1
|
Mallick S, Pradhan T, Das S. Bacterial biomineralization of heavy metals and its influencing factors for metal bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123977. [PMID: 39752943 DOI: 10.1016/j.jenvman.2024.123977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation. This article summarizes the different biomineralization mechanisms of bacterial-induced heavy metal biomineralization, mainly microbial-induced carbonate precipitation (MICP), microbial-induced phosphate precipitation (MIPP), and microbial-induced sulphide precipitation (MISP). Moreover, bacterial structures such as cell wall, biofilm, and extracellular polymeric substances (EPS) influence mineralization and control bacterial compartmentalization of heavy metal precipitation. Several genes control the efficiency of biomineralization in bacteria, such as ureA, ureB, ureC, phoA, dsrA, dsrB, dsrC, dsrD, dsrE, luxS, and ompR. This biomineralization mechanism provides new and broad prospects for its application in soil improvement, industrial applications, and wastewater treatments. In addition, bacterial genetic modification holds immense potential for advancing the biomineralization process to meet diverse environmental and industrial needs.
Collapse
Affiliation(s)
- Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Trisnehi Pradhan
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
2
|
Chen Y, Wang Q, Bian Y, Zhan L, Gao Y, Guo H, Wang Y, Gao Y. Effects of enzyme-induced carbonate precipitation (EICP) with different urease sources on the zinc remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136321. [PMID: 39481265 DOI: 10.1016/j.jhazmat.2024.136321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Enzyme-induced carbonate precipitation (EICP) has been studied in the remediation of heavy metals in recent years. This study aims to investigate the impact of EICP with jack bean urease (JU) and sword bean urease (SU) on the Zn2+ remediation. The results show that relatively high concentration of organic molecules in SU can protect urease from deactivation and absorb Zn2+. For the treatment subject to 1 mmol/L of Zn2+ without calcium chloride added, the final NH4+ conversion efficiency and Zn2+ immobilization percentage for the SU group are 95 % and 95.1 % higher than those for JU group, respectively. For the treatment with calcium chloride added, SU group can produce enough CO32-, contributing to over 99 % formation of CaCO3. The CaCO3 can decrease Zn2+ concentration through the physical absorption. The highest Zn2+ immobilization percentage (98.9 %) can be achieved using SU with 0.5 mol/L calcium chloride. The XRD, FTIR and SEM-EDS analysis also show that CaCO3, ZnCO3, and Zn(OH)2 can be generated, and the organic molecules in SU and CaCO3 can adsorb Zn2+. SU is recommended as the catalyzer to immobilize Zn2+. The mechanism of Zn2+ immobilization can be understood as bio-mineralization to form ZnCO3 and Zn(OH)2, as well as adsorption by organic molecules in SU and CaCO3.
Collapse
Affiliation(s)
- Yanbo Chen
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China; Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou, China.
| | - Qingyang Wang
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China.
| | - Yi Bian
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China.
| | - Liangtong Zhan
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China.
| | - Yufeng Gao
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, China.
| | - Haowen Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS); CAS Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Yuze Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yunqi Gao
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding, Hebei, China.
| |
Collapse
|
3
|
Maureira A, Zapata M, Olave J, Jeison D, Wong LS, Panico A, Hernández P, Cisternas LA, Rivas M. MICP mediated by indigenous bacteria isolated from tailings for biocementation for reduction of wind erosion. Front Bioeng Biotechnol 2024; 12:1393334. [PMID: 38938979 PMCID: PMC11208896 DOI: 10.3389/fbioe.2024.1393334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
In this study, native ureolytic bacteria were isolated from copper tailings soils to perform microbial-induced carbonate precipitation (MICP) tests and evaluate their potential for biocement formation and their contribution to reduce the dispersion of particulate matter into the environment from tailings containing potentially toxic elements. It was possible to isolate a total of 46 bacteria; among them only three showed ureolytic activity: Priestia megaterium T130-1, Paenibacillus sp. T130-13 and Staphylococcus sp. T130-14. Biocement cores were made by mixing tailings with the isolated bacteria in presence of urea, resulting similar to those obtained with Sporosarcina pasteurii and Bacillus subtilis used as positive control. Indeed, XRD analysis conducted on biocement showed the presence of microcline (B. subtilis 17%; P. megaterium 11. 9%), clinochlore (S. pasteurii, 6.9%) and magnesiumhornblende (Paenibacillus sp. 17.8%; P. megaterium 14.6%); all these compounds were not initially present in the tailings soils. Moreover the presence of calcite (control 0.828%; Paenibacillus sp. 5.4%) and hematite (control 0.989%; B. subtilis 6.4%) was also significant unlike the untreated control. The development of biofilms containing abundant amount of Ca, C, and O on microscopic soil particles was evidenced by means of FE-SEM-EDX and XRD. Wind tunnel tests were carried out to investigate the resistance of biocement samples, accounted for a mass loss five holds lower than the control, i.e., the rate of wind erosion in the control corresponded to 82 g/m2h while for the biocement treated with Paenibacillus sp. it corresponded to only 16.371 g/m2h. Finally, in compression tests, the biocement samples prepared with P. megaterium (28.578 psi) and Paenibacillus sp. (28.404 psi) showed values similar to those obtained with S. pasteurii (27.102 psi), but significantly higher if compared to the control (15.427 psi), thus improving the compression resistance capacity of the samples by 85.2% and 84.1% with respect to the control. According to the results obtained, the biocement samples generated with the native strains showed improvements in the mechanical properties of the soil supporting them as potential candidates in applications for the stabilization of mining liabilities in open environments using bioaugmentation strategies with native strains isolated from the same mine tailing.
Collapse
Affiliation(s)
- Alejandro Maureira
- Laboratorio de Biotecnología Ambiental Aplicada BIOAL, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Manuel Zapata
- Laboratorio de Biotecnología Ambiental Aplicada BIOAL, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Olave
- Laboratorio de Biotecnología Ambiental Aplicada BIOAL, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Liey-Si Wong
- Centro Lithium I+D+i Universidad Católica del Norte, Antofagasta, Chile
| | - Antonio Panico
- Department of Engineering, University of Campania L. Vanvitelli, Aversa, Italy
| | - Pía Hernández
- Departamento de Ingeniería Química y Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, Antofagasta, Chile
| | - Luis A. Cisternas
- Departamento de Ingeniería Química y Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, Antofagasta, Chile
| | - Mariella Rivas
- Laboratorio de Biotecnología Ambiental Aplicada BIOAL, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
4
|
Taharia M, Dey D, Das K, Sukul U, Chen JS, Banerjee P, Dey G, Sharma RK, Lin PY, Chen CY. Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115990. [PMID: 38262090 DOI: 10.1016/j.ecoenv.2024.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Improper disposal practices have caused environmental disruptions, possessing by heavy metal ions and radioactive elements in water and soil, where the innovative and sustainable remediation strategies are significantly imperative in last few decades. Microbially induced carbonate precipitation (MICP) has emerged as a pioneering technology for remediating contaminated soil and water. Generally, MICP employs urease-producing microorganisms to decompose urea (NH2CONH2) into ammonium (NH4+and carbon dioxide (CO2), thereby increasing pH levels and inducing carbonate precipitation (CO32-), and effectively removing remove contaminants. Nonetheless, the intricate mechanism underlying heavy metal mineralization poses a significant challenge, constraining its application in contaminants engineering, particularly in the context of prolonged heavy metal leaching over time and its efficacy in adverse environmental conditions. This review provides a comprehensive idea of recent development of MICP and its application in environmental engineering, examining metabolic pathways, mineral precipitation mechanisms, and environmental factors as well as providing future perspectives for commercial utilization. The use of ureolytic bacteria in MICP demonstrates cost-efficiency, environmental compatibility, and successful pollutant abatement over tradition bioremediation techniques, and bio-synthesis of nanoparticles. limitations such as large-scale application, elevated Ca2+levels in groundwater, and gradual contaminant release need to be overcome. The possible future research directions for MICP technology, emphasizing its potential in conventional remediation, CO2 sequestration, bio-material synthesis, and its role in reducing environmental impact for long-term economic benefits.
Collapse
Affiliation(s)
- Md Taharia
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Debanjan Dey
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC campus, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Uttara Sukul
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Pritam Banerjee
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pin-Yun Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
5
|
Huang X, Zhang R, Xu Y, Zheng J. Immobilization of Cd 2+ in an aqueous environment using a two-step microbial-induced carbonate precipitation method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119868. [PMID: 38141349 DOI: 10.1016/j.jenvman.2023.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Previous researches indicate that the potent toxicity of cadmium hinders the efficacy of the microbial-induced carbonate precipitation (MICP) process for bioremediation of Cd2+ in aqueous environment. Increasing urea and calcium resource doses, introducing synergists, and utilizing urease-producing consortia can improve bio-immobilization performance of MICP. However, such measures may incur cost increases and/or secondary contamination. This study first verifies the substantial biotoxicity of Cd2+ for urease activity and then analyzes the practical limitation of traditional MICP using Bacillus pasteurii for bioremediation of Cd2+ in an aqueous environment containing 1-40 mM Cd2+ by a series tube tests and numerical simulation. Subsequently, a two-step MICP method, which separates urea hydrolysis and heavy metal precipitation, is introduced in this study to eliminate the inhibitory effect of heavy metal on urease activity. The concentrations of ammonium, Cd2+, and pH were monitored over time. The results indicate that the urease expression in B. pasteurii can be significantly inhibited by Cd2+ particularly at the concentration ranging from 10 to 40 mM, leading to pretty low efficacy of traditional MICP for bioremediation of Cd2+ (Cd2+ removal rate as low as 21.55-38.47% when the initial Cd2+ concentration = 40 mM). In contrast, when the two-step MICP method is applied, the Cd2+ can be almost completely immobilized, even though the concentration ratio of urea to Cd2+ is as low as 1.5:1.0, which is close to the theory minimum concentration ratio for the complete precipitation of carbonate to cadmium ions(1.0:1.0). Therefore, the cost-effective, environmentally sustainable, and straightforward two-step MICP method holds great potential for application in the bioremediation of Cd2+-contaminated solutions in high concentration.
Collapse
Affiliation(s)
- Xiaosong Huang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, Hubei, China
| | - Rongjun Zhang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, Hubei, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, Hubei, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Yaodong Xu
- Institute of Geotechnical and Underground Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Junjie Zheng
- School of Civil Engineering, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
6
|
Dranseike D, Cui Y, Ling AS, Donat F, Bernhard S, Bernero M, Areeckal A, Qin XH, Oakey JS, Dillenburger B, Studart AR, Tibbitt MW. Dual carbon sequestration with photosynthetic living materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.572991. [PMID: 38187760 PMCID: PMC10769394 DOI: 10.1101/2023.12.22.572991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Natural ecosystems offer efficient pathways for carbon sequestration, serving as a resilient approach to remove CO2 from the atmosphere with minimal environmental impact. However, the control of living systems outside of their native environments is often challenging. Here, we engineered a photosynthetic living material for dual CO2 sequestration by immobilizing photosynthetic microorganisms within a printable polymeric network. The carbon concentrating mechanism of the cyanobacteria enabled accumulation of CO2 within the cell, resulting in biomass production. Additionally, the metabolic production of OH- ions in the surrounding medium created an environment for the formation of insoluble carbonates via microbially-induced calcium carbonate precipitation (MICP). Digital design and fabrication of the living material ensured sufficient access to light and nutrient transport of the encapsulated cyanobacteria, which were essential for long-term viability (more than one year) as well as efficient photosynthesis and carbon sequestration. The photosynthetic living materials sequestered approximately 2.5 mg of CO2 per gram of hydrogel material over 30 days via dual carbon sequestration, with 2.2 ± 0.9 mg stored as insoluble carbonates. Over an extended incubation period of 400 days, the living materials sequestered 26 ± 7 mg of CO2 per gram of hydrogel material in the form of stable minerals. These findings highlight the potential of photosynthetic living materials for scalable carbon sequestration, carbon-neutral infrastructure, and green building materials. The simplicity of maintenance, coupled with its scalability nature, suggests broad applications of photosynthetic living materials as a complementary strategy to mitigate CO2 emissions.
Collapse
Affiliation(s)
- Dalia Dranseike
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Yifan Cui
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Andrea S. Ling
- Digital Building Technologies, Department of Architecture, ETH Zurich, Zurich, CH
| | - Felix Donat
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Margherita Bernero
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH
| | - Akhil Areeckal
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Xiao-Hua Qin
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH
| | - John S. Oakey
- Department of Chemical and Biomedical Engineering, University of Wyoming, Laramie, Wyoming, US
| | | | - André R. Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, CH
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| |
Collapse
|
7
|
Vaskevicius L, Malunavicius V, Jankunec M, Lastauskiene E, Talaikis M, Mikoliunaite L, Maneikis A, Gudiukaite R. Insights in MICP dynamics in urease-positive Staphylococcus sp. H6 and Sporosarcina pasteurii bacterium. ENVIRONMENTAL RESEARCH 2023; 234:116588. [PMID: 37423368 DOI: 10.1016/j.envres.2023.116588] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbially induced calcite precipitation (MICP) is an efficient and eco-friendly technique that has attracted significant interest for resolving various problems in the soil (erosion, improving structural integrity and water retention, etc.), remediation of heavy metals, production of self-healing concrete or restoration of different concrete structures. The success of most common MICP methods depends on microorganisms degrading urea which leads to the formation of CaCO3 crystals. While Sporosarcina pasteurii is a well-known microorganism for MICP, other soil abundant microorganisms, such as Staphylococcus bacteria have not been thoroughly studied for its efficiency in bioconsolidation though MICP is a very important proccess which can ensure soil quality and health. This study aimed to analyze MICP process at the surface level in Sporosarcina pasteurii and a newly screened Staphylococcus sp. H6 bacterium as well as show the possibility of this new microorganism to perform MICP. It was observed that Staphylococcus sp. H6 culture precipitated 157.35 ± 3.3 mM of Ca2+ ions from 200 mM, compared to 176 ± 4.8 mM precipitated by S. pasteurii. The bioconsolidation of sand particles was confirmed by Raman spectroscopy and XRD analysis, which indicated the formation of CaCO3 crystals for both Staphylococcus sp. H6 and S. pasteurii cells. The water-flow test suggested a significant reduction in water permeability in bioconsolidated sand samples for both Staphylococcus sp. H6 and S. pasteurii. Notably, this study provides the first evidence that CaCO3 precipitation occurs on the surface of Staphylococcus and S. pasteurii cells within the initial 15-30 min after exposure to the biocementation solution. Furthermore, Atomic force microscopy (AFM) indicated rapid changes in cell roughness, with bacterial cells becoming completely coated with CaCO3 crystals after 90 min incubation with a biocementation solution. To our knowledge, this is the first time where atomic force microscopy was used to visualize the dynamic of MICP on cell surface.
Collapse
Affiliation(s)
- Laurynas Vaskevicius
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Vilius Malunavicius
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Marija Jankunec
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Egle Lastauskiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Martynas Talaikis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Lina Mikoliunaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Laboratory of Spectroelectrochemistry, Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekis Av. 3, LT-10257, Vilnius, Lithuania
| | - Andrius Maneikis
- Vilnius Gediminas Technical University, Sauletekis Av. 11, LT-10223, Vilnius, Lithuania
| | - Renata Gudiukaite
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
8
|
Yu X, Jiang N, Yang Y, Liu H, Gao X, Cheng L. Heavy metals remediation through bio-solidification: Potential application in environmental geotechnics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115305. [PMID: 37517309 DOI: 10.1016/j.ecoenv.2023.115305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Heavy metals are pervasive pollutants found in water, soil, and solid wastes. Bio-solidification offers an environmentally friendly approach to immobilize heavy metal ions using two types of bacteria: urease-producing bacteria (UPB) and phosphatase-producing bacteria (PPB). UPB, exemplified by Sporosarcina pasteurii, secretes urease to hydrolyze urea and generate CO32- ions, while PPB, like Bacillus subtilis, produces alkaline phosphatase to hydrolyze organophosphate monoester (ROP) and produce PO43- ions. These ions react with heavy metal ions, effectively reducing their concentration by forming insoluble carbonate or phosphate precipitates. The success of bio-solidification is influenced by various factors, including substrate concentration, temperature, pH, and bacterial density. Optimal operational conditions can significantly enhance the remediation performance of heavy metals. UPB and PPB hold great potential for remediating heavy metal pollution in diverse contaminated areas such as tailings ponds, electroplating sewage, and garbage incineration plants. In conclusion, harnessing the power of these microbial methods can provide effective solutions for remediating heavy metal-induced pollution across a range of environmental conditions.
Collapse
Affiliation(s)
- Xiaoniu Yu
- Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China.
| | - Ningjun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | - Yang Yang
- School of Civil Engineering, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Haijun Liu
- School of Civil Engineering, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Xuecheng Gao
- School of Civil Engineering, Chongqing University; Chongqing University Industrial Technology Research Institute, Chongqing 400045, China.
| | - Liang Cheng
- School of Environmental and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
9
|
Castillo J, Alom J, Gomez-Arias A, Cebekhulu S, Matu A, Cason E, Valverde A. Bacterial communities shift and influence in an acid mine drainage treatment using barium carbonate disperse alkaline substrate system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163526. [PMID: 37116802 DOI: 10.1016/j.scitotenv.2023.163526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Chemical passive treatment systems used to remediate acid mine drainage has been evaluated based mainly on the reactivity of the chemical alkaline reagents, overlooking the activity of the microorganisms that proliferate in these artificial ecosystems. In this study, the bacterial communities of a unique passive treatment system known as BDAS (Barium carbonate Dispersed Alkaline Substrate) were investigated using 16S rRNA gene metagenomic sequencing combined with hydrochemical characterization of the AMD and phenotypic characterization of biogenic precipitates. According to the hydrochemical characterization, the water quality improved as the water progressed through the system, with a drastic increase in the pH (up to alkaline conditions) and total organic carbon, as well as the removal of main contaminants such as Ca2+, SO42-, Fe3+, Al3+, and Mn2+. These environmental changes resulted in an increase in bacterial diversity (richness) after the inlet and in the shift of the bacterial communities from chemoautotrophs (e.g., Ferrovum and Acidiphilum) to chemoheterotrophs (e.g., Brevundimonas and Geobacter). Some of these taxa harbour potential to immobilize metals, aiding in the treatment of the water. One of the mechanisms involved in the immobilization of metals is microbially induced calcium carbonate precipitation, which seems to occur spontaneously in BDAS. The production of biofilm was also observed in most parts of the system, except in the inlet, helping with the removal of metals. However, in the long run, the build-up of biofilm and precipitation of metals could clog (i.e., biofouling) the pores of the matrix, reducing the treatment efficiency. Potential human pathogens (e.g. Legionella) were also detected in BDAS indicating the need for a treatment step at the end of the system to remove pathogenic microorganisms. These findings present a new perspective of the bacterial communities and their effects (both positively and negatively) in a chemical passive treatment system.
Collapse
Affiliation(s)
- J Castillo
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
| | - J Alom
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - A Gomez-Arias
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - S Cebekhulu
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - A Matu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - E Cason
- Department of Animal Sciences, University of the Free State, Bloemfontein, South Africa
| | - A Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| |
Collapse
|
10
|
Xue ZF, Cheng WC, Xie YX, Wang L, Hu W, Zhang B. Investigating immobilization efficiency of Pb in solution and loess soil using bio-inspired carbonate precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121218. [PMID: 36764377 DOI: 10.1016/j.envpol.2023.121218] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Lead (Pb) metal accumulation in surrounding environments can cause serious threats to human health, causing liver and kidney function damage. This work explored the potential of applying the MICP technology to remediate Pb-rich water bodies and Pb-contaminated loess soil sites. In the test tube experiments, the Pb immobilization efficiency of above 85% is attained through PbCO3 and Pb(CO3)2(OH)2 precipitation. Notwithstanding that, in the loess soil column tests, the Pb immobilization efficiency decreases with the increase in depth and could be as low as approximately 40% in the deep ground. PbCO3 and Pb(CO3)2(OH)2 precipitation has not been detected as the majority of Pb2+ combines with -OH (hydroxyl group) when subjected to 500 mg/kg Pb2+. The alkaline front promotes the chemisorption of Pb2+ with CO32- reducing the depletion of quartz mineral close to the surface. However, OH- is in shortage in the deep ground retarding the Pb immobilization. The Pb immobilization efficiency thus decreases with the increase in depth. Quartz and albite minerals, when subjected to 16,000 mg/kg Pb2+, appear not to intervene in the chemisorption with Pb2+ where the chemisorption of Pb2+ with CO32- plays a major role in the Pb immobilization. Compared to the nanoscale urease applied to the enzyme-induced carbonate precipitation (EICP) technology, the micrometer scale ureolytic bacteria penetrate into the deep ground with difficulty. The 'size' issue remains to be addressed in near future.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Bin Zhang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
11
|
Wang L, Cheng WC, Xue ZF, Rahman MM, Xie YX, Hu W. Immobilizing lead and copper in aqueous solution using microbial- and enzyme-induced carbonate precipitation. Front Bioeng Biotechnol 2023; 11:1146858. [PMID: 37051271 PMCID: PMC10083330 DOI: 10.3389/fbioe.2023.1146858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Inappropriate irrigation could trigger migration of heavy metals into surrounding environments, causing their accumulation and a serious threat to human central nervous system. Traditional site remediation technologies are criticized because they are time-consuming and featured with high risk of secondary pollution. In the past few years, the microbial-induced carbonate precipitation (MICP) is considered as an alternative to traditional technologies due to its easy maneuverability. The enzyme-induced carbonate precipitate (EICP) has attracted attention because bacterial cultivation is not required prior to catalyzing urea hydrolysis. This study compared the performance of lead (Pb) and copper (Cu) remediation using MICP and EICP respectively. The effect of the degree of urea hydrolysis, mass and species of carbonate precipitation, and chemical and thermodynamic properties of carbonates on the remediation efficiency was investigated. Results indicated that ammonium ion (NH4+) concentration reduced with the increase in lead ion (Pb2+) or copper ion (Cu2+) concentration, and for a given Pb2+ or Cu2+ concentration, it was much higher under MICP than EICP. Further, the remediation efficiency against Cu2+ is approximately zero, which is way below that against Pb2+ (approximately 100%). The Cu2+ toxicity denatured and even inactivated the urease, reducing the degree of urea hydrolysis and the remediation efficiency. Moreover, the reduction in the remediation efficiency against Pb2+ and Cu2+ appeared to be due to the precipitations of cotunnite and atacamite respectively. Their chemical and thermodynamic properties were not as good as calcite, cerussite, phosgenite, and malachite. The findings shed light on the underlying mechanism affecting the remediation efficiency against Pb2+ and Cu2+.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
- *Correspondence: Wen-Chieh Cheng,
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Md Mizanur Rahman
- UniSA STEM, SIRM, University of south Australia, Adelaide, SA, Australia
| | - Yi-Xin Xie
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wenle Hu
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
12
|
Kumar A, Song HW, Mishra S, Zhang W, Zhang YL, Zhang QR, Yu ZG. Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. CHEMOSPHERE 2023; 318:137894. [PMID: 36657570 DOI: 10.1016/j.chemosphere.2023.137894] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The occurrence of imbalanced heavy metals concentration due to anthropogenic hindrances in the aquatic and terrestrial environment has become a potential risk to life after circulating through different food chains. The microbial-induced carbonate precipitation (MICP) method has gradually received great attention from global researchers but the underlying mechanism of heavy metal mineralization is not well-understood and challenging, limiting the applications in wastewater engineering. This paper reviews the metabolic pathways, mechanisms, operational factors, and mathematical/modeling approaches in the MICP process. Subsequently, the recent advancement in MICP for the remediation of heavy metal pollution is being discussed. In the follow-up, the key challenges and prospective associated with technical bottlenecks of MICP method are elaborated. The prospective study reveals that MICP technology could be efficiently used to remediate heavy metal contaminants from the natural environment in a cost-effective way and has the potential to improve soil properties while remediating heavy metal contaminated soil.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - He-Wei Song
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yu-Ling Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Qian-Ru Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, China.
| | - Zhi-Guo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
13
|
Zhang W, Zhang H, Xu R, Qin H, Liu H, Zhao K. Heavy metal bioremediation using microbially induced carbonate precipitation: Key factors and enhancement strategies. Front Microbiol 2023; 14:1116970. [PMID: 36819016 PMCID: PMC9932936 DOI: 10.3389/fmicb.2023.1116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
With the development of economy, heavy metal (HM) contamination has become an issue of global concern, seriously threating animal and human health. Looking for appropriate methods that decrease their bioavailability in the environment is crucial. Microbially induced carbonate precipitation (MICP) has been proposed as a promising bioremediation method to immobilize contaminating metals in a sustainable, eco-friendly, and energy saving manner. However, its performance is always affected by many factors in practical application, both intrinsic and external. This paper mainly introduced ureolytic bacteria-induced carbonate precipitation and its implements in HM bioremediation. The mechanism of HM immobilization and in-situ application strategies (that is, biostimulation and bioaugmentation) of MICP are briefly discussed. The bacterial strains, culture media, as well as HMs characteristics, pH and temperature, etc. are all critical factors that control the success of MICP in HM bioremediation. The survivability and tolerance of ureolytic bacteria under harsh conditions, especially in HM contaminated areas, have been a bottleneck for an effective application of MICP in bioremediation. The effective strategies for enhancing tolerance of bacteria to HMs and improving the MICP performance were categorized to provide an in-depth overview of various biotechnological approaches. Finally, the technical barriers and future outlook are discussed. This review may provide insights into controlling MICP treatment technique for further field applications, in order to enable better control and performance in the complex and ever-changing environmental systems.
Collapse
Affiliation(s)
- Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Wenchao Zhang,
| | - Hong Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ruyue Xu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Haichen Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Hengwei Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Kun Zhao
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Insitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Zhang P, Liu XQ, Yang LY, Sheng HZY, Qian AQ, Fan T. Immobilization of Cd 2+ and Pb 2+ by biomineralization of the carbonate mineralized bacterial consortium JZ1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22471-22482. [PMID: 36301386 DOI: 10.1007/s11356-022-23587-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microbially induced carbonate precipitation (MICP) has been proven to effectively immobilize Cd2+ and Pb2+ using a single bacterium. However, there is an urgent need for studies of Cd2+ and Pb2+ immobilized by a bacterial consortium. In this study, a stable consortium designated JZ1 was isolated from soil that was contaminated with cadmium and lead, and the dominant genus Sporosarcina (99.1%) was found to have carbonate mineralization function. The results showed that 91.52% and 99.38% of Cd2+ and Pb2+ were mineralized by the consortium JZ1 with 5 g/L CaCl2 at an initial concentration of 5 mg/L Cd2+ and 150 mg/L Pb2+, respectively. The bioprecipitates were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Moreover, the kinetic studies indicated that the urea hydrolysis reaction fit well with the Michaelis-Menten equation, and the kinetic parameters Km and Vmax were estimated to be 38.69 mM and 58.98 mM/h, respectively. When the concentration of urea increased from 0.1 to 0.3 M, the mineralization rate increased by 1.58-fold. This study can provide a novel microbial resource for the biomineralization of Cd and Pb in soil and water environments.
Collapse
Affiliation(s)
- Peng Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xiao-Qiang Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Li-Yuan Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hua-Ze-Yu Sheng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - An-Qi Qian
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ting Fan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
15
|
Optimizing compressive strength of sand treated with MICP using response surface methodology. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AbstractIn the present study, the optimization of the microbiologically induced calcium carbonate precipitation (MICP) to produce biosandstone regarding the compressive strength is shown. For the biosandstone production, quartz sand was treated sequentially with the ureolytic microorganism Sporosarcina pasteurii (ATCC 11859) and a reagent containing urea and calcium chloride. Response surface methodology (RSM) was applied to investigate the influence of urea concentration, calcium chloride concentration and the volume of cell suspension on the compressive strength of produced biosandstone. A central composite design (CCD) was employed, and the resulting experimental data applied to a quadratic model. The statistical significance of the model was verified by experimental data (R2 = 0.9305). Optimized values for the concentration of urea and calcium chloride were 1492 mM and 1391 mM. For the volume of cell suspension during treatment 7.47 mL was determined as the optimum. Specimen treated under these conditions achieved a compressive strength of 1877 ± 240 kPa. This is an improvement of 144% over specimen treated with a reagent that is commonly used in literature (1000 mM urea/1000 mM CaCl2). This protocol allows for a more efficient production of biosandstone in future research regarding MICP.
Collapse
|
16
|
Xue ZF, Cheng WC, Wang L, Xie YX. Catalyzing urea hydrolysis using two-step microbial-induced carbonate precipitation for copper immobilization: Perspective of pH regulation. Front Microbiol 2022; 13:1001464. [PMID: 36187975 PMCID: PMC9522901 DOI: 10.3389/fmicb.2022.1001464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Microbial induced carbonate precipitation (MICP) has recently applied to immobilize heavy metals toward preventing their threats to public health and sustainable development of surrounding environments. However, for copper metallurgy activities higher copper ion concentrations cause the ureolytic bacteria to lose their activity, leading to some difficulty in forming carbonate precipitation for copper immobilization (referred to also as “biomineralization”). A series test tube experiments were conducted in the present work to investigate the effects of bacterial inoculation and pH conditions on the copper immobilization efficiency. The numerical simulations mainly aimed to compare with the experimental results to verify its applicability. The copper immobilization efficiency was attained through azurite precipitation under pH in a 4–6 range, while due to Cu2+ migration and diffusion, it reduced to zero under pH below 4. In case pH fell within a 7–9 range, the immobilization efficiency was attained via malachite precipitation. The copper-ammonia complexes formation reduced the immobilization efficiency to zero. The reductions were attributed either to the low degree of urea hydrolysis or to inappropriate pH conditions. The findings shed light on the necessity of securing the urease activity and modifying pH conditions using the two-step biomineralization approach while applying the MICP technology to remedy copper-rich water bodies.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
- *Correspondence: Wen-Chieh Cheng,
| | - Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Yi-Xin Xie
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
17
|
Research status and development of microbial induced calcium carbonate mineralization technology. PLoS One 2022; 17:e0271761. [PMID: 35867666 PMCID: PMC9334024 DOI: 10.1371/journal.pone.0271761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
In nature, biomineralization is a common phenomenon, which can be further divided into authigenic and artificially induced mineralization. In recent years, artificially induced mineralization technology has been gradually extended to major engineering fields. Therefore, by elaborating the reaction mechanism and bacteria of mineralization process, and summarized various molecular dynamics equations involved in the mineralization process, including microbial and nutrient transport equations, microbial adsorption equations, growth equations, urea hydrolysis equations, and precipitation equations. Because of the environmental adaptation stage of microorganisms in sandy soil, their reaction rate in sandy soil environment is slower than that in solution environment, the influencing factors are more different, in general, including substrate concentration, temperature, pH, particle size and grouting method. Based on the characteristics of microbial mineralization such as strong cementation ability, fast, efficient, and easy to control, there are good prospects for application in sandy soil curing, building improvement, heavy metal fixation, oil reservoir dissection, and CO2 capture. Finally, it is discussed and summarized the problems and future development directions on the road of commercialization of microbial induced calcium carbonate precipitation technology from laboratory to field application.
Collapse
|
18
|
Xue ZF, Cheng WC, Wang L, Wen S. Effects of Bacterial Culture and Calcium Source Addition on Lead and Copper Remediation Using Bioinspired Calcium Carbonate Precipitation. Front Bioeng Biotechnol 2022; 10:889717. [PMID: 35586552 PMCID: PMC9108487 DOI: 10.3389/fbioe.2022.889717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Lead and copper ions from wastewater induced by metallurgical processes are accumulated in soils, threatening plant and human health. The bioinspired calcium carbonate precipitation is proven effective in improving the cementation between soil particles. However, studies on capsulizing heavy metal ions using the bioinspired calcium carbonate precipitation are remarkably limited. The present study conducted a series of test tube experiments to investigate the effects of bacterial culture and calcium source addition on the remediation efficiency against lead and copper ions. The calcium carbonate precipitation was reproduced using the Visual MINTEQ software package to reveal the mechanism affecting the remediation efficiency. The degradation in the remediation efficiency against lead ions relies mainly upon the degree of urea hydrolysis. However, higher degrees of urea hydrolysis cause remediation efficiency against copper ions to reduce to zero. Such high degree of urea hydrolysis turns pH surrounding conditions into highly alkaline environments. Therefore, pursuing higher degrees of urea hydrolysis might not be the most crucial factor while remedying copper ions. The findings shed light on the importance of modifying pH surrounding conditions in capsulizing copper ions using the bioinspired calcium carbonate precipitation.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Shaojie Wen
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
19
|
Effect of Immobilizing Bacillus megaterium on the Compressive Strength and Water Absorption of Mortar. J CHEM-NY 2022. [DOI: 10.1155/2022/7752812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The world’s growing population and industrialization have led to increased construction activities. This has increased the amount of waste aggregates which can be recycled in construction and cut the cost of infrastructure development. This study, therefore, reports the experimental findings for the effect of immobilizing Bacillus megaterium on the compressive strength and water absorption of laboratory prepared test mortar. Bacterial solution used in this work had a concentration of 1.0 × 107 cells/mL. The impact of recycled mortar impregnated with bacteria was studied after curing the specimens in water, saturated lime water, and 1.5% sulfuric acid. Compressive strength for test specimens cured in the three media was determined at the 2nd, 7th, 28th, and 56th day of curing. SEM analysis was done for mortars cured in acidic media and saturated lime water after curing for 28 days. The test results indicated that curing in water and saturated water improved the compressive strength, while the acidic medium lowered it. Recycled mortar is, therefore, an ideal material for immobilizing Bacillus megaterium before introduction into fresh concrete/mortar. The use of recycled mortar is a good strategy to reduce wastes from construction activities, save on the cost of construction materials, and enhance environmental conservation.
Collapse
|
20
|
Ali A, Li M, Su J, Li Y, Wang Z, Bai Y, Ali EF, Shaheen SM. Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd 2+) and zinc (Zn 2+) through calcium carbonate precipitation: Microscopic and spectroscopic investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152668. [PMID: 34963589 DOI: 10.1016/j.scitotenv.2021.152668] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The toxic metal(loid)s TMs resistant bacterium Brevundimonas diminuta was isolated for the first time from mines polluted soil in Fengxian, China, and assessed for its potential for Cd and Zn precipitation in Cd and Zn co-contaminated aqueous solution at various Cd and Zn levels (20, 40, 80, 160, and 200 mg L-1), pH values (5, 6, 7, 8, and 9), and temperatures (20, 25, 30, and 35 °C). B. diminuta showed a high resistance to both Cd and Zn and was able to precipitate up to 99.2 and 99.7% of dissolved Cd and Zn respectively, at a pH of 7 and temperature of 30 °C. B. diminuta reduced the dissolved concentrations of Cd and Zn below the threshold levels in water. The 3D-EEM analysis revealed the presence of extracellular polymeric substances (EPS) such as tryptophan indicating bacterial growth under Cd/Zn stress. FTIR showed polysaccharides, CO32-, CaCO3, PO43-, and proteins, which may enhance bacterial growth and metal precipitation. SEM-EDS confirmed the leaf-like and granular shape of the biological precipitation and reduction in the percent weight of TMs, which promoted the adhesion/adsorption of Cd2+, Zn2+, and Ca2+. Moreover, XRD analysis confirmed the precipitation of Cd, Zn, and Ca in the form of CdCO3/Cd3(PO4)2, ZnCO3/ZnHPO4/Zn2(OH)PO4/Zn3(PO4)2, and CaCO3/Ca5(PO3)4OH, respectively. These findings indicate that Brevundimonas diminuta can be used for the bioremediation of TMs-contaminated aquatic environments.
Collapse
Affiliation(s)
- Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| |
Collapse
|
21
|
|
22
|
Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review. World J Microbiol Biotechnol 2021; 37:208. [PMID: 34719751 DOI: 10.1007/s11274-021-03176-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
In recent years, with industrial pollution and the application of agricultural fertilizers with high cadmium (Cd) content, soil Cd pollution has become increasingly serious. A large amount of Cd is discharged into the environment, greatly endangering the stability of the ecological environment and human health. The use of microorganisms to induce Cd precipitation and mineralization is an important bioremediation method. Itis highly efficient, has a low cost, enables environmental protection, and convenient to operate. This article summarizes the pollution status, pollution source, biological toxicity and existing forms of Cd, as well as the biomineralization mechanism of microbial induced Cd(II) precipitation, mainly including microbial-induced carbonate precipitation, microbial-induced phosphate precipitation and microbial-induced sulfide precipitation. Factors affecting the bioremediation of Cd, such as pH, coexisting ions, and temperature, are introduced. Finally, the key points and difficulties of future microbe-induced Cd(II) biomineralization research are highlighted, providing a scientific basis and theoretical guidance for the application of microbe-induced Cd(II) immobilization in soil.
Collapse
|
23
|
Testing the Capacity of Staphylococcus equorum for Calcium and Copper Removal through MICP Process. MINERALS 2021. [DOI: 10.3390/min11080905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This research focused on the evaluation of the potential use of a soil-isolated bacteria, identified as Staphylococcus equorum, for microbial-induced calcite precipitation (MICP) and copper removal. Isolated bacteria were characterized considering growth rate, urease activity, calcium carbonate precipitation, copper tolerance as minimum inhibitory concentration (MIC) and copper precipitation. Results were compared with Sporosarcina pasteurii, which is considered a model bacteria strain for MICP processes. The results indicated that the S. equorum strain had lower urease activity, calcium removal capacity and copper tolerance than the S. pasteurii strain. However, the culture conditions tested in this study did not consider the halophilic feature of the S. equorum, which could make it a promising bacterial strain to be applied in process water from mining operations when seawater is used as process water. On the other hand, copper removal was insufficient when applying any of the bacteria strains evaluated, most likely due to the formation of a copper–ammonia complex. Thus, the implementation of S. equorum for copper removal needs to be further studied, considering the optimization of culture conditions, which may promote better performance when considering calcium, copper or other metals precipitation.
Collapse
|
24
|
Bio-cement production using microbially induced calcite precipitation (MICP) method: A review. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116610] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Khanjani M, Westenberg DJ, Kumar A, Ma H. Tuning Polymorphs and Morphology of Microbially Induced Calcium Carbonate: Controlling Factors and Underlying Mechanisms. ACS OMEGA 2021; 6:11988-12003. [PMID: 34056353 PMCID: PMC8153981 DOI: 10.1021/acsomega.1c00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/21/2021] [Indexed: 05/31/2023]
Abstract
Microbially precipitated calcium carbonate (CaCO3) has drawn broad attention due to its potential applications in various areas, for example, biocementation, medicine, and soil reinforcement. Sporosarcina pasteurii (S. pasteurii), formerly known as Bacillus pasteurii, has been investigated for CaCO3 biomineralization due to its high ureolytic activity. A high degree of supersaturation with respect to the presence of bacterial cell wall, extracellular polymeric substances, and organic byproducts of bacterial activity plays an important role in the formation and stabilization of CaCO3 polymorphs. Although microbially induced CaCO3 and its polymorphs have been investigated broadly, the mechanisms of polymorph selection and morphological evolution are not well understood. This study employs ex situ approaches to address the complication of biomineralization in the presence of living organisms and to elucidate how solution chemistry, bacterial activity, and precipitation kinetics alter the polymorphism and morphology of CaCO3 induced by S. pasteurii. The results indicate that in the presence of enough calcium ions and urea (as a carbonate source), the bacterial activity favors the formation and stabilization of vaterite. The morphological observations also provide valuable information on the particles' microstructure. The morphology of calcite evolves from single crystal to polycrystalline structures, and the morphology of vaterite evolved from spherical to oval-shaped structures on increasing the organic material concentration. Specific functional groups also exert morphological control on CaCO3 polymorphs. However, the sensitivity of the calcite polymorph to the composition and orientation of these functional groups is higher compared to that of the vaterite polymorph. These findings offer important insights that can be used to constrain a set of experimental conditions for synthesizing a certain polymorph ratio for vaterite/calcite or a particular morphology of each polymorph and shed light on the crystallization and phase transformation mechanisms in such complicated bioenvironments.
Collapse
Affiliation(s)
- Maryam Khanjani
- Department
of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| | - David J. Westenberg
- Department
of Biological Sciences, Missouri University
of Science and Technology, Rolla, Missouri 65401, United States
| | - Aditya Kumar
- Department
of Materials Science and Engineering, Missouri
University of Science and Technology, Rolla, Missouri 65401, United States
| | - Hongyan Ma
- Department
of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| |
Collapse
|
26
|
State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications. CRYSTALS 2021. [DOI: 10.3390/cryst11040370] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of alternatives to soil stabilization through mechanical and chemical stabilization has paved the way for the development of biostabilization methods. Since its development, researchers have used different bacteria species for soil treatment. Soil treatment through bioremediation techniques has been used to understand its effect on strength parameters and contaminant remediation. Using a living organism for binding the soil grains to make the soil mass dense and durable is the basic idea of soil biotreatment. Bacteria and enzymes are commonly utilized in biostabilization, which is a common method to encourage ureolysis, leading to calcite precipitation in the soil mass. Microbial-induced calcite precipitation (MICP) and enzyme-induced calcite precipitation (EICP) techniques are emerging trends in soil stabilization. Unlike conventional methods, these techniques are environmentally friendly and sustainable. This review determines the challenges, applicability, advantages, and disadvantages of MICP and EICP in soil treatment and their role in the improvement of the geotechnical and geoenvironmental properties of soil. It further elaborates on their probable mechanism in improving the soil properties in the natural and lab environments. Moreover, it looks into the effectiveness of biostabilization as a remediation of soil contamination. This review intends to present a hands-on adoptable treatment method for in situ implementation depending on specific site conditions.
Collapse
|
27
|
Rajasekar A, Wilkinson S, Moy CK. MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 6:100096. [PMID: 36159179 PMCID: PMC9488051 DOI: 10.1016/j.ese.2021.100096] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 05/25/2023]
Abstract
In the last two decades, developments in the area of biomineralization has yielded promising results making it a potentially environmentally friendly technique for a wide range of applications in engineering and wastewater/heavy metal remediation. Microbially Induced Carbonate Precipitation (MICP) has led to numerous patented applications ranging from novel strains and nutrient sources for the precipitation of biominerals. Studies are being constantly published to optimize the process to become a promising, cost effective, ecofriendly approach when compared with the existing traditional remediation technologies which are implemented to solve multiple contamination/pollution issues. Heavy metal pollution still poses a major threat towards compromising the ecosystem. The removal of heavy metals is of high importance due to their recalcitrance and persistence in the environment. In that perspective, this paper reviews the current and most significant discoveries and applications of MICP towards the conversion of heavy metals into heavy metal carbonates and removal of calcium from contaminated media such as polluted water. It is evident from the literature survey that although heavy metal carbonate research is very effective in removal, is still in its early stages but could serve as a solution if the microorganisms are stimulated directly in the heavy metal environment.
Collapse
Affiliation(s)
- Adharsh Rajasekar
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing, 210044, China
| | - Stephen Wilkinson
- Department of Civil Engineering, University of Wollongong in Dubai, Dubai, United Arab Emirates
| | - Charles K.S. Moy
- Department of Civil Engineering, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu, China
| |
Collapse
|
28
|
Konstantinou C, Wang Y, Biscontin G, Soga K. The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens. Sci Rep 2021; 11:6161. [PMID: 33731790 PMCID: PMC7969948 DOI: 10.1038/s41598-021-85712-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/03/2021] [Indexed: 11/08/2022] Open
Abstract
Protocols for microbially induced carbonate precipitation (MICP) have been extensively studied in the literature to optimise the process with regard to the amount of injected chemicals, the ratio of urea to calcium chloride, the method of injection and injection intervals, and the population of the bacteria, usually using fine- to medium-grained poorly graded sands. This study assesses the effect of varying urease activities, which have not been studied systematically, and population densities of the bacteria on the uniformity of cementation in very coarse sands (considered poor candidates for treatment). A procedure for producing bacteria with the desired urease activities was developed and qPCR tests were conducted to measure the counts of the RNA of the Ure-C genes. Sand biocementaton experiments followed, showing that slower rates of MICP reactions promote more effective and uniform cementation. Lowering urease activity, in particular, results in progressively more uniformly cemented samples and it is proven to be effective enough when its value is less than 10 mmol/L/h. The work presented highlights the importance of urease activity in controlling the quality and quantity of calcium carbonate cements.
Collapse
Affiliation(s)
| | - Yuze Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Southern Marine Science and Engineering Laboratory (Guangzhou), Shenzhen, 518055, China.
| | | | - Kenichi Soga
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
29
|
Han L, Li J, Xue Q, Chen Z, Zhou Y, Poon CS. Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140967. [PMID: 32763598 DOI: 10.1016/j.scitotenv.2020.140967] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Solidification and stabilization (S/S) treatment via cement is common and effective for improving soil strength and stabilizing heavy metals in contaminated soils, but has certain drawbacks, such as high fossil energy consumption, big carbon footprint, poor chemical compatibility, and ambiguous long-term stability. This paper innovatively proposes bacterial-induced mineralization (BIM) as an eco-friendly and efficient S/S method. In the BIM-S/S treatment, life activities of bacteria produce minerals to cement the soil particles and fix the heavy metals. This review firstly summarizes the basic theories of BIM technology followed by the evaluation on remediation effects and long-term stability in terms of soil solidification and heavy metal stabilization. Then the factors in BIM-S/S application are reviewed. Emphasis is put on the comparison of the BIM-S/S effect with that of cement-based-S/S technology. It is concluded that BIM-S/S technology is promising with outstanding performance in sustainability. On the other hand, current limitations and deficiencies with this technology are identified finally, hereby the directions for future research are pointed to make a major advancement in the BIM-S/S technology.
Collapse
Affiliation(s)
- Lijun Han
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China.
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhen Chen
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Chi Sun Poon
- IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
30
|
Microbiologically Induced Carbonate Precipitation in the Restoration and Conservation of Cultural Heritage Materials. Molecules 2020; 25:molecules25235499. [PMID: 33255349 PMCID: PMC7727839 DOI: 10.3390/molecules25235499] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 11/30/2022] Open
Abstract
Microbiologically induced carbonate precipitation (MICP) is a well-known biogeochemical process that allows the formation of calcium carbonate deposits in the extracellular environment. The high concentration of carbonate and calcium ions on the bacterial surface, which serves as nucleation sites, promotes the calcium carbonate precipitation filling and binding deteriorated materials. Historic buildings and artwork, especially those present in open sites, are susceptible to enhanced weathering resulting from environmental agents, interaction with physical-chemical pollutants, and living organisms, among others. In this work, some published variations of a novel and ecological surface treatment of heritage structures based on MICP are presented and compared. This method has shown to be successful as a restoration, consolidation, and conservation tool for improvement of mechanical properties and prevention of unwanted gas and fluid migration from historical materials. The treatment has revealed best results on porous media matrixes; nevertheless, it can also be applied on soil, marble, concrete, clay, rocks, and limestone. MICP is proposed as a potentially safe and powerful procedure for efficient conservation of worldwide heritage structures.
Collapse
|
31
|
A selected bacterial strain for the self-healing process in cementitious specimens without cell immobilization steps. Bioprocess Biosyst Eng 2020; 44:195-208. [PMID: 32892287 DOI: 10.1007/s00449-020-02435-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
The use of microorganisms capable of mediating the bioprecipitation process can be an important application in the self-healing processes of cement specimens. Thus, the present study identified and evaluated five Bacillus strains for potential application in the protocol of self-healing via bioprecipitation. Cell growth, enzyme production, and kinetic parameters conditions were evaluated during the fermentation process. Based on the analysis of 16S rDNA in conjunction with biochemical testing, results demonstrate that the strains are either Bacillus cereus or Bacillus thuringiensis. Strategically it was found that the addition of glycerol to fermentative medium was essential to increase the bacterial concentration (≈ 4.2 × 107 cells mL-1) and production of the enzyme urease (≈ 3.623,2 U.mL-1). The addition of this medium after 40 days of fermentation promoted the self-healing of cracks and increased compressive strength in ≈ 14.2% of the cementitious specimens; therefore, increasing the sustainability and engineering properties of cement-based materials.
Collapse
|
32
|
Efficacy of Enzymatically Induced Calcium Carbonate Precipitation in the Retention of Heavy Metal Ions. SUSTAINABILITY 2020. [DOI: 10.3390/su12177019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the efficacy of enzyme induced calcite precipitation (EICP) in restricting the mobility of heavy metals in soils. EICP is an environmentally friendly method that has wide ranging applications in the sustainable development of civil infrastructure. The study examined the desorption of three heavy metals from treated and untreated soils using ethylene diamine tetra-acetic acid (EDTA) and citric acid (C6H8O7) extractants under harsh conditions. Two natural soils spiked with cadmium (Cd), nickel (Ni), and lead (Pb) were studied in this research. The soils were treated with three types of enzyme solutions (ESs) to achieve EICP. A combination of urea of one molarity (M), 0.67 M calcium chloride, and urease enzyme (3 g/L) was mixed in deionized (DI) water to prepare enzyme solution 1 (ES1); non-fat milk powder (4 g/L) was added to ES1 to prepare enzyme solution 2 (ES2); and 0.37 M urea, 0.25 M calcium chloride, 0.85 g/L urease enzyme, and 4 g/L non-fat milk powder were mixed in DI water to prepare enzyme solution 3 (ES3). Ni, Cd, and Pb were added with load ratios of 50 and 100 mg/kg to both untreated and treated soils to study the effect of EICP on desorption rates of the heavy metals from soil. Desorption studies were performed after a curing period of 40 days. The curing period started after the soil samples were spiked with heavy metals. Soils treated with ESs were spiked with heavy metals after a curing period of 21 days and then further cured for 40 days. The amount of CaCO3 precipitated in the soil by the ESs was quantified using a gravimetric acid digestion test, which related the desorption of heavy metals to the amount of precipitated CaCO3. The order of desorption was as follows: Cd > Ni > Pb. It was observed that the average maximum removal efficiency of the untreated soil samples (irrespective of the load ratio and contaminants) was approximately 48% when extracted by EDTA and 46% when extracted by citric acid. The soil samples treated with ES2 exhibited average maximum removal efficiencies of 19% and 10% when extracted by EDTA and citric acid, respectively. It was observed that ES2 precipitated a maximum amount of calcium carbonate (CaCO3) when compared to ES1 and ES3 and retained the maximum amount of heavy metals in the soil by forming a CaCO3 shield on the heavy metals, thus decreasing their mobility. An approximate improvement of 30% in the retention of heavy metal ions was observed in soils treated with ESs when compared to untreated soil samples. Therefore, the study suggests that ESs can be an effective alternative in the remediation of soils contaminated with heavy metal ions.
Collapse
|
33
|
Duarte-Nass C, Rebolledo K, Valenzuela T, Kopp M, Jeison D, Rivas M, Azócar L, Torres-Aravena Á, Ciudad G. Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109938. [PMID: 31989976 DOI: 10.1016/j.jenvman.2019.109938] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Copper contamination in watercourses is a recent issue in countries where mining operations are prevalent. In this study, the application of copper precipitation through microbe-induced carbonate precipitation (MICP) was analyzed using urea hydrolysis by bacteria to evaluate precipitated copper carbonates. This article demonstrates the application of a copper precipitation assay involving Sporosarcina pasteurii (in 0.5 mM Cu2+ and 333 mM urea) and analyzes the resultant low removal (10%). The analysis indicates that the low removal was a consequence of Cu2+ complexation with the ammonia resulting from the hydrolysis of urea. However, the results indicate that there should be a positive correlation between the initial urea concentration and the bacterial tolerance to copper. This identifies a challenge in the industrial application of the process, wherein a minimum consumption of urea represents an economic advantage. Therefore, it is necessary to design a sequential process that decouples bacterial growth and copper precipitation, thereby decreasing the urea requirement.
Collapse
Affiliation(s)
- Carla Duarte-Nass
- Doctorate in Engineering Sciences with Specialization in Bioprocesses, Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile; Departamento de Ingeniería Química, Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile
| | - Katherina Rebolledo
- Facultad de Ingeniería, Universidad Católica de Temuco, Avenida Rudecindo Ortega #02950, Temuco, Chile
| | - Tamara Valenzuela
- Departamento de Ciencias Químicas, Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile
| | - Matías Kopp
- Departamento de Ingeniería Química, Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil #2085, Valparaíso, Chile
| | - Mariella Rivas
- Laboratorio de Biotecnología Algal y Sustentabilidad, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Avenida Angamos #601, Antofagasta, Chile
| | - Laura Azócar
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Avenida Alonso de Ribera #2850, Concepción, Chile; Núcleo Milenio en Procesos Catalíticos hacia la Química Sustentable, Universidad de Concepción, Avenida Víctor Lamas #1290, Concepción, Chile
| | - Álvaro Torres-Aravena
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil #2085, Valparaíso, Chile
| | - Gustavo Ciudad
- Departamento de Ingeniería Química, Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile; Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile.
| |
Collapse
|
34
|
Osinubi KJ, Eberemu AO, Ijimdiya TS, Yakubu SE, Gadzama EW, Sani JE, Yohanna P. Review of the use of microorganisms in geotechnical engineering applications. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-1974-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Robledo-Padilla F, Aquines O, Silva-Núñez A, Alemán-Nava GS, Castillo-Zacarías C, Ramirez-Mendoza RA, Zavala-Yoe R, Iqbal HMN, Parra-Saldívar R. Evaluation and Predictive Modeling of Removal Condition for Bioadsorption of Indigo Blue Dye by Spirulina platensis. Microorganisms 2020; 8:microorganisms8010082. [PMID: 31936179 PMCID: PMC7022827 DOI: 10.3390/microorganisms8010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 01/04/2020] [Indexed: 02/05/2023] Open
Abstract
Among the different chemical and physical treatments used to remove the color of the textile effluents, bioremediation offers many benefits to the environment. In this study, we determined the potential of Spirulina platensis (S. platensis) for decolorizing indigo blue dye under different incubation conditions. The microalgae were incubated at different pH (from 4 to 10) to calibrate for the optimal discoloration condition; a pH of 4 was found to be optimal. The biomass concentration in all experiments was 1 g/L, which was able to decolorize the indigo blue dye by day 3. These results showed that S. platensis is capable of removing indigo blue dye at low biomass. However, this was dependent on the treatment conditions, where temperature played the most crucial role. Two theoretical adsorption models, namely (1) a first-order model equation and (2) a second-order rate equation, were compared with observed adsorption vs. time curves for different initial concentrations (from 25 to 100 mg/L). The comparison between models showed similar accuracy and agreement with the experimental values. The observed adsorption isotherms for three temperatures (30, 40, and 50 °C) were plotted, showing fairly linear behavior in the measured range. The adsorption equilibrium isotherms were estimated, providing an initial description of the dye removal capacity of S. platensis.
Collapse
Affiliation(s)
- Felipe Robledo-Padilla
- Department of Physics and Mathematics, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico; (F.R.-P.); (O.A.)
| | - Osvaldo Aquines
- Department of Physics and Mathematics, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico; (F.R.-P.); (O.A.)
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico; (A.S.-N.); (G.S.A.-N.); (C.C.-Z.); (R.A.R.-M.)
| | - Gibrán S. Alemán-Nava
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico; (A.S.-N.); (G.S.A.-N.); (C.C.-Z.); (R.A.R.-M.)
| | - Carlos Castillo-Zacarías
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico; (A.S.-N.); (G.S.A.-N.); (C.C.-Z.); (R.A.R.-M.)
| | - Ricardo A. Ramirez-Mendoza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico; (A.S.-N.); (G.S.A.-N.); (C.C.-Z.); (R.A.R.-M.)
| | - Ricardo Zavala-Yoe
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Mexico City, Calzada del Puente 222, Col. Ejidos de Huipulco, Mexico City 14380, Mexico;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico; (A.S.-N.); (G.S.A.-N.); (C.C.-Z.); (R.A.R.-M.)
- Correspondence: (H.M.N.I.); (R.P.-S.); Tel.: +52-8183582000 (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico; (A.S.-N.); (G.S.A.-N.); (C.C.-Z.); (R.A.R.-M.)
- Correspondence: (H.M.N.I.); (R.P.-S.); Tel.: +52-8183582000 (R.P.-S.)
| |
Collapse
|
36
|
Biorecovery of cobalt and nickel using biomass-free culture supernatants from Aspergillus niger. Appl Microbiol Biotechnol 2019; 104:417-425. [PMID: 31781818 PMCID: PMC6942576 DOI: 10.1007/s00253-019-10241-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
Abstract
In this research, the capabilities of culture supernatants generated by the oxalate-producing fungus Aspergillus niger for the bioprecipitation and biorecovery of cobalt and nickel were investigated, as was the influence of extracellular polymeric substances (EPS) on these processes. The removal of cobalt from solution was >90% for all tested Co concentrations: maximal nickel recovery was >80%. Energy-dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) confirmed the formation of cobalt and nickel oxalate. In a mixture of cobalt and nickel, cobalt oxalate appeared to predominate precipitation and was dependent on the mixture ratios of the two metals. The presence of EPS together with oxalate in solution decreased the recovery of nickel but did not influence the recovery of cobalt. Concentrations of extracellular protein showed a significant decrease after precipitation while no significant difference was found for extracellular polysaccharide concentrations before and after oxalate precipitation. These results showed that extracellular protein rather than extracellular polysaccharide played a more important role in influencing the biorecovery of metal oxalates from solution. Excitation–emission matrix (EEM) fluorescence spectroscopy showed that aromatic protein-like and hydrophobic acid-like substances from the EPS complexed with cobalt but did not for nickel. The humic acid-like substances from the EPS showed a higher affinity for cobalt than for nickel.
Collapse
|
37
|
One-Step Removal of Calcium, Magnesium, and Nickel in Desalination by Alcaligenes aquatilis via Biomineralization. CRYSTALS 2019. [DOI: 10.3390/cryst9120633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In desalination, a high level of calcium (Ca) and magnesium (Mg) ions in seawater can cause scale deposition on the reverse osmosis membranes and water treatment systems. This process can significantly affect the efficiency of desalination. In addition, heavy metals in seawater affect human health. Therefore, Alcaligenes aquatilis from seawater was used to remove Ca, Mg, and nickel (Ni) by microbial-induced carbonate precipitation (MICP). The purification system was then analyzed by ionic analysis and surface characterization. This study shows that the bacteria can utilize amino acids to produce carbonate and form precipitates with a high removal rate. MICP via A. aquatilis removed 91.8%, 68.5%, and 92.2% of the initial soluble Ca, Mg, and Ni, respectively. Furthermore, A. aquatilis can remove ammonium after the MICP process under oxygen-rich conditions. Therefore, we provide interesting insight into the use of Alcaligenes (in the absence of urea) to improve the seawater quality in the process of desalination.
Collapse
|
38
|
Abstract
“Biological Crystallization” is today a very wide topic that includes biomineralization, but also the laboratory crystallization of biological compounds such as macromolecules, carbohydrates or lipids, and the synthesis and fabrication of biomimetic materials by different routes [...]
Collapse
|
39
|
Mwandira W, Nakashima K, Kawasaki S, Ito M, Sato T, Igarashi T, Chirwa M, Banda K, Nyambe I, Nakayama S, Nakata H, Ishizuka M. Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia. CHEMOSPHERE 2019; 228:17-25. [PMID: 31022616 DOI: 10.1016/j.chemosphere.2019.04.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Environmental impacts resulting from historic lead and zinc mining in Kabwe, Zambia affect human health due to the dust generated from the mine waste that contains lead, a known hazardous pollutant. We employed microbially induced calcium carbonate precipitation (MICP), an alternative capping method, to prevent dust generation and reduce the mobility of contaminants. Pb-resistant Oceanobacillus profundus KBZ 1-3 and O. profundus KBZ 2-5 isolated from Kabwe were used to biocement the sand that would act as a cover to prevent dust and water infiltration. Sand biocemented by KBZ 1-3 and KBZ 2-5 had maximum unconfined compressive strength values of 3.2 MPa and 5.5 MPa, respectively. Additionally, biocemented sand exhibited reduced water permeability values of 9.6 × 10-8 m/s and 8.9 × 10-8 m/s for O. profundus KBZ 1-3 and KBZ 2-5, respectively, which could potentially limit the entrance of water and oxygen into the dump, hence reducing the leaching of heavy metals. We propose that these isolates represent an option for bioremediating contaminated waste by preventing both metallic dust from becoming airborne and rainwater from infiltrating into the waste. O. profundus KBZ 1-3 and O. profundus KBZ 2-5 isolated form Kabwe represent a novel species that has, for the first time, been applied in a bioremediation study.
Collapse
Affiliation(s)
- Wilson Mwandira
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| | - Kazunori Nakashima
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan.
| | - Satoru Kawasaki
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| | - Mayumi Ito
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| | - Tsutomu Sato
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| | - Toshifumi Igarashi
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| | - Meki Chirwa
- IWRM Centre/Geology Department, School of Mines, University of Zambia, P.O. Box 32379, Zambia
| | - Kawawa Banda
- IWRM Centre/Geology Department, School of Mines, University of Zambia, P.O. Box 32379, Zambia
| | - Imasiku Nyambe
- IWRM Centre/Geology Department, School of Mines, University of Zambia, P.O. Box 32379, Zambia
| | - Shouta Nakayama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo, 060-0818, Japan
| | - Hokuto Nakata
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo, 060-0818, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo, 060-0818, Japan
| |
Collapse
|
40
|
Seifan M, Berenjian A. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Appl Microbiol Biotechnol 2019; 103:4693-4708. [PMID: 31076835 DOI: 10.1007/s00253-019-09861-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/28/2023]
Abstract
Biodeposition of minerals is a widespread phenomenon in the biological world and is mediated by bacteria, fungi, protists, and plants. Calcium carbonate is one of those minerals that naturally precipitate as a by-product of microbial metabolic activities. Over recent years, microbially induced calcium carbonate precipitation (MICP) has been proposed as a potent solution to address many environmental and engineering issues. However, for being a viable alternative to conventional techniques as well as being financially and industrially competitive, various challenges need to be overcome. In this review, the detailed metabolic pathways, including ammonification of amino acids, dissimilatory reduction of nitrate, and urea degradation (ureolysis), along with the potent bacteria and the favorable conditions for precipitation of calcium carbonate, are explained. Moreover, this review highlights the potential environmental and engineering applications of MICP, including restoration of stones and concrete, improvement of soil properties, sand consolidation, bioremediation of contaminants, and carbon dioxide sequestration. The key research and development questions necessary for near future large-scale applications of this innovative technology are also discussed.
Collapse
Affiliation(s)
- Mostafa Seifan
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
41
|
Tamayo-Figueroa DP, Castillo E, Brandão PFB. Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World J Microbiol Biotechnol 2019; 35:58. [DOI: 10.1007/s11274-019-2626-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
|