Ł, Wilczak J, Sapierzyński R, Gromadzka-Ostrowska J. Consumption of Feed Supplemented with Oat Beta-Glucan as a Chemopreventive Agent against Colon Cancerogenesis in Rats. Nutrients 2024; 16:1125. [PMID: 38674816 PMCID: PMC11054053 DOI: 10.3390/nu16081125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) accounts for 30% of all cancer cases worldwide and is the second leading cause of cancer-related deaths. CRC develops over a long period of time, and in the early stages, pathological changes can be mitigated through nutritional interventions using bioactive plant compounds. Our study aims to determine the effect of highly purified oat beta-glucan on an animal CRC model. The study was performed on forty-five male Sprague-Dawley rats with azoxymethane-induced early-stage CRC, which consumed feed containing 1% or 3% low molar mass oat beta-glucan (OBG) for 8 weeks. In the large intestine, morphological changes, CRC signaling pathway genes (RT-PCR), and proteins (Western blot, immunohistochemistry) expression were analyzed. Whole blood hematology and blood redox status were also performed. Results indicated that the histologically confirmed CRC condition led to a downregulation of the WNT/β-catenin pathway, along with alterations in oncogenic and tumor suppressor gene expression. However, OBG significantly modulated these effects, with the 3% OBG showing a more pronounced impact. Furthermore, CRC rats exhibited elevated levels of oxidative stress and antioxidant enzyme activity in the blood, along with decreased white blood cell and lymphocyte counts. Consumption of OBG at any dose normalized these parameters. The minimal effect of OBG in the physiological intestine and the high activity in the pathological condition suggest that OBG is both safe and effective in early-stage CRC.
Collapse
Affiliation(s)
- Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (J.G.-O.)
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (J.G.-O.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (J.G.-O.)
| |
Collapse
|
34
|
Wang YM, Luo ZW, Shu YL, Zhou X, Wang LQ, Liang CH, Wu CQ, Li CP. Effects of Helicobacter pylori and Moluodan on the Wnt/β-catenin signaling pathway in mice with precancerous gastric cancer lesions. World J Gastrointest Oncol 2024; 16:979-990. [PMID: 38577474 PMCID: PMC10989371 DOI: 10.4251/wjgo.v16.i3.979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the primary risk factor for gastric cancer (GC), the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis. GC has a high mortality rate and treatment cost, and there are no drugs to prevent the progression of gastric precancerous lesions to GC. Therefore, it is necessary to find a novel drug that is inexpensive and preventive to against GC. AIM To explore the effects of H. pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC (PLGC). METHODS Mice were divided into the control, N-methyl-N-nitrosourea (MNU), H. pylori + MNU, and Moluodan groups. We first created an H. pylori infection model in the H. pylori + MNU and Moluodan groups. A PLGC model was created in the remaining three groups except for the control group. Moluodan was fed to mice in the Moloudan group ad libitum. The general condition of mice were observed during the whole experiment period. Gastric tissues of mice were grossly and microscopically examined. Through quantitative real-time PCR (qRT-PCR) and Western blotting analysis, the expression of relevant genes were detected. RESULTS Mice in the H. pylori + MNU group showed the worst performance in general condition, gastric tissue visual and microscopic observation, followed by the MNU group, Moluodan group and the control group. QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes, the results showed that the H. pylori + MNU group had the highest expression, followed by the MNU group, Moluodan group and the control group. CONCLUSION H. pylori can activate the Wnt/β-catenin signaling pathway, thereby facilitating the development and progression of PLGC. Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway, thereby decreasing the progression of PLGC.
Collapse
Affiliation(s)
- Yi-Mei Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Zheng-Wei Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yu-Lin Shu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiu Zhou
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lin-Qing Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chun-Hong Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chao-Qun Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chang-Ping Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
35
|
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression. Pathol Res Pract 2024; 255:155132. [PMID: 38335783 DOI: 10.1016/j.prp.2024.155132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Cancer, a complex pathophysiological condition, arises from the abnormal proliferation and survival of cells due to genetic mutations. Dysregulation of cell cycle control, apoptosis, and genomic stability contribute to uncontrolled growth and metastasis. Tumor heterogeneity, microenvironmental influences, and immune evasion further complicate cancer dynamics. The intricate interplay between circular RNAs (circRNAs) and the Wnt/β-Catenin signalling pathway has emerged as a pivotal axis in the landscape of cancer biology. The Wnt/β-Catenin pathway, a critical regulator of cell fate and proliferation, is frequently dysregulated in various cancers. CircRNAs, a class of non-coding RNAs with closed-loop structures, have garnered increasing attention for their diverse regulatory functions. This review systematically explores the intricate crosstalk between circRNAs and the Wnt/β-Catenin pathway, shedding light on their collective impact on cancer initiation and progression. The review explores the diverse mechanisms through which circRNAs modulate the Wnt/β-Catenin pathway, including sponging microRNAs, interacting with RNA-binding proteins, and influencing the expression of key components in the pathway. Furthermore, the review highlights specific circRNAs implicated in various cancer types, elucidating their roles as either oncogenic or tumour-suppressive players in the context of Wnt/β-Catenin signaling. The intricate regulatory networks formed by circRNAs in conjunction with the Wnt/β-Catenin pathway are discussed, providing insights into potential therapeutic targets and diagnostic biomarkers. This comprehensive review delves into the multifaceted roles of circRNAs in orchestrating tumorigenesis through their regulatory influence on the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
36
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
37
|
Woo S, Strasser L. Atypical RhoUV GTPases in development and disease. Biochem Soc Trans 2024; 52:89-97. [PMID: 38314621 PMCID: PMC10903452 DOI: 10.1042/bst20230212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
RhoU and RhoV are members of the Rho family of small GTPases that comprise their own subfamily. RhoUV GTPases are classified as atypical due to the kinetics of their GTP/GDP binding cycles. They also possess unique N- and C-termini that regulate their subcellular localization and activity. RhoU and RhoV have been linked to cytoskeletal regulation, cell adhesion, and cell migration. They each exhibit distinct expression patterns during embryonic development and diseases such as cancer metastasis, suggesting they have specialized functions. In this review, we will discuss the known functions of RhoU and RhoV, with a focus on their roles in early development, organogenesis, and disease.
Collapse
Affiliation(s)
- Stephanie Woo
- Department of Molecular Cell Biology, University of California, Merced, CA, U.S.A
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, U.S.A
| | - Leesa Strasser
- Department of Molecular Cell Biology, University of California, Merced, CA, U.S.A
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, U.S.A
| |
Collapse
|
38
|
Pei L, Zhao F, Zhang Y. USP43 impairs cisplatin sensitivity in epithelial ovarian cancer through HDAC2-dependent regulation of Wnt/β-catenin signaling pathway. Apoptosis 2024; 29:210-228. [PMID: 38087046 PMCID: PMC10830728 DOI: 10.1007/s10495-023-01873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 02/01/2024]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of cancer death all over the world. USP43 functions as a tumor promoter in various malignant cancers. Nevertheless, the biological roles and mechanisms of USP43 in EOC remain unknown. In this study, USP43 was highly expressed in EOC tissues and cells, and high expression of USP43 were associated with a poor prognosis of EOC. USP43 overexpression promoted EOC cell proliferation, enhanced the ability of migration and invasion, decreased cisplatin sensitivity and inhibited apoptosis. Knockdown of USP43 in vitro effectively retarded above malignant progression of EOC. In vivo xenograft tumors, silencing USP43 slowed tumor growth and enhanced cisplatin sensitivity. Mechanistically, USP43 inhibited HDAC2 degradation and enhanced HDAC2 protein stability through its deubiquitylation function. USP43 diminished the sensitivity of EOC cells to cisplatin through activation of the Wnt/β-catenin signaling pathway mediated by HDAC2. Taken together, the data in this study revealed the functions of USP43 in proliferation, migration, invasion, chemoresistance of EOC cells, and the mechanism of HDAC2-mediated Wnt/β-catenin signaling pathway. Thus, USP43 might serve as a potential target for the control of ovarian cancer progression.
Collapse
Affiliation(s)
- Lipeng Pei
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Yi Zhang
- Department of Gynecology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, People's Republic of China.
| |
Collapse
|
39
|
Hussein ZH, Hassawi BA, Ibraheem Q. Aberrant β-Catenin Expression and Its Association With Epithelial-Mesenchymal Transition and Clinical Outcomes of Colorectal Cancer. Cureus 2024; 16:e53104. [PMID: 38414697 PMCID: PMC10897760 DOI: 10.7759/cureus.53104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
Background Colorectal cancer (CRC) is a significant global health challenge with high mortality rates. Dysregulation of β-catenin, epithelial-mesenchymal transition (EMT), and adenomatous polyposis coli (APC) are crucial in CRC development. Mutations in the APC gene lead to aberrant β-catenin expression, a key player in CRC pathogenesis. β-catenin not only influences canonical Wnt signaling but also regulates EMT. This study investigated the correlation between APC mutations, β-catenin dysregulation, and EMT induction in CRC. Methodology Tissue samples from 96 CRC patients and 40 para-cancerous normal tissues were collected and subjected to immunohistochemistry to assess β-catenin, E-cadherin, ZEB1, Snail, and vimentin expression. Genomic DNA was extracted and analyzed for APC mutations. Next-generation sequencing was employed for data analysis. Results Aberrant β-catenin expression was found in 82.3% of CRC cases and correlated with advanced clinicopathological factors. Aberrant β-catenin expression was associated with age (p=0.01), tumor invasion depth (p=0.03), nodal/distant metastasis (p=0.001 and 0.004), and vascular invasion (p=0.001). Aberrant β-catenin was correlated with EMT status. A positive correlation was observed between aberrant β-catenin expression and ZEB1 (p=0.001), Snail (p=0.001), vimentin (p=0.001), and loss of membranous E-cadherin (p=0001). Coexistence of aberrant β-catenin and EMT markers was associated with advanced CRC progression. Cancerous tissues displayed higher aberrant β-catenin and EMT markers expression than para-cancerous tissues. APC mutations were present in 59.3% of cases, with 91.2% of mutated APC cases showing aberrant β-catenin expression. The coexistence of APC mutation and aberrant β-catenin expression was correlated with the clinical outcomes of CRC patients. Mutated APC cases exhibited significantly increased EMT marker expression. Conclusion This study underscores the importance of aberrant β-catenin expression in CRC progression, linked to APC mutations and EMT induction. Understanding these relationships could aid in developing targeted therapies for CRC.
Collapse
Affiliation(s)
- Zihel H Hussein
- Department of Anatomy, Biology, and Histology, College of Medicine, University of Duhok, Duhok, IRQ
| | - Bashar Al Hassawi
- Department of Anatomy, Biology, and Histology, College of Medicine, University of Duhok, Duhok, IRQ
| | - Qais Ibraheem
- Department of Anatomy, Biology, and Histology, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
40
|
Zhang T, Xiang F, Li X, Chen Z, Wang J, Guo J, Zhu S, Zhou J, Kang X, Wu R. Mechanistic study on ursolic acid inhibiting the growth of colorectal cancer cells through the downregulation of TGF-β3 by miR-140-5p. J Biochem Mol Toxicol 2024; 38:e23581. [PMID: 38044485 DOI: 10.1002/jbt.23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/05/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
Colorectal cancer (CRC) is a common digestive tract tumor with a high incidence and a poor prognosis. Traditional chemotherapy drugs are usually accompanied by unpleasant side effects, highlighting the importance of exploring new adjunctive drugs. In this study, we aimed to explore the role of ursolic acid (UA) in CRC cells. Specifically, HT-29 cells were treated with UA at different concentrations (10, 20, 30, and 40 μM), and the expression of miR-140-5p, tumor growth factor-β3 (TGF-β3), β-catenin, and cyclin D1 was determined by real-time quantitative PCR. The cell cycle and apoptosis were checked by flow cytometry, and cell proliferation was detected by Cell Counting Kit-8 assay. The HT-29 cell model was established through overexpression (miR-140-5p mimics) and interference (miR-140-5p inhibitor) of miR-140-5p. Western blot was used to detect the protein expression of TGF-β3. We found that UA could inhibit the proliferation of HT-29 cells, block cells in the G1 phase, and promote cell apoptosis. After UA treatment, the expression of miR-140-5p increased and TGF-β3 decreased. Notably, miR-140-5p downregulated the expression of TGF-β3, while the overexpression of miR-140-5p exerted a similar function to UA in HT-29 cells. Additionally, the messenger RNA expression of TGF-β3, β-catenin, and cyclin D1 was decreased in HT-29 cells after UA treatment. In conclusion, UA inhibited CRC cell proliferation and cell cycle and promoted apoptosis by regulating the miR-140-5p/TGF-β3 axis, which may be related to the inhibition of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jun Wang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiahui Guo
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shanshan Zhu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jun Zhou
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Hakami MA, Hazazi A, Khan FR, Abdulaziz O, Alshaghdali K, Abalkhail A, Nassar SA, Omar BIA, Almarshadi F, Gupta G, Binshaya AS. PVT1 lncRNA in lung cancer: A key player in tumorigenesis and therapeutic opportunities. Pathol Res Pract 2024; 253:155019. [PMID: 38091883 DOI: 10.1016/j.prp.2023.155019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
The lncRNA PVT1 has emerged as a pivotal component in the intricate landscape of cancer pathogenesis, particularly in lung cancer. PVT1, situated in the 8q24 chromosomal region, has garnered attention for its aberrant expression patterns in lung cancer, correlating with tumor progression, metastasis, and poor prognosis. Numerous studies have unveiled the diverse mechanisms PVT1 contributes to lung cancer pathogenesis. It modulates critical pathways, such as cell proliferation, apoptosis evasion, angiogenesis, and epithelial-mesenchymal transition. PVT1's interactions with other molecules, including microRNAs and proteins, amplify its oncogenic influence. Recent advancements in genomic and epigenetic analyses have also illuminated the intricate regulatory networks that govern PVT1 expression. Understanding PVT1's complex involvement in lung cancer holds substantial clinical implications. Targeting PVT1 presents a promising avenue for developing novel diagnostic biomarkers and therapeutic interventions. This abstract encapsulates the expanding knowledge regarding the oncogenic role of PVT1 in lung cancer, underscoring the significance of further research to unravel its complete mechanistic landscape and exploit its potential for improved patient outcomes.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra university, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra university, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Makkah, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Qassim, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra university, Riyadh, Saudi Arabia
| | - Fahad Almarshadi
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
42
|
Fang F, Jin X, Meng J, He J, Wang J, Wang C, Xie S, Shi W. Jiedu Fuzheng decoction improves the proliferation, migration, invasion and EMT of non-small cell lung cancer via the Wnt/β-catenin pathway. Cell Div 2023; 18:22. [PMID: 38104091 PMCID: PMC10725601 DOI: 10.1186/s13008-023-00105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the effect of Jiedu Fuzheng decoction (JFD) in non-small cell lung cancer (NSCLC) and its potential therapeutic mechanism. RESULTS We prepared JFD-medicated serum from rats and treated NSCLC cells (A549 and NCI-H1650) with 0.5, 1, and 2 mg/mL JFD-medicated serum. CCK-8 and colony formation assays were used to detect cell proliferation. Transwell assays showed that JFD attenuated cell migration and invasion. JFD and SKL2001 (Wnt/β-catenin activator) were simultaneously used to treat NSCLC cells to verify that JFD regulated the biological behavior of NSCLC via Wnt/β-catenin signaling. It was found that 2 mg/mL JFD had the most significant effect on the activity of NSCLC cells. JFD attenuated proliferation and metastasis but increased the proportion of apoptotic cells. At the same time, JFD downregulated N-cadherin, vimentin and β-catenin protein expression in cancer cells. SKL2001 could restore the improvement of JFD on proliferation, metastasis and apoptosis. CONCLUSION This study confirmed that JFD suppressed the occurrence and development of NSCLC by regulating Wnt/β-catenin signaling and provided a novel therapeutic scheme for NSCLC.
Collapse
Affiliation(s)
- Fang Fang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaowei Jin
- Department of Traditional Chinese Medicine, Yunnan Cancer Hospital, Kunming, 650018, Yunnan, People's Republic of China
| | - Jinming Meng
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jiaqi He
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jiaxiao Wang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Changhong Wang
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng Xie
- Preventive Treatment of Disease Center, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9, Dongge Road, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Wei Shi
- The Second Ward of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 327, Xianhu Avenue, Qingxiu District, Nanning, 530001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
43
|
Sammarco A, Beffagna G, Sacchetto R, Vettori A, Bonsembiante F, Scarin G, Gelain ME, Cavicchioli L, Ferro S, Geroni C, Lombardi P, Zappulli V. Antitumor Effect of Berberine Analogs in a Canine Mammary Tumor Cell Line and in Zebrafish Reporters via Wnt/β-Catenin and Hippo Pathways. Biomedicines 2023; 11:3317. [PMID: 38137538 PMCID: PMC10741123 DOI: 10.3390/biomedicines11123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The heterogeneous nature of human breast cancer (HBC) can still lead to therapy inefficacy and high lethality, and new therapeutics as well as new spontaneous animal models are needed to benefit translational HBC research. Dogs are primarily investigated since they spontaneously develop tumors that share many features with human cancers. In recent years, different natural phytochemicals including berberine, a plant alkaloid, have been reported to have antiproliferative activity in vitro in human cancers and rodent animal models. In this study, we report the antiproliferative activity and mechanism of action of berberine, its active metabolite berberrubine, and eight analogs, on a canine mammary carcinoma cell line and in transgenic zebrafish models. We demonstrate both in vitro and in vivo the significant effects of specific analogs on cell viability via the induction of apoptosis, also identifying their role in inhibiting the Wnt/β-catenin pathway and activating the Hippo signals with a downstream reduction in CTGF expression. In particular, the berberine analogs NAX035 and NAX057 show the highest therapeutic efficacy, deserving further analyses to elucidate their mechanism of action more in detail, and in vivo studies on spontaneous neoplastic diseases are needed, aiming at improving veterinary treatments of cancer as well as translational cancer research.
Collapse
Affiliation(s)
- Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Giorgia Beffagna
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - Giulia Scarin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Cristina Geroni
- Naxospharma Srl, 20026 Novate Milanese, Italy; (C.G.); (P.L.)
| | - Paolo Lombardi
- Naxospharma Srl, 20026 Novate Milanese, Italy; (C.G.); (P.L.)
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| |
Collapse
|
44
|
Guo JB, Du M, Wang B, Zhong L, Fu ZX, Wei JL. Paired-related homeobox 1 induces epithelial-mesenchymal transition in oesophageal squamous cancer. World J Gastrointest Oncol 2023; 15:2185-2196. [PMID: 38173429 PMCID: PMC10758647 DOI: 10.4251/wjgo.v15.i12.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND It is unclear that paired-related homeobox 1 (PRRX1) induces epithelial-mesenchymal transition (EMT) in oesophageal cancer and the specific function of PRRX1 in oesophageal cancer metastasis. AIM To assess the significance of PRRX1 expression and investigate the mechanism of EMT in oesophageal cancer metastasis. METHODS Detect the expression of PRRX1 by immunohistochemistry in oesophageal tumour tissues and adjacent normal oesophageal tissues; the PRRX1 short hairpin RNA (shRNA) or blank vector lentiviral gene delivery system was transfected into cells; cell proliferation assay, soft agar colony formation assays, cell invasion and migration assays and animal studies were used to observe cells biological characteristics In vitro and in vivo; XAV939 and LiCl were used to alter the activity of Wnt/β-catenin pathway. Immunofluorescence staining and western blot analysis were used to detect protein expression of EMT markers and Wnt/β-catenin pathway. RESULTS PRRX1 is expressed at high levels in oesophageal cancer specimens and is closely related to tumour metastasis in patients with oesophageal cancer. Regulation of PRRX1 expression might exert obvious effects on cell proliferation, especially the migration and invasion of oesophageal cancer cells. Moreover, silencing PRRX1 expression using a shRNA produced the opposite effects. In addition, when PRRX1 was overexpressed, inhibition of the Wnt/β-catenin pathway with XAV939 negated the effect of PRRX1 on EMT, whereas when PRRX1 was downregulated, activation of the Wnt/β-catenin pathway with LiCl impaired the effect on EMT. CONCLUSION PRRX1 is upregulated in oesophageal cancer is closely correlated with cancer metastasis. Additionally, PRRX1 induces EMT in oesophageal cancer metastasis through activation of Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Jin-Bao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ming Du
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bin Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhong
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhong-Xue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin-Lai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
45
|
Chen R, Zhou D, Chen Y, Chen M, Shuai Z. Understanding the role of exosomal lncRNAs in rheumatic diseases: a review. PeerJ 2023; 11:e16434. [PMID: 38107573 PMCID: PMC10725171 DOI: 10.7717/peerj.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023] Open
Abstract
Rheumatic diseases, a group of diseases whose etiology is still unclear, are thought to be related to genetic and environmental factors, leading to complex pathogenesis. Based on their multi-system involvement, the diagnosis and treatment continue to face huge challenges. Whole-genome assays provide a distinct direction for understanding the underlying mechanisms of such diseases. Exosomes, nano-sized bilayer membrane vesicles secreted by cells, are mentioned as a key element in the physiological and pathological processes of the body. These exosomes mediate biologically active substances, such as nucleic acids, proteins, and lipids and deliver them to cells. Notably, long non-coding RNAs (lncRNAs), a unique class of non-coding RNAs, have been implicated in the pathogenesis of rheumatic diseases. However, the mechanism needs to be further explored. This article provided a comprehensive review of the findings on exosomal lncRNAs in rheumatic diseases, including rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, autoimmune liver diseases, primary dermatomyositis, and systemic sclerosis. Through in-depth understanding of these lncRNAs and their involved signaling pathways provide new theoretical supports for the diagnosis and treatment of rheumatic diseases.
Collapse
Affiliation(s)
- Ruofei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Dongqing Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yangfan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| |
Collapse
|
46
|
Ghosh A, Himaja A, Biswas S, Kulkarni O, Ghosh B. Advances in the Delivery and Development of Epigenetic Therapeutics for the Treatment of Cancer. Mol Pharm 2023; 20:5981-6009. [PMID: 37899551 DOI: 10.1021/acs.molpharmaceut.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Gene expression at the transcriptional level is altered by epigenetic modifications such as DNA methylation, histone methylation, and acetylation, which can upregulate, downregulate, or entirely silence genes. Pathological dysregulation of epigenetic processes can result in the development of cancer, neurological problems, metabolic disorders, and cardiovascular diseases. It is of promising therapeutic interest to find medications that target these epigenetic alterations. Despite the enormous amount of work that has been done in this area, very few molecules have been approved for clinical purposes. This article provides a comprehensive review of recent advances in epigenetic therapeutics for cancer, with a specific focus on emerging delivery and development strategies. Various delivery systems, including pro-drugs, conjugated molecules, nanoparticles (NPs), and liposomes, as well as remedial strategies such as combination therapies, and epigenetic editing, are being investigated to improve the efficacy and specificity of epigenetic drugs (epi-drugs). Furthermore, the challenges associated with available epi-drugs and the limitations of their translation into clinics have been discussed. Target selection, isoform selectivity, physiochemical properties of synthesized molecules, drug screening, and scalability of epi-drugs from preclinical to clinical fields are the major shortcomings that are addressed. This Review discusses novel strategies for the identification of new biomarkers, exploration of the medicinal chemistry of epigenetic modifiers, optimization of the dosage regimen, and design of proper clinical trials that will lead to better utilization of epigenetic modifiers over conventional therapies. The integration of these approaches holds great potential for improving the efficacy and precision of epigenetic treatments, ultimately benefiting cancer patients.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Onkar Kulkarni
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| |
Collapse
|
47
|
Huang FY, Wong DKH, Mak LY, Cheung TT, Zhang SS, Chau HT, Hui RWH, Seto WK, Yuen MF. FAT4 loss initiates hepatocarcinogenesis through the switching of canonical to noncanonical WNT signaling pathways. Hepatol Commun 2023; 7:e0338. [PMID: 38055646 PMCID: PMC10984662 DOI: 10.1097/hc9.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Mutation and downregulation of FAT atypical cadherin 4 (FAT4) are frequently detected in HCC, suggesting a tumor suppressor role of FAT4. However, the underlying molecular mechanism remains elusive. METHODS CRISPR-Cas9 system was used to knockout FAT4 (FAT4-KO) in a normal human hepatic cell line L02 to investigate the impact of FAT4 loss on the development of HCC. RNA-sequencing and xenograft mouse model were used to study gene expression and tumorigenesis, respectively. The mechanistic basis of FAT4 loss on hepatocarcinogenesis was elucidated using in vitro experiments. RESULTS We found that FAT4-KO disrupted cell-cell adhesion, induced epithelial-mesenchymal transition, and increased expression of extracellular matrix components. FAT4-KO is sufficient for tumor initiation in a xenograft mouse model. RNA-sequencing of FAT4-KO cells identified PAK6-mediated WNT/β-catenin signaling to promote tumor growth. Suppression of PAK6 led to β-catenin shuttling out of the nucleus for ubiquitin-dependent degradation and constrained tumor growth. Further, RNA-sequencing of amassed FAT4-KO cells identified activation of WNT5A and ROR2. The noncanonical WNT5A/ROR2 signaling has no effect on β-catenin and its target genes (CCND1 and c-Myc) expression. Instead, we observed downregulation of receptors for WNT/β-catenin signaling, suggesting the shifting of β-catenin-dependent to β-catenin-independent pathways as tumor progression depends on its receptor expression. Both PAK6 and WNT5A could induce the expression of extracellular matrix glycoprotein, laminin subunit alpha 4. Laminin subunit alpha 4 upregulation in HCC correlated with poor patient survival. CONCLUSIONS Our data show that FAT4 loss is sufficient to drive HCC development through the switching of canonical to noncanonical Wingless-type signaling pathways. The findings may provide a mechanistic basis for an in-depth study of the two pathways in the early and late stages of HCC for precise treatment.
Collapse
Affiliation(s)
- Fung-Yu Huang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Danny Ka-Ho Wong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Sai-Sai Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Hau-Tak Chau
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
48
|
Chen Y, Yang Z, He X, Zhu W, Wang Y, Li J, Han Z, Wen J, Liu W, Yang Y, Zhang K. Proanthocyanidins inhibited colorectal cancer stem cell characteristics through Wnt/β-catenin signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:2894-2903. [PMID: 37551626 DOI: 10.1002/tox.23924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) play a key role in tumor cell growth, drug resistance, recurrence, and metastasis. Proanthocyanidins (PC) is widely existed in plants and endowed with powerful antioxidant and anti-aging effects. Interestingly, recent studies have found that PC exhibits the inhibitory effect on tumor growth. However, the role of PC in CSCs of colorectal cancer (CRC) and molecular mechanism remain unclear. METHODS CCK-8, colony, and tumorsphere formation assay were used to evaluate cancer cell viability and stemness, respectively. Western blotting was used to detect the protein expression. Tumor xenograft experiments were employed to examine the tumorigenicity of CRC cells in nude mice. RESULTS PC decreased the proliferation of CRC cells (HT29 and HCT-116), and improved the sensitivity of CRC cells to oxaliplatin (L-OHP), as well as inhibited tumor growth in nude mice. Further studies showed that PC also down-regulated CSCs surface molecular and stemness transcriptional factors, while suppressed the formations of tumorspheres and cell colony in CRC. In addition, PC-impaired proteins expressions of p-GSK3β, β-catenin and DVL1-3. LiCl, an activator of the Wnt/β-catenin signaling, rescued PC-induced downregulation of CSCs markers, and reduction of tumorspheres and cell colony formation abilities in CRC cells. Furthermore, the effects of PC on inhibiting cell proliferation and enhancing L-OHP sensitivity were impaired by LiCl. CONCLUSIONS PC exerted an inhibitory effect on CSCs via Wnt/β-catenin in CRC, and may be a potential new class of natural drug for CRC treatment.
Collapse
Affiliation(s)
- Yuzhuo Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Zhirong Yang
- Pathology Department of Deyang People's Hospital, Deyang, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xingqiang He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Wanglong Zhu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yujun Wang
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Jiaofeng Li
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Zhengyu Han
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Jie Wen
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Wei Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yuhan Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
49
|
Farnhammer F, Colozza G, Kim J. RNF43 and ZNRF3 in Wnt Signaling - A Master Regulator at the Membrane. Int J Stem Cells 2023; 16:376-384. [PMID: 37643759 PMCID: PMC10686798 DOI: 10.15283/ijsc23070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The Wnt β-catenin signaling pathway is a highly conserved mechanism that plays a critical role from embryonic development and adult stem cell homeostasis. However, dysregulation of the Wnt pathway has been implicated in various diseases, including cancer. Therefore, multiple layers of regulatory mechanisms tightly control the activation and suppression of the Wnt signal. The E3 ubiquitin ligases RNF43 and ZNRF3, which are known negative regulators of the Wnt pathway, are critical component of Wnt signaling regulation. These E3 ubiquitin ligases control Wnt signaling by targeting the Wnt receptor Frizzled to induce ubiquitination-mediated endo-lysosomal degradation, thus controlling the activation of the Wnt signaling pathway. We also discuss the regulatory mechanisms, interactors, and evolution of RNF43 and ZNRF3. This review article summarizes recent findings on RNF43 and ZNRF3 and their potential implications for the development of therapeutic strategies to target the Wnt signaling pathway in various diseases, including cancer.
Collapse
Affiliation(s)
- Fiona Farnhammer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Division of Oncology and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Jihoon Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| |
Collapse
|
50
|
Kumar V, Haldar S, Ghosh S, Saini S, Dhankhar P, Roy P. Pterostilbene-Isothiocyanate Inhibits Proliferation of Human MG-63 Osteosarcoma Cells via Abrogating β-Catenin/TCF-4 Interaction-A Mechanistic Insight. ACS OMEGA 2023; 8:43474-43489. [PMID: 38027335 PMCID: PMC10666272 DOI: 10.1021/acsomega.3c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Osteosarcoma, a highly metastasizing bone neoplasm, is a leading cause of death and disability in children and adolescents worldwide. Osteosarcoma is only suboptimally responsive to surgery and radio- and chemotherapy, that too with adverse side effects. Hence, there is a necessary need for safer alternative therapeutic approaches. This study evaluated the anticancer effects of the semi-synthetic compound, pterostilbene-isothiocyanate (PTER-ITC), on human osteosarcoma MG-63 cells through cytotoxicity, wound-healing, and transwell-migration assays. Results showed that PTER-ITC specifically inhibited the survival, proliferation, and migration of osteosarcoma cells. PTER-ITC induced apoptosis in MG-63 cells by disrupting mitochondrial membrane potential, as evident from the outcomes of different cytological staining. The antimetastatic potential of PTER-ITC was evaluated through immunostaining, RT-qPCR, and immunoblotting. In silico (molecular docking and dynamic simulation) and, subsequently, biochemical [co-immunoprecipitation (Co-IP) and luciferase reporter] assays deciphered the underlying mode-of-action of this compound. PTER-ITC increased E-cadherin and reduced N-cadherin levels, thereby facilitating the reversal of epithelial-mesenchymal transition (EMT). It also modulated the expressions of proliferative cell nuclear antigen (PCNA), caspase-3, poly [ADP-ribose] polymerase (PARP-1) and matrix metalloproteinase-2/9 (MMPs-2/9) at transcriptional and translational levels. PTER-ITC interfered with the β-catenin/transcription factor-4 (TCF-4) interaction in silico by occupying the β-catenin binding site on TCF-4, confirmed by their reduced physical interactions (Co-IP assay). This inhibited transcriptional activation of TCF-4 by β-catenin (as shown by luciferase reporter assay). In conclusion, PTER-ITC exhibited potent anticancer effects in vitro against human osteosarcoma cells by abrogating the β-catenin/TCF-4 interaction. Altogether, this study suggests that PTER-ITC may be regarded as a new approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Viney Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| | - Swati Haldar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| | - Poonam Dhankhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667,India
| |
Collapse
|