1
|
Yun J, Woo HT, Lee S, Cha HJ. Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration. Biomaterials 2025; 315:122948. [PMID: 39522352 DOI: 10.1016/j.biomaterials.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.
Collapse
Affiliation(s)
- Jinyoung Yun
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyun Tack Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sangmin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
2
|
Diputra AH, Hariscandra Dinatha IK, Yusuf Y. A comparative X-ray diffraction analysis of Sr 2+substituted hydroxyapatite from sand lobster shell waste using various methods. Heliyon 2025; 11:e41781. [PMID: 39877603 PMCID: PMC11773041 DOI: 10.1016/j.heliyon.2025.e41781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
This study aims to investigate the crystallographic properties of hydroxyapatite (HAp) and strontium-substituted hydroxyapatite (SrHAp) obtained from sand lobster shells (SLS) using various analytical methods. HAp and SrHAp were synthesized by the hydrothermal method using sand lobster (Panulirus homarus) shell waste as a calcium precursor. SLS were calcined at 0 °C, 600 °C, 800 °C, and 1000 °C and characterized by X-ray diffraction (XRD). HAp and SrHAp were analyzed by XRD and transmission electron microscopy (TEM). XRD results revealed that SLS calcined at 1000 °C displayed a Ca(OH)2 phase, while those calcined at other temperatures showed a CaCO3 phase. The characterization also verified the diffraction patterns of HAp and SrHAp according to the reference model. Various methods, including the Scherrer method, linear straight-line Scherrer method, Monshi-Scherrer method, Williamson-Hall plot, size-strain plot, and Halder-Wagner method, were employed to investigate the microstructure parameters (crystallite size and microstrain). All methods resulted in varied yet comparable results of crystallite size, except for the linear straight-line Scherrer method. The TEM results showed that the particle sizes of HAp and SrHAp were approximately 130 nm. In this study, the W-H plot was regarded as the best method for providing additional information on anisotropy elasticity and consistent crystallite size results.
Collapse
Affiliation(s)
- Arian Hermawan Diputra
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - I Kadek Hariscandra Dinatha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
3
|
Di Stefano AB, Di Marco C, Toia F, Trapani M, Testa M, Di Leonardo S, Burriesci G, Franza M, Cammarata E, Cordova A, Lopresti F, La Carrubba V. Effect of nanocomposite chitosan/hydroxyapatite pH-induced hydrogels on the osteogenic differentiation of spheroids from adipose stem cells. Int J Biol Macromol 2025; 299:140213. [PMID: 39855505 DOI: 10.1016/j.ijbiomac.2025.140213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chitosan is gaining scientific recognition as a hydrogel in bone tissue engineering (BTE) due to its ability to support osteoblast attachment and proliferation. However, its low mechanical strength and lack of structural integrity limit its application. Nanometric hydroxyapatite (HA) is used as a filler to enhance the mechanical properties and osteoinductivity of hydrogels. In this study, chitosan-based hydrogels were systematically compared by adding 10 %, 20 %, and 30 % HA to evaluate their impact on chemical-physical properties and cellular behavior. Mechanical reinforcement of HA was evaluated by rheological and mechanical tests, with results showing a marked increase in stiffness and mechanical strength as HA concentration increased. Specifically, the Young's modulus and the compression strength increased from 26.8 kPa for chitosan alone to 63.8 kPa and with values reaching 183 kPa for the 30 wt% HA sample. Swelling tests revealed a decrease in water absorption with higher HA concentrations, while weight loss measurements showed that the addition of HA improved hydrogel stability. Biological analysis demonstrated that stem cells maintained viability, with osteopontin expression observed after 14 days of culture, indicating successful differentiation toward osteoblasts. This study highlights the significant potential of HA-enhanced chitosan hydrogels for BTE applications, with improved mechanical properties and osteoinductive capabilities.
Collapse
Affiliation(s)
- A B Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Italy
| | - C Di Marco
- Department of Engineering, University of Palermo, Palermo, Italy
| | - F Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Italy; Unità di Chirurgia Plastica e Ricostruttiva, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Italy
| | - M Trapani
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Italy
| | - M Testa
- Department of Engineering, University of Palermo, Palermo, Italy
| | - S Di Leonardo
- Bioengineering Group, Ri.MED Foundation, Palermo, Italy
| | - G Burriesci
- Bioengineering Group, Ri.MED Foundation, Palermo, Italy; UCL Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - M Franza
- Unità di Chirurgia Plastica e Ricostruttiva, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Italy
| | - E Cammarata
- Unità di Chirurgia Plastica e Ricostruttiva, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Italy
| | - A Cordova
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Italy; Unità di Chirurgia Plastica e Ricostruttiva, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Italy
| | - F Lopresti
- Department of Engineering, University of Palermo, Palermo, Italy
| | - V La Carrubba
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Isakova AM, Kutyrev MA, Kudasheva AS, Rogacheva EV, Kraeva LA, Shityakov S, Zhukov MV, Ulasevich SA, Skorb EV. Fabrication of biocidal materials based on the molecular interactions of tetracycline and quercetin with hydroxyapatite via In Silico- and In vitro approaches. Heliyon 2025; 11:e41064. [PMID: 39758386 PMCID: PMC11699380 DOI: 10.1016/j.heliyon.2024.e41064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Synthetic hydroxyapatite (HA) materials with antibacterial and biocompatible properties have potential for biomedical applications. The application of various computational methods in silica is highly relevant for the optimal development of modern materials. In this work, we used molecular docking to determine the binding constants of tetracycline (TET) and quercetin (QUE) with hydroxyapatite and compared them to experimental data of the adsorption of tetracycline (TET) and quercetin (QUE) on the HA surface. The experimental adsorption study was performed via the UV-VIS method. The fabricated biocidal powders were characterized via X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The electrical charge of the HA particle surface was determined via zeta potential measurements. The molecular docking method was used to predict the binding affinities of TET and QUE for HA. We also performed molecular docking studies to predict the binding affinity of TET and QUE for HA. These affinities correlate with the experimental binding constants, suggesting that molecular docking is a good tool for material property prediction. In addition, the antimicrobial activity of the HA/TET and HA/QUE powders was determined against 2 g-positive bacterial strains: S. aureus and E. faecalis. The obtained HA powders were evaluated for biocompatibility in vitro with the myoblast cell line C2C12.
Collapse
Affiliation(s)
- Anastasiia M. Isakova
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Maxim A. Kutyrev
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Aleksandra S. Kudasheva
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Elizaveta V. Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101, Saint Petersburg, Russia
| | - Lyudmila A. Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101, Saint Petersburg, Russia
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Mikhail V. Zhukov
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Sviatlana A. Ulasevich
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| |
Collapse
|
5
|
Zhao P, Zhu Y, Kim M, Zhao G, Wang Y, Collins CP, Mei O, Zhang Y, Duan C, Zhong J, Zhang H, You W, Shen G, Luo C, Wu X, Li J, Shu Y, Luu HH, Haydon RC, Lee MJ, Shi LL, Huang W, Fan J, Sun C, Wen L, Ameer GA, He TC, Reid RR. Effective Bone Tissue Fabrication Using 3D-Printed Citrate-Based Nanocomposite Scaffolds Laden with BMP9-Stimulated Human Urine Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:197-210. [PMID: 39718997 DOI: 10.1021/acsami.4c13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Effective repair of large bone defects through bone tissue engineering (BTE) remains an unmet clinical challenge. Successful BTE requires optimal and synergistic interactions among biocompatible scaffolds, osteogenic factors, and osteoprogenitors to form a highly vascularized microenvironment for bone regeneration and osseointegration. We sought to develop a highly effective BTE system by using 3D printed citrate-based mPOC/hydroxyapatite (HA) composites laden with BMP9-stimulated human urine stem cells (USCs). Specifically, we synthesized and characterized methacrylate poly(1,8 octamethylene citrate) (mPOC), mixed it with 0%, 40% or 60% HA (i.e., mPOC-0HA, mPOC-40HA, or mPOC-60HA), and fabricated composite scaffold via micro-continuous liquid interface production (μCLIP). The 3D-printed mPOC-HA composite scaffolds were compatible with human USCs that exhibited high osteogenic activity in vitro upon BMP9 stimulation. Subcutaneous implantation of mPOC-HA scaffolds laden with BMP9-stimulated USCs revealed effective bone formation in all three types of mPOC-HA composite scaffolds. Histologic evaluation revealed that the mPOC-60HA composite scaffold yielded the most mature bone, resembling native bone tissue with extensive scaffold-osteointegration. Collectively, these findings demonstrate that the citrate-based mPOC-60HA composite, human urine stem cells, and the potent osteogenic factor BMP9 constitute a desirable triad for effective bone tissue engineering.
Collapse
Affiliation(s)
- Piao Zhao
- Departments of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Mirae Kim
- Department of Biomedical Engineering, Northwestern University; Evanston, Illinois 60208, United States
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Guozhi Zhao
- Departments of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200000, China
| | - Caralyn P Collins
- Department of Mechanical Engineering, Northwestern University; Evanston, Illinois 60208, United States
| | - Ou Mei
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Department of Orthopedic Surgery, Jiangxi Hospital of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Chongwen Duan
- Department of Biomedical Engineering, Northwestern University; Evanston, Illinois 60208, United States
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- The Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 4000430, China
| | - Wulin You
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Guowei Shen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Changqi Luo
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, Yibin Second People's Hospital, Affiliated with West China School of Medicine, Yibin 644000, China
| | - Xingye Wu
- Departments of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
| | - Jingjing Li
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Department of Oncology, The Affiliated Hospital of Shandong Second Medical University, Weifang 261053, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, the Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
| | - Wei Huang
- Departments of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University; Evanston, Illinois 60208, United States
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Liangyuan Wen
- Department of Orthopaedic Surgery, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University; Evanston, Illinois 60208, United States
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Surgery, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Zhu Y, Shi Z, Pang Y, Zhou Y. Deferoxamine-loaded gelatin methacryloyl hydrogel endue 3D-printed PGCL-hydroxyapatite scaffold with angiogenesis, anti-oxidative and immunoregulatory capacities for facilitating bone healing. Int J Biol Macromol 2025; 295:139509. [PMID: 39756750 DOI: 10.1016/j.ijbiomac.2025.139509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Promoting angiogenesis, alleviating oxidative stress injury and inflammation response are crucial for bone healing. Herein, the deferoxamine (DFO)-loaded gelatin methacryloyl (GelMA) hydrogel coating (GelMA-DFO) was constructed on the 3D-printed poly(Glycolide-Co-Caprolactone)-hydroxyapatite (PGCL-HAP) scaffold. After the hydrogel coating was established, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and water contact angle measurement were employed to evaluate the characteristic and the biological properties were assessed. The modification of GelMA-DFO hydrogel endows the PGCL-HAP scaffold with angiogenic, anti-oxidative and immunoregulatory properties, overcoming the limitation of single-functionality in traditional bone tissue engineering (BTE) scaffolds. The improvement of hydrophilicity via GelMA-DFO hydrogel coating promoted cell adhesion onto the scaffold. Due to the load of DFO, the osteogenic and angiogenic effect of the scaffold in vitro were significantly enhanced. Importantly, the PGCL-HAP-DFO scaffold could effectively scavenge reactive oxygen species (ROS) and further polarized macrophage from pro-inflammation phenotype M1 to anti-inflammation phenotype M2. Experimental results in vivo further confirmed that the GelMA-DFO hydrogel coating promoted the osseointegration of PGCL-HAP scaffold via reducing inflammation, further enhancing new bone formation and tissue vascularization. Above, these results demonstrated that GelMA-DFO hydrogel endows PGCL-HAP scaffold with multiple bio-functions, thus accelerating the process of bone regeneration.
Collapse
Affiliation(s)
- Yanlin Zhu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zuosen Shi
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, China
| | - Yuxuan Pang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Han D, Wang W, Gong J, Ma Y, Li Y. Controlled delivery of mesenchymal stem cells via biodegradable scaffolds for fracture healing. Nanomedicine (Lond) 2025; 20:207-224. [PMID: 39686770 PMCID: PMC11731254 DOI: 10.1080/17435889.2024.2439242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Biodegradable controlled delivery systems for mesenchymal stem cells (MSCs) have emerged as novel advancements in the field of regenerative medicine, particularly for accelerating bone fracture healing. This detailed study emphasizes the importance of quick and adequate fracture treatment and the limitations of existing methods. New approaches employing biodegradable scaffolds can be placed within a fracture to serve as a mechanical support and allow controlled release of in situ MSCs and bioactive agents. They are made up of polymers and composites which degrade over time, aiding in natural tissue regrowth. The fabrication methods, including 3D printing, electrospinning, and solvent casting, with particulate leaching that enable precise control over scaffold architecture and properties, are discussed. Progress in controlled drug delivery systems including encapsulation techniques and release kinetics is described, highlighting the potential of such strategies to maintain therapeutic benefits over a prolonged time as well as improving outcomes for fracture repair. MSCs play a role in bone regeneration through differentiation using biodegradable scaffolds, paracrine effects, and regulation of inflammation focusing on fracture healing. Current trends and future directions in scaffold technology and MSC delivery, including smart scaffolds with growth factor incorporation and innovative delivery approaches for fracture healing are also discussed.
Collapse
Affiliation(s)
- Dong Han
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Otolaryngology Department, Yantaishan Hospital, Yantai, China
| | - Jinpeng Gong
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yupeng Ma
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yu Li
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| |
Collapse
|
8
|
Wang A, Qiao Y, Chen T, Wu W, Song J, Wang T, Li P, Huang W. The Significance and Usage Strategies of Macromolecules in 3D Printed Ceramic Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413078. [PMID: 39648677 DOI: 10.1002/adma.202413078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/18/2024] [Indexed: 12/10/2024]
Abstract
3D printing technology enables the creation of complex ceramic structures and enhances the efficiency of customized ceramic production. Polymers play a crucial role in 3D-printed ceramic composites due to their unique processability, yet their significance and application strategies remain underexplored. These polymers not only enable rapid and precise 3D shaping but also offer additional advantages due to their unique and adjustable physicochemical properties. Therefore, the appropriate selection and utilization of polymers are expected to drive new breakthroughs in the field of 3D-printed ceramic composites. This review provides an overview of relevant additive manufacturing technologies and processes, with a specific focus on the strategies for using polymers in 3D-printed ceramic composites, including their roles as binders, templates, preceramics, and matrices. Highlighting the critical functionalities and potential value of these ceramic composites from a practical application perspective.
Collapse
Affiliation(s)
- An Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Yuxuan Qiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tianyi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wenya Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiangxuan Song
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
9
|
Khosronejad A, Arabion H, Iraji A, Mokhtarzadegan M, Daneshi SS, Asadi-Yousefabad SL, Zare S, Nowzari F, Abbaspour S, Akbarizadeh F, Aliabadi E, Amiri MA, Zarei M, Ebrahimi R, Mussin NM, Kurmanalina MA, Tanideh N, Tamadon A. Mandibular bone defect healing using polylactic acid-nano-hydroxyapatite-gelatin scaffold loaded with hesperidin and dental pulp stem cells in rat. Tissue Cell 2024; 93:102700. [PMID: 39724839 DOI: 10.1016/j.tice.2024.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Addressing mandibular defects poses a significant challenge in maxillofacial surgery. Recent advancements have led to the development of various biomimetic composite scaffolds aimed at facilitating mandibular defect reconstruction. This study aimed to assess the regenerative potential of a novel composite scaffold consisting of polylactic acid (PLA), hydroxyapatite nanoparticles (n-HA), gelatin, hesperidin, and human dental pulp stem cells (DPSCs) in a rat model of mandibular bone defect. The PLA-HA-GLA composite was synthesized using solvent casting-leaching and freeze-drying methods and subsequently treated with 11 mg of hesperidin. The physicochemical properties of the PLA-HA-GLA and PLA-HA-GLA-HIS composites were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). Additionally, the mechanical properties and cytotoxicity of DPSCs were assessed. Subsequently, PLA-HA-GLA and PLA-HA-GLA-HIS scaffolds with or without DPSCs were implanted into mandibular bone defects in rats, followed by histopathological, histomorphometric, and cone-beam computed tomography (CBCT) evaluations after eight weeks. SEM analysis revealed the porous structure of the fabricated PLA-HA-GLA and PLA-HA-GLA-HIS composites without aggregation. FTIR and XRD analyses confirmed the presence of functional groups and elements associated with PLA, HA, GLA, and hesperidin in the composites. Although the PLA-HA-GLA-HIS composite exhibited good thermal stability, its mechanical properties decreased after the addition of hesperidin. The cell viability of DPSCs on the surface of the PLA-HA-GLA-HIS scaffolds was statistically significant compared to that of the control group. Furthermore, histopathological, histomorphometric, and radiological evaluations demonstrated that the implantation of the DPSC-loaded PLA-HA-GLA-HIS scaffold had a beneficial effect on bone tissue reconstruction in rats with mandibular defects. These findings highlight the potential of DPSC-loaded PLA-HA-GLA-HIS composite scaffolds for spongy bone tissue engineering and mandibular defect repair.
Collapse
Affiliation(s)
- Arya Khosronejad
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran
| | - Hamidreza Arabion
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Mokhtarzadegan
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Seyyed Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariborz Nowzari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shekofeh Abbaspour
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Fatemeh Akbarizadeh
- Department of Oral & Maxillofacial Radiology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ehsan Aliabadi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran.
| | | | - Moein Zarei
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, Szczecin 71-311, Poland.
| | - Reyhaneh Ebrahimi
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadiar M Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan.
| | - Madina A Kurmanalina
- Department of Therapeutic and Prosthetic Dentistry, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Tamadon
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| |
Collapse
|
10
|
Bin Mobarak M, Chowdhury F, Ahmed S. Preparation and characterization of highly crystalline hydroxyapatite (HAp) from the scales of an anadromous fish ( Tenualosa ilisha): a comparative study with the freshwater fish scale ( Labeo rohita) derived HAp. RSC Adv 2024; 14:39874-39889. [PMID: 39697251 PMCID: PMC11654822 DOI: 10.1039/d4ra06662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
Waste generation from fish processing sectors has become a significant environmental concern. This issue is exacerbated in countries with high aquaculture production and inefficient fish scale (FS) utilization. This study prepared and compared highly crystalline hydroxyapatite (HAp) from the FS of an anadromous fish, Tenualosa ilisha (I-HAp), and a freshwater fish, Labeo rohita (R-HAp). Acid-alkali treatment followed by high-temperature calcination was employed for HAp synthesis. XRD analysis indicated a monoclinic crystal structure for I-HAp and a hexagonal structure for R-HAp, with both containing β-TCP as a secondary phase. Rietveld refinement quantified β-TCP at 8% for I-HAp and 7.2% for R-HAp. Crystallite size of the samples was estimated by various methods (Scherrer's method, Scherrer equation average method, linear straight-line method, straight line passing the origin method, Monshi-Scherrer method, Halder-Wagner method, Williamson-Hall method, and size-strain plot method), consistently indicating microcrystalline HAp. FESEM and TEM analyses revealed larger particle sizes for I-HAp, confirmed by DLS measurements. Surface elemental analysis by XPS confirmed the presence of Na and Mg as impurities along with the elements of the HAp structure. FTIR and Raman spectroscopy identified expected functional groups, while EDX determined elemental composition. Both HAp samples exhibited bioactivity through apatite layer formation in simulated body fluid. Furthermore, the combined results of the cell viability and hemocompatibility studies indicate the biocompatibility of the prepared samples.
Collapse
Affiliation(s)
- Mashrafi Bin Mobarak
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Fariha Chowdhury
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| |
Collapse
|
11
|
Li J, Fan Z, Guan Z, Ruan J. Injectable MXene/Ag-HA composite hydrogel for enhanced alveolar bone healing and mechanistic study. Front Bioeng Biotechnol 2024; 12:1485437. [PMID: 39723126 PMCID: PMC11668567 DOI: 10.3389/fbioe.2024.1485437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Alveolar bone defects pose significant challenges in dentistry. Due to the complexity of alveolar bone anatomy and insufficient repair mechanisms, large bone defects are difficult for the body to heal naturally. Clinical treatment typically involves the use of bone substitute materials. However, current substitutes often suffer from limitations such as insufficient osteoinductivity, rapid degradation, inflammatory responses, and poor mechanical properties. Additionally, the irregular morphology of alveolar bone defects complicates the application of solid bone substitutes, potentially leading to secondary damage at the repair site. Methods To address these challenges, this study introduces an innovative approach by integrating MXene nanomaterials into Ag-HA/GelMA hydrogels to create an injectable MXene/Ag-HA composite hydrogel. MXene nanomaterials are renowned for their excellent biocompatibility, antibacterial properties, and mechanical strength. Results The results indicate that the MXene/Ag-HA composite hydrogel exhibits satisfactory mechanical and biological properties. Specifically, it demonstrates excellent antibacterial, antioxidant, and osteogenic activities. Gene expression analysis further reveals that the MXene composite hydrogel promotes osteogenesis by regulating the expression of Dmp1 and Dusp1. Discussion The findings of this study suggest that the MXene/Ag-HA composite hydrogel is a promising candidate for alveolar bone repair and regeneration. The integration of MXene nanomaterials into the hydrogel enhances its mechanical and biological properties, making it well-suited for the treatment of irregular alveolar bone defects. Furthermore, the study underscores the vast potential of MXene nanomaterials in the biomedical field, hinting at potential applications beyond alveolar bone repair.
Collapse
Affiliation(s)
- Jialing Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Nanchong Central Hospital (Nanchong Hospital of Beijing Anzhen Hospital,Capital Medical University), the Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zilu Fan
- Nanchong Mental Health Center Of Sichuan Province, Nanchong Second People’s Hospital, Nanchong Senior Hospital, Nanchong, Sichuan, China
| | - Zhenju Guan
- Nanchong Central Hospital (Nanchong Hospital of Beijing Anzhen Hospital,Capital Medical University), the Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Roy A, Kanungo B, Patra PK, Bhattacharya B. Benchmarking DFT approximations for studying apatites. Phys Chem Chem Phys 2024. [PMID: 39589089 DOI: 10.1039/d4cp03169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Despite the growing interest in apatites, available experimental studies on their properties are limited in scope. Researchers, therefore, are increasingly resorting to predictions using density functional theory (DFT). However, large deviations can be seen between DFT-based estimates and experimental results, presumably due to approximations made in DFT models. We undertake a comprehensive benchmarking exercise involving sixteen exchange-correlation (XC) functionals (including dispersion corrections), five pseudopotentials (PPs), and two basis sets to unravel their best combination for studying apatites. The comparison involves the lattice parameters, elastic constants, bulk modulus, and band gap of three specific apatites - hydroxyapatite, fluorapatite and chlorapatite. We show, quite reassuringly, a weak sensitivity of the properties to the choice of PP and the basis. The XC approximation and/or the inclusion of dispersion corrections has a significant influence on the accuracy of the predicted properties. The underlying reasons behind different XC functionals providing different properties are identified. Our recommendation is to use dispersion corrections in XC functionals for studying apatites but with some caution. Overall, the optB86b-vdW functional provides the best accuracy when compared to the available experimental results.
Collapse
Affiliation(s)
- Aritri Roy
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Bikash Kanungo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Puneet Kumar Patra
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | | |
Collapse
|
13
|
Foroughi AH, Valeri C, Razavi MJ. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012003. [PMID: 39655853 DOI: 10.1088/2516-1091/ad879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 12/18/2024]
Abstract
The design and optimization of bone scaffolds are critical for the success of bone tissue engineering (BTE) applications. This review paper provides a comprehensive analysis of computational optimization methods for bone scaffold architecture, focusing on the balance between mechanical stability, biological compatibility, and manufacturability. Finite element method (FEM), computational fluid dynamics (CFD), and various optimization algorithms are discussed for their roles in simulating and refining scaffold designs. The integration of multiobjective optimization and topology optimization has been highlighted for developing scaffolds that meet the multifaceted requirements of BTE. Challenges such as the need for consideration of manufacturing constraints and the incorporation of degradation and bone regeneration models into the optimization process have been identified. The review underscores the potential of advanced computational tools and additive manufacturing techniques in evolving the field of BTE, aiming to improve patient outcomes in bone tissue regeneration. The reliability of current optimization methods is examined, with suggestions for incorporating non-deterministic approaches andin vivovalidations to enhance the practical application of optimized scaffolds. The review concludes with a call for further research into artificial intelligence-based methods to advance scaffold design and optimization.
Collapse
Affiliation(s)
- Ali H Foroughi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Caleb Valeri
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| |
Collapse
|
14
|
Kim M, Wang X, Li Y, Lin Z, Collins CP, Liu Y, Ahn Y, Tsal HM, Song JW, Duan C, Zhu Y, Sun C, He TC, Luo Y, Reid RR, Ameer GA. Personalized composite scaffolds for accelerated cell- and growth factor-free craniofacial bone regeneration. Bioact Mater 2024; 41:427-439. [PMID: 39188380 PMCID: PMC11345904 DOI: 10.1016/j.bioactmat.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/28/2024] Open
Abstract
Approaches to regenerating bone often rely on integrating biomaterials and biological signals in the form of cells or cytokines. However, from a translational point of view, these approaches are challenging due to the sourcing and quality of the biologic, unpredictable immune responses, complex regulatory paths, and high costs. We describe a simple manufacturing process and a material-centric 3D-printed composite scaffold system (CSS) that offers distinct advantages for clinical translation. The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite. Using a micro-continuous liquid interface production 3D printer, we fabricate a precise porous ceramic scaffold with 60 wt% hydroxyapatite resembling natural bone. The resulting scaffold integrates with a thermoresponsive hydrogel composite in situ to fit the defect, which is expected to enhance surface contact with surrounding tissue and facilitate biointegration. The antioxidative properties of citrate polymers prevent long-term inflammatory responses. The CSS stimulates osteogenesis in vitro and in vivo. Within 4 weeks in a calvarial critical-sized bone defect model, the CSS accelerated ECM deposition (8-fold) and mineralized osteoid (69-fold) compared to the untreated. Through spatial transcriptomics, we demonstrated the comprehensive biological processes of CSS for prompt osseointegration. Our material-centric approach delivers impressive osteogenic properties and streamlined manufacturing advantages, potentially expediting clinical application for bone reconstruction surgeries.
Collapse
Affiliation(s)
- Mirae Kim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yiming Li
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zitong Lin
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Caralyn P. Collins
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208 USA
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yujin Ahn
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA
| | - Hsiu-Ming Tsal
- Department of Radiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph W. Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chongwen Duan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Cheng Sun
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208 USA
| | - Tong-Chuan He
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Clinical and Translational Sciences Institute, Northwestern University, Chicago, IL, 60611, USA
- Center for Collaborative AI in Healthcare, Institute for AI in Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Russell R. Reid
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Chemistry of Life Process Institute, Northwestern University, Chicago, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
15
|
Youness RA, Sawan SA, Wassel AR, Ward AA, El-Kheshen AA, Al-Ashkar E, Taha MA. Tuning the toughness, strength, and biological properties of functionally graded alumina/titania-based composites for use in bone repair applications. CERAMICS INTERNATIONAL 2024; 50:48640-48654. [DOI: 10.1016/j.ceramint.2024.09.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Skliarenko Y, Kolomiiets VV, Balatskyi VV, Galuza Y, Koryak OS, Macewicz LL, Ruban TP, Firstov SA, Ulianchych NV, Piven OO. The impact of the physicochemical properties of calcium phosphate ceramics on biocompatibility and osteogenic differentiation of mesenchymal stem cells. BMC Res Notes 2024; 17:295. [PMID: 39375736 PMCID: PMC11460134 DOI: 10.1186/s13104-024-06937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVE In this study we have focused on biocompatibility and osteoinductive capacity analysis of self-manufactured single-phase (HAP) and two-phase (HAP and β-ТСР) bioactive ceramics with various chemical modifications (Fig. 1). RESULTS We demonstrate a reduction in solubility for all analyzed composite after the treatment with H2O and H2O2, accompanied by an enhancement in adsorption activity. This modification also resulted in an increase in micro- and macroporosity, along with a rise in the open porosity. Adipose-derived mesenchymal stromal cells demonstrated excellent cell adhesion and survival when cultured with these ceramics. Calcium phosphate ceramics (H-500, HT-500, and HT-1 series) stimulated alkaline phosphatase expression, promoted calcium deposition, and enhanced osteopontin expression in ADSCs, independently inducing osteogenesis without additional osteogenic stimuli. These findings underscore the promising potential of HAP-based bioceramics for bone regeneration/reconstruction.
Collapse
Affiliation(s)
- Yuliia Skliarenko
- Department of Internal Medicine, Medical Oncology & Pulmonology, VIII (AG Zender), University Clinic Tübingen, Otfried-Müller-Str. 14, Tuebingen, 72076, Germany
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akad. Zabolotnogo str, Kyiv, 03680, Ukraine
| | - Volodymyr V Kolomiiets
- Department of Physics of Strength and Plasticity of Materials, Frantsevich Institute for Problems of Materials Science, National Academy of Science of Ukraine, 3 Krzhizhanovcky str, Kyiv, 03142, Ukraine
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur str, Warsaw, 02-093, Poland
| | - Yuliia Galuza
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akad. Zabolotnogo str, Kyiv, 03680, Ukraine
- Center for Regenerative Therapies TU Dresden (CRTD), Fetscherstraße 105, 01307, Dresden, Germany
| | - Oksana S Koryak
- Department of phase transformations, Frantsevich Institute for Problems of Materials Science, National Academy of Science of Ukraine, 3 Krzhizhanovcky str, Kyiv, 03142, Ukraine
| | - Larysa L Macewicz
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akad. Zabolotnogo str, Kyiv, 03680, Ukraine
| | - Tetiana P Ruban
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akad. Zabolotnogo str, Kyiv, 03680, Ukraine
| | - Sergey A Firstov
- Department of Physics of Strength and Plasticity of Materials, Frantsevich Institute for Problems of Materials Science, National Academy of Science of Ukraine, 3 Krzhizhanovcky str, Kyiv, 03142, Ukraine
| | - Nataliia V Ulianchych
- Department of Physics of Strength and Plasticity of Materials, Frantsevich Institute for Problems of Materials Science, National Academy of Science of Ukraine, 3 Krzhizhanovcky str, Kyiv, 03142, Ukraine.
| | - Oksana O Piven
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akad. Zabolotnogo str, Kyiv, 03680, Ukraine.
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur str, Warsaw, 02-093, Poland.
| |
Collapse
|
17
|
Nicolae CL, Pîrvulescu DC, Niculescu AG, Epistatu D, Mihaiescu DE, Antohi AM, Grumezescu AM, Croitoru GA. An Up-to-Date Review of Materials Science Advances in Bone Grafting for Oral and Maxillofacial Pathology. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4782. [PMID: 39410353 PMCID: PMC11478239 DOI: 10.3390/ma17194782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Bone grafting in oral and maxillofacial surgery has evolved significantly due to developments in materials science, offering innovative alternatives for the repair of bone defects. A few grafts are currently used in clinical settings, including autografts, xenografts, and allografts. However, despite their benefits, they have some challenges, such as limited availability, the possibility of disease transmission, and lack of personalization for the defect. Synthetic bone grafts have gained attention since they have the potential to overcome these limitations. Moreover, new technologies like nanotechnology, 3D printing, and 3D bioprinting have allowed the incorporation of molecules or substances within grafts to aid in bone repair. The addition of different moieties, such as growth factors, stem cells, and nanomaterials, has been reported to help mimic the natural bone healing process more closely, promoting faster and more complete regeneration. In this regard, this review explores the currently available bone grafts, the possibility of incorporating substances and molecules into their composition to accelerate and improve bone regeneration, and advanced graft manufacturing techniques. Furthermore, the presented current clinical applications and success stories for novel bone grafts emphasize the future potential of synthetic grafts and biomaterial innovations in improving patient outcomes in oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Dan Eduard Mihaiescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Alexandru Mihai Antohi
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| |
Collapse
|
18
|
G G, Fernandez FB, Varma P R H, Komath M. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Biomed Mater 2024; 19:065009. [PMID: 39255821 DOI: 10.1088/1748-605x/ad792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
The microstructure of a porous bioceramic bone graft, especially the pore architecture, plays a crucial role in the performance of the graft. Conventional bioceramic grafts typically feature a random, closed-pore structure, limiting biological activity to the periphery of the graft. This can lead to delay in full integration with the host site. Bioceramic forms with open through pores can perform better because their inner regions are accessible for natural bone remodeling. This study explores the influence of open through pores in a bioceramic graft on the migration and retention of the local cellsin vitro, which will correlate to the rate of healingin vivo.Hydroxyapatite ceramic forms with aligned channels were fabricated using slip casting technique, employing sacrificial fibers. The sorption characteristics across the graft were evaluated using human osteosarcoma cell line. Seven-day cultures showed viable cells within the channels, confirmed by live/dead assay, scanning electron microscope analysis, and cytoskeletal staining, indicating successful cell colonization. The channel architecture effectively enhances cell migration and retention throughout its entire structure, suggesting potential applications in bone tissue engineering based on the results obtained.
Collapse
Affiliation(s)
- Gayathry G
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| | - Francis B Fernandez
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| | - Harikrishna Varma P R
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| | - Manoj Komath
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| |
Collapse
|
19
|
Min KH, Kim DH, Kim KH, Seo JH, Pack SP. Biomimetic Scaffolds of Calcium-Based Materials for Bone Regeneration. Biomimetics (Basel) 2024; 9:511. [PMID: 39329533 PMCID: PMC11430767 DOI: 10.3390/biomimetics9090511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Calcium-based materials, such as calcium carbonate, calcium phosphate, and calcium silicate, have attracted significant attention in biomedical research, owing to their unique physicochemical properties and versatile applications. The distinctive characteristics of these materials, including their inherent biocompatibility and tunable structures, hold significant promise for applications in bone regeneration and tissue engineering. This review explores the biomedical applications of calcium-containing materials, particularly for bone regeneration. Their remarkable biocompatibility, tunable nanostructures, and multifaceted functionalities make them pivotal for advancing regenerative medicine, drug delivery system, and biomimetic scaffold applications. The evolving landscape of biomedical research continues to uncover new possibilities, positioning calcium-based materials as key contributors to the next generation of innovative biomaterial scaffolds.
Collapse
Affiliation(s)
- Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea;
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Joo-Hyung Seo
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| |
Collapse
|
20
|
Costa JP, Sousa SA, Leitão JH, Marques F, Alves MM, Carvalho MFNN. Insights into the Dual Anticancer and Antibacterial Activities of Composites Based on Silver Camphorimine Complexes. J Funct Biomater 2024; 15:240. [PMID: 39330216 PMCID: PMC11433458 DOI: 10.3390/jfb15090240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Hydroxyapatite (HAp) is a widely used biocompatible material in orthopedic composite preparations. However, HAp composites that exhibit both anticancer and antibacterial activities through bioactive coordination complexes are relatively rare. To explore orthopedic applications, we blended several silver camphorimine compounds with HAp to create [Ag(I)] composites. All compounds [Ag(NO3)(L)n] (n = 1,2) based on camphorimine (LA), camphor sulfonimine (LB) or imine bi-camphor (LC) ligands demonstrated significant cytotoxic activity (IC50 = 0.30-2.6 μgAg/mL) against osteosarcoma cancer cells (HOS). Based on their structural and electronic characteristics, four complexes (1-4) were selected for antibacterial evaluation against Escherichia coli, Burkholderia contaminans, Pseudomonas aeruginosa, and Staphylococcus aureus. All complexes (1-4) revealed combined anticancer and antibacterial activities; therefore, they were used to prepare [Ag(I)]:HAp composites of 50:50% and 20:80% weight compositions and the activities of the composites were assessed. Results showed that they retain the dual anticancer and antibacterial characteristics of their precursor complexes. To replicate the clinical context of bone-filling applications, hand-pressed surfaces (pellets) were prepared. It is worth highlighting that no agglutination agent was necessary for the pellet's consistency. The biological properties of the so-prepared pellets were assessed, and the HOS cells and bacteria spreading on the pellet's surface were analyzed by SEM. Notably, composite 4B, derived from the bicamphor (LC) complex [Ag(NO3)(OC10H14N(C6H4)2NC10H14O)], exhibited significant anticancer activity against HOS cells and antibacterial activity against P. aeruginosa, fostering potential clinical applications on post-surgical OS treatment.
Collapse
Affiliation(s)
- Joana P Costa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Sílvia A Sousa
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Fernanda Marques
- C2TN-Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN 10, km 139.7, Bobadela, 2695-066 Loures, Portugal
| | - Marta M Alves
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| |
Collapse
|
21
|
Cruel PTE, dos Santos CPC, Cueto TM, Avila LPV, Buchaim DV, Buchaim RL. Calcium Hydroxyapatite in Its Different Forms in Skin Tissue Repair: A Literature Review. SURGERIES 2024; 5:640-659. [DOI: 10.3390/surgeries5030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The skin is crucial for homeostasis and body defense, requiring quick healing to maintain internal balance. Initially used for bone repair, calcium hydroxyapatite (HAp) is now being studied for soft tissue engineering. This literature review investigated HAp’s role in tissue repair through searches on PubMed, Scopus (Elsevier), Science Direct, Springer Link, and Google Scholar databases without time restrictions, using keywords “hydroxyapatite AND skin AND wound” and “hydroxyapatite AND skin repair”. Inclusion criteria encompassed in vivo studies in humans and animals, English publications, full access, and sufficient data on HAp’s role in tissue repair. Exclusions included duplicates, unrelated articles, editor letters, reviews, comments, conference abstracts, dissertations, and theses. Out of the 472 articles initially identified, 139 met the inclusion criteria, with 21 focusing on HAp for tissue repair. Findings indicate that HAp and nano-HAp in skin regeneration are promising, especially when combined with other biomaterials, offering antimicrobial and anti-inflammatory benefits and stimulating angiogenesis. This suggests their potential application in dermatology, surgery, and dentistry, extending HAp’s versatility from hard tissues to enhancing critical properties for soft tissue repair and accelerating healing.
Collapse
Affiliation(s)
- Paola Tatiana Espinosa Cruel
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
| | | | - Thalia Malave Cueto
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
| | - Lisbeth Patricia Vasquez Avila
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| |
Collapse
|
22
|
Yang K, Lei S, Qin X, Mai X, Xie W, Yang S, Wang J. Biodegradable polyvinyl alcohol/nano-hydroxyapatite composite membrane enhanced by MXene nanosheets for guided bone regeneration. J Mech Behav Biomed Mater 2024; 155:106540. [PMID: 38615407 DOI: 10.1016/j.jmbbm.2024.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
MXene, as a new category of two-dimensional nanomaterials, exhibits a promising prospect in biomedical applications due to its ultrathin structure and morphology, as well as a range of remarkable properties such as biological, chemical, electronic, and optical properties. In this work, different concentrations of MXene (M) were added to polyvinyl alcohol (PVA, P)/nano-hydroxyapatite (n-HA, H) mixed solution, and series of PVA/n-HA/MXene (PHM) composite membranes were obtained by combining sol-gel and freeze-drying processes. Morphology, chemical composition, surface, and mechanical properties of the prepared PHM membranes were characterized by various techniques. Subsequently, the swelling and degradation performances of the composite membranes were tested by swelling and degradation tests. In addition, in vitro studies like cell adhesion, cytotoxicity, proliferation, osteogenic differentiation, and antibacterial properties of MC3T3-E1 were also evaluated. The results showed that the addition of MXene could apparently improve the composite membranes' physicochemical properties, bioactivity, and osteogenic differentiation. Specially, PHM membrane had the best comprehensive properties when the concentration of MXene was set as 2.0% w/v. In a word, the addition of MXene has a positive effect on improving the mechanical properties, osteogenic induction, and antibacterial properties of PH composite membranes, and the prepared PHM composite membranes possess potential applications for guided bone regeneration.
Collapse
Affiliation(s)
- Kefan Yang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; Lanzhou University Second Hospital, Lanzhou, 730030, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Siqi Lei
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; Lanzhou University Second Hospital, Lanzhou, 730030, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiaoli Qin
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; Lanzhou University Second Hospital, Lanzhou, 730030, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiaoxue Mai
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; Lanzhou University Second Hospital, Lanzhou, 730030, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weibo Xie
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; Lanzhou University Second Hospital, Lanzhou, 730030, China.
| | - Shengrong Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinqing Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Wu S, Lai Y, Zheng X, Yang Y. Facile fabrication of linezolid/strontium coated hydroxyapatite/graphene oxide nanocomposite for osteoporotic bone defect. Heliyon 2024; 10:e31638. [PMID: 38947479 PMCID: PMC11214387 DOI: 10.1016/j.heliyon.2024.e31638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Hydroxyapatite (HAp) coatings currently have limited therapeutic applications because they lack anti-infection, osteoinductivity, and poor mechanical characteristics. On the titanium substrate, electrochemical deposition (ECD) was used to construct the strontium (Sr)-featuring hydroxyapatite (HAp)/graphene oxides (GO)/linezolid (LZ) nanomaterial coated with antibacterial and drug delivery properties. The newly fabricated nanomaterials were confirmed by X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis and morphological features were examined by scanning electron microscope (SEM) analysis. The results reveal multiple nucleation sites for SrHAp/GO/LZ composite coatings due to oxygen-comprising moieties on the 2D surface of GO. It was shown to be favorable for osteoblast proliferation and differentiation. The elastic modulus and hardness of LZ nanocomposite with SrHAp/GO/LZ coatings were increased by 67 % and 121 %, respectively. An initial 5 h burst of LZ release from the SrHAp/GO/LZ coating was followed by 14 h of gradual release, owing to LZ's physical and chemical adsorption. The SrHAp/GO/LZ coating effectively inhibited both S. epidermidis and S. aureus, and the inhibition lasted for three days, as demonstrated by the inhibition zone and colony count assays. When MG-63 cells are coated with SrHAp/GO/LZ composite coating, their adhesion, proliferation, and differentiation greatly improve when coated with pure titanium. A novel surface engineering nanomaterial for treating and preventing osteoporotic bone defects, SrHAp/GO/LZ, was shown to have high mechanical characteristics, superior antibacterial abilities, and osteoinductivity.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Yunxiao Lai
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Xian Zheng
- Department of Obstetrics, Wenling First People's Hospital, Wenling, 317500, China
| | - Yang Yang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| |
Collapse
|
24
|
Grumezescu V, Gherasim O, Gălățeanu B, Hudiță A. Antitumoral-Embedded Biopolymeric Spheres for Implantable Devices. Pharmaceutics 2024; 16:754. [PMID: 38931875 PMCID: PMC11207774 DOI: 10.3390/pharmaceutics16060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The bioactive surface modification of implantable devices paves the way towards the personalized healthcare practice by providing a versatile and tunable approach that increase the patient outcome, facilitate the medical procedure, and reduce the indirect or secondary effects. The purpose of our study was to assess the performance of composite coatings based on biopolymeric spheres of poly(lactide-co-glycolide) embedded with hydroxyapatite (HA) and methotrexate (MTX). Bio-simulated tests performed for up to one week evidenced the gradual release of the antitumor drug and the biomineralization potential of PLGA/HA-MTX sphere coatings. The composite materials proved superior biocompatibility and promoted enhanced cell adhesion and proliferation with respect to human preosteoblast and osteosarcoma cell lines when compared to pristine titanium.
Collapse
Affiliation(s)
- Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
25
|
Balas M, Badea MA, Ciobanu SC, Piciu F, Iconaru SL, Dinischiotu A, Predoi D. Biocompatibility and Osteogenic Activity of Samarium-Doped Hydroxyapatite-Biomimetic Nanoceramics for Bone Regeneration Applications. Biomimetics (Basel) 2024; 9:309. [PMID: 38921189 PMCID: PMC11201808 DOI: 10.3390/biomimetics9060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we report on the development of hydroxyapatite (HAp) and samarium-doped hydroxyapatite (SmHAp) nanoparticles using a cost-effective method and their biological effects on a bone-derived cell line MC3T3-E1. The physicochemical and biological features of HAp and SmHAp nanoparticles are explored. The X-ray diffraction (XRD) studies revealed that no additional peaks were observed after the integration of samarium (Sm) ions into the HAp structure. Valuable information regarding the molecular structure and morphological features of nanoparticles were obtained by using Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The elemental composition obtained by using energy-dispersive X-ray spectroscopy (EDS) confirmed the presence of the HAp constituent elements, Ca, O, and P, as well as the presence and uniform distribution of Sm3+ ions. Both HAp and SmHAp nanoparticles demonstrated biocompatibility at concentrations below 25 μg/mL and 50 μg/mL, respectively, for up to 72 h of exposure. Cell membrane integrity was preserved following treatment with concentrations up to 100 μg/mL HAp and 400 μg/mL SmHAp, confirming the role of Sm3+ ions in enhancing the cytocompatibility of HAp. Furthermore, our findings reveal a positive, albeit limited, effect of SmHAp nanoparticles on the actin dynamics, osteogenesis, and cell migration compared to HAp nanoparticles. Importantly, the biological results highlight the potential role of Sm3+ ions in maintaining cellular balance by mitigating disruptions in Ca2+ homeostasis induced by HAp nanoparticles. Therefore, our study represents a significant contribution to the safety assessment of both HAp and SmHAp nanoparticles for biomedical applications focused on bone regeneration.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Steluta Carmen Ciobanu
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| | - Florentina Piciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Daniela Predoi
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| |
Collapse
|
26
|
Malisz K, Świeczko-Żurek B, Olive JM, Gajowiec G, Pecastaings G, Laska A, Sionkowska A. Study of Nanohydroxyapatite Coatings Prepared by the Electrophoretic Deposition Method at Various Voltage and Time Parameters. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2242. [PMID: 38793310 PMCID: PMC11122981 DOI: 10.3390/ma17102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The aim of the work is to compare the properties of nanohydroxyapatite coatings obtained using the electrophoretic deposition method (EDP) at 10 V, 20 V, and 30 V, and with deposit times of 2 and 5 min. The primary sedimentation was used to minimize the risk of the formation of particle agglomerates on the sample surface. Evaluation of the coating was performed by using a Scanning Electron Microscope (SEM), Energy-Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), optical profilometer, drop shape analyzer, and a nanoscratch tester. All of the coatings are homogeneous without any agglomerates. When low voltage (10 V) was used, the coatings were uniform and continuous regardless of the deposition time. The increase in voltage resulted in the formation of cracks in the coatings. The wettability test shows the hydrophilic behavior of the coatings and the mean contact angle values are in the range of 20-37°. The coatings showed excellent adhesion to the substrate. The application of a maximum force of 400 mN did not cause delamination in most coatings. It is concluded that the optimal coating for orthopedic implants (such as hip joint implants, knee joint implants or facial elements) is obtained at 10 V and 5 min because of its homogeneity, and a contact angle that promotes osseointegration and great adhesion to the substrate.
Collapse
Affiliation(s)
- Klaudia Malisz
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland;
| | - Beata Świeczko-Żurek
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland;
| | - Jean-Marc Olive
- CNRS—Centre National de la Recherche Scientifique, Institute de Mecanique et d’Imgenierie, Universite de Bordeaux, 33405 Talence, France;
| | - Grzegorz Gajowiec
- Department of Materials Science and Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (G.G.); (A.L.)
| | - Gilles Pecastaings
- Centre de Recherche Paul Pascal, CNRS Universite de Bordeaux, UMR 5031, 33600 Pessac, France;
| | - Aleksandra Laska
- Department of Materials Science and Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (G.G.); (A.L.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
27
|
Patil HG, Rajendran A, Lenka N, Kumar BS, Murugesan S, Anandhan S. Probing the influence of strontium doping and annealing temperature on the structure and biocompatibility of hydroxyapatite nanorods. Dalton Trans 2024; 53:7812-7827. [PMID: 38623776 DOI: 10.1039/d3dt04305c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Among numerous biologically important metal cations, strontium (Sr2+) has received much attention in bone tissue regeneration because of its osteoinductive properties combined with its ability to inhibit osteoclast activity. In this study, strontium-doped hydroxyapatite (Sr-HAp) nanorods with varying molar ratios of Ca : Sr (10 : 0, 9 : 1, 5 : 5, 3 : 7 and 0 : 10) were synthesized using the chemical precipitation technique. The synthesized Sr-HAp nanostructures were characterized using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy, energy dispersive X-ray spectroscopy, and Raman and Fourier transform infrared (FTIR) spectroscopies to understand their structural and morphological features, and composition. XRD results revealed the formation of HAp nanostructures, whose unit cell volume increased as a function of the dopant level. The reaction process investigation showed the formation of hydroxyapatite (HAp), strontium apatite (SAp) and various Sr-HAp phases. FESEM micrographs displayed the morphological transformation of Sr-HAp from nanorods to nanosheets upon increasing the dopant level. In the FTIR spectra, the bands of the PO43- group shifted towards a lower wavenumber upon increasing the dopant concentration in Sr-HAp that signifies the structural distortion due to the presence of a large amount of strontium ions. The peaks of PO43- and OH- vibrations in the Raman spectra were further analysed to corroborate the structural distortion of Sr-HAp. Selected area electron diffraction patterns obtained using TEM reveal the reduced crystallinity of Sr-HAp due to Sr-doping, which is in line with the XRD results. Finally, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that the synthesized Sr-HAp has no toxic effect on the survival and growth of mesenchymal stem cells. In summary, the synthesized novel Sr-HAp nanorods exhibit great promise for bone tissue engineering applications.
Collapse
Affiliation(s)
- Harsha G Patil
- Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025, Karnataka, India.
| | - Archana Rajendran
- National Centre for Cell Science, S. P. Pune University Campus, Ganeshkhind, Pune-411007, Maharashtra, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Ganeshkhind, Pune-411007, Maharashtra, India
| | - B Sachin Kumar
- Department of Mechanical Engineering, B.M.S. College of Engineering, Bengaluru-560019, Karnataka, India
| | - Selvakumar Murugesan
- Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025, Karnataka, India.
| | - S Anandhan
- Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025, Karnataka, India.
| |
Collapse
|
28
|
Huiwen W, Shuai L, Jia X, Shihao D, Kun W, Runhuai Y, Haisheng Q, Jun L. 3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects. J Biol Eng 2024; 18:22. [PMID: 38515148 PMCID: PMC10956317 DOI: 10.1186/s13036-024-00416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The repair of bone defects remains a major challenge in the clinic, and treatment requires bone grafts or bone replacement materials. Existing biomaterials have many limitations and cannot meet the various needs of clinical applications. To treat bone defects, we constructed a nanohydroxyapatite (nHA)/methylacrylylated silk fibroin (MASF) composite biological scaffold using photocurable 3D printing technology. In this study, scanning electron microscopy (SEM) was used to detect the changes in the morphological structure of the composite scaffold with different contents of nanohydroxyapatite, and FTIR was used to detect the functional groups and chemical bonds in the composite scaffold to determine the specific components of the scaffold. In in vitro experiments, bone marrow mesenchymal stem cells from SD rats were cocultured with scaffolds soaking solution, and the cytotoxicity, cell proliferation, Western blot analysis, Quantitative real-time PCR analysis, bone alkaline phosphatase activity and alizarin red staining of scaffolds were detected to determine the biocompatibility of scaffolds and the effect of promoting proliferation and osteogenesis of bone marrow mesenchymal stem cells in vitro. In the in vivo experiment, the skull defect was constructed by adult SD rats, and the scaffold was implanted into the skull defect site. After 4 weeks and 8 weeks of culture, the specific osteogenic effect of the scaffold in the skull defect site was detected by animal micro-CT, hematoxylin and eosin (HE) staining and Masson's staining. Through the analysis of the morphological structure of the scaffold, we found that the frame supported good retention of the lamellar structure of silk fibroin, when mixed with nHA, the surface of the stent was rougher, the cell contact area increased, and cell adhesion and lamellar microstructure for cell migration and proliferation of the microenvironment provided a better space. FTIR results showed that the scaffold completely retained the β -folded structure of silk fibroin, and the scaffold composite was present without obvious impurities. The staining results of live/dead cells showed that the constructed scaffolds had no significant cytotoxicity, and thw CCK-8 assay also showed that the constructed scaffolds had good biocompatibility. The results of osteogenic induction showed that the scaffold had good osteogenic induction ability. Moreover, the results also showed that the scaffold with a MASF: nHA ratio of 1: 0.5 (SFH) showed better osteogenic ability. The micro-CT and bone histometric results were consistent with the in vitro results after stent implantation, and there was more bone formation at the bone defect site in the SFH group.This research used photocurable 3D printing technology to successfully build an osteogenesis bracket. The results show that the constructed nHA/MASF biological composite material, has good biocompatibility and good osteogenesis function. At the same time, in the microenvironment, the material can also promote bone defect repair and can potentially be used as a bone defect filling material for bone regeneration applications.
Collapse
Affiliation(s)
- Wu Huiwen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Liang Shuai
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xie Jia
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Deng Shihao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Kun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yang Runhuai
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Qian Haisheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Li Jun
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
29
|
Moghaddasi M, Özdemir MMM, Noshahr AT, Özadenç HM, Oktay B, Bingöl AB, Arayıcı PP, Eraslan A, Şenel İ, Chifiriuc MC, Üstündağ CB. Blend Electrospinning of Nigella sativa-Incorporating PCL/PLA/HA Fibers and Its Investigation for Bone Healing Applications. ACS OMEGA 2024; 9:10267-10275. [PMID: 38463250 PMCID: PMC10918662 DOI: 10.1021/acsomega.3c07523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 03/12/2024]
Abstract
One of the well-known postoperative complications that requires a number of prophylactic and curative treatments is infection. The implications of postsurgical infections are further exacerbated by the emergence of antibiotic-resistant strains. Reduced effectiveness of synthetic antibiotics has led to an interest in plant-based substances. Extracts obtained from Nigella sativa have been shown to possess effective anti-infectious agents against bacteria frequently seen in bone infections. In this study, a fiber-based bone scaffold containing polycaprolactone, poly(lactic acid), and hydroxyapatite with N. sativa oil at varying concentrations was developed. Solvent electrospinning was used to fabricate the fibers with the specified composition. According to FE-SEM analysis, fibers with average diameters of 751 ± 82, 1000 ± 100, 1020 ± 90, and 1223 ± 112 nm were formed and successful integration of N. sativa oil into the fiber's structure was confirmed via FTIR. Staphylococcus aureus showed moderate susceptibility against the fibers with a maximum inhibition zone diameter of 11.5 ± 1.6 mm. MTT assay analysis exhibited concentration-dependent cell toxicity against fibroblast cells. In short, the antibacterial fibers synthesized in this study possessed antibacterial properties while also allowing moderate accommodation of CDD fibroblast cells at low oil concentrations, which can be a potential application for bone healing and mitigating postsurgical infections.
Collapse
Affiliation(s)
- Mohammad Moghaddasi
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Muhammed Mustafa Mert Özdemir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Ali Torabkhani Noshahr
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Hüseyin Murat Özadenç
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Busra Oktay
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Ayşe Betül Bingöl
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Pelin Pelit Arayıcı
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220 Istanbul, Türkiye
| | - Azime Eraslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220 Istanbul, Türkiye
| | - İlkay Şenel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220 Istanbul, Türkiye
- Central Research Laboratory, Yıldız Technical University, Esenler, 34220 Istanbul, Türkiye
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050568 Bucharest, Romania
- Romanian Academy, 050045 Bucharest, Romania
| | - Cem Bülent Üstündağ
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220 Istanbul, Türkiye
| |
Collapse
|
30
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
31
|
Kazemi M, Mirzadeh M, Esmaeili H, Kazemi E, Rafienia M, Poursamar SA. Evaluation of the Morphological Effects of Hydroxyapatite Nanoparticles on the Rheological Properties and Printability of Hydroxyapatite/Polycaprolactone Nanocomposite Inks and Final Scaffold Features. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:132-142. [PMID: 38389680 PMCID: PMC10880679 DOI: 10.1089/3dp.2021.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
This study is focused on the importance of nanohydroxyapatite (nHA) particle morphology with the same particle size range on the rheological behavior of polycaprolactone (PCL) composite ink with nHA as a promising candidate for additive manufacturing technologies. Two different physiologic-like nHA morphologies, that is, plate and rod shape, with particles size less than 100 nm were used. nHA powders were well characterized and the printing inks were prepared by adding the different ratios of nHA powders to 50% w/v of PCL solution (nHA/PCL: 35/65, 45/55, 55/45, and 65/35 w/w%). Subsequently, the influence of nHA particle morphology and concentration on the printability and rheological properties of composite inks was investigated. HA nanopowder analysis revealed significant differences in their microstructural properties, which affected remarkably the composite ink printability in several ways. For instance, adding up to 65% w/w of plate-like nHA to the PCL solution was possible, while nanorod HA could not be added above 45% w/w. The printed constructs were successfully fabricated using the extrusion-based printing method and had a porous structure with interconnected pores. Total porosity and surface area increased with nHA content due to the improved fiber stability following deposition of material ink. Consequently, degradation rate and bioactivity increased, while compressive properties decreased. While nanorod HA particles had a more significant impact on the mechanical strength than plate-like morphology, the latter showed less crystalline order, which makes them more bioactive than nanorod HA. It is therefore important to note that the nHA microstructure broadly affects the printability of printing ink and should be considered according to the intended biomedical applications.
Collapse
Affiliation(s)
- Mansure Kazemi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Motahareh Mirzadeh
- Abtin Teb LLC, Research & Development Department, Pardis Technology Park, Tehran, Iran
| | - Hasti Esmaeili
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Kazemi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Abtin Teb LLC, Research & Development Department, Pardis Technology Park, Tehran, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Kadi F, Dini G, Poursamar SA, Ejeian F. Fabrication and characterization of 3D-printed composite scaffolds of coral-derived hydroxyapatite nanoparticles/polycaprolactone/gelatin carrying doxorubicin for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:7. [PMID: 38285297 PMCID: PMC10824813 DOI: 10.1007/s10856-024-06779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
In this study, nanocomposite scaffolds of hydroxyapatite (HA)/polycaprolactone (PCL)/gelatin (Gel) with varying amounts of HA (42-52 wt. %), PCL (42-52 wt. %), and Gel (6 wt. %) were 3D printed. Subsequently, a scaffold with optimal mechanical properties was utilized as a carrier for doxorubicin (DOX) in the treatment of bone cancer. For this purpose, HA nanoparticles were first synthesized by the hydrothermal conversion of Acropora coral and characterized by using different techniques. Also, a compression test was performed to investigate the mechanical properties of the fabricated scaffolds. The mineralization of the optimal scaffold was determined by immersing it in simulated body fluid (SBF) solution for 28 days, and the biocompatibility was investigated by seeding MG-63 osteoblast-like cells on it after 1-7 days. The obtained results showed that the average size of the synthesized HA particles was about 80 nm. The compressive modulus and strength of the scaffold with 47 wt. % HA was reported to be 0.29 GPa and 9.9 MPa, respectively, which was in the range of trabecular bones. In addition, the scaffold surface was entirely coated with an apatite layer after 28 days of soaking in SBF. Also, the efficiency and loading percentage of DOX were obtained as 30.8 and 1.6%, respectively. The drug release behavior was stable for 14 days. Cytotoxicity and adhesion evaluations showed that the fabricated scaffold had no negative effects on the viability of MG-63 cells and led to their proliferation during the investigated period. From these results, it can be concluded that the HA/PCL/Gel scaffold prepared in this study, in addition to its drug release capability, has good bioactivity, mechanical properties, and biocompatibility, and can be considered a suitable option for bone tumor treatment.
Collapse
Affiliation(s)
- Fatima Kadi
- Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Ghasem Dini
- Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - S Ali Poursamar
- Department of Biomaterials, Nanotechnology, and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 81593-58686, Iran
| |
Collapse
|
33
|
Bharadwaj T, Chrungoo S, Verma D. Self-assembled chitosan/gelatin nanofibrous aggregates incorporated thermosensitive nanocomposite bioink for bone tissue engineering. Carbohydr Polym 2024; 324:121544. [PMID: 37985063 DOI: 10.1016/j.carbpol.2023.121544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Chitosan-based thermosensitive bioink can be a potential option as bioinks for bone tissue engineering because of their excellent biocompatibility and crosslinker-free gelation at physiological temperature. However, their low mechanical strength, poor printability, and low post-printing cell viability are some of their limitations. In this work, self-assembled nanofibrous aggregates of chitosan and gelatin were prepared and incorporated in chitosan-based bioinks to enhance printability, mechanical properties, post-printing cell viability, and proliferation. Subsequently, the optimal concentration of nanohydroxyapatite was determined, and the potential of the nanocomposite bioink was evaluated. Physiochemical, mechanical, and in vitro characterizations were carried out for the developed nanocomposite bioink. The bioink had optimum printability at 10 % nanohydroxyapatite and cell viability >88 %. The composite bioink had a low water uptake capacity (2.5 %) and degraded within 3 weeks in the presence of lysozyme. Mechanical characterization revealed an elastic modulus of about 15.5 kPa. Rheological analysis indicated a higher storage modulus of the bioink samples at 37 °C. ALP activity of 36.8 units/ml after 14 days of scaffold culture in osteogenic media indicated high cellular activity. These results suggested that the incorporation of osteogenic nanohydroxyapatite and nanofibrous aggregates improved the overall osteogenic and physiochemical potential of the thermosensitive bioink.
Collapse
Affiliation(s)
- Tanmay Bharadwaj
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Shreya Chrungoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
34
|
Yuan R, Zhou S, Xiong X, Yang D, Lin D, Li T, He B, Wei G, Qu S. Enhanced mechanic properties of calcium phosphate cements via mussel-inspired adhesive as bone substitute: Highlights of their interactions. Biomed Mater Eng 2024; 35:13-26. [PMID: 37599515 DOI: 10.3233/bme-230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Inspired by natural bones, many organic components were added to Calcium Phosphate Cements (CPCs) to improve their mechanical strength. However, the strength of these composite CPCs is limited by the low strength of organic components itself and the weak interaction between organic components and CPCs. OBJECTIVE Firstly, a composite CPC containing mussel-inspired adhesive, Poly-(Dopamine Methacrylamide-co-2-methoxy Ethylacrylate) (pDM) was developed. Secondly, the interactions between pDM and CPC and their effect on mechanical properties were investigated. METHODS The interactions between pDM and CPC were performed by Nuclear Magnetic Resonance, Laser Raman, X-ray Photoelectron Spectroscopy, Fourier Transform-Infrared Spectroscopy and X-ray Diffraction Analysis. RESULTS The toughness and compressive strength of pDM-CPC scaffold were both significantly enhanced, because of the enhanced interface binding strength among CPC and pDM due to their interaction and the improved mechanical strength of pDM owing to its self-oxidation cross-linking. The toughness of pDM-CPC scaffolds increased with the increased contents of pDM, while pDM-CPC scaffold containing 35 wt.% pDM had the highest compressive strength of all, which the latter was more than five times compared to that of CPC. CONCLUSION The mechanically strong pDM-CPC scaffolds has potential application in bone regeneration as well as in craniofacial and orthopedic repair.
Collapse
Affiliation(s)
- Rupan Yuan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Sijie Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiong Xiong
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu, China
| | - Dan Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Donghu Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Taiyi Li
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu, China
| | - Bin He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Guihua Wei
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, Chengdu, China
| | - Shuxin Qu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
35
|
Zhang K, Liu Y, Zhao Z, Shi X, Zhang R, He Y, Zhang H, Sun Y, Wang W. Synthesis Technology of Magnesium-Doped Nanometer Hydroxyapatite: A Review. ACS OMEGA 2023; 8:44458-44471. [PMID: 38046298 PMCID: PMC10688058 DOI: 10.1021/acsomega.3c06091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023]
Abstract
Ion substitution techniques for nanoparticles have become an important neighborhood of biomedical engineering and have led to the development of innovative bioactive materials for health systems. Magnesium-doped nanohydroxyapatite (Mg-nHA) has good bone conductivity, biological activity, flexural strength, and fracture toughness due to particle doping technology, making it an ideal candidate material for biomedical applications. In this Review, we have systematically presented the synthesis methods of Mg-nHA and their application in the field of biomedical science and highlighted the pros and cons of each method. Finally, some future prospects for this important neighborhood are proposed. The purpose of this Review is to provide readers with an understanding of this new field of research on bioactive materials with innovative functions and systematically introduce the latest technologies for obtaining uniform, continuous, and morphologically diverse Mg-nHA.
Collapse
Affiliation(s)
- Kui Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yan Liu
- Department
of Gynecology, First Affiliated Hospital
of Xi ’an Medical College, Xi’an, Shaanxi 710000, China
| | - Zhenrui Zhao
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuewen Shi
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruihao Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yixiang He
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huaibin Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi Sun
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenji Wang
- Department
of Orthopedics, The First Hospital of Lanzhou
University, Lanzhou, Gansu 730000, China
| |
Collapse
|
36
|
Yang H, Pan R, Zhou Y, Liu G, Chen R, Guo S. Hydroxyapatite/Poly (Butylene Succinate)/Metoprolol Tartrate Composites with Controllable Drug Release and a Porous Structure for Bone Scaffold Application. Polymers (Basel) 2023; 15:4205. [PMID: 37959885 PMCID: PMC10648255 DOI: 10.3390/polym15214205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Nowadays, it is a challenge for a bone scaffold to achieve controllable drug release and a porous structure at the same time. Herein, we fabricated hydroxyapatite/poly (butylene succinate)/metoprolol tartrate (HA/PBS/MPT) composites via melt blending, aiming to provide the option of an in situ pore-forming strategy. The introduction of HA not only significantly improved the hydrophilicity of the PBS matrix by reducing the hydrophilic contact angle by approximately 36% at a 10% content, but also damaged the integrity of the PBS crystal. Both were beneficial for the penetration of phosphate-buffered saline solution into matrix and the acceleration of MPT release. Accompanied with MPT release, porous structures were formed in situ, and the HA inside the matrix was exposed. With the increase in HA content, the MPT release rate accelerated and the pore size became larger. The in vitro cytocompatibility evaluation indicated that HA/PBS/MPT composites were conductive to the adhesion, growth, and proliferation of MC3T3-E1 cells due to the HA being exposed around the pores. Thus, the MPT release rate, pore size, and cell induction ability of the HA/PBS/MPT composites were flexibly and effectively adjusted by the composition at the same time. By introducing HA, we innovatively achieved the construction of porous structures during the drug release process, without the addition of pore-forming agents. This approach allows the drug delivery system to combine controllable drug release and biocompatibility effectively, offering a novel method for bone repair material preparation. This work might provide a convenient and robust strategy for the fabrication of bone scaffolds with controllable drug release and porous structures.
Collapse
Affiliation(s)
| | | | | | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (H.Y.); (R.P.); (Y.Z.); (S.G.)
| | - Rong Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (H.Y.); (R.P.); (Y.Z.); (S.G.)
| | | |
Collapse
|
37
|
Méndez-Lozano N, Apatiga-Castro M, Ruíz-Baltazar ADJ, de la Luz-Asunción M, Pérez-Ramírez EE. Characterization and Evaluation of Silver Concentrations in Hydroxyapatite Powders. J Funct Biomater 2023; 14:467. [PMID: 37754881 PMCID: PMC10532154 DOI: 10.3390/jfb14090467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The goal of this study is to evaluate the influence of the concentration of silver on the structural and antimicrobial in vitro properties of silver-doped hydroxyapatite powders obtained using the precipitation method. Different concentrations of silver were evaluated to assess the antimicrobial properties. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), and dispersive energy spectroscopy (EDS) were used to characterize the powders. XRD and FTIR showed that the hydroxyapatite structure is not affected by the incorporation of silver; on the other hand, EDS showed the presence of silver in the powders. Antibacterial studies showed the efficiency of hydroxyapatite powders in inhibiting bacterial growth as silver concentration increases. According to the results, silver-doped hydroxyapatite powders are suggested for use in the prevention and treatment of infections in bone and dental tissues.
Collapse
Affiliation(s)
- Néstor Méndez-Lozano
- Campus Querétaro, Universidad del Valle de México, Blvd. Juriquilla No. 1000 A Del., Santa Rosa Jáuregui 76230, Querétaro, Mexico; (M.d.l.L.-A.); (E.E.P.-R.)
| | - Miguel Apatiga-Castro
- CONAHCYT—Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico; (M.A.-C.); (A.d.J.R.-B.)
| | - Alvaro de Jesús Ruíz-Baltazar
- CONAHCYT—Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico; (M.A.-C.); (A.d.J.R.-B.)
| | - Miguel de la Luz-Asunción
- Campus Querétaro, Universidad del Valle de México, Blvd. Juriquilla No. 1000 A Del., Santa Rosa Jáuregui 76230, Querétaro, Mexico; (M.d.l.L.-A.); (E.E.P.-R.)
| | - Eduardo E. Pérez-Ramírez
- Campus Querétaro, Universidad del Valle de México, Blvd. Juriquilla No. 1000 A Del., Santa Rosa Jáuregui 76230, Querétaro, Mexico; (M.d.l.L.-A.); (E.E.P.-R.)
| |
Collapse
|
38
|
Deymeh SM, Hashemi-Najafabadi S, Baghaban-Eslaminejad M, Bagheri F. Investigation of osteogenesis and angiogenesis in perfusion bioreactors using improved multi-layer PCL-nHA-nZnO electrospun scaffolds. Biotechnol Lett 2023; 45:1223-1243. [PMID: 37439932 DOI: 10.1007/s10529-023-03411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/07/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Bone tissue engineering aims to create a three-dimensional, matured, angiogenic scaffold with a suitable thickness that resembles a natural bone matrix. On the other hand, electrospun fibers, which researchers have considered due to their good biomimetic properties, are considered 2D structures. Due to the highly interwoven network and small pore size, achieving the desired thickness for bone lesions has always been challenging. In bone tissue engineering, bioreactors are crucial for achieving initial tissue maturity and introducing certain signals as flow parameters for differentiation. METHODS In the present study, Human bone marrow mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were co-cultured in a perfusion bioreactor on treated (improved pore size by gelatin sacrification and subsequent ultrasonication) 5-layer polycaprolactone-nano hydroxyapatite-nano zinc oxide (T-PHZ) scaffolds to investigate osteogenesis and angiogenesis simultaneously. The flow parameters and stresses on the cells were studied using two patterns of parallel and vertical scaffolds relative to the flow of the culture medium. In dynamic vertical flow (DVF), the culture medium flows perpendicular to the scaffolds, and in dynamic parallel flow (DPF), the culture medium flows parallel to the scaffolds. In all evaluations, static samples (S) served as the control group. RESULTS Live/dead, and MTT assays demonstrated the biocompatibility of the 5-layer scaffolds and the suitability of the bioreactor's functional conditions. ALP activity, EDAX analysis, and calcium content measurements exhibited greater osteogenesis for T-PHZ scaffolds in DVF conditions. Calcium content increased by a factor of 2.2, 1.8, and 1.6 during days 7 to 14 of culture under DVF, DPF and S conditions, respectively. After 21 days of co-culturing, an immunohistochemistry (IHC) test was performed to investigate angiogenesis and osteogenesis. Five antibodies were investigated in DVF, CD31, VEGFA, and VEGFR2 for angiogenesis, osteocalcin, and RUNX2 for osteogenesis. Compressive stress applied in DVF mode has increased osteogenic activity compared to DPF. CONCLUSION The results indicated the development of ideal systems for osteogenesis and angiogenesis on the treated multilayer electrospun scaffolds in the perfusion bioreactor.
Collapse
Affiliation(s)
- Saeed Moghadam Deymeh
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohamadreza Baghaban-Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
39
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
40
|
Liu X, Xie Y, Gao W, Zhan L, Hu L, Zuo L, Li Y. Experimental study of dexamethasone-loaded hollow hydroxyapatite microspheres applied to direct pulp capping of rat molars. Front Endocrinol (Lausanne) 2023; 14:1192420. [PMID: 37600685 PMCID: PMC10435764 DOI: 10.3389/fendo.2023.1192420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Dexamethasone (DEX) exerts anti-inflammatory and osteogenic effects. Hydroxyapatite is commonly used in bone repair due to its osteoconductivity, osseointegration, and osteogenesis induction. Hollow hydroxyapatite (HHAM) is often used as a drug carrier. Objective This study aimed to investigate the histological responses of exposed dental pulp when dexamethasone-loaded nanohydroxyapatite microspheres (DHHAM) were used as a direct capping agent. Methods Cavities were created in the left maxillary first molar of Wistar rats and filled with Dycal, HHAM, and DHHAM. No drug was administered to the control group. The rats were sacrificed at 1, 2, and 4 weeks after the procedure. The molars were extracted for fixation, demineralization, dehydration, embedding, and sectioning. H&E staining was performed to detect the formation of reparative dentin. H&E and CD45 immunohistochemical staining were performed to detect pulp inflammation. Immunohistochemical staining was performed to assess the expressions of dentin matrix protein 1 (DMP-1), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β. Results The results of H&E and CD45 immunohistochemical staining showed that the degree of inflammation in the DHHAM group was less than that in the Control and HHAM groups at 1, 2, and 4 weeks after capping of the rat molar teeth (p<0.01). The H&E staining showed that the percentage of reparative dentin formed in the DHHAM group was higher than that in the Control, HHAM (p<0.001), and Dycal groups (p<0.01) at 1 and 2 weeks, and was significantly higher than that in the Control group (p<0.001) and the HHAM group (p<0.01) at 4 weeks. The immunohistochemical staining showed a lower range and intensity of expression of IL-1β, IL-6, and TNF-α and high expression levels of DMP-1 in the DHHAM group at 1, 2, and 4 weeks after pulp capping relative to the Control group. Conclusions DHHAM significantly inhibited the progression of inflammation and promoted reparative dentin formation.
Collapse
Affiliation(s)
- Xiaoli Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Weijia Gao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Luoning Zhan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Ling Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Linjing Zuo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
41
|
Nicoara AI, Voineagu TG, Alecu AE, Vasile BS, Maior I, Cojocaru A, Trusca R, Popescu RC. Fabrication and Characterisation of Calcium Sulphate Hemihydrate Enhanced with Zn- or B-Doped Hydroxyapatite Nanoparticles for Hard Tissue Restoration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2219. [PMID: 37570539 PMCID: PMC10421315 DOI: 10.3390/nano13152219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
A composite based on calcium sulphate hemihydrate enhanced with Zn- or B-doped hydroxyapatite nanoparticles was fabricated and evaluated for bone graft applications. The investigations of their structural and morphological properties were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy techniques. To study the bioactive properties of the obtained composites, soaking tests in simulated body fluid (SBF) were performed. The results showed that the addition of 2% Zn results in an increase of 2.27% in crystallinity, while the addition of boron causes an increase of 5.61% compared to the undoped HAp sample. The crystallite size was found to be 10.69 ± 1.59 nm for HAp@B, and in the case of HAp@Zn, the size reaches 16.63 ± 1.83 nm, compared to HAp, whose crystallite size value was 19.44 ± 3.13 nm. The mechanical resistance of the samples doped with zinc was the highest and decreased by about 6% after immersion in SBF. Mixing HAp nanoparticles with gypsum improved cell viability compared to HAp for all concentrations (except for 200 µg/mL). Cell density decreased with increasing nanoparticle concentration, compared to gypsum, where the cell density was not significantly affected. The degree of cellular differentiation of osteoblast-type cells was more accentuated in the case of samples treated with G+HAp@B nanoparticles compared to HAp@B. Cell viability in these samples decreased inversely proportionally to the concentration of administered nanoparticles. From the point of view of cell density, this confirmed the quantitative data.
Collapse
Affiliation(s)
- Adrian Ionut Nicoara
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.N.); (A.E.A.); (I.M.); (R.T.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- National R&D Institute for Nonferrous and Rare Metals–IMNR, 077145 Bucharest, Romania
| | - Teodor Gabriel Voineagu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (T.G.V.); (R.C.P.)
| | - Andrada Elena Alecu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.N.); (A.E.A.); (I.M.); (R.T.)
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ioana Maior
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.N.); (A.E.A.); (I.M.); (R.T.)
| | - Anca Cojocaru
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.N.); (A.E.A.); (I.M.); (R.T.)
| | - Roxana Trusca
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.N.); (A.E.A.); (I.M.); (R.T.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Roxana Cristina Popescu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (T.G.V.); (R.C.P.)
- National R&D Institute for Physics and Nuclear Engineering-Horia Hulubei, 077125 Magurele, Romania
| |
Collapse
|
42
|
Klecandová L, Nakonieczny DS, Reli M, Simha Martynková G. Antibacterial and Biocompatible Polyethylene Composites with Hybrid Clay Nanofillers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5179. [PMID: 37512453 PMCID: PMC10384059 DOI: 10.3390/ma16145179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Low-density polyethylene is one of the basic polymers used in medicine for a variety of purposes; so, the relevant improvements in functional properties are discussed here, making it safer to use as devices or implants during surgery or injury. The objective of the laboratory-prepared material was to study the antimicrobial and biocompatible properties of low-density polyethylene composites with 3 wt. % hybrid nanoclay filler. We found that the antimicrobial activity was mainly related to the filler, i.e., the hybrid type, where inorganic clay minerals, vermiculite or montmorillonite, were intercalated with organic chlorhexidine diacetate and subsequently decorated with Ca-deficient hydroxyapatite. After fusion of the hybrid nanofiller with polyethylene, intense exfoliation of the clay layers occurred. This phenomenon was confirmed by the analysis of the X-ray diffraction patterns of the composite, where the original basal peak of the clays decreased or completely disappeared, and the optimal distribution of the filler was observed using the transmission mode of light microscopy. Functional property testing showed that the composites have good antibacterial activity against Staphylococcus aureus, and the biocompatibility prediction demonstrated the formation of Ca- and P-containing particles through an in vitro experiment, thus applicable for medical use.
Collapse
Affiliation(s)
- Lenka Klecandová
- IT4Innovations, VSB-Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Damian S Nakonieczny
- Department of Biomedical Engineering, Silesian University of Technology, Akademicka 2A, Młyńska 8, 44-100 Gliwice, Poland
| | - Magda Reli
- Intitute of Environmental Technologies, CEET, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Gražyna Simha Martynková
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
43
|
Zhang S, Ding L, Chen G, Zhang J, Ge W, Qu Y. Enhanced bone regeneration via local low-dose delivery of PTH 1-34 in a composite hydrogel. Front Bioeng Biotechnol 2023; 11:1209752. [PMID: 37465690 PMCID: PMC10352085 DOI: 10.3389/fbioe.2023.1209752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Introducing bone regeneration-promoting factors into scaffold materials to improve the bone induction property is crucial in the fields of bone tissue engineering and regenerative medicine. This study aimed to develop a Sr-HA/PTH1-34-loaded composite hydrogel system with high biocompatibility. Teriparatide (PTH1-34) capable of promoting bone regeneration was selected as the bioactive factor. Strontium-substituted hydroxyapatite (Sr-HA) was introduced into the system to absorb PTH1-34 to promote the bioactivity and delay the release cycle. PTH1-34-loaded Sr-HA was then mixed with the precursor solution of the hydrogel to prepare the composite hydrogel as bone-repairing material with good biocompatibility and high mechanical strength. The experiments showed that Sr-HA absorbed PTH1-34 and achieved the slow and effective release of PTH1-34. In vitro biological experiments showed that the Sr-HA/PTH1-34-loaded hydrogel system had high biocompatibility, allowing the good growth of cells on the surface. The measurement of alkaline phosphatase activity and osteogenesis gene expression demonstrated that this composite system could promote the differentiation of MC3T3-E1 cells into osteoblasts. In addition, the in vivo cranial bone defect repair experiment confirmed that this composite hydrogel could promote the regeneration of new bones. In summary, Sr-HA/PTH1-34 composite hydrogel is a highly promising bone repair material.
Collapse
Affiliation(s)
- Shanyong Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lei Ding
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Gaoyang Chen
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Hand Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen, China
| | - Jiayin Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wanbao Ge
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yuan Qu
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
Gupta A, Kumar Mehta S, Qayoom I, Gupta S, Singh S, Kumar A. Biofunctionalization with Cissus quadrangularis Phytobioactives Accentuates Nano-Hydroxyapatite Based Ceramic Nano-Cement for Neo-Bone Formation in Critical Sized Bone Defect. Int J Pharm 2023:123110. [PMID: 37302672 DOI: 10.1016/j.ijpharm.2023.123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Developing biofunctionalized ceramic bone substitutes with phytobioactives for their sustained delivery is highly desired to enhance the osteo-active potential of ceramic bone substitutes, reduce the systemic toxicity of synthetic drugs, and increase the bioavailability of phytobioactives. The present work highlights the local delivery of phytobioactives of Cissus quadrangularis (CQ) through nano-hydroxyapatite (nHAP) based ceramic nano-cement. The phytoconstituent profiling represented the optimized CQ fraction to be rich in osteogenic polyphenols and flavonoids like quercetin, resveratrol, and their glucosides. Further, CQ phytobioactives-based formulation was biocompatible, increased bone formation, calcium deposition, proliferation, and migration of cells with simultaneous alleviation of cellular oxidative stress. In the in vivo critical-sized bone defect model, enhanced formation of highly mineralized tissue (BV mm3) in CQ phytobioactives functionalized nano-cement (10.5 ± 2 mm3) were observed compared to the control group (6.5 ± 1.2 mm3). Moreover, the addition of CQ phytobioactives to the bone nano-cement increased the fractional bone volume (BV/TV%) to 21 ± 4.2% compared to 13.1 ± 2.5% in non-functionalized nano-cement. The results demonstrated nHAP-based nano-cement as a carrier for phytobioactives which could be a promising approach for neo-bone formation in different bone defect conditions.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Sanjay Kumar Mehta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India.
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India.
| |
Collapse
|
45
|
Badea MA, Balas M, Popa M, Borcan T, Bunea AC, Predoi D, Dinischiotu A. Biological Response of Human Gingival Fibroblasts to Zinc-Doped Hydroxyapatite Designed for Dental Applications-An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114145. [PMID: 37297278 DOI: 10.3390/ma16114145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the biological response induced by hydroxyapatite (HAp) and zinc-doped HAp (ZnHAp) in human gingival fibroblasts and to explore their antimicrobial activity. The ZnHAp (with xZn = 0.00 and 0.07) powders, synthesized by the sol-gel method, retained the crystallographic structure of pure HA without any modification. Elemental mapping confirmed the uniform dispersion of zinc ions in the HAp lattice. The size of crystallites was 18.67 ± 2 nm for ZnHAp and 21.54 ± 1 nm for HAp. The average particle size was 19.38 ± 1 nm for ZnHAp and 22.47 ± 1 nm for HAp. Antimicrobial studies indicated an inhibition of bacterial adherence to the inert substrate. In vitro biocompatibility was tested on various doses of HAp and ZnHAp after 24 and 72 h of exposure and revealed that cell viability decreased after 72 h starting with a dose of 31.25 µg/mL. However, cells retained membrane integrity and no inflammatory response was induced. High doses (such as 125 µg/mL) affected cell adhesion and the architecture of F-actin filaments, while in the presence of lower doses (such as 15.625 µg/mL), no modifications were observed. Cell proliferation was inhibited after treatment with HAp and ZnHAp, except the dose of 15.625 µg/mL ZnHAp at 72 h of exposure, when a slight increase was observed, proving an improvement in ZnHAp activity due to Zn doping.
Collapse
Affiliation(s)
- Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663 Bucharest, Romania
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Marcela Popa
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Teodora Borcan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Anamaria-Cristina Bunea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Daniela Predoi
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
46
|
Badhe RV, Chatterjee A, Bijukumar D, Mathew MT. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Bone 2023; 171:116746. [PMID: 36965655 PMCID: PMC10559728 DOI: 10.1016/j.bone.2023.116746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
In tissue engineering, the fate of a particular organ/tissue regeneration and repair mainly depends on three pillars - 3D architecture, cells used, and stimulus provided. 3D cell supportive structure development is one of the crucial pillars necessary for defining organ/tissue geometry and shape. In recent years, the advancements in 3D bio-printing (additive manufacturing) made it possible to develop very precise 3D architectures with the help of industrial software like Computer-Aided Design (CAD). The main requirement for the 3D printing process is the bio-ink, which can act as a source for cell support, proliferation, drug (growth factors, stimulators) delivery, and organ/tissue shape. The selection of the bio-ink depends upon the type of 3D tissue of interest. Printing tissues like bone and cartilage is always challenging because it is difficult to find printable biomaterial that can act as bio-ink and mimic the strength of the natural bone and cartilage tissues. This review describes different biomaterials used to develop bio-inks with different processing variables and cell-seeding densities for bone and cartilage 3D printing applications. The review also discusses the advantages, limitations, and cell bio-ink compatibility in each biomaterial section. The emphasis is given to bio-inks reported for 3D printing cartilage and bone and their applications in orthopedics and orthodontists. The critical/important performance and the architectural morphology requirements of desired bone and cartilage bio-inks were compiled in summary.
Collapse
Affiliation(s)
- Ravindra V Badhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA; Pharmaceutical Chemistry Department, Marathwada Mitramandal's College of Pharmacy, Thergaon, Pune, Maharashtra, India
| | - Abhinav Chatterjee
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.
| |
Collapse
|
47
|
Zhang W, Jiang Z, Chi J, Sun H, Li H, Liu W, Han B. A Novel Porous Butyryl Chitin-Animal Derived Hydroxyapatite Composite Scaffold for Cranial Bone Defect Repair. Int J Mol Sci 2023; 24:ijms24108519. [PMID: 37239867 DOI: 10.3390/ijms24108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Bone defects, a common orthopedic problem in clinical practice, are a serious threat to human health. As alternative materials to autologous bone grafts, synthetic cell-free functionalized scaffolds have been the focus of recent research in designing scaffolds for bone tissue engineering. Butyryl chitin (BC) is a derivative of chitin (CT) with improved solubility. It has good biocompatibility, but few studies have investigated its use in bone repair. In this study, BC was successfully synthesized with a degree of substitution of 2.1. BC films were prepared using the cast film method and showed strong tensile strength (47.8 ± 4.54 N) and hydrophobicity (86.4 ± 2.46°), which was favorable for mineral deposition. An in vitro cytological assay confirmed the excellent cell attachment and cytocompatibility of the BC film; meanwhile, in vivo degradation indicated the good biocompatibility of BC. Hydroxyapatite (HA), extracted from bovine cancellous bone, had good cytocompatibility and osteogenic induction activity for the mouse osteoblast cell line MC3T3-E1. With the aim of combining the advantages of BC and HA, a BC-HA composite scaffold, with a good pore structure and mechanical strength, was prepared by physical mixing. Administered into skull defects of rats, the scaffolds showed perfect bone-binding performance and effective structural support, and significantly promoted the regeneration of new bone. These results prove that the BC-HA porous scaffold is a successful bone tissue engineering scaffold and has strong potential to be further developed as a substitute for bone transplantation.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huanchao Sun
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongjian Li
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
48
|
Newby SD, Forsynth C, Bow AJ, Bourdo SE, Hung M, Cheever J, Moffat R, Gross AJ, Licari FW, Dhar MS. Xenogenic Implantation of Human Mesenchymal Stromal Cells Using a Novel 3D-Printed Scaffold of PLGA and Graphene Leads to a Significant Increase in Bone Mineralization in a Rat Segmental Femoral Bone Defect. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1149. [PMID: 37049243 PMCID: PMC10097331 DOI: 10.3390/nano13071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Tissue-engineering technologies have the potential to provide an effective approach to bone regeneration. Based on the published literature and data from our laboratory, two biomaterial inks containing PLGA and blended with graphene nanoparticles were fabricated. The biomaterial inks consisted of two forms of commercially available PLGA with varying ratios of LA:GA (65:35 and 75:25) and molecular weights of 30,000-107,000. Each of these forms of PLGA was blended with a form containing a 50:50 ratio of LA:GA, resulting in ratios of 50:65 and 50:75, which were subsequently mixed with a 0.05 wt% low-oxygen-functionalized derivative of graphene. Scanning electron microscopy showed interconnected pores in the lattice structures of each scaffold. The cytocompatibility of human ADMSCs transduced with a red fluorescent protein (RFP) was evaluated in vitro. The in vivo biocompatibility and the potential to repair bones were evaluated in a critically sized 5 mm mechanical load-bearing segmental femur defect model in rats. Bone repair was monitored by radiological, histological, and microcomputed tomography methods. The results showed that all of the constructs were biocompatible and did not exhibit any adverse effects. The constructs containing PLGA (50:75)/graphene alone and with hADMSCs demonstrated a significant increase in mineralized tissues within 60 days post-treatment. The percentage of bone volume to total volume from microCT analyses in the rats treated with the PLGA + cells construct showed a 50% new tissue formation, which matched that of a phantom. The microCT results were supported by Von Kossa staining.
Collapse
Affiliation(s)
- Steven D. Newby
- Large Animal Regenerative Medicine Program, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Chris Forsynth
- Department of Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Austin J. Bow
- Large Animal Regenerative Medicine Program, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Shawn E. Bourdo
- Center for Integrative Nanotechnologies, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Man Hung
- College of Dental Medicine, Roseman University of Health Sciences, 10894 S River Front Parkway, South Jordan, UT 84095, USA
- Department of Orthopedic Surgery Operations, University of Utah, 590 Wakara Way, Salt Lake City, UT 84108, USA
| | - Joseph Cheever
- College of Dental Medicine, Roseman University of Health Sciences, 10894 S River Front Parkway, South Jordan, UT 84095, USA
| | - Ryan Moffat
- College of Dental Medicine, Roseman University of Health Sciences, 10894 S River Front Parkway, South Jordan, UT 84095, USA
| | - Andrew J. Gross
- College of Dental Medicine, Roseman University of Health Sciences, 10894 S River Front Parkway, South Jordan, UT 84095, USA
- Department of Oral and Maxillofacial Surgery, University of Tennessee Graduate School of Medicine, Knoxville, TN 37996, USA
| | - Frank W. Licari
- College of Dental Medicine, Roseman University of Health Sciences, 10894 S River Front Parkway, South Jordan, UT 84095, USA
| | - Madhu S. Dhar
- Large Animal Regenerative Medicine Program, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
49
|
Castañeda-Rodríguez S, González-Torres M, Ribas-Aparicio RM, Del Prado‑Audelo ML, Leyva‑Gómez G, Gürer ES, Sharifi‑Rad J. Recent advances in modified poly (lactic acid) as tissue engineering materials. J Biol Eng 2023; 17:21. [PMID: 36941601 PMCID: PMC10029204 DOI: 10.1186/s13036-023-00338-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
As an emerging science, tissue engineering and regenerative medicine focus on developing materials to replace, restore or improve organs or tissues and enhancing the cellular capacity to proliferate, migrate and differentiate into different cell types and specific tissues. Renewable resources have been used to develop new materials, resulting in attempts to produce various environmentally friendly biomaterials. Poly (lactic acid) (PLA) is a biopolymer known to be biodegradable and it is produced from the fermentation of carbohydrates. PLA can be combined with other polymers to produce new biomaterials with suitable physicochemical properties for tissue engineering applications. Here, the advances in modified PLA as tissue engineering materials are discussed in light of its drawbacks, such as biological inertness, low cell adhesion, and low degradation rate, and the efforts conducted to address these challenges toward the design of new enhanced alternative biomaterials.
Collapse
Affiliation(s)
- Samanta Castañeda-Rodríguez
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación, Ciudad de Mexico, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de Mexico, Mexico
| | - Maykel González-Torres
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación, Ciudad de Mexico, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de Mexico, Mexico
| | - Rosa María Ribas-Aparicio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de Mexico, Mexico
| | | | - Gerardo Leyva‑Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | | |
Collapse
|
50
|
Haghani N, Hassanzadeh Nemati N, Khorasani MT, Bonakdar S. Fabrication of polycaprolactone/heparinized nano fluorohydroxyapatite scaffold for bone tissue engineering uses. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2182781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Nila Haghani
- Department of Biomedical Engineering, College of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, College of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|