1
|
Oushyani Roudsari Z, Karami Y, Khoramrooz SS, Rouhi S, Ghasem H, Khatami SH, Alizadeh M, Ahmad Khosravi N, Mansoriyan A, Ghasemi E, Movahedpour A, Dargahi Z. Electrochemical and optical biosensors for the detection of E. Coli. Clin Chim Acta 2025; 565:119984. [PMID: 39401653 DOI: 10.1016/j.cca.2024.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
E. coli is a common pathogenic microorganism responsible for numerous food and waterborne illnesses. Traditional detection methods often require long, multi-step processes and specialized equipment. Electrochemical and optical biosensors offer promising alternatives due to their high sensitivity, selectivity, and real-time monitoring capabilities. Recent advancements in sensor development focus on various techniques for detecting E. coli, including optical (fluorescence, colorimetric analysis, surface-enhanced Raman spectroscopy, surface plasmon resonance, localized surface plasmon resonance, chemiluminescence) and electrochemical (amperometric, voltammetry, impedance, potentiometric). Herein, the latest advancements in optical and electrochemical biosensors created for identifying E. coli with an emphasis on surface modifications employing nanomaterials and biomolecules are outlined in this review. Electrochemical biosensors exploit the unique electrochemical properties of E. coli or its specific biomolecules to generate a measurable signal. In contrast, optical biosensors rely on interactions between E. coli and optical elements to generate a detectable response. Moreover, optical detection has been exploited in portable devices such as smart phones and paper-based sensors. Different types of electrodes, nanoparticles, antibodies, aptamers, and fluorescence-based systems have been employed to enhance the sensitivity and specificity of these biosensors. Integrating nanotechnology and biorecognition (which bind to a specific region of the E. coli) elements has enabled the development of portable and miniaturized devices for on-site and point-of-care (POC) applications. These biosensors have demonstrated high sensitivity and offer low detection limits for E. coli detection. The convergence of electrochemical and optical technologies promises excellent opportunities to revolutionize E. coli detection, improving food safety and public health.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yousof Karami
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Hassan Ghasem
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Ahmad Khosravi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Mansoriyan
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Zahra Dargahi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Rajamanikandan R, Sasikumar K, Ju H. β-Cyclodextrin Functionalized Au@Ag Core-Shell Nanoparticles: Plasmonic Sensors for Cysteamine and Efficient Nanocatalysts for Nitrobenzene-to-Aniline Conversion. BIOSENSORS 2024; 14:544. [PMID: 39590003 PMCID: PMC11591858 DOI: 10.3390/bios14110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
We reported the gold/silver core-shell nanoparticles (Aucore@Agshell NPs) functionalized with β-cyclodextrin (β-CD) as versatile nano-agents demonstrated for human urine-based biosensing of cysteamine and catalytic conversion from nitrobenzene (NB) to aniline. First, the hybrid bimetallic nanoparticles, i.e., β-CD-Aucore@Agshell NPs, constituted a colorimetric sensing platform based on localized surface plasmons, enabling cysteamine (Cyst) to be detected in a remarkably rapid manner, i.e., within 2 min, which was greatly shortened in comparison with that of our previous report. This was due largely to use of β-CD being effectively replaceable by Cyst. The detection of Cyst was demonstrated using human urine specimens in the linear range of 25-750 nM with a limit of detection of 1.83 nM. Excellent specificity in detecting Cyst was also demonstrated against potential interfering molecules. Meanwhile, the β-CD-Aucore@Agshell NPs were demonstrated as nanocatalysts for converting NB to aniline with efficiency enhanced by more than three-fold over the pure gold nanoparticles previously reported, due to the dual functions of the structural core-shell. The demonstrated versatile features of the hybrid nanoparticles can find applications in human urine-based biosensors for Cyst detection, and in the screening of Cyst-containing drugs, while detoxicating NB for ecological protection in aqueous media.
Collapse
Affiliation(s)
- Ramar Rajamanikandan
- Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea; (R.R.); (K.S.)
- Gachon Bionano Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Kandasamy Sasikumar
- Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea; (R.R.); (K.S.)
- Gachon Bionano Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea; (R.R.); (K.S.)
- Gachon Bionano Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
Zhou L, Duan X, Dai J, Ma Y, Yang Q, Hou X. A covalent-organic framework-based platform for simultaneous smartphone detection and degradation of aflatoxin B1. Talanta 2024; 278:126505. [PMID: 38968658 DOI: 10.1016/j.talanta.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
This study developed a smartphone-based biosensor that could simultaneously detect and degrade aflatoxin B1 (AFB1). A donor-acceptor covalent organic framework (COF) was bound onto the surface of stainless-steel mesh (SSM) via the in-situ synthesis, which was used to immobilize the aptamer (Apt) to specifically capture AFB1 and was also as a photocatalyst to degrade AFB1. Au@Ir nanospheres were synthesized, which exhibited better peroxidase catalytic activity (Km=5.36 × 10-6 M, Vmax=3.48 × 10-7 Ms-1, Kcat=1.00 × 107 s-1) than Ir@Au nanospheres, so Au@Ir nanospheres were linked with Apt2 to be utilized as the signal probe. The density functional theory calculation also described that Au@Ir nanospheres possessed the lower energy barriers to decompose H2O2 than Ir@Au nanospheres. Coupled with the "Color Picker" application in the smartphone, the established "sandwich-structure" colorimetric method exhibited a linear range of 0.5-200 μg L-1 and a detection limit of 0.045 μg L-1. The photocatalytic capacity of SSM/COF towards AFB1 was investigated and the degradation rate researched 81.14 % within 120 min under the xenon lamp irradiation, and the degradation products were validated by ESI-MS. It was applied for the detection of AFB1 in peanuts, corn, and wheat samples. Recoveries were ranging from 77.90 % to 112.5 %, and the matrix effect was 75.10-111.6 %. Therefore, the smartphone-based biosensor provided a simple, fast, and sensitive platform for the detection of AFB1, and meanwhile could realize the efficient degradation of AFB1.
Collapse
Affiliation(s)
- Lingling Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xueting Duan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jiayin Dai
- University College London, Division of Biosciences, London, England, United Kingdom
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
4
|
Shayesteh OH, Derakhshandeh K, Ranjbar A, Mahjub R, Farmany A. Development of a label-free, sensitive gold nanoparticles-poly(adenine) aptasensing platform for colorimetric determination of aflatoxin B1 in corn. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38682263 DOI: 10.1039/d4ay00605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In this work, a sensitive colorimetric bioassay method based on a poly(adenine) aptamer (polyA apt) and gold nanoparticles (AuNPs) was developed for the determination of aflatoxin B1 (AFB1). The polyA apt, adsorbed on the AuNPs, especially can bind to the analyte while deterring non-specific interactions. This nano aptasensor uses cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA), as an aggregating agent, to aggregate gold nanoparticles. PolyA apt-decorated gold nanoparticles (AuNPs/polyA apt) show resistance to PDDA-induced aggregation and maintains their dispersed state (red color) with the optical absorbance signal at λ = 520 nm. However, in the presence of AFB1 in the assay solution, the specific aptamer reacts with high affinity and folds into its three-dimensional form. Aggregation of AuNPs induced by PDDA caused their optical signal shift to λ = 620 nm (blue color). AFB1 concentration in the bioassay solution determines the amount of optical signal shift. Therefore, optical density ratio in two wavelengths (A620/520) can be used as a sturdy colorimetric signal to detect the concentration of aflatoxin B1. AFB1 was linearly detected between 0.5 and 20 ng mL-1, with a detection limit of 0.09 ng mL-1 (S/N = 3). The fabricated aptasensor was applied to the detection of AFB1 in real corn samples.
Collapse
Affiliation(s)
- Omid Heydari Shayesteh
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Yi J, Dong J, Zheng Y, Liu L, Zhu J, Tang H. A label-free and immobilization-free approach for constructing photoelectrochemical nucleic acid sensors utilizing DNA-silver nanoparticle affinity interactions. Analyst 2024; 149:2272-2280. [PMID: 38487962 DOI: 10.1039/d4an00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Efficient and affordable nucleic acid detection methods play a pivotal role in various applications. Herein, we developed an immobilization-free and label-free strategy to construct a photoelectrochemical nucleic acid biosensing platform based on interactions between silver nanoparticles and DNA. First, CRISPR-Cas12a exhibited a trans-cleavage effect on adenine nucleotide sequences upon recognizing the target DNA. The resulting adenine nucleotide sequences of varying lengths then engaged in interactions with silver nanoparticles, leading to a solution characterized by distinct light transmittance. Subsequently, the solution was positioned between the light source and the photoelectrode, strategically impacting the photon absorption step within the photoelectrochemical process. Consequently, the detection of nucleic acid was accomplished through the analysis of the resultant photocurrent signal. The developed platform exhibits a detection limit of 0.06 nM (S/N = 3) with commendable selectivity. The innovative use of adenine nucleotide sequences as cost-effective probes interacting with silver nanoparticles eliminates the need for complex interfacial immobilization processes, significantly simplifying the fabrication of DNA sensors. The outcomes of our research present a promising pathway for advancing the development of economically feasible miniature DNA sensors.
Collapse
Affiliation(s)
- Jing Yi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jiayao Dong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yawen Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Liu Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ji Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Hongwu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Gebremedhin KH, Kahsay MH, Wegahita NK, Teklu T, Berhe BA, Gebru AG, Tesfay AH, Asgedom AG. Nanomaterial-based optical colorimetric sensors for rapid monitoring of inorganic arsenic species: a review. DISCOVER NANO 2024; 19:38. [PMID: 38421536 PMCID: PMC10904709 DOI: 10.1186/s11671-024-03981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Health concerns about the toxicity of arsenic compounds have therefore encouraged the development of new analytical tools for quick monitoring of arsenic in real samples with improved sensitivity, selectivity, and reliability. An overview of advanced optical colorimetric sensor techniques for real-time monitoring of inorganic arsenic species in the environment is given in this review paper. Herein, several advanced optical colorimetric sensor techniques for arsenite (As+3) and arsenate (As+5) based on doping chromogenic dyes/reagents, biomolecule-modified nanomaterials, and arsenic-binding ligand tethered nanomaterials are introduced and discussed. This review also highlights the benefits and limitations of the colorimetric sensor for arsenic species. Finally, prospects and future developments of an optical colorimetric sensor for arsenic species are also proposed. For future study in this sector, particularly for field application, authors recommend this review paper will be helpful for readers to understand the design principles and their corresponding sensing mechanisms of various arsenic optical colorimetric sensors.
Collapse
Affiliation(s)
- Kalayou Hiluf Gebremedhin
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia.
| | - Mebrahtu Hagos Kahsay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Nigus Kebede Wegahita
- Department of Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Tesfamariam Teklu
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Berihu Abadi Berhe
- School of Earth Science, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Asfaw Gebretsadik Gebru
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Amanuel Hadera Tesfay
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Abraha Geberekidan Asgedom
- Department of Chemistry, College of Natural and Computational Science, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
7
|
Singh KR, Natarajan A, Pandey SS. Bioinspired Multifunctional Silver Nanoparticles for Optical Sensing Applications: A Sustainable Approach. ACS APPLIED BIO MATERIALS 2023; 6:4549-4571. [PMID: 37852204 DOI: 10.1021/acsabm.3c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Silver nanoparticles developed via biosynthesis are the most fascinating nanosized particles and encompassed with excellent physicochemical properties. The bioinspired nanoparticles with different shapes and sizes have attracted huge attention due to their stability, low cost, environmental friendliness, and use of less hazardous chemicals. This is an ideal method for synthesizing a range of nanosized metal particles from plants and biomolecules. Optical biosensors are progressively being fabricated for the attainment of sustainability by using opportunities offered by nanotechnology. This review focuses mainly on tuning the optical properties of the metal nanoparticles for optical sensing to explore the importance and applications of bioinspired silver nanoparticles. Further, this review deliberates the role of bioinspired silver nanoparticles (Ag NPs) in biomedical, agricultural, environmental, and energy applications. Profound insight into the antimicrobial properties of these nanoparticles is also appreciated. Tailor-made bioinspired nanoparticles with effectuating characteristics can unsurprisingly target tumor cells and distribute enwrapped payloads intensively. Existing challenges and prospects of bioinspired Ag NPs are also summarized. This review is expected to deliver perceptions about the progress of the next generation of bioinspired Ag NPs and their outstanding performances in various fields by promoting sustainable practices for fabricating optical sensing devices.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu 641004, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
8
|
Idil N, Aslıyüce S, Perçin I, Mattiasson B. Recent Advances in Optical Sensing for the Detection of Microbial Contaminants. MICROMACHINES 2023; 14:1668. [PMID: 37763831 PMCID: PMC10536746 DOI: 10.3390/mi14091668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023]
Abstract
Microbial contaminants are responsible for several infectious diseases, and they have been introduced as important potential food- and water-borne risk factors. They become a global burden due to their health and safety threats. In addition, their tendency to undergo mutations that result in antimicrobial resistance makes them difficult to treat. In this respect, rapid and reliable detection of microbial contaminants carries great significance, and this research area is explored as a rich subject within a dynamic state. Optical sensing serving as analytical devices enables simple usage, low-cost, rapid, and sensitive detection with the advantage of their miniaturization. From the point of view of microbial contaminants, on-site detection plays a crucial role, and portable, easy-applicable, and effective point-of-care (POC) devices offer high specificity and sensitivity. They serve as advanced on-site detection tools and are pioneers in next-generation sensing platforms. In this review, recent trends and advances in optical sensing to detect microbial contaminants were mainly discussed. The most innovative and popular optical sensing approaches were highlighted, and different optical sensing methodologies were explained by emphasizing their advantages and limitations. Consequently, the challenges and future perspectives were considered.
Collapse
Affiliation(s)
- Neslihan Idil
- Department of Biology, Biotechnology Division, Hacettepe University, Ankara 06800, Turkey;
| | - Sevgi Aslıyüce
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara 06800, Turkey;
| | - Işık Perçin
- Department of Biology, Molecular Biology Division, Hacettepe University, Ankara 06800, Turkey;
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, 22100 Lund, Sweden
- Indienz AB, Annebergs Gård, 26873 Billeberga, Sweden
| |
Collapse
|
9
|
Wemple AH, Kaplan JS, Leopold MC. Mechanistic Elucidation of Nanomaterial-Enhanced First-Generation Biosensors Using Probe Voltammetry of an Enzymatic Reaction. BIOSENSORS 2023; 13:798. [PMID: 37622884 PMCID: PMC10452687 DOI: 10.3390/bios13080798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The incorporation of nanomaterials (NMs) into biosensing schemes is a well-established strategy for gaining signal enhancement. With electrochemical biosensors, the enhanced performance achieved from using NMs is often attributed to the specific physical properties of the chosen nanocomponents, such as their high electronic conductivity, size-dependent functionality, and/or higher effective surface-to-volume ratios. First generation amperometric biosensing schemes, typically utilizing NMs in conjunction with immobilized enzyme and semi-permeable membranes, can possess complex sensing mechanisms that are difficult to study and challenging to understand beyond the observable signal enhancement. This study shows the use of an enzymatic reaction between xanthine (XAN) and xanthine oxidase (XOx), involving multiple electroactive species, as an electrochemical redox probe tool for ascertaining mechanistic information at and within the modified electrodes used as biosensors. Redox probing using components of this enzymatic reaction are demonstrated on two oft-employed biosensing approaches and commonly used NMs for modified electrodes: gold nanoparticle doped films and carbon nanotube interfaces. In both situations, the XAN metabolism voltammetry allows for a greater understanding of the functionality of the semipermeable membranes, the role of the NMs, and how the interplay between the two components creates signal enhancement.
Collapse
Affiliation(s)
| | | | - Michael C. Leopold
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA; (A.H.W.); (J.S.K.)
| |
Collapse
|
10
|
Dabhade AH, Verma RP, Paramasivan B, Kumawat A, Saha B. Development of silver nanoparticles and aptamer conjugated biosensor for rapid detection of E. coli in a water sample. 3 Biotech 2023; 13:244. [PMID: 37346389 PMCID: PMC10279593 DOI: 10.1007/s13205-023-03663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
A simple, rapid, and sensitive electrochemical biosensor based on a screen-printed carbon electrode (SPCE) was developed for onsite detection of E. coli in real time. This work analyzed the effect of aptamer conjugation and PBS buffer solution on the colloidal stability of the silver nanoparticles (AgNPs). Aggregations of the AgNPs after aptamer conjugation in PBS buffer were observed from the particle size distribution analysis. The AgNP-aptamer conjugation and its affinity towards E. coli (DH5α) were confirmed by UV-visible spectrophotometry, which showed a linear increment in the absorption with increasing E.coli concentration. The screen-printed carbon electrodes were modified by drop-casting of AgNPs, which were used as an effective immobilization platform for E. coli-specific aptamers. The modified electrode's surface modification and redox behavior were characterized using cyclic voltammetry. Finally, E. coli was detected using differential pulse voltammetry with an optimized incubation time of 15 min. The developed biosensors showed a linear decrease in current intensity with an increase in the concentration of E. coli. The biosensor had a relative standard deviation (RSD) of 6.91% (n = 3), which showed good reproducibility. The developed biosensors are highly sensitive and have a limit of detection (LOD) as low as 150 CFU/ml. The biosensor showed good selectivity for E.coli coli when comparing the signal response obtained for bacteria other than E.coli. Also, the biosensor was found stable for four weeks at room temperature and showed high recoveries from 95.27% to 107% during the tap water sensitivity validation.
Collapse
Affiliation(s)
- Ajinkya Hariram Dabhade
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Ravi Prakash Verma
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Balasubramanian Paramasivan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Adhidesh Kumawat
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Biswajit Saha
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355 India
| |
Collapse
|
11
|
Tripathi A, Jain R, Dandekar P. Rapid visual detection of Mycobacterium tuberculosis DNA using gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2497-2504. [PMID: 37183665 DOI: 10.1039/d3ay00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tuberculosis (TB) is one of the world's deadliest infections caused by Mycobacterium tuberculosis (MTB). Though curable, the disease goes undetected in early stages owing to the lack of rapid, simple, cost-effective, and sensitive detection methods. In this investigation, we describe a procedure which is superior, more sensitive, and easier to handle, as compared to the previously reported, nanoparticle-based visual colorimetric assays for rapid detection of TB DNA, after its PCR amplification. This assay employs plasmonic gold nanoparticles (GNP) as a colorimetric agent and ethanol to promote aggregation of GNPs, thereby specifically detecting the amplified MTB DNA. An unambiguous response was achieved within 3 min after adding the DNA amplicon to the reaction tube. This conclusion was supported by spectroscopic data. The assay is sensitive up to ∼340 femtomole levels of MTB DNA, which was amplified using 0.125 ng μL-1 of the MTB DNA template. Thus, the technique developed here may be employed as a sensitive screening tool for early diagnosis of TB infection and is valuable for low-resource settings in remote areas, because of its simplicity. This ethanol-based visual TB DNA detection method is more sensitive, and fool-proof as compared to the commonly used salt-based colorimetric TB DNA assays, to the best of our knowledge.
Collapse
Affiliation(s)
- Aparna Tripathi
- UGC Assistant Professor in Engineering Sciences, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology (ICT), Matunga, Mumbai 400019, India.
| | - Ratnesh Jain
- UGC Associate Professor in Engineering Sciences, Department of Biological Sciences and Biotechnology, Institute of Chemical Technology (ICT), Matunga, Mumbai 400019, India.
| | - Prajakta Dandekar
- UGC Assistant Professor in Engineering Sciences, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology (ICT), Matunga, Mumbai 400019, India.
| |
Collapse
|
12
|
Lu B, Guo Z, Zhong K, Osire T, Sun Y, Jiang L. State of the art in CRISPR/Cas system-based signal conversion and amplification applied in the field of food analysis. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Kolwas K. Optimization of Coherent Dynamics of Localized Surface Plasmons in Gold and Silver Nanospheres; Large Size Effects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1801. [PMID: 36902918 PMCID: PMC10004181 DOI: 10.3390/ma16051801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Noble metal nanoparticles have attracted attention in recent years due to a number of their exciting applications in plasmonic applications, e.g., in sensing, high-gain antennas, structural colour printing, solar energy management, nanoscale lasing, and biomedicines. The report embraces the electromagnetic description of inherent properties of spherical nanoparticles, which enable resonant excitation of Localized Surface Plasmons (defined as collective excitations of free electrons), and the complementary model in which plasmonic nanoparticles are treated as quantum quasi-particles with discrete electronic energy levels. A quantum picture including plasmon damping processes due to the irreversible coupling to the environment enables us to distinguish between the dephasing of coherent electron motion and the decay of populations of electronic states. Using the link between classical EM and the quantum picture, the explicit dependence of the population and coherence damping rates as a function of NP size is given. Contrary to the usual expectations, such dependence for Au and Ag NPs is not a monotonically growing function, which provides a new perspective for tailoring plasmonic properties in larger-sized nanoparticles, which are still hardly available experimentally. The practical tools for comparing the plasmonic performance of gold and silver nanoparticles of the same radii in an extensive range of sizes are also given.
Collapse
Affiliation(s)
- Krystyna Kolwas
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
14
|
Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Mikrochim Acta 2023; 190:91. [PMID: 36790481 PMCID: PMC9930094 DOI: 10.1007/s00604-023-05666-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Silver nanoparticles (AgNPs) have long been overshadowed by gold NPs' success in sensor and point-of-care (POC) applications. However, their unique physical, (electro)chemical, and optical properties make them excellently suited for such use, as long as their inherent higher instability toward oxidation is controlled. Recent advances in this field provide novel strategies that demonstrate that the AgNPs' inherent capabilities improve sensor performance and enable the specific detection of analytes at low concentrations. We provide an overview of these advances by focusing on the nanosized Ag (in the range of 1-100 nm) properties with emphasis on optical and electrochemical biosensors. Furthermore, we critically assess their potential for point-of-care sensors discussing advantages as well as limitations for each detection technique. We can conclude that, indeed, strategies using AgNP are ready for sensitive POC applications; however, research focusing on the simplification of assay procedures is direly needed for AgNPs to make the successful jump into actual applications.
Collapse
|
15
|
Scroccarello A, Della Pelle F, Del Carlo M, Compagnone D. Optical plasmonic sensing based on nanomaterials integrated in solid supports. A critical review. Anal Chim Acta 2022; 1237:340594. [DOI: 10.1016/j.aca.2022.340594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
16
|
Nanoparticle–Hydrogel Based Sensors: Synthesis and Applications. Catalysts 2022. [DOI: 10.3390/catal12101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are hydrophilic three-dimensional (3D) porous polymer networks that can easily stabilize various nanoparticles. Loading noble metal nanoparticles into a 3D network of hydrogels can enhance the synergy of the components. It can also be modified to prepare intelligent materials that can recognize external stimuli. The combination of noble metal nanoparticles and hydrogels to produce modified or new composite materials has attracted considerable attention as to the use of these materials in sensors. However, there is limited review literature on nanoparticle–hydrogel-based sensors. This paper presents the detailed strategies of synthesis and design of the composites, and the latest applications of nanoparticle–hydrogel materials in the sensing field. Finally, the current challenges and future development directions of nanoparticle–hydrogel-based sensors are proposed.
Collapse
|
17
|
Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022; 10:5391-5429. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoblastoma is the most common primary intraocular malignancy in children. Although traditional chemotherapy has shown some success in retinoblastoma management, there are several shortcomings to this approach, including inadequate pharmacokinetic parameters, multidrug resistance, low therapeutic efficiency, nonspecific targeting, and the need for adjuvant therapy, among others. The revolutionary developments in biomaterials for drug delivery have enabled breakthroughs in cancer management. Today, biomaterials are playing a crucial role in developing more efficacious retinoblastoma treatments. The key goal in the evolution of drug delivery biomaterials for retinoblastoma therapy is to resolve delivery-associated obstacles and lower nonlocal exposure while ameliorating certain adverse effects. In this review, we will first delve into the historical perspective of retinoblastoma with a focus on the classical treatments currently used in clinics to enhance patients' quality of life and survival rate. As we move along, we will discuss biomaterials for drug delivery applications. Various aspects of biomaterials for drug delivery will be dissected, including their features and recent advances. In accordance with the current advances in biomaterials, we will deliver a synopsis on the novel chemotherapeutic drug delivery strategies and evaluate these approaches to gain new insights into retinoblastoma treatment.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Amy Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA. .,Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Jouyban A, Samadi A. A study on surfactant solutions as stop solution for Metal Nanoparticles Aggregation-based Colorimetric Assays. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Pt/Au Nanoparticles@Co3O4 Cataluminescence Sensor for Rapid Analysis of Methyl Sec-Butyl Ether Impurity in Methyl Tert-Butyl Ether Gasoline Additive. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High purity methyl tert-butyl ether (MTBE) can be used to adjust gasoline octane values. However, an isomer, methyl sec-butyl ether (MSBE), is the main by-product of its industrial production, and this affects the purity of MTBE. Pt/Au NPs@Co3O4 composites with a hollow dodecahedron three-dimensional structure were synthesized using ZIF-67 as a template, with Pt and Au nanoparticles (NPs) evenly distributed on the shell of the hollow structure. A CTL sensor was established for the determination of MSBE based on the specificity of Pt/Au NPs@Co3O4. The experimental results showed that Pt/Au NPs@Co3O4 had a strong specific cataluminescence (CTL) response to MSBE, with no interference from MTBE. The linear range was 0.10–90 mg/L, the limit of detection was 0.031 mg/L (S/N = 3), the RSD was 2.5% (n = 9), and a complete sample test could be completed in five minutes. The sensor was used to detect MSBE in MTBE of different purity grades, with recoveries ranging from 92.0% to 109.2%, and the analytical results were consistent with those determined by gas chromatography. These results indicate that the established method was accurate and reliable, and could be used for rapid analysis of MTBE gasoline additive.
Collapse
|
20
|
Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Chadha R, Das A, Lobo J, Meenu V, Paul A, Ballal A, Maiti N. γ-Cyclodextrin capped silver and gold nanoparticles as colorimetric and Raman sensor for detecting traces of pesticide “Chlorpyrifos” in fruits and vegetables. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Dester E, Kao K, Alocilja EC. Detection of Unamplified E. coli O157 DNA Extracted from Large Food Samples Using a Gold Nanoparticle Colorimetric Biosensor. BIOSENSORS 2022; 12:bios12050274. [PMID: 35624575 PMCID: PMC9138483 DOI: 10.3390/bios12050274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 05/10/2023]
Abstract
Rapid detection of foodborne pathogens such as E. coli O157 is essential in reducing the prevalence of foodborne illness and subsequent complications. Due to their unique colorimetric properties, gold nanoparticles (GNPs) can be applied in biosensor development for affordability and accessibility. In this work, a GNP biosensor was designed for visual differentiation between target (E. coli O157:H7) and non-target DNA samples. Results of DNA extracted from pure cultures indicate high specificity and sensitivity to as little as 2.5 ng/µL E. coli O157 DNA. Further, the biosensor successfully identified DNA extracted from flour contaminated with E. coli O157, with no false positives for flour contaminated with non-target bacteria. After genomic extraction, this assay can be performed in as little as 30 min. In addition, food sample testing was successful at detecting approximately 103 CFU/mL of E. coli O157 magnetically extracted from flour after only a 4 h incubation step. As a proof of concept, these results demonstrate the capabilities of this GNP biosensor for low-cost and rapid foodborne pathogen detection.
Collapse
Affiliation(s)
- Emma Dester
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (E.D.); (K.K.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Kaily Kao
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (E.D.); (K.K.)
| | - Evangelyn C. Alocilja
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (E.D.); (K.K.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-432-8672
| |
Collapse
|
23
|
Svigelj R, Zuliani I, Grazioli C, Dossi N, Toniolo R. An Effective Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles for Gluten Detection. NANOMATERIALS 2022; 12:nano12060987. [PMID: 35335800 PMCID: PMC8953296 DOI: 10.3390/nano12060987] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Nanomaterials can be used to modify electrodes and improve the conductivity and the performance of electrochemical sensors. Among various nanomaterials, gold-based nanostructures have been used as an anchoring platform for the functionalization of biosensor surfaces. One of the main advantages of using gold for the modification of electrodes is its great affinity for thiol-containing molecules, such as proteins, forming a strong Au-S bond. In this work, we present an impedimetric biosensor based on gold nanoparticles and a truncated aptamer for the quantification of gluten in hydrolyzed matrices such as beer and soy sauce. A good relationship between the Rct values and PWG-Gliadin concentration was found in the range between 0.1–1 mg L−1 of gliadin (corresponding to 0.2–2 mg L−1 of gluten) with a limit of detection of 0.05 mg L−1 of gliadin (corresponding to 0.1 mg L−1 of gluten). The label-free assay was also successfully applied for the determination of real food samples.
Collapse
|
24
|
Sim D, Brothers MC, Slocik JM, Islam AE, Maruyama B, Grigsby CC, Naik RR, Kim SS. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104426. [PMID: 35023321 PMCID: PMC8895156 DOI: 10.1002/advs.202104426] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Human health and performance monitoring (HHPM) is imperative to provide information necessary for protecting, sustaining, evaluating, and improving personnel in various occupational sectors, such as industry, academy, sports, recreation, and military. While various commercially wearable sensors are on the market with their capability of "quantitative assessments" on human health, physical, and psychological states, their sensing is mostly based on physical traits, and thus lacks precision in HHPM. Minimally or noninvasive biomarkers detectable from the human body, such as body fluid (e.g., sweat, tear, urine, and interstitial fluid), exhaled breath, and skin surface, can provide abundant additional information to the HHPM. Detecting these biomarkers with novel or existing sensor technologies is emerging as critical human monitoring research. This review provides a broad perspective on the state of the art biosensor technologies for HHPM, including the list of biomarkers and their physiochemical/physical characteristics, fundamental sensing principles, and high-performance sensing transducers. Further, this paper expands to the additional scope on the key technical challenges in applying the current HHPM system to the real field.
Collapse
Affiliation(s)
- Daniel Sim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Research Associateship Program (RAP)the National Academies of Sciences, Engineering and MedicineWashingtonDC20001USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Michael C. Brothers
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Joseph M. Slocik
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Ahmad E. Islam
- Air Force Research LaboratorySensors DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Benji Maruyama
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Claude C. Grigsby
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Rajesh R. Naik
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Steve S. Kim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| |
Collapse
|
25
|
Abdolhosseini M, Zandsalimi F, Moghaddam FS, Tavoosidana G. A review on colorimetric assays for DNA virus detection. J Virol Methods 2022; 301:114461. [PMID: 35031384 DOI: 10.1016/j.jviromet.2022.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/22/2022]
Abstract
Early detection is one of the ways to deal with DNA virus widespread prevalence, and it is necessary to know new diagnostic methods and techniques. Colorimetric assays are one of the most advantageous methods in detecting viruses. These methods are based on color change, which can be seen either with the naked eye or with special devices. The aim of this study is to introduce and evaluate effective colorimetric methods based on amplification, nanoparticle, CRISPR/Cas, and Lateral flow in the diagnosis of DNA viruses and to discuss the effectiveness of each of the updated methods. Compared to the other methods, colorimetric assays are preferred for faster detection, high efficiency, cheaper cost, and high sensitivity and specificity. It is expected that the spread of these viruses can be prevented by identifying and developing new methods.
Collapse
Affiliation(s)
- Mansoreh Abdolhosseini
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Zandsalimi
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Salasar Moghaddam
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Park H, Kim G, Seo Y, Yoon Y, Min J, Park C, Lee T. Improving Biosensors by the Use of Different Nanomaterials: Case Study with Microcystins as Target Analytes. BIOSENSORS 2021; 11:525. [PMID: 34940282 PMCID: PMC8699174 DOI: 10.3390/bios11120525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
The eutrophication of lakes and rivers without adequate rainfall leads to excessive growth of cyanobacterial harmful algal blooms (CyanoHABs) that produce toxicants, green tides, and unpleasant odors. The rapid growth of CyanoHABs owing to global warming, climate change, and the development of rainforests and dams without considering the environmental concern towards lakes and rivers is a serious issue. Humans and livestock consuming the toxicant-contaminated water that originated from CyanoHABs suffer severe health problems. Among the various toxicants produced by CyanoHABs, microcystins (MCs) are the most harmful. Excess accumulation of MC within living organisms can result in liver failure and hepatocirrhosis, eventually leading to death. Therefore, it is essential to precisely detect MCs in water samples. To date, the liquid chromatography-mass spectrometry (LC-MS) and enzyme-linked immunosorbent assay (ELISA) have been the standard methods for the detection of MC and provide precise results with high reliability. However, these methods require heavy instruments and complicated operation steps that could hamper the portability and field-readiness of the detection system. Therefore, in order for this goal to be achieved, the biosensor has been attracted to a powerful alternative for MC detection. Thus far, several types of MC biosensor have been proposed to detect MC in freshwater sample. The introduction of material is a useful option in order to improve the biosensor performance and construct new types of biosensors. Introducing nanomaterials to the biosensor interface provides new phenomena or enhances the sensitivity. In recent times, different types of nanomaterials, such as metallic, carbon-based, and transition metal dichalcogenide-based nanomaterials, have been developed and used to fabricate biosensors for MC detection. This study reviews the recent advancements in different nanomaterial-based MC biosensors.
Collapse
Affiliation(s)
- Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| |
Collapse
|
27
|
Bao X, Liu J, Zheng Q, Duan L, Zhang Y, Qian J, Tu T. Colorimetric recognition of melamine in milk using novel pincer zinc complex stabilized gold nanoparticles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
29
|
Shykholeslami A, Rasouli Z, Ghavami R. Highly specific fingerprinting of alkaline earth metal ions by a tunable plasmonic nanosensor array based on nanoaggregation of metallochromic dyes-AuNPs. Mikrochim Acta 2021; 188:310. [PMID: 34455478 DOI: 10.1007/s00604-021-04976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Metal ions, specifically alkaline earth metal ions (AEMIs; Mg2+, Ca2+, Sr2+, and Ba2+), have essential roles in industrial processes, medical testing, and environmental evaluation; therefore, developing sensitive detection methods capable of their contents is highly required. To this aim, we have designed an absorbance nanosensor array using three metallochromic dyes decorated on AuNPs and have monitored variations in AuNP plasmonic profiles upon the addition of AEMIs in different buffer and pH solutions. The array is designed in a tunable size of 2 × 3 × 1(2/3); as the type buffer and pH of solution are fixed, the number of dyes can be changed in three individual modes, three binary modes, and a ternary mode, respectively. Owing to the different binding affinities of AEMIs toward dyes in different buffer and pH solutions, fingerprint-like plasmonic profiles with different levels of aggregation AuNPs were generated for all modes of array. These aggregation AuNP-based fingerprint profiles in the wavelengths of 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, and 750 nm were used to discriminate the AEMIs by applying pattern recognition methods including linear discrimination analysis (LDA) and hierarchical clustering analysis (HCA) to identify each AEMI in the range 2.1-24.7 μM. Accordingly, limits of detection (LODs) values of 0.013 (±3.13), 0.014 (±2.99), 0.020 (±4.17), and 0.017 (±4.31) μM were obtained the Mg2+, Ca2+, Sr2+, and Ba2+, respectively. The results revealed that all the modes of array could well differentiate complex mixtures of the AEMIs. Our suggested array also exhibited a good performance in the differentiation of AEMIs in real samples and a certified reference material (CRM) sample.
Collapse
Affiliation(s)
- Ailin Shykholeslami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Iran
| | - Zolaikha Rasouli
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Iran.
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
30
|
|
31
|
Pomal NC, Bhatt KD, Modi KM, Desai AL, Patel NP, Kongor A, Kolivoška V. Functionalized Silver Nanoparticles as Colorimetric and Fluorimetric Sensor for Environmentally Toxic Mercury Ions: An Overview. J Fluoresc 2021; 31:635-649. [PMID: 33609215 DOI: 10.1007/s10895-021-02699-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 11/24/2022]
Abstract
Nanoscience is a multifaceted field which encompasses metal nanoparticles (MNPs) having novel and size-related optical properties significantly different from the bulk level as well as at the atomic level. Amongst noble MNPs, the silver nanoparticles (AgNPs) have unique properties for metal interaction. Presently, there have been expedite reports which are taken under the review in virtue of sensing the mercury ions in aqueous media. Mercury dissemination in various forms contaminates the ecosystem. Globally mercury is ranked as the most toxic element and an urgent threat to humans since it causes major health issues. Employing MNPs, especially AgNPs for the detection of mercury ions is the economic, handy and apt method in contrast to time-consuming methods that use expensive instrumentations. The review highlights a study of colorimetric and fluorimetric detection of the level of Hg (II) ions in aqueous media selectively with high sensitivity in different courses of conditions using AgNPs synthesized by various approaches. Graphical abstract.
Collapse
Affiliation(s)
- Nandan C Pomal
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Keyur D Bhatt
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
| | - Krunal M Modi
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
| | - Ajay L Desai
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Nihal P Patel
- Department of Chemistry, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India
| | - Anita Kongor
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223, Prague, Czech Republic.
| |
Collapse
|
32
|
Chen R, Hu Y, Chen M, An J, Lyu Y, Liu Y, Li D. Naked-Eye Detection of Hepatitis B Surface Antigen Using Gold Nanoparticles Aggregation and Catalase-Functionalized Polystyrene Nanospheres. ACS OMEGA 2021; 6:9828-9833. [PMID: 33869962 PMCID: PMC8047666 DOI: 10.1021/acsomega.1c00507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Developing rapid, efficient, highly sensitive, simple, stable, and low-cost virus marker detection products that are appropriate for basic facilities is of great importance in the early diagnosis and treatment of viruses. Naked-eye detection methods are especially important when medical testing facilities are limited. Polystyrene nanospheres (PSs) with catalytic and specific recognition functions were successfully developed by simultaneously modifying catalase and goat anti-hepatitis B surface antibodies on nanospheres. The modified PSs contributed significantly to the amplification of the signal. Via the specific antigen-antibody reaction, the bifunctional nanospheres could be captured on microplate and then catalyzed the decomposition of hydrogen peroxide to reduce chloroauric acid and synthesize gold nanoparticles (AuNPs). Due to the surface plasmon resonance of AuNPs, the solution color change could be observed with the naked eye and the limit of detection (LOD) was 0.1 ng/mL. Furthermore, the LOD observed with instrumentation was 0.01 ng/mL, which meant that a rapid, efficient, and highly sensitive method for the detection of hepatitis B surface antigens was successfully developed, and neither complex sample pretreatment nor expensive equipment was needed.
Collapse
Affiliation(s)
- Rubing Chen
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yongqin Hu
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
- Center
for Intelligent Sensing Technology (CIST), College of Optoelectronic
Engineering, Chongqing University, Chongqing 400044, China
| | - Meizhu Chen
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Jia An
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
- Center
for Intelligent Sensing Technology (CIST), College of Optoelectronic
Engineering, Chongqing University, Chongqing 400044, China
| | - Ying Lyu
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yufei Liu
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
- Center
for Intelligent Sensing Technology (CIST), College of Optoelectronic
Engineering, Chongqing University, Chongqing 400044, China
- Centre
for NanoHealth, College of Science, Swansea
University, Singleton
Park, Swansea SA2 8PP, U.K.
| | - Dongling Li
- Key
Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| |
Collapse
|
33
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
34
|
Sarfraz N, Khan I. Plasmonic Gold Nanoparticles (AuNPs): Properties, Synthesis and their Advanced Energy, Environmental and Biomedical Applications. Chem Asian J 2021; 16:720-742. [PMID: 33440045 DOI: 10.1002/asia.202001202] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Inducing plasmonic characteristics, primarily localized surface plasmon resonance (LSPR), in conventional AuNPs through particle size and shape control could lead to a significant enhancement in electrical, electrochemical, and optical properties. Synthetic protocols and versatile fabrication methods play pivotal roles to produced plasmonic gold nanoparticles (AuNPs), which can be employed in multipurpose energy, environmental and biomedical applications. The main focus of this review is to provide a comprehensive and tutorial overview of various synthetic methods to design highly plasmonic AuNPs, along with a brief essay to understand the experimental procedure for each technique. The latter part of the review is dedicated to the most advanced and recent solar-induced energy, environmental and biomedical applications. The synthesis methods are compared to identify the best possible synthetic route, which can be adopted while employing plasmonic AuNPs for a specific application. The tutorial nature of the review would be helpful not only for expert researchers but also for novices in the field of nanomaterial synthesis and utilization of plasmonic nanomaterials in various industries and technologies.
Collapse
Affiliation(s)
- Nafeesa Sarfraz
- Department of Chemistry, Govt. Post Graduate College (For Women), University of Harīpur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Ibrahim Khan
- Centre for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
35
|
Liu LS, Wang F, Ge Y, Lo PK. Recent Developments in Aptasensors for Diagnostic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9329-9358. [PMID: 33155468 DOI: 10.1021/acsami.0c14788] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aptamers are exciting smart molecular probes for specific recognition of disease biomarkers. A number of strategies have been developed to convert target-aptamer binding into physically detectable signals. Since the aptamer sequence was first discovered, a large variety of aptamer-based biosensors have been developed, with considerable attention paid to their potential applications in clinical diagnostics. So far, a variety of techniques in combination with a wide range of functional nanomaterials have been used for the design of aptasensors to further improve the sensitivity and detection limit of target determination. In this paper, the advantages of aptamers over traditional antibodies as the molecular recognition components in biosensors for high-throughput screening target molecules are highlighted. Aptamer-target pairing configurations are predominantly single- or dual-site binding; the design of recognition modes of each aptamer-target pairing configuration is described. Furthermore, signal transduction strategies including optical, electrical, mechanical, and mass-sensitive modes are clearly explained together with examples. Finally, we summarize the recent progress in the development of aptamer-based biosensors for clinical diagnosis, including detection of cancer and disease biomarkers and in vivo molecular imaging. We then conclude with a discussion on the advanced development and challenges of aptasensors.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yonghe Ge
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
36
|
Stephanie R, Kim MW, Kim SH, Kim JK, Park CY, Park TJ. Recent advances of bimetallic nanomaterials and its nanocomposites for biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Nguyen CM, Frias Batista LM, John MG, Rodrigues CJ, Tibbetts KM. Mechanism of Gold-Silver Alloy Nanoparticle Formation by Laser Coreduction of Gold and Silver Ions in Solution. J Phys Chem B 2021; 125:907-917. [PMID: 33439650 DOI: 10.1021/acs.jpcb.0c10096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical reduction of aqueous Ag+ and [AuCl4]- into alloy Au-Ag nanoparticles (Au-Ag NPs) with intense laser pulses is a green synthesis approach that requires no toxic chemical reducing agents or stabilizers; however size control without capping agents still remains a challenge. Hydrated electrons produced in the laser plasma can reduce both [AuCl4]- and Ag+ to form NPs, but hydroxyl radicals (OH·) in the plasma inhibit Ag NP formation by promoting the back-oxidation of Ag0 into Ag+. In this work, femtosecond laser reduction is used to synthesize Au-Ag NPs with controlled compositions by adding the OH· scavenger isopropyl alcohol (IPA) to precursor solutions containing KAuCl4 and AgClO4. With sufficient IPA concentration, varying the precursor ratio enabled control over the Au-Ag NP composition and produced alloy NPs with average sizes less than 10 nm and homogeneous molar compositions of Au and Ag. By investigating the kinetics of Ag+ and [AuCl4]- coreduction, we find that the reduction of [AuCl4]- into Au-Ag NPs occurs before most of the Ag+ is incorporated, giving us insight into the mechanism of Au-Ag NP formation.
Collapse
Affiliation(s)
- Christopher M Nguyen
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Laysa M Frias Batista
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mallory G John
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Collin J Rodrigues
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
38
|
Appidi T, Mudigunda SV, Kodandapani S, Rengan AK. Development of label-free gold nanoparticle based rapid colorimetric assay for clinical/point-of-care screening of cervical cancer. NANOSCALE ADVANCES 2020; 2:5737-5745. [PMID: 36133887 PMCID: PMC9419083 DOI: 10.1039/d0na00686f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 05/28/2023]
Abstract
Cervical cancer is the fourth largest cancer, affecting women across the globe. Rapid screening is of vital importance for diagnosis and treatment of the disease, especially in developing countries with high risk populations. In this paper, we report a simple, novel and rapid approach for qualitative screening of cervical cancer. A label-free colorimetric technique ("C-ColAur") involving the in situ formation of gold nanoparticles (Au NPs) in the presence of clinical samples is demonstrated. The as-formed Au NPs, owing to the sample composition produced a characteristic color that can be used for the qualitative detection of malignancy. We demonstrated the proof of principle using clinical samples (cervical fluid) collected from both cancer affected and healthy individuals. The results of the detection technique, "C-ColAur" when compared with those of the existing conventional diagnostic procedures (i.e. Pap smear or biopsy), showed 96.42% sensitivity. With the detection time less than a minute and with no/minimal sample processing requirements, the proposed technique shows great potential for point-of-care as well as clinical screening of cervical cancer.
Collapse
Affiliation(s)
- Tejaswini Appidi
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad Sangareddy Kandi 502285 Telangana India
| | - Sushma V Mudigunda
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad Sangareddy Kandi 502285 Telangana India
| | - Suseela Kodandapani
- Dept. of Pathology, Basavatarakam Indo-American Cancer Hospital & Research Institute Hyderabad Telangana India
| | - Aravind Kumar Rengan
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad Sangareddy Kandi 502285 Telangana India
| |
Collapse
|
39
|
Srinoi P, Marquez MD, Lee TC, Lee TR. Hollow Gold-Silver Nanoshells Coated with Ultrathin SiO 2 Shells for Plasmon-Enhanced Photocatalytic Applications. MATERIALS 2020; 13:ma13214967. [PMID: 33158286 PMCID: PMC7672541 DOI: 10.3390/ma13214967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 01/22/2023]
Abstract
This article details the preparation of hollow gold-silver nanoshells (GS-NSs) coated with tunably thin silica shells for use in plasmon-enhanced photocatalytic applications. Hollow GS-NSs were synthesized via the galvanic replacement of silver nanoparticles. The localized surface plasmon resonance (LSPR) peaks of the GS-NSs were tuned over the range of visible light to near-infrared (NIR) wavelengths by adjusting the ratio of silver nanoparticles to gold salt solution to obtain three distinct types of GS-NSs with LSPR peaks centered near 500, 700, and 900 nm. Varying concentrations of (3-aminopropyl)trimethoxysilane and sodium silicate solution afforded silica shell coatings of controllable thicknesses on the GS-NS cores. For each type of GS-NS, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images verified our ability to grow thin silica shells having three different thicknesses of silica shell (~2, ~10, and ~15 nm) on the GS-NS cores. Additionally, energy-dispersive X-ray (EDX) spectra confirmed the successful coating of the GS-NSs with SiO2 shells having controlled thicknesses. Extinction spectra of the as-prepared nanoparticles indicated that the silica shell has a minimal effect on the LSPR peak of the gold-silver nanoshells.
Collapse
Affiliation(s)
- Pannaree Srinoi
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5003, USA; (P.S.); (M.D.M.)
| | - Maria D. Marquez
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5003, USA; (P.S.); (M.D.M.)
| | - Tai-Chou Lee
- Department of Chemical and Materials Engineering, National Central University, Jhongli City 32001, Taiwan;
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5003, USA; (P.S.); (M.D.M.)
- Correspondence:
| |
Collapse
|
40
|
Vaid K, Dhiman J, Sarawagi N, Kumar V. Experimental and Computational Study on the Selective Interaction of Functionalized Gold Nanoparticles with Metal Ions: Sensing Prospects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12319-12326. [PMID: 32975416 DOI: 10.1021/acs.langmuir.0c02280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we have developed citrate-, glutathione-, and ascorbate-functionalized gold nanoparticles (AuNPs) to examine their interactions with diverse heavy metal ions, such as Cd, Mn, Cr, Fe, Co, Pb, Hg, Zn, and Ti. These interactions are crucial in defining the final outcome of AuNP-based sensing/removal of heavy metals. We have evaluated these interactions by analyzing the variations in the color and spectroscopic signals of functionalized AuNPs. Additionally, the obtained results were also compared and validated with the computational studies. It has been observed that citrate-AuNPs and GSH-AuNPs displayed high selectivity toward Cr and Mn with Eforce values of -23.4 and -14.0 kJ/mol, respectively. Likewise, the ascorbate-AuNPs displayed sensitivity for multiple ions, for example, Cd, Fe, and Mn, with an Eforce value of -19.6 kJ/mol. A detailed analysis focusing on the electrostatic charges, ionic sizes, and interaction energy values has been provided to show specific interactions between functionalized AuNPs and heavy metal ions. The respective mechanisms of interaction between heavy metal ions and functionalized AuNPs have been explored with the help of experimental and computational outcomes.
Collapse
Affiliation(s)
- Kalyan Vaid
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
- Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh 160014, India
| | - Jasmeen Dhiman
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| | - Nikita Sarawagi
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| |
Collapse
|
41
|
Abstract
The pervasive spread of infectious diseases and pandemics, such as the 2019 coronavirus disease (COVID-19), are becoming increasingly serious and urgent threats to human health. Preventing the spread of such diseases prioritizes the development of sensing devices that can rapidly, selectively, and reliably detect pathogens at minimal cost. Paper-based analytical devices (PADs) are promising tools that satisfy those criteria. Numerous paper-based biosensors have been established that rival conventional pathogen detection methods. Among them, colorimetric strategies are promising since results can be interpreted by eye, and are simple to operate, which is advantageous for point-of-care testing (POCT). Particularly, the application of nanomaterials on paper-based biosensors has become important as these materials are capable of converting signals from pathogens through unique mechanisms to yield an amplified colorimetric readout. To highlight the research progress on using nanomaterials in colorimetric paper-based biosensor for pathogen detection, we discuss the sensing mechanisms of how they work, structural and analytical characteristics of the devices, and representative recent applications. Current challenges and future directions of using PADs and nanomaterial-mediated strategies are also discussed.
Collapse
Affiliation(s)
- Quynh Huong Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
42
|
Macrocyclic Arenes Functionalized with BODIPY: Rising Stars among Chemosensors and Smart Materials. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrocycles play a crucial role in supramolecular chemistry and the family of macrocyclic arenes represents one of the most important types of hosts. Among them, calixarenes, resorcinarenes and pillararenes are the most commonly encountered macrocyclic arenes, and they have received considerable attention. Boron-dipyrromethene (BODIPY) dyes are fascinating compounds with multiple functionalization sites and outstanding luminescence properties including high fluorescence quantum yields, large molar absorption coefficients and remarkable photo- and chemical stability. The combination of macrocyclic arenes and BODIPY dyes has been demonstrated to be an effective strategy to construct chemosensors for various guests and smart materials with tailored properties. Herein, we firstly summarize the recent advances made so far in macrocyclic arenes substituted with BODIPY. This review only focuses on the three macrocyclic arenes of calixarenes, resorcinarenes and pillararenes, as there are no other macrocyclic arenes substituted BODIPY units at the present time. Hopefully, this review will not only afford a guide and useful information for those who are interested in developing novel chemosensors and smart materials, but also inspire new opportunities in this field.
Collapse
|
43
|
Advances in Nickel Nanoparticle Synthesis via Oleylamine Route. NANOMATERIALS 2020; 10:nano10040713. [PMID: 32283789 PMCID: PMC7221568 DOI: 10.3390/nano10040713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022]
Abstract
Nickel nanoparticles are an active research area due to their multiple applications as catalysts in different processes. A variety of preparation techniques have been reported for the synthesis of these nanoparticles, including solvothermal, microwave-assisted, and emulsion techniques. The well-studied solvothermal oleylamine synthesis route comes with the drawback of needing standard air-free techniques and often space-consuming glassware. Here, we present a facile and straightforward synthesis method for size-controlled highly monodisperse nickel nanoparticles avoiding the use of, e.g., Schlenk techniques and space-consuming labware. The nanoparticles produced by this novel synthetic route were investigated using small-angle X-ray scattering, transmission electron microscopy, X-ray diffraction, and X-ray spectroscopy. The nanoparticles were in a size range of 4–16 nm, show high sphericity, no oxidation, and no agglomeration after synthesis.
Collapse
|
44
|
Sharma S, Jaiswal A, Uttam KN. Colorimetric and Surface Enhanced Raman Scattering (SERS) Detection of Metal Ions in Aqueous Medium Using Sensitive, Robust and Novel Pectin Functionalized Silver Nanoparticles. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1743715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sweta Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Aarti Jaiswal
- Centre for Material Science, IIDS, University of Allahabad, Allahabad, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|