1
|
Trinel M, Dubois C, Burger P, Plainfossé H, Azoulay S, Verger-Dubois G, Fernandez X. Phytochemical Investigation of an Ostrya carpinifolia L. Extract: an Effective Anti-Pollution Cosmetic Active Ingredient. Chem Biodivers 2024:e202402139. [PMID: 39316583 DOI: 10.1002/cbdv.202402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Ostrya carpinifolia L., a member of the Betulaceae family, is a tree endemic to the Mediterranean basin that is well known for the hardness of its wood. In this study, we assess the anti-pollution activities of a hydroalcoholic extract of O. carpinifolia twigs using several judiciously selected in vitro cosmetic bioassays. The extract's capacity to counteract excessive production of reactive oxygen species following a cutaneous exposure to atmospheric pollution was evaluated using a combination of several antioxidant assays: DPPH, FRAP and β-carotene bleaching assays. These antioxidant assays were complemented by anti-elastase, anti-collagenase, anti-hyaluronidase and anti-lipoxygenase assays to evaluate the capacity of the extract to preserve the integrity of the skin. The hydroalcoholic extract of O. carpinifolia demonstrates intriguing biological antioxidant activities, with approximately 50 % inhibition observed in DPPH and β-carotene assays. Furthermore, its anti-lipoxygenase, anti-hyaluronidase, and anti-collagenase activities are noteworthy, exceeding 50 % inhibition. The two major compounds of O. carpinifolia ethanolic extract were isolated and identified as myricitrin (1) and quercitrin (2). Myricitrin and quercitrin exhibit antioxidant and anti-hyaluronidase properties; we explored the correlation of these properties with the activity of the crude hydroalcoholic extract. Notably, these compounds have not been previously described in the Ostrya genus.
Collapse
Affiliation(s)
- Manon Trinel
- Université Côte d'Azur, CNRS, ICN, Parc Valrose, CEDEX 2, 06108, Nice, France
| | - Camille Dubois
- Université Côte d'Azur, CNRS, ICN, Parc Valrose, CEDEX 2, 06108, Nice, France
| | - Pauline Burger
- NissActive, Pépinière Innovagrasse, Espace Jacques-Louis Lions, 4 traverse Dupont, 06130, Grasse, France
| | - Hortense Plainfossé
- NissActive, Pépinière Innovagrasse, Espace Jacques-Louis Lions, 4 traverse Dupont, 06130, Grasse, France
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, ICN, Parc Valrose, CEDEX 2, 06108, Nice, France
| | | | - Xavier Fernandez
- Université Côte d'Azur, CNRS, ICN, Parc Valrose, CEDEX 2, 06108, Nice, France
- NissActive, Pépinière Innovagrasse, Espace Jacques-Louis Lions, 4 traverse Dupont, 06130, Grasse, France
| |
Collapse
|
2
|
Wang GX, Fei WC, Zhi LL, Bai XD, You B. Fermented tea leave extract against oxidative stress and ageing of skin in vitro and in vivo. Int J Cosmet Sci 2024. [PMID: 39119798 DOI: 10.1111/ics.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE The objective is to develop a natural and stable anti-oxidative stress and anti-ageing ingredient. In this study, we evaluated the changes in white tea leaves fermented with Eurotium cristatum PLT-PE and Saccharomyces boulardii PLT-HZ and their efficacy against skin oxidative stress. METHODS We employed untargeted metabolomics technology to analyse the differential metabolites between tea extract (TE) and fermented tea extract (FTE). In vitro, using H2O2-induced HaCaT cells, we evaluated cell vitality, ROS, and inflammatory factors (TNF-α, IL-1β, and IL-6). Additionally, we verified the effects on the extracellular matrix and nuclear DNA using fibroblasts or reconstructed skin models. We measured skin hydration, elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio in volunteers after using an emulsion containing 3% FTE for 28 and 56 days. RESULTS Targeted metabolomics analysis of white tea leaves yielded more than 20 differential metabolites with antioxidant and anti-inflammatory activities, including amino acids, polypeptides, quercetin, and liquiritin post-fermentation. FTE, compared to TE, can significantly reduce reactive oxygen species (ROS) and protect against oxidative stress-induced skin damage in H2O2-induced HaCaT cells. FTE can inhibit H2O2-induced collagen degradation by suppressing the MAPK/c-Jun signalling pathway and can also mitigate the reactive oxygen species damage to nuclear DNA. Clinical studies showed that the volunteers' stratum corneum water content, skin elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio significantly improved from the baseline after 28 and 56 days of FTE use. CONCLUSION This study contributes to the growing body of literature supporting the protective effects against skin oxidative stress and ageing from fermented plant extracts. Moreover, our findings might inspire multidisciplinary efforts to investigate new fermentation techniques that could produce even more potent anti-ageing solutions.
Collapse
Affiliation(s)
| | - Wei-Cheng Fei
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | | | - Xue-Dong Bai
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | | |
Collapse
|
3
|
Kim K, Yoon J, Lim KM. Syringaresinol Attenuates α-Melanocyte-Stimulating Hormone-Induced Reactive Oxygen Species Generation and Melanogenesis. Antioxidants (Basel) 2024; 13:876. [PMID: 39061944 PMCID: PMC11273534 DOI: 10.3390/antiox13070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on the skin, but its potential impact on skin pigmentation has not been fully explored. Here, the antioxidant and anti-pigmentary activity of (+)-SYR were evaluated in B16F10 murine melanoma cells and in an artificial human pigmented skin model, Melanoderm™. A real-time PCR, Western blotting, immunofluorescence staining, and histochemistry staining were conducted to confirm the effects of (+)-SYR on pigmentation. (+)-SYR reduced melanogenesis and dendrite elongation in α-melanocyte-stimulating hormone (α-MSH)-primed B16F10 cells with low cytotoxicity. (+)-SYR suppressed the expression of melanogenic genes, namely tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). Notably, (+)-SYR attenuated α-MSH-induced cytosolic and mitochondrial reactive oxygen species (ROS) generation, which was attributable at least in part to the suppression of NADPH oxidase-4 (NOX 4) expression. Finally, the brightening activities of (+)-SYR were verified using Melanoderm™, underscoring the potential of ginseng berry and (+)-SYR as functional ingredients in skin-brightening cosmetics.
Collapse
Affiliation(s)
| | | | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (K.K.); (J.Y.)
| |
Collapse
|
4
|
Giang NN, Kim HJ, Chien PN, Kwon HJ, Ham JR, Lee WK, Gu YJ, Zhou SY, Zhang XR, Nam SY, Heo CY. An evaluation of the effectiveness of 'ULTRACOL 200' in enhancing nasolabial fold wrinkles through cutaneous repair. Skin Res Technol 2024; 30:e13679. [PMID: 38616503 PMCID: PMC11016812 DOI: 10.1111/srt.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Injectable filler, a nonsurgical beauty method, has gained popularity in rejuvenating sagging skin. In this study, polydioxanone (PDO) was utilized as the main component of the ULTRACOL200 filler that helps stimulate collagenesis and provide skin radiant effects. The study aimed to evaluate and compare the effectiveness of ULTRACOL200 with other commercialized products in visually improving dermatological problems. METHODS Herein, 31 participants aged between 20 and 59 years were enrolled in the study. 1 mL of the testing product, as well as the quantity for the compared groups was injected into each participants face side individually. Subsequently, skin texture and sunken volume of skin were measured using ANTERA 3D CS imaging technology at three periods: before the application, 4 weeks after the initial application, and 4 weeks after the 2nd application of ULTRACOL200. RESULTS The final results of skin texture and wrinkle volume evaluation consistently demonstrated significant enhancement. Consequently, subjective questionnaires were provided to the participants to evaluate the efficacy of the testing product, illustrating satisfactory responses after the twice applications. CONCLUSION The investigation has contributed substantially to the comprehension of a PDO-based filler (ULTRACOL200) for skin enhancement and provided profound insight for future clinical trials.
Collapse
Affiliation(s)
- Nguyen Ngan Giang
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulRepublic of Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Hyun Ji Kim
- Korea Institute of Nonclinical StudyH&Bio. co. Ltd.SeongnamRepublic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korea Institute of Nonclinical StudyH&Bio. co. Ltd.SeongnamRepublic of Korea
| | | | | | - Won Ku Lee
- UltraV Co., Ltd. R&D CenterSeoulSouth Korea
| | - Yeon Ju Gu
- UltraV Co., Ltd. R&D CenterSeoulSouth Korea
| | - Shou Yi Zhou
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Chan Yeong Heo
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulRepublic of Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korea Institute of Nonclinical StudyH&Bio. co. Ltd.SeongnamRepublic of Korea
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Carvalho MJ, Pedrosa SS, Mendes A, Azevedo-Silva J, Fernandes J, Pintado M, Oliveira ALS, Madureira AR. Anti-Aging Potential of a Novel Ingredient Derived from Sugarcane Straw Extract (SSE). Int J Mol Sci 2023; 25:21. [PMID: 38203191 PMCID: PMC10778757 DOI: 10.3390/ijms25010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Natural and sustainable anti-aging ingredients have gained attention from the cosmetic industry. This study evaluated the anti-aging potential of a sugarcane straw extract-based (SSE) cosmetic ingredient. First, cytotoxicity tests were assessed in keratinocytes and fibroblast cell lines, and sensitization was carried out through the direct peptide reactivity assay. Subsequently, various anti-aging properties were investigated, including inhibiting skin aging-related enzymes, promoting elastin and hyaluronic acid synthesis, and anti-pollution activity. Finally, a permeability assay using a synthetic membrane resembling skin was conducted. The results demonstrated that the SSE ingredient effectively inhibited elastase (55%), collagenase (25%), and tyrosinase (47%) while promoting hyaluronic acid production at non-cytotoxic and low-sensitizer concentrations. Moreover, it reduced the inflammatory response provoked by urban pollution, as evidenced by decreased levels of IL1-α and IL-6. However, it was observed that the phenolic compounds predominantly reached the skin's surface, indicating a limited ability to penetrate deeper layers of the skin. Therefore, it can be concluded that the SSE ingredient holds anti-aging properties, albeit with limited penetration into deeper skin layers. Further research and formulation advancements are needed to optimize the ingredient's ability to reach and exert its effects in deeper skin layers.
Collapse
Affiliation(s)
- Maria João Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Sílvia Santos Pedrosa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Adélia Mendes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - João Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| |
Collapse
|
6
|
Sorice M, Profumo E, Capozzi A, Recalchi S, Riitano G, Di Veroli B, Saso L, Buttari B. Oxidative Stress as a Regulatory Checkpoint in the Production of Antiphospholipid Autoantibodies: The Protective Role of NRF2 Pathway. Biomolecules 2023; 13:1221. [PMID: 37627286 PMCID: PMC10452087 DOI: 10.3390/biom13081221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress is a well-known hallmark of Antiphospholipid Antibody Syndrome (APS), a systemic autoimmune disease characterized by arterial and venous thrombosis and/or pregnancy morbidity. Oxidative stress may affect various signaling pathways and biological processes, promoting dysfunctional immune responses and inflammation, inducing apoptosis, deregulating autophagy and impairing mitochondrial function. The chronic oxidative stress and the dysregulation of the immune system leads to the loss of tolerance, which drives autoantibody production and inflammation with the development of endothelial dysfunction. In particular, anti-phospholipid antibodies (aPL), which target phospholipids and/or phospholipid binding proteins, mainly β-glycoprotein I (β-GPI), play a functional role in the cell signal transduction pathway(s), thus contributing to oxidative stress and thrombotic events. An oxidation-antioxidant imbalance may be detected in the blood of patients with APS as a reflection of disease progression. This review focuses on functional evidence highlighting the role of oxidative stress in the initiation and progression of APS. The protective role of food supplements and Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) activators in APS patients will be summarized to point out the potential of these therapeutic approaches to reduce APS-related clinical complications.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.C.); (S.R.); (G.R.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (B.D.V.)
| | - Antonella Capozzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.C.); (S.R.); (G.R.)
| | - Serena Recalchi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.C.); (S.R.); (G.R.)
| | - Gloria Riitano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (M.S.); (A.C.); (S.R.); (G.R.)
| | - Benedetta Di Veroli
- Department of Cardiovascular and Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (B.D.V.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (B.D.V.)
| |
Collapse
|
7
|
Li J, Mao B, Tang X, Zhang Q, Zhao J, Zhang H, Cui S. Protective Effects of Naringenin and Apigenin in Ameliorating Skin Damage via Mediating the Nrf2 and NF-κB Pathways in Mice. Foods 2023; 12:foods12112120. [PMID: 37297362 DOI: 10.3390/foods12112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Naringenin and apigenin are common flavonoids derived from edible plants with the potential to alleviate inflammation and improve skin antioxidation. This study aimed to evaluate the effects of naringenin and apigenin on oleic acid-induced skin damage in mice and compare their underlying mechanisms of action. Triglycerides and non-esterified fatty acids were significantly decreased by naringenin and apigenin, while apigenin intervention resulted in a better recovery of skin lesions. Naringenin and apigenin improved the antioxidative abilities of the skin by increasing catalase and total antioxidant capacity levels and decreasing malondialdehyde and lipid peroxide levels. The release of skin proinflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor α, was inhibited after naringenin and apigenin pretreatments, but naringenin only promoted the excretion of IL-10. Additionally, naringenin and apigenin regulated antioxidant defense and inflammatory response by activating nuclear factor erythroid-2 related factor 2-dependent mechanisms and suppressing the expression of nuclear factor-kappa B. In summary, naringenin and apigenin are prospective ingredients that contribute to the amelioration of skin damage by activating anti-inflammatory and antioxidative responses.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Abbas EY, Ezzat MI, Ramadan NM, Eladl A, Hamed WHE, Abdel-Aziz MM, Teaima M, El Hefnawy HM, Abdel-Sattar E. Characterization and anti-aging effects of Opuntia ficus-indica (L.) Miller extracts in a D-galactose-induced skin aging model. Food Funct 2023; 14:3107-3125. [PMID: 36942614 DOI: 10.1039/d2fo03834j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Opuntia ficus-indica (L.) Miller (OFI), belonging to the family Cactaceae, is widely cultivated not only for its delicious fruits but also for its health-promoting effects, which enhance the role of OFI as a potential functional food. In this study, the in vitro collagenase and elastase enzyme inhibitory effects of extracts from different parts of OFI were evaluated. The most promising extracts were formulated as creams at two concentrations (3 and 5%) to investigate their effects on a D-galactose (D-gal)-induced skin-aging mouse model. The ethanolic extracts of the peel and cladodes exhibited the highest enzyme inhibitory effects. Cream made from the extract of OFI peel (OP) (5%) and cream from OFI cladodes extract (OC) (5%) significantly decreased the macroscopic aging of skin scores. Only a higher concentration (5%) of OC showed the normalization of superoxide dismutase (SOD) and malondialdehyde (MDA) skin levels and achieved significant improvements as compared to the vitamin E group. Both OC and OP (5%) showed complete restoration of the normal skin structure and nearly normal collagen fibres upon histopathological examination. The Ultra-Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-ESI-TOF-MS) metabolite profiles revealed the presence of organic acids, phenolic acids, flavonoids, betalains, and fatty acids. Flavonoids were the predominant phytochemical class (23 and 22 compounds), followed by phenolic acids (14 and 17 compounds) in the ethanolic extracts from the peel and cladodes, respectively. The anti-skin-aging effects could be attributed to the synergism of different phytochemicals in both extracts. From these findings, the OFI peel and cladodes as agro-waste products are good candidates for anti-skin-aging phytocosmetics.
Collapse
Affiliation(s)
- Eman Yasser Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Marwa I Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Amira Eladl
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Walaa H E Hamed
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, 11651, Egypt
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hala Mohamed El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| |
Collapse
|
9
|
Häsler Gunnarsdottir S, Sommerauer L, Schnabel T, Oostingh GJ, Schuster A. Antioxidative and Antimicrobial Evaluation of Bark Extracts from Common European Trees in Light of Dermal Applications. Antibiotics (Basel) 2023; 12:antibiotics12010130. [PMID: 36671331 PMCID: PMC9854852 DOI: 10.3390/antibiotics12010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Plant species have developed effective defense strategies for colonizing diverse habitats and protecting themselves from numerous attacks from a wide range of organisms, including insects, vertebrates, fungi, and bacteria. The bark of trees in particular constitutes a number of components that protect against unwanted intruders. This review focuses on the antioxidative, dermal immunomodulatory, and antimicrobial properties of bark extracts from European common temperate trees in light of various skin pathogens, wound healing, and the maintenance of skin health. The sustainability aspect, achieved by utilizing the bark, which is considered a byproduct in the forest industry, is addressed, as are various extraction methods applied to retrieve extracts from bark.
Collapse
Affiliation(s)
| | - Lukas Sommerauer
- Department of Forest Products Technology & Timber Constructions, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
- Salzburg Center for Smart Materials, c/o Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Thomas Schnabel
- Department of Forest Products Technology & Timber Constructions, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
- Faculty of Furniture Design and Wood Engineering, Transilvania University of Brasov, B-dul. Eroilor nr. 29, 500036 Brasov, Romania
| | - Gertie Janneke Oostingh
- Biomedical Sciences, Salzburg University of Applied Sciences, Urstein Sued 1, 5412 Puch, Austria
| | - Anja Schuster
- Biomedical Sciences, Salzburg University of Applied Sciences, Urstein Sued 1, 5412 Puch, Austria
- Correspondence:
| |
Collapse
|
10
|
Phytochemical Constituents and Biological Activities of Jasonia glutinosa L.: The First Report for the Plant Growing in North Africa. J CHEM-NY 2022. [DOI: 10.1155/2022/4510176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Jasonia glutinosa (rock tea), also known as Chiliadenus glutinosa Cass., is a medicinal plant growing in the Mediterranean Basin. It is used for the treatment of depression, gastrointestinal complaints, inflammations, appendicitis, colds, and respiratory disorders. The current study is the first report for the plant species growing in Libya and aims to investigate the phytochemical constituents, antioxidant, cytotoxic, and antimicrobial activities of the plant’s aqueous ethanolic extract. The phytochemical investigation was conducted by the spectrophotometric quantitative assay and the LC-MS analysis. The analysis revealed the presence of 14.67 and 46.72 mg/g of the total phenolics and flavonoids equivalent to gallic acid and rutin, respectively. A total of thirty compounds of phenolic acids and flavonoids were identified by the LC-MS analysis, with a total relative percentage of 18.69%. The analysis revealed the dominance of methoxylated flavonoids and cinnamic acid derivatives, including caffeoylquinic acids. The in vitro antioxidant assays showed 265.55, 513.32, and 27.10 μM Trolox eq/mg of extract in the ABTS, ORAC, and FRAP assays, respectively. Cancer cell growth inhibitions of 9.23, 11.42, and 34.01% at a concentration of 100 μg/mL against MCF-7, HepG2, and PANC-1 cell lines were obtained, which is considered a weak cytotoxic effect when compared to the standard anticancer agent, doxorubicin (DOX). No antimicrobial activity was noticed for the plant extract against all tested microorganisms, i.e., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium, Candida albicans, and Saccharomyces cerevisiae. The weak antimicrobial effect of the plant did not support the claim of traditional use of the plant as an antimicrobial agent.
Collapse
|
11
|
Iakovou E, Kourti M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci 2022; 14:827900. [PMID: 35769600 PMCID: PMC9234325 DOI: 10.3389/fnagi.2022.827900] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aging is a normal, inevitable, irreversible, and progressive process which is driven by internal and external factors. Oxidative stress, that is the imbalance between prooxidant and antioxidant molecules favoring the first, plays a key role in the pathophysiology of aging and comprises one of the molecular mechanisms underlying age-related diseases. However, the oxidative stress theory of aging has not been successfully proven in all animal models studying lifespan, meaning that altering oxidative stress/antioxidant defense systems did not always lead to a prolonged lifespan, as expected. On the other hand, animal models of age-related pathological phenotypes showed a well-correlated relationship with the levels of prooxidant molecules. Therefore, it seems that oxidative stress plays a more complicated role than the one once believed and this role might be affected by the environment of each organism. Environmental factors such as UV radiation, air pollution, and an unbalanced diet, have also been implicated in the pathophysiology of aging and seem to initiate this process more rapidly and even at younger ages. Aim The purpose of this review is to elucidate the role of oxidative stress in the physiology of aging and the effect of certain environmental factors in initiating and sustaining this process. Understanding the pathophysiology of aging will contribute to the development of strategies to postpone this phenomenon. In addition, recent studies investigating ways to alter the antioxidant defense mechanisms in order to prevent aging will be presented. Conclusions Careful exposure to harmful environmental factors and the use of antioxidant supplements could potentially affect the biological processes driving aging and slow down the development of age-related diseases. Maybe a prolonged lifespan could not be achieved by this strategy alone, but a longer healthspan could also be a favorable target.
Collapse
Affiliation(s)
- Evripides Iakovou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Malamati Kourti
| |
Collapse
|
12
|
Ngadiarti I, Nurkolis F, Handoko MN, Perdana F, Permatasari HK, Taslim NA, Mayulu N, Wewengkang DS, Noor SL, Batubara SC, Tanner MJ, Sabrina N. Anti-aging potential of cookies from sea grapes in mice fed on cholesterol- and fat-enriched diet: in vitro with in vivo study. Heliyon 2022; 8:e09348. [PMID: 35521505 PMCID: PMC9065618 DOI: 10.1016/j.heliyon.2022.e09348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
This study determines the effect of cookies made from sea grapes (Caulerpa racemosa) on PGC-1α, total cholesterol, and blood glucose levels on mice fed with a Cholesterol- and Fat-Enriched Diet (CFED). The antioxidant activity, tyrosinase inhibition, α-glucosidase, and α-amylase inhibition is also analyzed in order to assess the in vitro anti-aging potential of sea grapes cookies. Forty male Mus muscullus albino mice weighing 20 g–30 g were used and randomly distributed into four groups of ten animals each. Group A served as a normal control (given a standard dry pellet diet), Group B was given CFED only, and mice in Groups C and D were given CFED with 100 mg and 200 mg/20 g body weight of sea grapes cookies, respectively for 4 weeks. In vitro study shows that the percentage of inhibition activity of antioxidant, L-Tyrosine, L-Dopa, α-glucosidase, and α-amylase inhibition were 45.65 ± 1.50, 8.95 ± 0.06, 21.31 ± 0.98, 77.12 ± 4.67 and 70.94 ± 0.98, respectively. This study found that group D had better activity in lowering blood glucose than group C (p < 0.0001). In addition, although there was not found significant difference between groups C and D in blood cholesterol reduction and PGC-1α (p = 0.1482), both groups experienced the same effect in total cholesterol reduction and PGC-1α in mice (significantly, p < 0001). Thus, we conclude that sea grapes cookies are proven to improve PGC-1α, total cholesterol, and blood glucose levels in mice fed with CFED. Hence, sea grapes cookies is a potential anti-aging novel-functional food.
Collapse
Affiliation(s)
- Iskari Ngadiarti
- Nutrition and Dietetics, Health Polytechnic of Jakarta II, Jakarta, 12120, Indonesia
- Corresponding author.
| | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga Yogyakarta), Yogyakarta, 55281, Indonesia
| | | | - Fachruddin Perdana
- Nutrition Department, Faculty of Medicince, University of Sultan Ageng Tirtayasa, Serang, 42118, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, 65145, Indonesia
| | - Nurpudji Astuti Taslim
- Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Nelly Mayulu
- Nutrition and Food, Faculty of Medicine, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Defny Silvia Wewengkang
- Pharmacy Department, Faculty of Mathematics and Sciences, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Sutamara Lasurdi Noor
- Clinical and Public Health Nutrition Programme, University College London, London, WC1E 6BT, United Kingdom
| | | | | | - Nindy Sabrina
- Nutrition Department, Sahid University of Jakarta, South Jakarta, 12870, Indonesia
| |
Collapse
|
13
|
Bioactive Bacterial Nanocellulose Membranes Enriched with Eucalyptus globulus Labill. Leaves Aqueous Extract for Anti-Aging Skin Care Applications. MATERIALS 2022; 15:ma15051982. [PMID: 35269213 PMCID: PMC8911559 DOI: 10.3390/ma15051982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023]
Abstract
Bacterial nanocellulose (BNC) membranes, with remarkable physical and mechanical properties, emerged as a versatile biopolymeric carrier of bioactive compounds for skin care applications. In this study, BNC membranes were loaded with glycerol (as plasticizer and humectant agent) and different doses (1–3 μg cm−2) of an aqueous extract obtained from the hydro-distillation of Eucalyptus globulus Labill. leaves (HDE), for application as sheet facial masks. All membranes are resistant and highly malleable at dry and wet states, with similar or even better mechanical properties than those of a commercial BNC mask. Moreover, the HDE was found to confer a dose-dependent antioxidant activity to pure BNC. Additionally, upon 3 months of storage at 22–25 °C and 52% relative humidity (RH) or at 40 °C and 75% RH, it was confirmed that the antioxidant activity and the macroscopic aspect of the membrane with 2 μg cm−2 of HDE were maintained. Membranes were also shown to be non-cytotoxic towards HaCaT and NIH/3T3 cells, and the membrane with 2 μg cm−2 of HDE caused a significant reduction in the senescence-associated β-galactosidase activity in NIH/3T3 cells. These findings suggest the suitability and potential of the obtained membranes as bioactive facial masks for anti-aging applications.
Collapse
|
14
|
Gall Trošelj K, Tomljanović M, Jaganjac M, Matijević Glavan T, Čipak Gašparović A, Milković L, Borović Šunjić S, Buttari B, Profumo E, Saha S, Saso L, Žarković N. Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response. Molecules 2022; 27:1468. [PMID: 35268568 PMCID: PMC8912061 DOI: 10.3390/molecules27051468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Marko Tomljanović
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Tanja Matijević Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Lidija Milković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Suzana Borović Šunjić
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| |
Collapse
|
15
|
Protective Role of Melatonin and Its Metabolites in Skin Aging. Int J Mol Sci 2022; 23:ijms23031238. [PMID: 35163162 PMCID: PMC8835651 DOI: 10.3390/ijms23031238] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The skin, being the largest organ in the human body, is exposed to the environment and suffers from both intrinsic and extrinsic aging factors. The skin aging process is characterized by several clinical features such as wrinkling, loss of elasticity, and rough-textured appearance. This complex process is accompanied with phenotypic and functional changes in cutaneous and immune cells, as well as structural and functional disturbances in extracellular matrix components such as collagens and elastin. Because skin health is considered one of the principal factors representing overall “well-being” and the perception of “health” in humans, several anti-aging strategies have recently been developed. Thus, while the fundamental mechanisms regarding skin aging are known, new substances should be considered for introduction into dermatological treatments. Herein, we describe melatonin and its metabolites as potential “aging neutralizers”. Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. It regulates circadian rhythmicity and also exerts anti-oxidative, anti-inflammatory, immunomodulatory, and anti-tumor capacities. The intention of this review is to summarize changes within skin aging, research advances on the molecular mechanisms leading to these changes, and the impact of the melatoninergic anti-oxidative system controlled by melatonin and its metabolites, targeting the prevention or reversal of skin aging.
Collapse
|
16
|
Ghaffarian-Bahraman A, Arabnezhad MR, Keshavarzi M, Davani-Davari D, Jamshidzadeh A, Mohammadi-Bardbori A. Influence of cellular redox environment on aryl hydrocarbon receptor ligands induced melanogenesis. Toxicol In Vitro 2021; 79:105282. [PMID: 34856342 DOI: 10.1016/j.tiv.2021.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
Many environmental pollutants, natural compounds, as well as endogenous chemicals exert their biological/toxicological effects by reacting with the aryl hydrocarbon receptor (AhR). Previous evidence shed new light on the role of AhR in skin physiology by regulating melanin production. In this study, we investigated the effect of oxidative imbalance induced by AhR ligands on the melanogenesis process in B16 murine melanoma cells. Exposure to 6-formylindolo[3,2-b] carbazole (FICZ) or benzo-α-pyrene (BαP) led to enhanced expression of CTNNB1, MITF, and TYR genes following increased tyrosinase enzyme activity and melanin content in an AhR-dependent manner. Analysis of the presence of reactive oxygen species (ROS) as well as reduced glutathione (GSH) / oxidized glutathione (GSSG) ratio revealed that treatment with AhR ligands is associated with oxidative stress which can be ameliorated with NAC (N-acetyl cysteine) or diphenyleneiodonium chloride (DPI). On the other hand, NAC and DPI enhanced melanogenesis induced by AhR ligands by reducing the level of ROS. We have shown for the first time that a cellular redox status is a critical event during AhR ligand-induced melanogenesis.
Collapse
Affiliation(s)
- Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Keshavarzi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Dorna Davani-Davari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Akram Jamshidzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.
| |
Collapse
|
17
|
Bocheva G, Slominski RM, Slominski AT. The Impact of Vitamin D on Skin Aging. Int J Mol Sci 2021; 22:ijms22169097. [PMID: 34445803 PMCID: PMC8396468 DOI: 10.3390/ijms22169097] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
The active metabolites of vitamin D3 (D3) and lumisterol (L3) exert a variety of antiaging and photoprotective effects on the skin. These are achieved through immunomodulation and include anti-inflammatory actions, regulation of keratinocytes proliferation, and differentiation programs to build the epidermal barrier necessary for maintaining skin homeostasis. In addition, they induce antioxidative responses, inhibit DNA damage and induce DNA repair mechanisms to attenuate premature skin aging and cancerogenesis. The mechanism of action would involve interaction with multiple nuclear receptors including VDR, AhR, LXR, reverse agonism on RORα and -γ, and nongenomic actions through 1,25D3-MARRS receptor and interaction with the nongenomic binding site of the VDR. Therefore, active forms of vitamin D3 including its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 derivatives as well as L3 derivatives are promising agents for the prevention, attenuation, or treatment of premature skin aging. They could be administrated orally and/or topically. Other forms of parenteral application of vitamin D3 precursor should be considered to avoid its predominant metabolism to 25(OH)D3 that is not recognized by CYP11A1 enzyme. The efficacy of topically applied vitamin D3 and L3 derivatives needs further clinical evaluation in future trials.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
- Correspondence: (G.B.); (A.T.S.)
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence: (G.B.); (A.T.S.)
| |
Collapse
|
18
|
Plaza C, Meyrignac C, Botto JM, Capallere C. Characterization of a New Full-Thickness In Vitro Skin Model. Tissue Eng Part C Methods 2021; 27:411-420. [PMID: 34107746 DOI: 10.1089/ten.tec.2021.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Since 30 years, bioengineering allowed to reconstruct human tissues using normal human cells. Skin is one of the first organ to be reconstructed thanks to the development of specific cell culture media and supports favoring the culture of human skin cells, such as fibroblasts, keratinocytes, or melanocytes. Skin models have evolved from epidermis to complex models including a dermis. The purpose of the present study was to design a reconstructed full-thickness (FT) skin suitable to perform in vitro testing of both molecules and plant extracts. First, we reconstructed epidermis with normal human keratinocytes displaying the expected multilayered morphology and expressing specific epidermal proteins (e-cadherin, claudin-1, p63, Ki67, Keratin 10, filaggrin, and loricrin). Then, a dermal equivalent was developed using a collagen matrix allowing the growth of fibroblasts. The functionality of the dermis was demonstrated by the measurement of skin parameters such as rigidity or elasticity with Ballistometer® and other parameters such as the contraction over time and the expression of dermal proteins. The combination of these two compartments (dermis and epidermis) allowed to reconstruct an FT model. This study model allowed to study the communication between compartments and with the establishment of a dermoepidermal junction showing the expression of specific proteins (collagen XVII, laminin, and collagen IV). Impact statement The objective of our research project was to design a three-dimensional human full-thickness (FT) skin suitable to perform in vitro testing of molecules and plant ingredients. The combination of these two reconstructed compartments (dermis and epidermis) allowed to reconstruct an FT model. This study model allowed to study the communication between compartments and with the establishment of a dermoepidermal junction showing the expression of specific proteins (collagen XVII, laminin, and collagen IV). This in vitro model can be use by cosmetic and pharmaceutical industries to study the effect of chemical or natural compounds on the skin.
Collapse
Affiliation(s)
- Christelle Plaza
- Department of Tissue Engineering and Toxicology In Vitro, Ashland Specialties France, Sophia Antipolis, France
| | - Celine Meyrignac
- Department of Tissue Engineering and Toxicology In Vitro, Ashland Specialties France, Sophia Antipolis, France
| | - Jean-Marie Botto
- Department of Tissue Engineering and Toxicology In Vitro, Ashland Specialties France, Sophia Antipolis, France
| | - Christophe Capallere
- Department of Tissue Engineering and Toxicology In Vitro, Ashland Specialties France, Sophia Antipolis, France
| |
Collapse
|
19
|
Khor BK, Chear NJY, Azizi J, Khaw KY. Chemical Composition, Antioxidant and Cytoprotective Potentials of Carica papaya Leaf Extracts: A Comparison of Supercritical Fluid and Conventional Extraction Methods. Molecules 2021; 26:molecules26051489. [PMID: 33803330 PMCID: PMC7967148 DOI: 10.3390/molecules26051489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
The leaves of Carica papaya (CP) are rich in natural antioxidants. Carica papaya has traditionally been used to treat various ailments, including skin diseases. This study aims to decipher the antioxidant effects and phytochemical content of different CP leaf extracts (CPEs) obtained using supercritical carbon dioxide (scCO2) and conventional extraction methods. The antioxidant activities of CPEs were evaluated by cell-free (1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric-reduced antioxidative power (FRAP)) and cell-based (H2O2) assay. Both C. papaya leaf scCO2 extract with 5% ethanol (CPSCE) and C. papaya leaf scCO2 extract (CPSC) exhibited stronger DPPH radical scavenging activity than conventional extracts. In the FRAP assay, two hydrophilic extracts (C. papaya leaf ethanol extract (CPEE) and C. papaya freeze-dried leaf juice (CPFD)) showed relatively stronger reducing power compared to lipophilic extracts. Cell-based assays showed that CPFD significantly protected skin fibroblasts from H2O2-induced oxidative stress in both pre-and post-treatment. CPEE protected skin fibroblasts from oxidative stress in a dose-dependent manner while CPSCE significantly triggered the fibroblast recovery after treatment with H2O2. GC-MS analysis indicated that CPSCE had the highest α-tocopherol and squalene contents. By contrast, both CP hydrophilic extracts (CPEE and CPFD) had a higher total phenolic content (TPC) and rutin content than the lipophilic extracts. Overall, CPEs extracted using green and conventional extraction methods showed antioxidative potential in both cell-based and cell-free assays due to their lipophilic and hydrophilic antioxidants, respectively.
Collapse
Affiliation(s)
- Boon-Keat Khor
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | | | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Correspondence: (J.A.); (K.-Y.K.)
| | - Kooi-Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Correspondence: (J.A.); (K.-Y.K.)
| |
Collapse
|
20
|
Tan Q, Lv Y, Zhao F, Zhou J, Yang Y, Liu Y, Zhang M, Lu F, Wei Y, Chen X, Zhang R, Chen C, Wu B, Zhang X, Li C, Huang H, Cai J, Cao Z, Yu D, Ji JS, Zhao S, Shi X. Association of low blood arsenic exposure with level of malondialdehyde among Chinese adults aged 65 and older. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143638. [PMID: 33288260 PMCID: PMC7897719 DOI: 10.1016/j.scitotenv.2020.143638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 04/13/2023]
Abstract
High environmental arsenic exposure can increase chronic oxidative stress in experimental studies and in occupational epidemiology studies. Many regulatory agencies have put forth arsenic exposure limits, it is still unclear that whether low environmental arsenic exposure was associated with adverse health outcome in general population. This study aimed to explore the association of low blood arsenic with malondialdehyde in community-dwelling older adults. We used a cross-sectional study of 2384 older adult individuals aged ≥65 years (mean age: 85 years) from the Healthy Aging and Biomarkers Cohort Study in 2017. The median blood arsenic level was 1.41 μg/L. High oxidative stress was categorized according to the 95th percentile of MDA levels (7.47 nmol/mL). Restricted cubic spline models showed that blood arsenic levels were positively associated with malondialdehyde levels (P < 0.01); and the risk of high oxidative stress was no longer significantly increased when blood arsenic level up to 8.74 μg/L. After adjusting for potential confounders, the odds ratios of high oxidative stress for the second, third, and fourth quartiles of blood arsenic were 2.35 (1.11-4.96), 3.87 (1.90-7.91), and 4.18 (2.00-8.72) (Ptrend < 0.01), compared with the first quartile. We concluded that even low arsenic exposure was associated with higher risk of oxidative stress, in a nonlinear dose-response.
Collapse
Affiliation(s)
- Qiyue Tan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Yang
- The University of Queensland Diamantina Institute, University of Queensland, Queensland, Australia
| | - Yingchun Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mingyuan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Feng Lu
- Beijing Municipal Health Commission Information Center, (Beijing Municipal Health Commission Policy Research Center), Beijing 100034, China
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ruizhi Zhang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaochang Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chengcheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongyuan Huang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Junfang Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Di Yu
- The University of Queensland Diamantina Institute, University of Queensland, Queensland, Australia
| | - John S Ji
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China; Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Shuhua Zhao
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Mohamad EA, Aly AA, Khalaf AA, Ahmed MI, Kamel RM, Abdelnaby SM, Abdelzaher YH, Sedrak MG, Mousa SA. Evaluation of Natural Bioactive-Derived Punicalagin Niosomes in Skin-Aging Processes Accelerated by Oxidant and Ultraviolet Radiation. Drug Des Devel Ther 2021; 15:3151-3162. [PMID: 34321865 PMCID: PMC8311472 DOI: 10.2147/dddt.s316247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Skin aging is a normal process that might be accelerated or delayed by altering the balance between antioxidants and free radicals due to increase in the exposure to reactive oxygen species (ROS) into skin cells via UV radiation. Antioxidants can neutralize the harmful effects of ROS, and secondary plant metabolites might help protect against UV radiation. METHODS In this study, punicalagin was extracted from pomegranate, and concentrations of total polyphenolics and flavonoids were determined, and antioxidant activities were measured. Punicalagin was loaded onto niosomes, and its morphology and release were studied. An in vitro study was performed on human fibroblast cell line HFB4 cells with aging induced by H2O2 and UV radiation. Cell cycle arrest was studied, and different genes (MMP3, Col1A1, Timp3, and TERT) involved in the skin aging process were selected to measure punicalagin's effect. RESULTS Punicalagin succeeded in reducing the growth arrest of HFB4 cells, activated production of the Col1A1 and Timp3 genes, maintained collagen level, and lowered MMP3. Punicalagin increased human TERT concentration in skin cells. DISCUSSION Punicalagin is promising as a natural antioxidant to protect human skin from aging.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aya A Aly
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Aya A Khalaf
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mona I Ahmed
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Reham M Kamel
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Sherouk M Abdelnaby
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasmine H Abdelzaher
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Marize G Sedrak
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
22
|
Jacob L, López-Sánchez GF, Koyanagi A, Veronese N, Vioque-López J, Oh H, Shin JI, Schnitzler A, Ilie CP, Stefanescu S, Gillvray C, Machado MO, Piguet V, Carvalho A, Smith L. Chronic skin disease and levels of physical activity in 17 777 Spanish adults: a cross-sectional study. Clin Exp Dermatol 2020; 46:516-524. [PMID: 32909628 DOI: 10.1111/ced.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND To date there is limited literature on the prevalence of chronic skin conditions and its association with levels of physical activity (PA) in Spain. AIM To determine the prevalence of chronic skin disease and to compare levels of PA between people with and without chronic skin disease in a large representative sample of Spanish adults aged 15-69 years. METHODS Data from the Spanish National Health Survey 2017 were analysed. Chronic skin disease was assessed using a yes/no question. PA was measured using the short form of the International Physical Activity Questionnaire. Total PA metabolic equivalent of task min/week were calculated, and PA was included in the analyses as a continuous and a five-category variable. RESULTS This cross-sectional study included 17 777 adult participants (52.0% women; mean ± SD age 45.8 ± 14.1 years), of whom 940 (5.3%) had chronic skin disease. After adjusting for several potential confounders, there was a negative association between chronic skin disease and PA (OR = 0.87, 95% CI 0.76-1.00, P = 0.05), which was significant for men (OR = 0.76, 95% CI 0.62-0.93, P = 0.01) but not for women (OR = 0.97, 95% CI 0.81-1.16, P = 0.72). CONCLUSIONS In this large representative sample of Spanish adults, the prevalence of chronic skin disease was low. Levels of PA were lower in men with than in men without chronic skin conditions, but this association was not seen in women.
Collapse
Affiliation(s)
- L Jacob
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.,Research and Development Unit, Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | | | - A Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - N Veronese
- National Research Council Neuroscience Institute Padua, Padua, Italy
| | - J Vioque-López
- CIBER de Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain.,Nutritional Epidemiology Unit, Universidad Miguel Hernández, ISABIAL-UMH, Alicante, Spain
| | - H Oh
- University of Southern California, Suzanne Dworak Peck School of Social Work, Los Angeles, CA, USA
| | - J I Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - A Schnitzler
- Department of Physical Medicine and Rehabilitation, Raymond Poincaré Hospital, AP-HP, Garches, France.,EA4047, UFR des Sciences de la Santé Université Versailles Saint Quentin en Yvelines,, Montigny-le-Bretonneux, France
| | - C P Ilie
- Queen Elizabeth Hospital Foundation Trust, King's Lynn, UK
| | - S Stefanescu
- Queen Elizabeth Hospital Foundation Trust, King's Lynn, UK
| | - C Gillvray
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - M O Machado
- Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, ON, Canada
| | - V Piguet
- Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, ON, Canada
| | - A Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - L Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
23
|
Wang A, Xiao C, Zheng J, Ye C, Dai Z, Wu Q, Liu J, Strappe P, Zhou Z. Terpenoids of Ganoderma lucidum reverse cognitive impairment through attenuating neurodegeneration via suppression of PI3K/AKT/mTOR expression in vivo model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
24
|
Wedel S, Martic I, Hrapovic N, Fabre S, Madreiter-Sokolowski CT, Haller T, Pierer G, Ploner C, Jansen-Dürr P, Cavinato M. tBHP treatment as a model for cellular senescence and pollution-induced skin aging. Mech Ageing Dev 2020; 190:111318. [PMID: 32710895 DOI: 10.1016/j.mad.2020.111318] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022]
Abstract
Accumulation of senescent cells promotes the development of age-related pathologies and deterioration. In human skin, senescent cells potentially impair structure and function by secreting a mixture of signaling molecules and proteases that influence neighboring cells and degrade extracellular matrix components, such as elastin and collagen. One of the key underlying mechanisms of senescence and extrinsic skin aging is the increase of intracellular reactive oxygen species and resulting oxidative stress. Tert-butyl hydroperoxide (tBHP) is a known inducer of oxidative stress and cellular damage, acting at least in part by depleting the antioxidant glutathione. Here, we provide a detailed characterization of tBHP-induced senescence in human dermal fibroblasts in monolayer culture. In addition, results obtained with more physiological experimental models revealed that tBHP treated 3D reconstructed skin and ex vivo skin developed signs of chronic tissue damage, displaying reduced epidermal thickness and collagen fiber thinning. We, therefore, propose that tBHP treatment can be used as a model to study the effects of extrinsic skin aging, focusing mainly on the influence of environmental pollution.
Collapse
Affiliation(s)
- Sophia Wedel
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria.
| | - Ines Martic
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Nina Hrapovic
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Susanne Fabre
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | | | - Thomas Haller
- Department of Physiology and Medical Physics, Division of Physiology, Medical University of Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| |
Collapse
|
25
|
Hudson L, Rashdan E, Bonn CA, Chavan B, Rawlings D, Birch‐Machin MA. Individual and combined effects of the infrared, visible, and ultraviolet light components of solar radiation on damage biomarkers in human skin cells. FASEB J 2020; 34:3874-3883. [PMID: 31944399 PMCID: PMC7079185 DOI: 10.1096/fj.201902351rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022]
Abstract
The ability of solar ultraviolet (UV) to induce skin cancer and photoaging is well recognized. The effect of the infrared (IR) and visible light (Vis) components of solar radiation on skin and their interaction with UV is less well known. This study compared the effects of physiologically relevant doses of complete (UV + Vis + IR) solar-simulated light and its individual components on matched primary dermal fibroblasts and epidermal keratinocytes from human donors on three biomarkers of cellular damage (reactive oxygen species (ROS) generation, mitochondrial DNA (mtDNA), and nuclear DNA (nDNA) damage). There was a greater induction of ROS, mtDNA, and nDNA damage with the inclusion of the visible and IR components of solar-simulated light in primary fibroblast cells compared to primary keratinocytes (P < .001). Experiments using exposure to specific components of solar light alone or in combination showed that the UV, Vis, and IR components of solar light synergistically increased ROS generation in primary fibroblasts but not primary keratinocytes (P < .001). Skin cell lines were used to confirm these findings. These observations have important implications for different skin cell type responses to the individual and interacting components of solar light and therefore photodamage mechanisms and photoprotection interventions.
Collapse
Affiliation(s)
- Laura Hudson
- Dermatological SciencesTranslational and Clinical Research InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| | - Eyman Rashdan
- Dermatological SciencesTranslational and Clinical Research InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| | - Catherine A. Bonn
- Dermatological SciencesTranslational and Clinical Research InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| | | | - David Rawlings
- Northern Medical Physics and Clinical EngineeringFreeman HospitalNewcastle upon TyneUK
| | - Mark A. Birch‐Machin
- Dermatological SciencesTranslational and Clinical Research InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| |
Collapse
|
26
|
Cordani M, Butera G, Pacchiana R, Masetto F, Mullappilly N, Riganti C, Donadelli M. Mutant p53-Associated Molecular Mechanisms of ROS Regulation in Cancer Cells. Biomolecules 2020; 10:biom10030361. [PMID: 32111081 PMCID: PMC7175157 DOI: 10.3390/biom10030361] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
The TP53 tumor suppressor gene is the most frequently altered gene in tumors and an increasing number of studies highlight that mutant p53 proteins can acquire oncogenic properties, referred to as gain-of-function (GOF). Reactive oxygen species (ROS) play critical roles as intracellular messengers, regulating numerous signaling pathways linked to metabolism and cell growth. Tumor cells frequently display higher ROS levels compared to healthy cells as a result of their increased metabolism as well as serving as an oncogenic agent because of its damaging and mutational properties. Several studies reported that in contrast with the wild type protein, mutant p53 isoforms fail to exert antioxidant activities and rather increase intracellular ROS, driving a pro-tumorigenic survival. These pro-oxidant oncogenic abilities of GOF mutant p53 include signaling and metabolic rewiring, as well as the modulation of critical ROS-related transcription factors and antioxidant systems, which lead ROS unbalance linked to tumor progression. The studies summarized here highlight that GOF mutant p53 isoforms might constitute major targets for selective therapeutic intervention against several types of tumors and that ROS enhancement driven by mutant p53 might represent an “Achilles heel” of cancer cells, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing the mutant TP53 gene.
Collapse
Affiliation(s)
- Marco Cordani
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Francesca Masetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy;
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
- Correspondence: ; Tel.: +39-045-8027281; Fax: +39-045-8027170
| |
Collapse
|
27
|
Aguirre-Cruz G, León-López A, Cruz-Gómez V, Jiménez-Alvarado R, Aguirre-Álvarez G. Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants (Basel) 2020; 9:antiox9020181. [PMID: 32098294 PMCID: PMC7070905 DOI: 10.3390/antiox9020181] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Antioxidants are molecules that delay or inhibit the oxidation of other molecules. Its use significantly increased in recent years in the diet of people. Natural antioxidants are replacing the use of synthetic antioxidant ingredients due to their safety, nutritional, and therapeutic values. Hydrolyzed collagen (HC) is a popular ingredient considered to be an antioxidant. This low molecular weight protein has been widely utilized due to its excellent biocompatibility, easy biodegradability, and weak antigenicity. It is a safe cosmetic biomaterial with good moisturizing properties on the skin. The antioxidant properties of HC are conditioned to the size of the molecule: the lower the molecular weight of peptides, the greater the ability to donate an electron or hydrogen to stabilize radicals. The antioxidant capacity of HC is mostly due to the presence of hydrophobic amino acids in the peptide. The exact mechanism of peptides acting as antioxidants is not clearly known but some aromatic amino acids and histidine are reported to play an important role in the antioxidant activity. Oral ingestion of HC increases the levels of collagen-derived peptides in the blood torrent and improves the skin properties such as elasticity, skin moisture, and transepidermal water loss. Additionally, daily intakes of HC protect the skin against UV melasma, enhances the fibroblast production and extracellular matrix of the skin. HC has been identified as a safe cosmetic ingredient for topical formulations with good moisturizing properties at the stratum corneum layer of the skin. It reduces the effects of skin aging (dryness, laxity, and wrinkles). The use of HC as a principal ingredient in safe formulations for skin protection was reviewed and compared when it is used by topical and/or oral administration.
Collapse
Affiliation(s)
- Gabriel Aguirre-Cruz
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, C.P. 43684 Tulancingo, Hidalgo, Mexico; (G.A.-C.); (V.C.-G.)
| | - Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1, C.P. 43600 Tulancingo, Hidalgo, Mexico; (A.L.-L.); (R.J.-A.)
| | - Verónica Cruz-Gómez
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, C.P. 43684 Tulancingo, Hidalgo, Mexico; (G.A.-C.); (V.C.-G.)
| | - Rubén Jiménez-Alvarado
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1, C.P. 43600 Tulancingo, Hidalgo, Mexico; (A.L.-L.); (R.J.-A.)
| | - Gabriel Aguirre-Álvarez
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, C.P. 43684 Tulancingo, Hidalgo, Mexico; (G.A.-C.); (V.C.-G.)
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1, C.P. 43600 Tulancingo, Hidalgo, Mexico; (A.L.-L.); (R.J.-A.)
- Correspondence: ; Tel.: +52-7751459265
| |
Collapse
|
28
|
Yanar K, Simsek B, Çakatay U. Integration of Melatonin Related Redox Homeostasis, Aging, and Circadian Rhythm. Rejuvenation Res 2019; 22:409-419. [DOI: 10.1089/rej.2018.2159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Simsek
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
29
|
Lee BWL, Ghode P, Ong DST. Redox regulation of cell state and fate. Redox Biol 2019; 25:101056. [PMID: 30509603 PMCID: PMC6859564 DOI: 10.1016/j.redox.2018.11.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
The failure in effective cancer treatment is thought to be attributed to a subpopulation of tumor cells with stem cell-like properties. These cancer stem cells (CSCs) are intimately linked to tumor initiation, heterogeneity, maintenance, recurrence and metastasis. Increasing evidence supports the view that a tight redox regulation is crucial for CSC proliferation, tumorigenicity, therapy resistance and metastasis in many cancer types. Since the distinct metabolic and epigenetic states of CSCs may influence ROS levels, and hence their malignancy, ROS modulating agents hold promise in their utility as anti-CSC agents that may improve the durability of current cancer treatments. This review will focus on (i) how ROS levels are regulated for CSCs to elicit their hallmark features; (ii) the link between ROS and metabolic plasticity of CSCs; and (iii) how ROS may interface with epigenetics that would enable CSCs to thrive in a stressful tumor microenvironment and survive therapeutic insults.
Collapse
Affiliation(s)
- Bernice Woon Li Lee
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Pramila Ghode
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), Singapore.
| |
Collapse
|
30
|
Stout R, Birch-Machin M. Mitochondria's Role in Skin Ageing. BIOLOGY 2019; 8:E29. [PMID: 31083540 PMCID: PMC6627661 DOI: 10.3390/biology8020029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Skin ageing is the result of a loss of cellular function, which can be further accelerated by external factors. Mitochondria have important roles in skin function, and mitochondrial damage has been found to accumulate with age in skin cells, but also in response to solar light and pollution. There is increasing evidence that mitochondrial dysfunction and oxidative stress are key features in all ageing tissues, including skin. This is directly linked to skin ageing phenotypes: wrinkle formation, hair greying and loss, uneven pigmentation and decreased wound healing. The loss of barrier function during skin ageing increases susceptibility to infection and affects wound healing. Therefore, an understanding of the mechanisms involved is important clinically and also for the development of antiageing skin care products.
Collapse
Affiliation(s)
- Roisin Stout
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mark Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
31
|
Namkoong J, Kern D, Knaggs HE. Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. Int J Mol Sci 2018; 19:E3349. [PMID: 30373163 PMCID: PMC6274848 DOI: 10.3390/ijms19113349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Since the skin is the major protective barrier of the body, it is affected by intrinsic and extrinsic factors. Environmental influences such as ultraviolet (UV) irradiation, pollution or dry/cold air are involved in the generation of radical oxygen species (ROS) and impact skin aging and dermal health. Assessment of human skin gene expression and other biomarkers including epigenetic factors are used to evaluate the biological/molecular activities of key compounds in cosmetic formulas. The objective of this study was to quantify human gene expression when epidermal full-thickness skin equivalents were exposed to: (a) a mixture of betaine, pentylene glycol, Saccharomyces cerevisiae and Rhodiola rosea root extract (BlendE) for antioxidant, skin barrier function and oxidative stress (with hydrogen peroxide challenge); and (b) a mixture of Narcissus tazetta bulb extract and Schisandra chinensis fruit extract (BlendIP) for various biomarkers and microRNA analysis. For BlendE, several antioxidants, protective oxidative stress biomarkers and many skin barrier function parameters were significantly increased. When BlendE was evaluated, the negative impact of the hydrogen peroxide was significantly reduced for the matrix metalloproteinases (MMP 3 and MMP 12), the skin aging and oxidative stress biomarkers, namely FBN2, ANXA1 and HGF. When BlendIP was tested for cell proliferation and dermal structural components to enhance the integrity of the skin around the eyes: 8 growth factors, 7 signaling, 7 structural/barrier function and 7 oxidative stress biomarkers were significantly increased. Finally, when BlendIP was tested via real-time RT-PCR for microRNA expression: miR-146a, miR-22, miR155, miR16 and miR21 were all significantly increased over control levels. Therefore, human skin gene expression studies are important tools to assess active ingredient compounds such as plant extract blends to advance dermal hypotheses toward validating cosmetic formulations with botanical molecules.
Collapse
Affiliation(s)
- Jin Namkoong
- Nu Skin Enterprises, Inc., 75 West Center Street, Provo, UT 84601, USA.
| | - Dale Kern
- Nu Skin Enterprises, Inc., 75 West Center Street, Provo, UT 84601, USA.
| | - Helen E Knaggs
- Nu Skin Enterprises, Inc., 75 West Center Street, Provo, UT 84601, USA.
| |
Collapse
|
32
|
Equol’s Anti-Aging Effects Protect against Environmental Assaults by Increasing Skin Antioxidant Defense and ECM Proteins While Decreasing Oxidative Stress and Inflammation. COSMETICS 2018. [DOI: 10.3390/cosmetics5010016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
|
34
|
Naidoo K, Hanna R, Birch-Machin MA. What is the role of mitochondrial dysfunction in skin photoaging? Exp Dermatol 2017; 27:124-128. [PMID: 29197123 DOI: 10.1111/exd.13476] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Skin ageing is a complex process involving both internal and external factors, which leads to a progressive loss of cutaneous function and structure. Solar radiation is the primary environmental factor implicated in the development of skin ageing, and the term photoaging describes the distinct clinical, histological and structural features of chronically sun-exposed skin. The changes that accompany photoaging are undesirable for aesthetic reasons and can compromise the skin and make it more susceptible to a number of dermatological disorders. As a result, skin ageing is a topic that is of growing interest and concern to the general population, illustrated by the increased demand for effective interventions that can prevent or ameliorate the clinical changes associated with aged skin. In this viewpoint essay, we explore the role that mitochondria play in the process of skin photoaging. There is continuing evidence supporting the proposal that mitochondrial dysfunction and oxidative stress are important contributing factors in the development of skin photoaging. Further skin-directed mitochondrial research is warranted to fully understand the impact of mitochondrial status and function in skin health. A greater understanding of the ageing process and the regulatory mechanisms involved could lead to the development of novel preventative interventions for skin ageing.
Collapse
Affiliation(s)
- Khimara Naidoo
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca Hanna
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Mark A Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Smita SS, Raj Sammi S, Laxman TS, Bhatta RS, Pandey R. Shatavarin IV elicits lifespan extension and alleviates Parkinsonism in Caenorhabditis elegans. Free Radic Res 2017; 51:954-969. [PMID: 29069955 DOI: 10.1080/10715762.2017.1395419] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Shatavarin IV (SIV), a steroidal saponin, is a major bioactive phytomolecule present in roots of Asparagus racemosus (Liliaceae) known for its anticancer activity. Age-associated neurodegenerative Parkinson's disease (PD) is characterised by alpha-synuclein aggregation in dopaminergic neuron resulting in neurodegeneration. The invention of bioactive molecules that delay aging and age-associated disorders endorses development of natural phytomolecule as a therapeutic agent for curing age-related diseases. Therefore, the present study for the first time explores the potential of SIV against aging and Parkinsonism utilising Caenorhabditis elegans model system. SIV significantly attenuated oxidative stress in terms of intracellular reactive oxygen species (ROS) as well as oxidative damage including protein carbonylation and also promotes longevity. SIV also significantly increased the mRNA expression of stress responsive genes namely sod-1, sod-2, sod-3, gst-4, gst-7 and ctl-2 suggesting its anti-oxidant property that might be contributed in the modulation of oxidative stress and promoting lifespan. Additionally, SIV improved PD symptoms by reducing the alpha-synuclein aggregation, lipid accumulation and enhancing dopamine level. Altogether, present findings indicate that SIV possibly utilising ubiquitin-mediated proteasomal system and attenuating oxidative stress by up-regulating PD-associated genes pdr-1, ubc-12 and pink-1. Therefore, this study is a forward step in exploring the anti-aging and anti-Parkinsonism potential of bioactive compound SIV in C. elegans.
Collapse
Affiliation(s)
- Shachi Shuchi Smita
- a Laboratory of Aging Biology, Department of Microbial Technology and Nematology , Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research , Lucknow , India
| | - Shreesh Raj Sammi
- a Laboratory of Aging Biology, Department of Microbial Technology and Nematology , Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research , Lucknow , India
| | - Tulsankar S Laxman
- b Pharmacokinetics and Metabolism Division , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Rabi S Bhatta
- b Pharmacokinetics and Metabolism Division , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Rakesh Pandey
- a Laboratory of Aging Biology, Department of Microbial Technology and Nematology , Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research , Lucknow , India
| |
Collapse
|
36
|
Non-Targeted Secondary Metabolite Profile Study for Deciphering the Cosmeceutical Potential of Red Marine Macro Alga Jania rubens—An LCMS-Based Approach. COSMETICS 2017. [DOI: 10.3390/cosmetics4040045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
37
|
Srivastava S, Singh D, Patel S, Singh MR. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. Int J Biol Macromol 2017; 101:502-517. [PMID: 28342757 DOI: 10.1016/j.ijbiomac.2017.03.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 02/03/2023]
Abstract
Autoimmune disorders are distinct with over production and accumulation of free radicals due to its undisclosed genesis. The cause of numerous disorders as cancer, arthritis, psoriasis, diabetes, alzheimer's, cardiovascular disease, Parkinson's, respiratory distress syndrome, colitis, crohn's, pulmonary fibrosis, obesity and ageing have been associated with immune dysfunction and oxidative stress. In an oxidative stress, reactive oxygen species generally provoke the series of oxidation at cellular level. The buildup of free radicals in turn triggers various inflammatory cells causing release of various inflammatory interleukins, cytokines, chemokines, and tumor necrosis factors which mediate signal transduction and transcription pathways as nuclear factor- kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1 (HIF-1α) and nuclear factor-erythroid 2-related factor (Nrf2). The imbalance could only be combat by supplementing natural defensive antioxidant enzymes such as superoxide dismutase and catalase. The efficiency of these enzymes is enhanced by use of colloidal carriers which include cellular carriers, vesicular and particulate systems like erythrocytes, leukocytes, platelets, liposomes, transferosomes, solid lipid nanoparticles, microspheres, emulsions. Thus this review provides a platform for understanding importance of antioxidant enzymes and its therapeutic applications in treatment of various autoimmune disorders.
Collapse
Affiliation(s)
- Shikha Srivastava
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India
| | - Satish Patel
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India
| | - Manju R Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India.
| |
Collapse
|