1
|
Seplovich G, Bouchi Y, de Rivero Vaccari JP, Pareja JCM, Reisner A, Blackwell L, Mechref Y, Wang KK, Tyndall JA, Tharakan B, Kobeissy F. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Neural Regen Res 2025; 20:1644-1664. [PMID: 39104096 PMCID: PMC11688549 DOI: 10.4103/nrr.nrr-d-24-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
Collapse
Affiliation(s)
| | - Yazan Bouchi
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer C. Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Reisner
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Laura Blackwell
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K. Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Huber CM, Thakore AD, Oeur RA, Margulies SS. Distinct Serum Glial Fibrillary Acidic Protein and Neurofilament Light Time-Courses After Rapid Head Rotations. J Neurotrauma 2024; 41:1914-1928. [PMID: 38698671 PMCID: PMC11564843 DOI: 10.1089/neu.2023.0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Traumatic brain injury (TBI) causes significant neurophysiological deficits and is typically associated with rapid head accelerations common in sports-related incidents and automobile accidents. There are over 1.5 million TBIs in the United States each year, with children aged 0-4 being particularly vulnerable. TBI diagnosis is currently achieved through interpretation of clinical signs and symptoms and neuroimaging; however, there is increasing interest in minimally invasive fluid biomarkers to detect TBI objectively across all ages. Pre-clinical porcine models offer controlled conditions to evaluate TBI with known biomechanical conditions and without comorbidities. The objective of the current study was to establish pediatric porcine healthy reference ranges (RRs) of common human serum TBI biomarkers and to report their acute time-course after nonimpact rotational head injury. A retrospective analysis was completed to quantify biomarker concentrations in porcine serum samples collected from 4-week-old female (n = 215) and uncastrated male (n = 6) Yorkshire piglets. Subjects were assigned to one of three experimental groups (sham, sagittal-single, sagittal-multiple) or to a baseline only group. A rapid nonimpact rotational head injury model was used to produce mild-to-moderate TBI in piglets following a single rotation and moderate-to-severe TBI following multiple rotations. The Quanterix Simoa Human Neurology 4-Plex A assay was used to quantify glial fibrillary acidic protein (GFAP), neurofilament light (Nf-L), tau, and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1). The 95% healthy RRs for females were calculated and validated for GFAP (6.3-69.4 pg/mL), Nf-L (9.5-67.2 pg/mL), and UCH-L1 (3.8-533.7 pg/mL). Rising early, GFAP increased significantly above the healthy RRs for sagittal-single (to 164 and 243 pg/mL) and increased significantly higher in sagittal-multiple (to 494 and 413 pg/mL) groups at 30 min and 1 h postinjury, respectively, returning to healthy RRs by 1-week postinjury. Rising later, Nf-L increased significantly above the healthy RRs by 1 day in sagittal-single (to 69 pg/mL) and sagittal-multiple groups (to 140 pg/mL) and rising further at 1 week (single = 231 pg/mL, multiple = 481 pg/mL). Sagittal-single and sagittal-multiple UCH-L1 serum samples did not differ from shams or the healthy RRs. Sex differences were observed but inconsistent. Serum GFAP and Nf-L levels had distinct time-courses following head rotations in piglets, and both corresponded to load exposure. We conclude that serum GFAP and Nf-L offer promise for early TBI diagnosis and intervention decisions for TBI and other neurological trauma.
Collapse
Affiliation(s)
- Colin M. Huber
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia, USA
| | - Akshara D. Thakore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia, USA
| | - R. Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia, USA
| | - Susan S. Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Lange RT, Gill JM, Lippa SM, Hungerford L, Walker T, Kennedy J, Brickell TA, French LM. Elevated Serum Tau and UCHL-1 Concentrations Within 12 Months of Injury Predict Neurobehavioral Functioning 2 or More Years Following Traumatic Brain Injury: A Longitudinal Study. J Head Trauma Rehabil 2024; 39:196-206. [PMID: 37335195 DOI: 10.1097/htr.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Blood-based biomarkers have received considerable attention for their diagnostic and prognostic value in the acute and postacute period following traumatic brain injury (TBI). The purpose of this study was to examine whether blood-based biomarker concentrations within the first 12 months of TBI can predict neurobehavioral outcome in the chronic phase of the recovery trajectory. SETTING Inpatient and outpatient wards from 3 military medical treatment facilities. PARTICIPANTS A total of 161 service members and veterans classified into 3 groups: ( a ) uncomplicated mild TBI (MTBI; n = 37), ( b ) complicated mild, moderate, severe, penetrating TBI combined (STBI; n = 46), and ( c ) controls (CTRL; n = 78). DESIGN Prospective longitudinal. MAIN MEASURES Participants completed 6 scales from the Traumatic Brain Injury Quality of Life (ie, Anger, Anxiety, Depression, Fatigue, Headaches, and Cognitive Concerns) within 12 months (baseline) and at 2 or more years (follow-up) post-injury. Serum concentrations of tau, neurofilament light, glial fibrillary acidic protein, and UCHL-1 at baseline were measured using SIMOA. RESULTS Baseline tau was associated with worse anger, anxiety, and depression in the STBI group at follow-up ( R2 = 0.101-0.127), and worse anxiety in the MTBI group ( R2 = 0.210). Baseline ubiquitin carboxyl-terminal hydrolase L1 (UCHL-1) was associated with worse anxiety and depression at follow-up in both the MTBI and STBI groups ( R2 Δ = 0.143-0.207), and worse cognitive concerns in the MTBI group ( R2 Δ = 0.223). CONCLUSIONS A blood-based panel including these biomarkers could be a useful tool for identifying individuals at risk of poor outcome following TBI.
Collapse
Affiliation(s)
- Rael T Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland (Drs Lange, Hungerford, Kennedy, Brickell, and French and Mr Walker); Walter Reed National Military Medical Center, Bethesda, Maryland (Drs Lange, Lippa, Brickell, and French); National Intrepid Center of Excellence, Bethesda, Maryland (Drs Lange, Lippa, Brickell, and French); General Dynamics Information Technology, Falls Church, Virginia (Drs Lange, Hungerford, Kennedy, and Brickell); Department of Psychiatry, University of British Columbia, Vancouver, Canada (Dr Lange); Department of Physical Medicine and Rehabilitation, University of the Health Sciences, Bethesda, Maryland (Drs Lange, Brickell, and French); Department of Neuroscience, University of the Health Sciences, Bethesda, Maryland (Dr Lippa); San Antonio Military Medical Center, San Antonio, Texas (Dr Kennedy); Naval Medical Center San Diego, San Diego, California (Dr Hungerford and Mr Walker); and Johns Hopkins University, Baltimore, Maryland (Dr Gill)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Clarke GJB, Follestad T, Skandsen T, Zetterberg H, Vik A, Blennow K, Olsen A, Håberg AK. Chronic immunosuppression across 12 months and high ability of acute and subacute CNS-injury biomarker concentrations to identify individuals with complicated mTBI on acute CT and MRI. J Neuroinflammation 2024; 21:109. [PMID: 38678300 PMCID: PMC11056044 DOI: 10.1186/s12974-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Identifying individuals with intracranial injuries following mild traumatic brain injury (mTBI), i.e. complicated mTBI cases, is important for follow-up and prognostication. The main aims of our study were (1) to assess the temporal evolution of blood biomarkers of CNS injury and inflammation in individuals with complicated mTBI determined on computer tomography (CT) and magnetic resonance imaging (MRI); (2) to assess the corresponding discriminability of both single- and multi-biomarker panels, from acute to chronic phases after injury. METHODS Patients with mTBI (n = 207), defined as Glasgow Coma Scale score between 13 and 15, loss of consciousness < 30 min and post-traumatic amnesia < 24 h, were included. Complicated mTBI - i.e., presence of any traumatic intracranial injury on neuroimaging - was present in 8% (n = 16) on CT (CT+) and 12% (n = 25) on MRI (MRI+). Blood biomarkers were sampled at four timepoints following injury: admission (within 72 h), 2 weeks (± 3 days), 3 months (± 2 weeks) and 12 months (± 1 month). CNS biomarkers included were glial fibrillary acidic protein (GFAP), neurofilament light (NFL) and tau, along with 12 inflammation markers. RESULTS The most discriminative single biomarkers of traumatic intracranial injury were GFAP at admission (CT+: AUC = 0.78; MRI+: AUC = 0.82), and NFL at 2 weeks (CT+: AUC = 0.81; MRI+: AUC = 0.89) and 3 months (MRI+: AUC = 0.86). MIP-1β and IP-10 concentrations were significantly lower across follow-up period in individuals who were CT+ and MRI+. Eotaxin and IL-9 were significantly lower in individuals who were MRI+ only. FGF-basic concentrations increased over time in MRI- individuals and were significantly higher than MRI+ individuals at 3 and 12 months. Multi-biomarker panels improved discriminability over single biomarkers at all timepoints (AUCs > 0.85 for admission and 2-week models classifying CT+ and AUC ≈ 0.90 for admission, 2-week and 3-month models classifying MRI+). CONCLUSIONS The CNS biomarkers GFAP and NFL were useful single diagnostic biomarkers of complicated mTBI, especially in acute and subacute phases after mTBI. Several inflammation markers were suppressed in patients with complicated versus uncomplicated mTBI and remained so even after 12 months. Multi-biomarker panels improved diagnostic accuracy at all timepoints, though at acute and 2-week timepoints, the single biomarkers GFAP and NFL, respectively, displayed similar accuracy compared to multi-biomarker panels.
Collapse
Affiliation(s)
- Gerard Janez Brett Clarke
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
| | - Turid Follestad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, N-7491, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Sha Tin, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Vik
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alexander Olsen
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, Trondheim, Norway
| | - Asta Kristine Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway.
| |
Collapse
|
5
|
O’Donnell JC, Petrov D. Porcine Models of Neurotrauma and Neurological Disorders. Biomedicines 2024; 12:245. [PMID: 38275416 PMCID: PMC10813658 DOI: 10.3390/biomedicines12010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
The translation of therapeutics from lab to clinic has a dismal record in the fields of neurotrauma and neurological disorders [...].
Collapse
Affiliation(s)
- John C. O’Donnell
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Hossain I, Marklund N, Czeiter E, Hutchinson P, Buki A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. BRAIN & SPINE 2023; 4:102735. [PMID: 38510630 PMCID: PMC10951700 DOI: 10.1016/j.bas.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024]
Abstract
Introduction A blood-based biomarker (BBBM) test could help to better stratify patients with traumatic brain injury (TBI), reduce unnecessary imaging, to detect and treat secondary insults, predict outcomes, and monitor treatment effects and quality of care. Research question What evidence is available for clinical applications of BBBMs in TBI and how to advance this field? Material and methods This narrative review discusses the potential clinical applications of core BBBMs in TBI. A literature search in PubMed, Scopus, and ISI Web of Knowledge focused on articles in English with the words "traumatic brain injury" together with the words "blood biomarkers", "diagnostics", "outcome prediction", "extracranial injury" and "assay method" alone-, or in combination. Results Glial fibrillary acidic protein (GFAP) combined with Ubiquitin C-terminal hydrolase-L1(UCH-L1) has received FDA clearance to aid computed tomography (CT)-detection of brain lesions in mild (m) TBI. Application of S100B led to reduction of head CT scans. GFAP may also predict magnetic resonance imaging (MRI) abnormalities in CT-negative cases of TBI. Further, UCH-L1, S100B, Neurofilament light (NF-L), and total tau showed value for predicting mortality or unfavourable outcome. Nevertheless, biomarkers have less role in outcome prediction in mTBI. S100B could serve as a tool in the multimodality monitoring of patients in the neurointensive care unit. Discussion and conclusion Largescale systematic studies are required to explore the kinetics of BBBMs and their use in multiple clinical groups. Assay development/cross validation should advance the generalizability of those results which implicated GFAP, S100B and NF-L as most promising biomarkers in the diagnostics of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, Neurotrauma Research Group, Szentagothai Research Centre, And HUN-REN-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Andras Buki
- Department of Neurosurgery, University of Örebro, Örebro, Sweden
| |
Collapse
|
7
|
Thomas R, Lynch CE, Debad J, Campbell C, Chidomere O, Kilianski J, Ding K, Madden C, Sandsmark DK, Diaz-Arrastia R, Gatson JW. Plasma von Willebrand Factor Is Elevated Hyperacutely After Mild Traumatic Brain Injury. Neurotrauma Rep 2023; 4:655-662. [PMID: 37908322 PMCID: PMC10615084 DOI: 10.1089/neur.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Each year in the United States, ∼2.7 million persons seek medical attention for traumatic brain injury (TBI), of which ∼85% are characterized as being mild brain injuries. Many different cell types in the brain are affected in these heterogeneous injuries, including neurons, glia, and the brain vasculature. Efforts to identify biomarkers that reflect the injury of these different cell types have been a focus of ongoing investigation. We hypothesized that von Willebrand factor (vWF) is a sensitive biomarker for acute traumatic vascular injury and correlates with symptom severity post-TBI. To address this, blood was collected from professional boxing athletes (n = 17) before and within 30 min after competition. Plasma levels of vWF and neuron-specific enolase were measured using the Meso Scale Discovery, LLC. (MSD) electrochemiluminescence array-based multi-plex format (MSD, Gaithersburg, MD). Additional symptom and outcome data from boxers and patients, such as the Rivermead symptom scores (Rivermead Post Concussion Symptoms Questionnaire [RPQ-3]), were collected. We found that, subsequent to boxing bouts, there was a 1.8-fold increase in vWF levels within 30 min of injury (p < 0.0009). Moreover, fold-change in vWF correlates moderately (r = 0.51; p = 0.03) with the number of head blows. We also found a positive correlation (r = 0.69; p = 0.002) between fold-change in vWF and self-reported post-concussive symptoms, measured by the RPQ-3. The receiver operating curve analysis of vWF plasma levels and RPQ-3 scoring yielded a sensitivity of 94.12% and a specificity of 76.5% with an area under the curve of 83% for boxers after a fight compared to the pre-bout baseline. This study suggests that vWF is a potential blood biomarker measurable in the hyperacute period after blunt mild TBI. This biomarker may prove to be useful in diagnosing and monitoring traumatic vascular injury.
Collapse
Affiliation(s)
- Rachel Thomas
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cillian E. Lynch
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jeff Debad
- Meso Scale Diagnostics, LLC, Rockville, Maryland, USA
| | | | - Onyinyechi Chidomere
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph Kilianski
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kan Ding
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher Madden
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Danielle K. Sandsmark
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua W. Gatson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| |
Collapse
|
8
|
Nkiliza A, Huguenard CJ, Aldrich GJ, Ferguson S, Cseresznye A, Darcey T, Evans JE, Dretsch M, Mullan M, Crawford F, Abdullah L. Levels of Arachidonic Acid-Derived Oxylipins and Anandamide Are Elevated Among Military APOE ɛ4 Carriers With a History of Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder Symptoms. Neurotrauma Rep 2023; 4:643-654. [PMID: 37786567 PMCID: PMC10541938 DOI: 10.1089/neur.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate traumatic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Iraq/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatography/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications. Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI, PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomarkers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory process that warrants further investigation. Future validation studies in larger cohorts are required to determine a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Claire J.C. Huguenard
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | - Scott Ferguson
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | | | | | - Michael Dretsch
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Washington, USA
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, Alabama, USA
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Laila Abdullah
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| |
Collapse
|
9
|
Mansour NO, Elnaem MH, Abdelaziz DH, Barakat M, Dehele IS, Elrggal ME, Abdallah MS. Effects of early adjunctive pharmacotherapy on serum levels of brain injury biomarkers in patients with traumatic brain injury: a systematic review of randomized controlled studies. Front Pharmacol 2023; 14:1185277. [PMID: 37214454 PMCID: PMC10196026 DOI: 10.3389/fphar.2023.1185277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Objectives: Traumatic brain injury (TBI) is one of the top causes of morbidity and mortality worldwide. The review aimed to discuss and summarize the current evidence on the effectiveness of adjuvant neuroprotective treatments in terms of their effect on brain injury biomarkers in TBI patients. Methods: To identify relevant studies, four scholarly databases, including PubMed, Cochrane, Scopus, and Google Scholar, were systematically searched using predefined search terms. English-language randomized controlled clinical trials reporting changes in brain injury biomarkers, namely, neuron-specific enolase (NSE), glial fibrillary acid protein (GFAP), ubiquitin carboxyl-terminal esterase L1 (UCHL1) and/or S100 beta (S100 ß), were included. The methodological quality of the included studies was assessed using the Cochrane risk-of-bias tool. Results: A total of eleven studies with eight different therapeutic options were investigated; of them, tetracyclines, metformin, and memantine were discovered to be promising choices that could improve neurological outcomes in TBI patients. The most utilized serum biomarkers were NSE and S100 ß followed by GFAP, while none of the included studies quantified UCHL1. The heterogeneity in injury severity categories and measurement timing may affect the overall evaluation of the clinical efficacy of potential therapies. Therefore, unified measurement protocols are highly warranted to inform clinical decisions. Conclusion: Few therapeutic options showed promising results as an adjuvant to standard care in patients with TBI. Several considerations for future work must be directed towards standardizing monitoring biomarkers. Investigating the pharmacotherapy effectiveness using a multimodal biomarker panel is needed. Finally, employing stratified randomization in future clinical trials concerning potential confounders, including age, trauma severity levels, and type, is crucial to inform clinical decisions. Clinical Trial Registration: [https://www.crd.york.ac.uk/prospero/dis], identifier [CRD42022316327].
Collapse
Affiliation(s)
- Noha O. Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed Hassan Elnaem
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, United Kingdom
| | - Doaa H. Abdelaziz
- Pharmacy Practice and Clinical Pharmacy Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Muna Barakat
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
- MEU Research Unit, Middle East University, Amman, Jordan
| | | | | | - Mahmoud S. Abdallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
10
|
Hotta N, Tadokoro T, Henry J, Koga D, Kawata K, Ishida H, Oguma Y, Hirata A, Mitsuhashi M, Yoshitani K. Monitoring of Post-Brain Injuries By Measuring Plasma Levels of Neuron-Derived Extracellular Vesicles. Biomark Insights 2022; 17:11772719221128145. [PMID: 36324609 PMCID: PMC9618756 DOI: 10.1177/11772719221128145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EV) released from neurons into the blood can reflect the state of nervous tissue. Measurement of neuron derived EV (NDE) may serve as an indicator of brain injury. METHODS A sandwich immunoassay was established to measure plasma NDE using anti-neuron CD171 and anti-EV CD9 ([CD171 + CD9+]). Plasma samples were obtained from commercial sources, cross-country (n = 9), football (n = 22), soccer (n = 19), and rugby (n = 18) athletes over time. Plasma was also collected from patients undergoing total aortic arch replacement (TAR) with selective cerebral perfusion during cardiopulmonary bypass before and after surgery (n = 36). RESULTS The specificity, linearity, and reproducibility of NDE assay (measurement of [CD171 + CD9+]) were confirmed. By scanning electron microscopy and nanoparticle tracking, spherical vesicles ranging in size from 150 to 300 nm were confirmed. Plasma levels of NDE were widely spread over 2 to 3 logs in different individuals with a significant age-dependent decrease. However, NDE were very stable in each individual within a ± 50% change over time (cross-country, football, soccer), whereas rugby players were more variable over 4 years. In patients undergoing TAR, NDE increased rapidly in days post-surgery and were significantly (P = .0004) higher in those developing postoperative delirium (POD) (n = 13) than non-delirium patients (n = 23). CONCLUSIONS The blood test to determine plasma levels of NDE was established by a sandwich immunoassay using 2 antibodies against neuron (CD171) and exosomes (CD9). NDE levels varied widely in different individuals and decreased with age, indicating that NDE levels should be considered as a normalizer of NDE biomarker studies. However, NDE levels were stable over time in each individual, and increased rapidly after TAR with greater increases associated with patients developing POD. This assay may serve as a surrogate for evaluating and monitoring brain injuries.
Collapse
Affiliation(s)
- Naoshi Hotta
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takahiro Tadokoro
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Daisuke Koga
- Department of Anatomy, Asahikawa Medical University, Asahikawa, Japan
| | - Keisuke Kawata
- School of Public Health, Indiana University, Bloomington, IN, USA
| | - Hiroyuki Ishida
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Yuko Oguma
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Akihiro Hirata
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Masato Mitsuhashi
- NanoSomiX, Inc., Irvine, CA, USA,Masato Mitsuhashi, M.D., Ph.D., Technical section, CTO, NanoSomiX, Inc. 15375 Barranca Parkway E-101, Irvine, CA 92718, USA.
| | - Kenji Yoshitani
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
11
|
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14:933434. [PMID: 36275010 PMCID: PMC9584168 DOI: 10.3389/fnagi.2022.933434] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Developing effective disease-modifying therapies for neurodegenerative diseases (NDs) requires reliable diagnostic, disease activity, and progression indicators. While desirable, identifying biomarkers for NDs can be difficult because of the complex cytoarchitecture of the brain and the distinct cell subsets seen in different parts of the central nervous system (CNS). Extracellular vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles involved in the intercellular communication and transport of cell-specific cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs include exosomes, microvesicles, and apoptotic bodies based on their size and origin of biogenesis. A growing body of evidence suggests that intercellular communication mediated through EVs is responsible for disseminating important proteins implicated in the progression of traumatic brain injury (TBI) and other NDs. Some studies showed that TBI is a risk factor for different NDs. In terms of therapeutic potential, EVs outperform the alternative synthetic drug delivery methods because they can transverse the blood–brain barrier (BBB) without inducing immunogenicity, impacting neuroinflammation, immunological responses, and prolonged bio-distribution. Furthermore, EV production varies across different cell types and represents intracellular processes. Moreover, proteomic markers, which can represent a variety of pathological processes, such as cellular damage or neuroinflammation, have been frequently studied in neurotrauma research. However, proteomic blood-based biomarkers have short half-lives as they are easily susceptible to degradation. EV-based biomarkers for TBI may represent the complex genetic and neurometabolic abnormalities that occur post-TBI. These biomarkers are not caught by proteomics, less susceptible to degradation and hence more reflective of these modifications (cellular damage and neuroinflammation). In the current narrative and comprehensive review, we sought to discuss the contemporary knowledge and better understanding the EV-based research in TBI, and thus its applications in modern medicine. These applications include the utilization of circulating EVs as biomarkers for diagnosis, developments of EV-based therapies, and managing their associated challenges and opportunities.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Mohammad Asim
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
- *Correspondence: Ayman El-Menyar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
12
|
Robinson BD, Isbell CL, Melge AR, Lomas AM, Shaji CA, Mohan CG, Huang JH, Tharakan B. Doxycycline prevents blood-brain barrier dysfunction and microvascular hyperpermeability after traumatic brain injury. Sci Rep 2022; 12:5415. [PMID: 35354869 PMCID: PMC8967830 DOI: 10.1038/s41598-022-09394-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
The main objective of this study was to determine the cellular and molecular effects of doxycycline on the blood–brain barrier (BBB) and protection against secondary injuries following traumatic brain injury (TBI). Microvascular hyperpermeability and cerebral edema resulting from BBB dysfunction after TBI leads to elevation of intracranial pressure, secondary brain ischemia, herniation, and brain death. There are currently no effective therapies to modulate the underlying pathophysiology responsible for TBI-induced BBB dysfunction and hyperpermeability. The loss of BBB integrity by the proteolytic enzyme matrix metalloproteinase-9 (MMP-9) is critical to TBI-induced BBB hyperpermeability, and doxycycline possesses anti-MMP-9 effect. In this study, the effect of doxycycline on BBB hyperpermeability was studied utilizing molecular modeling (using Glide) in silico, cell culture-based models in vitro, and a mouse model of TBI in vivo. Brain microvascular endothelial cell assays of tight junction protein immunofluorescence and barrier permeability were performed. Adult C57BL/6 mice were subjected to sham versus TBI with or without doxycycline treatment and immediate intravital microscopic analysis for evaluating BBB integrity. Postmortem mouse brain tissue was collected to measure MMP-9 enzyme activity. It was found that doxycycline binding to the MMP-9 active sites have binding affinity of −7.07 kcal/mol. Doxycycline treated cell monolayers were protected from microvascular hyperpermeability and retained tight junction integrity (p < 0.05). Doxycycline treatment decreased BBB hyperpermeability following TBI in mice by 25% (p < 0.05). MMP-9 enzyme activity in brain tissue decreased with doxycycline treatment following TBI (p < 0.05). Doxycycline preserves BBB tight junction integrity following TBI via inhibiting MMP-9 activity. When established in human subjects, doxycycline, may provide readily accessible medical treatment after TBI to attenuate secondary injury.
Collapse
Affiliation(s)
- Bobby D Robinson
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA.,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Claire L Isbell
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA.,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Anu R Melge
- Amrita Center for Nanosciences and Molecular Medicine, Kochi, Kerala, India
| | - Angela M Lomas
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA.,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Chinchusha Anasooya Shaji
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA
| | - C Gopi Mohan
- Amrita Center for Nanosciences and Molecular Medicine, Kochi, Kerala, India
| | - Jason H Huang
- Department of Neurosurgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Binu Tharakan
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA. .,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA. .,Department of Surgery, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA.
| |
Collapse
|
13
|
Jović M, Prim D, Saini E, Pfeifer ME. Towards a Point-of-Care (POC) Diagnostic Platform for the Multiplex Electrochemiluminescent (ECL) Sensing of Mild Traumatic Brain Injury (mTBI) Biomarkers. BIOSENSORS 2022; 12:172. [PMID: 35323442 PMCID: PMC8946848 DOI: 10.3390/bios12030172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Globally, 70 million people are annually affected by TBI. A significant proportion of all TBI cases are actually mild TBI (concussion, 70-85%), which is considerably more difficult to diagnose due to the absence of apparent symptoms. Current clinical practice of diagnosing mTBI largely resides on the patients' history, clinical aspects, and CT and MRI neuroimaging observations. The latter methods are costly, time-consuming, and not amenable for decentralized or accident site measurements. As an alternative (and/or complementary), mTBI diagnostics can be performed by detection of mTBI biomarkers from patients' blood. Herein, we proposed two strategies for the detection of three mTBI-relevant biomarkers (GFAP, h-FABP, and S100β), in standard solutions and in human serum samples by using an electrochemiluminescence (ECL) immunoassay on (i) a commercial ECL platform in 96-well plate format, and (ii) a "POC-friendly" platform with disposable screen-printed carbon electrodes (SPCE) and a portable ECL reader. We further demonstrated a proof-of-concept for integrating three individually developed mTBI assays ("singleplex") into a three-plex ("multiplex") assay on a single SPCE using a spatially resolved ECL approach. The presented methodology demonstrates feasibility and a first step towards the development of a rapid POC multiplex diagnostic system for the detection of a mTBI biomarker panel on a single SPCE.
Collapse
Affiliation(s)
| | | | | | - Marc Emil Pfeifer
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), 1950 Sion, Switzerland; (M.J.); (D.P.); (E.S.)
| |
Collapse
|
14
|
Bergman L, Hastie R, Bokström-Rees E, Zetterberg H, Blennow K, Schell S, Imberg H, Langenegger E, Moodley A, Walker S, Tong S, Cluver C. Cerebral biomarkers in neurologic complications of preeclampsia. Am J Obstet Gynecol 2022; 227:298.e1-298.e10. [PMID: 35257666 DOI: 10.1016/j.ajog.2022.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND There is no tool to accurately predict who is at risk of developing neurologic complications of preeclampsia, and there is no objective method to determine disease severity. OBJECTIVE We assessed whether plasma concentrations of the cerebral biomarkers neurofilament light, tau, and glial fibrillary acidic protein could reflect disease severity in several phenotypes of preeclampsia. Furthermore, we compared the cerebral biomarkers with the angiogenic biomarkers soluble fms-like tyrosine kinase 1, placental growth factor, and soluble endoglin. STUDY DESIGN In this observational study, we included women from the South African Preeclampsia Obstetric Adverse Events biobank. Plasma samples taken at diagnosis (preeclampsia cases) or admission for delivery (normotensive controls) were analyzed for concentrations of neurofilament light, tau, glial fibrillary acidic protein, placental growth factor, soluble fms-like tyrosine kinase 1, and soluble endoglin. The cerebrospinal fluid concentrations of inflammatory markers and albumin were analyzed in a subgroup of 15 women. Analyses were adjusted for gestational age, time from seizures and delivery to sampling, maternal age, and parity. RESULTS Compared with 28 women with normotensive pregnancies, 146 women with preeclampsia demonstrated 2.18-fold higher plasma concentrations of neurofilament light (95% confidence interval, 1.64-2.88), 2.17-fold higher tau (95% confidence interval, 1.49-3.16), and 2.77-fold higher glial fibrillary acidic protein (95% confidence interval, 2.06-3.72). Overall, 72 women with neurologic complications (eclampsia, cortical blindness, and stroke) demonstrated increased plasma concentrations of tau (2.99-fold higher; 95% confidence interval, 1.92-4.65) and glial fibrillary acidic protein (3.22-fold higher; 95% confidence interval, 2.06-5.02) compared with women with preeclampsia without pulmonary edema; hemolysis, elevated liver enzymes, and low platelet count; or neurologic complications (n=31). Moreover, angiogenic markers were higher, but to a lesser extent. Women with hemolysis, elevated liver enzymes, and low platelet count (n=20) demonstrated increased plasma concentrations of neurofilament light (1.64-fold higher; 95% confidence interval, 1.06-2.55), tau (4.44-fold higher; 95% confidence interval, 1.85-10.66), and glial fibrillary acidic protein (1.82-fold higher; 95% confidence interval, 1.32-2.50) compared with women with preeclampsia without pulmonary edema; hemolysis, elevated liver enzymes, and low platelet count; or neurologic complications. There was no difference shown in the angiogenic biomarkers. There was no difference between 23 women with preeclampsia complicated by pulmonary edema and women with preeclampsia without pulmonary edema; hemolysis, elevated liver enzymes, and low platelet count; or neurologic complications for any of the biomarkers. Plasma concentrations of tau and glial fibrillary acidic protein were increased in women with several neurologic complications compared with women with eclampsia only. CONCLUSION Plasma neurofilament light, glial fibrillary acidic, and tau were candidate biomarkers for the diagnosis and possibly prediction of cerebral complications of preeclampsia.
Collapse
|
15
|
Friis T, Wikström AK, Acurio J, León J, Zetterberg H, Blennow K, Nelander M, Åkerud H, Kaihola H, Cluver C, Troncoso F, Torres-Vergara P, Escudero C, Bergman L. Cerebral Biomarkers and Blood-Brain Barrier Integrity in Preeclampsia. Cells 2022; 11:cells11050789. [PMID: 35269411 PMCID: PMC8909006 DOI: 10.3390/cells11050789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 01/25/2023] Open
Abstract
Cerebral complications in preeclampsia contribute substantially to maternal mortality and morbidity. There is a lack of reliable and accessible predictors for preeclampsia-related cerebral complications. In this study, plasma from women with preeclampsia (n = 28), women with normal pregnancies (n = 28) and non-pregnant women (n = 16) was analyzed for concentrations of the cerebral biomarkers neurofilament light (NfL), tau, neuron-specific enolase (NSE) and S100B. Then, an in vitro blood−brain barrier (BBB) model, based on the human cerebral microvascular endothelial cell line (hCMEC/D3), was employed to assess the effect of plasma from the three study groups. Transendothelial electrical resistance (TEER) was used as an estimation of BBB integrity. NfL and tau are proteins expressed in axons, NSE in neurons and S100B in glial cells and are used as biomarkers for neurological injury in other diseases such as dementia, traumatic brain injury and hypoxic brain injury. Plasma concentrations of NfL, tau, NSE and S100B were all higher in women with preeclampsia compared with women with normal pregnancies (8.85 vs. 5.25 ng/L, p < 0.001; 2.90 vs. 2.40 ng/L, p < 0.05; 3.50 vs. 2.37 µg/L, p < 0.001 and 0.08 vs. 0.05 µg/L, p < 0.01, respectively). Plasma concentrations of NfL were also higher in women with preeclampsia compared with non-pregnant women (p < 0.001). Higher plasma concentrations of the cerebral biomarker NfL were associated with decreased TEER (p = 0.002) in an in vitro model of the BBB, a finding which indicates that NfL could be a promising biomarker for BBB alterations in preeclampsia.
Collapse
Affiliation(s)
- Therese Friis
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
- Correspondence: ; Tel.: +46-18-611-6613
| | - Anna-Karin Wikström
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
| | - José León
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Los Ángeles 4441171, Chile
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Maria Nelander
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
| | - Helena Åkerud
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (H.Å.); (H.K.)
| | - Helena Kaihola
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (H.Å.); (H.K.)
| | - Catherine Cluver
- Department of Obstetrics and Gynecology, Stellenbosch University, Cape Town 7500, South Africa;
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
| | - Lina Bergman
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
- Department of Obstetrics and Gynecology, Stellenbosch University, Cape Town 7500, South Africa;
- Department of Obstetrics and Gynecology, Gothenburg University, 41650 Gothenburg, Sweden
| |
Collapse
|
16
|
Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, Puccio AM, Hutchison J, McKinnon N, Okonkwo DO, Yang Z, Kobeissy F, Tyndall JA, Büki A, Czeiter E, Pareja Zabala MC, Gandham N, Berman R. Blood-based traumatic brain injury biomarkers - Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn 2021; 21:1303-1321. [PMID: 34783274 DOI: 10.1080/14737159.2021.2005583] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
Collapse
Affiliation(s)
- Kevin K Wang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Jennifer C Munoz Pareja
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Kimbra Kenney
- Department of Neurology, Uniformed Service University, Bethesda, Maryland, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Hutchison
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole McKinnon
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - J Adrian Tyndall
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Endre Czeiter
- Department of Neurosurgery, Pecs University, Pecs, Hungary
| | | | - Nithya Gandham
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rebecca Berman
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
17
|
Al-Adli N, Akbik OS, Rail B, Montgomery E, Caldwell C, Barrie U, Vira S, Al Tamimi M, Bagley CA, Aoun SG. The Clinical Use of Serum Biomarkers in Traumatic Brain Injury: A Systematic Review Stratified by Injury Severity. World Neurosurg 2021; 155:e418-e438. [PMID: 34438102 DOI: 10.1016/j.wneu.2021.08.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Serum biomarkers have gained significant popularity as an adjunctive measure in the evaluation and prognostication of traumatic brain injury (TBI). However, a concise and clinically oriented report of the major markers in function of TBI severity is lacking. This systematic review aims to report current data on the diagnostic and prognostic utility of blood-based biomarkers across the spectrum of TBI. METHODS A literature search of the PubMed/Medline electronic database was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We excluded systematic reviews and meta-analyses that did not provide novel data. The American College of Cardiology/American Heart Association criteria were used to assess levels of evidence. RESULTS An initial 1463 studies were identified. In total, 115 full-text articles reporting on 94 distinct biomarkers met the inclusion criteria. Glasgow Coma Scale scores, computed tomography/magnetic resonance imaging abnormalities, and injury severity scores were the most used clinical diagnostic variables. Glasgow Outcome Scores and 1-, 3-, and 6-month mortality were the most used clinical prognostic variables. Several biomarkers significantly correlated with these variables and had statistically significant different levels in TBI subjects when compared with healthy, orthopedic, and polytrauma controls. The biomarkers also displayed significant variability across mild, moderate, and severe TBI categories, as well as in concussion cases. CONCLUSIONS This review summarizes existing high-quality evidence that supports the use of severity-specific biomarkers in the diagnostic and prognostic evaluation of TBI. These data can be used as a launching platform for the validation of upcoming clinical studies.
Collapse
Affiliation(s)
- Nadeem Al-Adli
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.
| | - Omar S Akbik
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin Rail
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Eric Montgomery
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Christie Caldwell
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Umaru Barrie
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shaleen Vira
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mazin Al Tamimi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Carlos A Bagley
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Salah G Aoun
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Hier DB, Obafemi-Ajayi T, Thimgan MS, Olbricht GR, Azizi S, Allen B, Hadi BA, Wunsch DC. Blood biomarkers for mild traumatic brain injury: a selective review of unresolved issues. Biomark Res 2021; 9:70. [PMID: 34530937 PMCID: PMC8447604 DOI: 10.1186/s40364-021-00325-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background The use of blood biomarkers after mild traumatic brain injury (mTBI) has been widely studied. We have identified eight unresolved issues related to the use of five commonly investigated blood biomarkers: neurofilament light chain, ubiquitin carboxy-terminal hydrolase-L1, tau, S100B, and glial acidic fibrillary protein. We conducted a focused literature review of unresolved issues in three areas: mode of entry into and exit from the blood, kinetics of blood biomarkers in the blood, and predictive capacity of the blood biomarkers after mTBI. Findings Although a disruption of the blood brain barrier has been demonstrated in mild and severe traumatic brain injury, biomarkers can enter the blood through pathways that do not require a breach in this barrier. A definitive accounting for the pathways that biomarkers follow from the brain to the blood after mTBI has not been performed. Although preliminary investigations of blood biomarkers kinetics after TBI are available, our current knowledge is incomplete and definitive studies are needed. Optimal sampling times for biomarkers after mTBI have not been established. Kinetic models of blood biomarkers can be informative, but more precise estimates of kinetic parameters are needed. Confounding factors for blood biomarker levels have been identified, but corrections for these factors are not routinely made. Little evidence has emerged to date to suggest that blood biomarker levels correlate with clinical measures of mTBI severity. The significance of elevated biomarker levels thirty or more days following mTBI is uncertain. Blood biomarkers have shown a modest but not definitive ability to distinguish concussed from non-concussed subjects, to detect sub-concussive hits to the head, and to predict recovery from mTBI. Blood biomarkers have performed best at distinguishing CT scan positive from CT scan negative subjects after mTBI.
Collapse
Affiliation(s)
- Daniel B Hier
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| | - Tayo Obafemi-Ajayi
- Cooperative Engineering Program, Missouri State University, Springfield, MO 65897, United States
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Sima Azizi
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Blaine Allen
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Bassam A Hadi
- Department of Surgery, Mercy Hospital, St. Louis MO, Missouri, MO 63141, United States
| | - Donald C Wunsch
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.,National Science Foundation, ECCS Division, Virginia, 22314, USA
| |
Collapse
|
19
|
Krausz AD, Korley FK, Burns MA. The Current State of Traumatic Brain Injury Biomarker Measurement Methods. BIOSENSORS 2021; 11:319. [PMID: 34562909 PMCID: PMC8469272 DOI: 10.3390/bios11090319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Krausz AD, Korley FK, Burns MA. A Variable Height Microfluidic Device for Multiplexed Immunoassay Analysis of Traumatic Brain Injury Biomarkers. BIOSENSORS 2021; 11:320. [PMID: 34562910 PMCID: PMC8472232 DOI: 10.3390/bios11090320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of global morbidity and mortality, partially due to the lack of sensitive diagnostic methods and efficacious therapies. Panels of protein biomarkers have been proposed as a way of diagnosing and monitoring TBI. To measure multiple TBI biomarkers simultaneously, we present a variable height microfluidic device consisting of a single channel that varies in height between the inlet and outlet and can passively multiplex bead-based immunoassays by trapping assay beads at the point where their diameter matches the channel height. We developed bead-based quantum dot-linked immunosorbent assays (QLISAs) for interleukin-6 (IL-6), glial fibrillary acidic protein (GFAP), and interleukin-8 (IL-8) using DynabeadsTM M-450, M-270, and MyOneTM, respectively. The IL-6 and GFAP QLISAs were successfully multiplexed using a variable height channel that ranged in height from ~7.6 µm at the inlet to ~2.1 µm at the outlet. The IL-6, GFAP, and IL-8 QLISAs were also multiplexed using a channel that ranged in height from ~6.3 µm at the inlet to ~0.9 µm at the outlet. Our system can keep pace with TBI biomarker discovery and validation, as additional protein biomarkers can be multiplexed simply by adding in antibody-conjugated beads of different diameters.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Department of Emergency Medicine and Michigan Medicle, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Azizi S, Hier DB, Allen B, Obafemi-Ajayi T, Olbricht GR, Thimgan MS, Wunsch DC. A Kinetic Model for Blood Biomarker Levels After Mild Traumatic Brain Injury. Front Neurol 2021; 12:668606. [PMID: 34295300 PMCID: PMC8289906 DOI: 10.3389/fneur.2021.668606] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023] Open
Abstract
Traumatic brain injury (TBI) imposes a significant economic and social burden. The diagnosis and prognosis of mild TBI, also called concussion, is challenging. Concussions are common among contact sport athletes. After a blow to the head, it is often difficult to determine who has had a concussion, who should be withheld from play, if a concussed athlete is ready to return to the field, and which concussed athlete will develop a post-concussion syndrome. Biomarkers can be detected in the cerebrospinal fluid and blood after traumatic brain injury and their levels may have prognostic value. Despite significant investigation, questions remain as to the trajectories of blood biomarker levels over time after mild TBI. Modeling the kinetic behavior of these biomarkers could be informative. We propose a one-compartment kinetic model for S100B, UCH-L1, NF-L, GFAP, and tau biomarker levels after mild TBI based on accepted pharmacokinetic models for oral drug absorption. We approximated model parameters using previously published studies. Since parameter estimates were approximate, we did uncertainty and sensitivity analyses. Using estimated kinetic parameters for each biomarker, we applied the model to an available post-concussion biomarker dataset of UCH-L1, GFAP, tau, and NF-L biomarkers levels. We have demonstrated the feasibility of modeling blood biomarker levels after mild TBI with a one compartment kinetic model. More work is needed to better establish model parameters and to understand the implications of the model for diagnostic use of these blood biomarkers for mild TBI.
Collapse
Affiliation(s)
- Sima Azizi
- Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Daniel B Hier
- Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Blaine Allen
- Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Tayo Obafemi-Ajayi
- Engineering Program, Missouri State University, Springfield, MO, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO, United States
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| | - Donald C Wunsch
- Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States.,ECCS Division, National Science Foundation, Alexandria, VA, United States
| |
Collapse
|
22
|
Wu Z, Chen C, Kang SS, Liu X, Gu X, Yu SP, Keene CD, Cheng L, Ye K. Neurotrophic signaling deficiency exacerbates environmental risks for Alzheimer's disease pathogenesis. Proc Natl Acad Sci U S A 2021; 118:e2100986118. [PMID: 34140411 PMCID: PMC8237621 DOI: 10.1073/pnas.2100986118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanism of Alzheimer's disease (AD) pathogenesis remains obscure. Life and/or environmental events, such as traumatic brain injury (TBI), high-fat diet (HFD), and chronic cerebral hypoperfusion (CCH), are proposed exogenous risk factors for AD. BDNF/TrkB, an essential neurotrophic signaling for synaptic plasticity and neuronal survival, are reduced in the aged brain and in AD patients. Here, we show that environmental factors activate C/EBPβ, an inflammatory transcription factor, which subsequently up-regulates δ-secretase that simultaneously cleaves both APP and Tau, triggering AD neuropathological changes. These adverse effects are additively exacerbated in BDNF+/- or TrkB+/- mice. Strikingly, TBI provokes both senile plaque deposit and neurofibrillary tangles (NFT) formation in TrkB+/- mice, associated with augmented neuroinflammation and extensive neuronal loss, leading to cognitive deficits. Depletion of C/EBPβ inhibits TBI-induced AD-like pathologies in these mice. Remarkably, amyloid aggregates and NFT are tempospatially distributed in TrkB+/- mice brains after TBI, providing insight into their spreading in the progression of AD-like pathologies. Hence, our study revealed the roles of exogenous (TBI, HFD, and CCH) and endogenous (TrkB/BDNF) risk factors in the onset of AD-associated pathologies.
Collapse
Affiliation(s)
- Zhourui Wu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai 200072, China
| | - Chun Chen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China;
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai 200072, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322;
| |
Collapse
|
23
|
Ruan J, Miao X, Schlüter D, Lin L, Wang X. Extracellular vesicles in neuroinflammation: Pathogenesis, diagnosis, and therapy. Mol Ther 2021; 29:1946-1957. [PMID: 33895328 PMCID: PMC8178458 DOI: 10.1016/j.ymthe.2021.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are bilayer membrane vesicles and act as key messengers in intercellular communication. EVs can be secreted by both neurons and glial cells in the central nervous system (CNS). Under physiological conditions, EVs contribute to CNS homeostasis by facilitating omnidirectional communication among CNS cell populations. In response to CNS injury, EVs mediate neuroinflammatory responses and regulate tissue damage and repair, thereby influencing the pathogenesis, development, and/or recovery of neuroinflammatory diseases, including CNS autoimmune diseases, neurodegenerative diseases, stroke, CNS traumatic injury, and CNS infectious diseases. The unique ability of EVs to pass through the blood-brain barrier further confers them an important role in the bidirectional communication between the CNS and periphery, and application of EVs enables the diagnosis, prognosis, and therapy of neuroinflammatory diseases in a minimally invasive manner.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Xiaomin Miao
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China.
| | - Xu Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
24
|
Singh A, Singh K, Sahu A, Prasad RS, Pandey N, Dhar S. Serum Concentration of Myelin Basic Protein as a Prognostic Marker in Mild-to-moderate Head Injury Patients: A Prospective Study in a Tertiary Care Center. INDIAN JOURNAL OF NEUROSURGERY 2021. [DOI: 10.1055/s-0040-1716936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
Objective To estimate the level of myelin basic protein (MBP) and look for its validity in outcome prediction among mild-to-moderate head injury patients.
Materials and Methods It was a prospective study done at the Department of Neurosurgery, Institute of Medical Sciences, Banaras Hindu University from Jan 2018 to July 2019. All patients who presented to us within 48 hours of injury with mild-to-moderate head injury with apparently normal CT brain were include in the study. The serum sample were collected on the day of admission and 48 hours later, and patients were treated with standard protocols and observed 6 months postdischarge.
Results Of the 32 patients enrolled, we observed mean MBP level was higher for severity of brain damage, but not associated with age, mode of injury, and radiological diagnosis. Mean MBP levels were not statistically associated with Glasgow coma scale (GCS) score at admission but was correlated to outcome with p < 0.05, with sensitivity of 50% and specificity 72%, that is, patients with good outcome have lower mean MBP levels.
Conclusion MBP as per our analysis can be used as a prognostic marker in patients with head injury. It is not the absolute value rather a trend showing rise in serum MBP levels, which carries a significant value in outcome prediction.
Collapse
Affiliation(s)
- Ashvamedh Singh
- Department of Neurosurgery, Institute Of Medical Sciences (IMS), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kulwant Singh
- Department of Neurosurgery, Institute Of Medical Sciences (IMS), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anurag Sahu
- Department of Neurosurgery, Institute Of Medical Sciences (IMS), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - R. S. Prasad
- Department of Neurosurgery, Institute Of Medical Sciences (IMS), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - N. Pandey
- Department of Neurosurgery, Institute Of Medical Sciences (IMS), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sambuddha Dhar
- Department of Neurosurgery, Institute Of Medical Sciences (IMS), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
25
|
Hiskens MI, Schneiders AG, Vella RK, Fenning AS. Repetitive mild traumatic brain injury affects inflammation and excitotoxic mRNA expression at acute and chronic time-points. PLoS One 2021; 16:e0251315. [PMID: 33961674 PMCID: PMC8104440 DOI: 10.1371/journal.pone.0251315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/24/2021] [Indexed: 12/30/2022] Open
Abstract
The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurological damage, however the molecular mechanisms underpinning this detriment require further investigation. A closed head weight drop model that replicates the biomechanics and head acceleration forces of human mTBI was used to provide an exploration of the acute and chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were randomly assigned into one of four impact groups (control; one, five and 15 impacts) which were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired performance in the 15-impact group compared with control in the acute phase that persisted at chronic measurement. mRNA analyses were performed on brain tissue samples of the cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes observed based on location and follow-up duration. The cortex and hippocampus showed vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes. Serum samples showed no difference between groups for proteins phosphorylated tau and GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce mTBI pathophysiology and clinical features. The genes investigated in this study provide opportunity for further investigation of mTBI-related neuropathology and may provide targets in the development of therapies that help mitigate the effects of mTBI.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, Queensland, Australia
| | - Anthony G. Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Rebecca K. Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
26
|
Ayubcha C, Moghbel M, Borja AJ, Newberg A, Werner TJ, Alavi A, Revheim ME. Tau Imaging in Head Injury. PET Clin 2021; 16:249-260. [PMID: 33648666 DOI: 10.1016/j.cpet.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tau proteins play a significant role in a variety of degenerative neurologic conditions. Postmortem neuropathology studies of victims of repeat and severe head trauma have defined a unique spatial expression of neurologic tauopathies in these individuals, known as chronic traumatic encephalopathy. Established and newly developed radiotracers are now being applied to head injury populations with the intent of diagnosis and disease monitoring. This review assesses the role of tau in head injury, the state of tau radiotracer development, and the potential clinical value of tau-PET as derived from head injury studies.
Collapse
Affiliation(s)
- Cyrus Ayubcha
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Mateen Moghbel
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Andrew Newberg
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, USA; Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, Oslo 0315, Norway.
| |
Collapse
|
27
|
Janigro D, Bailey DM, Lehmann S, Badaut J, O'Flynn R, Hirtz C, Marchi N. Peripheral Blood and Salivary Biomarkers of Blood-Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Front Neurol 2021; 11:577312. [PMID: 33613412 PMCID: PMC7890078 DOI: 10.3389/fneur.2020.577312] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Within the neurovascular unit (NVU), the blood–brain barrier (BBB) operates as a key cerebrovascular interface, dynamically insulating the brain parenchyma from peripheral blood and compartments. Increased BBB permeability is clinically relevant for at least two reasons: it actively participates to the etiology of central nervous system (CNS) diseases, and it enables the diagnosis of neurological disorders based on the detection of CNS molecules in peripheral body fluids. In pathological conditions, a suite of glial, neuronal, and pericyte biomarkers can exit the brain reaching the peripheral blood and, after a process of filtration, may also appear in saliva or urine according to varying temporal trajectories. Here, we specifically examine the evidence in favor of or against the use of protein biomarkers of NVU damage and BBB permeability in traumatic head injury, including sport (sub)concussive impacts, seizure disorders, and neurodegenerative processes such as Alzheimer's disease. We further extend this analysis by focusing on the correlates of human extreme physiology applied to the NVU and its biomarkers. To this end, we report NVU changes after prolonged exercise, freediving, and gravitational stress, focusing on the presence of peripheral biomarkers in these conditions. The development of a biomarker toolkit will enable minimally invasive routines for the assessment of brain health in a broad spectrum of clinical, emergency, and sport settings.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology Case Western Reserve University, Cleveland, OH, United States.,FloTBI Inc., Cleveland, OH, United States
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, United Kingdom
| | - Sylvain Lehmann
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Jerome Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Robin O'Flynn
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
28
|
Traumatic Brain Injury and Neuroinflammation: Review of the Main Biomarkers. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.5.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Holmström U, Tsitsopoulos PP, Holtz A, Salci K, Shaw G, Mondello S, Marklund N. Cerebrospinal fluid levels of GFAP and pNF-H are elevated in patients with chronic spinal cord injury and neurological deterioration. Acta Neurochir (Wien) 2020; 162:2075-2086. [PMID: 32588294 PMCID: PMC7415026 DOI: 10.1007/s00701-020-04422-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Years after a traumatic spinal cord injury (SCI), a subset of patients may develop progressive clinical deterioration due to intradural scar formation and spinal cord tethering, with or without an associated syringomyelia. Meningitis, intradural hemorrhages, or intradural tumor surgery may also trigger glial scar formation and spinal cord tethering, leading to neurological worsening. Surgery is the treatment of choice in these chronic SCI patients. OBJECTIVE We hypothesized that cerebrospinal fluid (CSF) and plasma biomarkers could track ongoing neuronal loss and scar formation in patients with spinal cord tethering and are associated with clinical symptoms. METHODS We prospectively enrolled 12 patients with spinal cord tethering and measured glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1 (UCH-L1), and phosphorylated Neurofilament-heavy (pNF-H) in CSF and blood. Seven patients with benign lumbar intradural tumors and 7 patients with cervical radiculopathy without spinal cord involvement served as controls. RESULTS All evaluated biomarker levels were markedly higher in CSF than in plasma, without any correlation between the two compartments. When compared with radiculopathy controls, CSF GFAP and pNF-H levels were higher in patients with spinal cord tethering (p ≤ 0.05). In contrast, CSF UCH-L1 levels were not altered in chronic SCI patients when compared with either control groups. CONCLUSIONS The present findings suggest that in patients with spinal cord tethering, CSF GFAP and pNF-H levels might reflect ongoing scar formation and neuronal injury potentially responsible for progressive neurological deterioration.
Collapse
Affiliation(s)
- Ulrika Holmström
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Parmenion P Tsitsopoulos
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.
- Department of Neurosurgery, Hippokratio General Hospital, Aristotle University Faculty of Medicine,, Thessaloniki, Greece.
| | - Anders Holtz
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Konstantin Salci
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Gerry Shaw
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
- Department of Clinical Sciences Lund, Neurosurgery Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
30
|
Iverson GL, Posti JP, Öhman J, Blennow K, Zetterberg H, Luoto TM. Reliability of serum S100B measurement following mild traumatic brain injury: a comparison of assay measurements from two laboratories. Brain Inj 2020; 34:1237-1244. [PMID: 32744887 DOI: 10.1080/02699052.2020.1800092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE There is enormous research and clinical interest in blood-based biomarkers of mild traumatic brain injury (MTBI) sustained in sports, daily life, or military service. We examined the reliability of a commercially available assay for S100B used on the same samples by two different laboratories separated by 2 years in time. METHODS AND PROCEDURES A cohort of 163 adult patients (head CT-scanned, n = 110) with mild head injury were enrolled from the emergency department (ED). All had Glasgow Coma Scale scores of 14 or 15 in the ED (94.4% = 15). The mean time between injury and venous blood sampling was 2.9 h (SD = 1.4; Range = 0.5-6.0 h). Serum S100B was measured at two independent centers using the same high throughput clinical assay (Elecsys S100B®; Roche Diagnostics). RESULTS The Spearman correlation between the two assays in the total sample (N = 163) was r = 0.93. A Wilcoxson Signed Ranks test indicated that the median scores for the values differed (Z = 2,082, p < .001, Cohen's d = 0.151, small effect size). The values obtained from the two laboratories were very similar for identifying traumatic intracranial abnormalities (sensitivity = 80.1% versus 85.7%). CONCLUSIONS The serum S100B results measured using the same assay in different laboratories yielded highly correlated and clinically similar, but clearly not identical, results.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School , Boston, MA, USA.,Spaulding Rehabilitation Hospital , Charlestown, MA, USA.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program , Boston, MA, USA
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku Brain Injury Centre, Turku University Hospital, and University of Turku , Turku, Finland
| | - Juha Öhman
- Department of Neurosurgery, Tampere University Hospital and University of Tampere , Tampere, Finland
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg , Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital , Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg , Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital , Mölndal, Sweden.,UK Dementia Research Institute at University College London , London, UK.,Department of Molecular Neuroscience, University College London Institute of Neurology , London, UK
| | - Teemu Miikka Luoto
- Department of Neurosurgery, Tampere University Hospital and University of Tampere , Tampere, Finland
| |
Collapse
|
31
|
Guedes VA, Devoto C, Leete J, Sass D, Acott JD, Mithani S, Gill JM. Extracellular Vesicle Proteins and MicroRNAs as Biomarkers for Traumatic Brain Injury. Front Neurol 2020; 11:663. [PMID: 32765398 PMCID: PMC7378746 DOI: 10.3389/fneur.2020.00663] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous condition, associated with diverse etiologies, clinical presentations and degrees of severity, and may result in chronic neurobehavioral sequelae. The field of TBI biomarkers is rapidly evolving to address the many facets of TBI pathology and improve its clinical management. Recent years have witnessed a marked increase in the number of publications and interest in the role of extracellular vesicles (EVs), which include exosomes, cell signaling, immune responses, and as biomarkers in a number of pathologies. Exosomes have a well-defined lipid bilayer with surface markers that reflect the cell of origin and an aqueous core that contains a variety of biological material including proteins (e.g., cytokines and growth factors) and nucleic acids (e.g., microRNAs). The presence of proteins associated with neurodegenerative changes such as amyloid-β, α-synuclein and phosphorylated tau in exosomes suggests a role in the initiation and propagation of neurological diseases. However, mechanisms of cell communication involving exosomes in the brain and their role in TBI pathology are poorly understood. Exosomes are promising TBI biomarkers as they can cross the blood-brain barrier and can be isolated from peripheral fluids, including serum, saliva, sweat, and urine. Exosomal content is protected from enzymatic degradation by exosome membranes and reflects the internal environment of their cell of origin, offering insights into tissue-specific pathological processes. Challenges in the clinical use of exosomal cargo as biomarkers include difficulty in isolating pure exosomes, variable yields of the isolation processes, quantification of vesicles, and lack of specificity of exosomal markers. Moreover, there is no consensus regarding nomenclature and characteristics of EV subtypes. In this review, we discuss current technical limitations and challenges of using exosomes and other EVs as blood-based biomarkers, highlighting their potential as diagnostic and prognostic tools in TBI.
Collapse
Affiliation(s)
- Vivian A Guedes
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Christina Devoto
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jacqueline Leete
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Delia Sass
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jedidiah D Acott
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sara Mithani
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Lewis JM, Dhawan S, Obirieze AC, Sarno B, Akers J, Heller MJ, Chen CC. Plasma Biomarker for Post-concussive Syndrome: A Pilot Study Using an Alternating Current Electro-Kinetic Platform. Front Neurol 2020; 11:685. [PMID: 32760343 PMCID: PMC7371973 DOI: 10.3389/fneur.2020.00685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023] Open
Abstract
Background: Technology platforms that afford biomarker discovery in patients suffering from traumatic brain injury (TBI) remain an unmet medical need. Here, we describe an observational pilot study to explore the utility of an alternating current electrokinetic (ACE) microchip device in this context. Methods: Blood samples were collected from participating subjects with and without minor TBI. Plasma levels of glial fibrillary acidic protein (GFAP), Tau, ubiquitin C-terminal hydrolase L1 (UCH-L1), and cell-free DNA (cfDNA) were determined in subjects with and without minor TBI using ACE microchip device followed by on-chip immunofluorescent analysis. Post-concussive symptoms were assessed using the Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) at one-month follow-up. Results: Highest levels of GFAP, UCH-L1, and Tau were seen in two minor TBI subjects with abnormality on head computed tomography (CT). In patients without abnormal head CT, Tau and GFAP levels discriminated between plasma from minor-TBI and non-TBI patients, with sensitivity and specificity of 64–72 and 50%, respectively. Plasma GFAP, UCH-L1, and Tau strongly correlated with the cumulative RPCSQ score. Plasma UCH-L1 and GFAP exhibited highest correlation to sensitivity to noise and light (r = 0.96 and 0.91, respectively, p < 0.001). Plasma UCH-L1 and Tau showed highest correlation with headache (r = 0.74 and 0.78, respectively, p < 0.001), sleep disturbance (r = 0.69 and 0.84, respectively, p < 0.001), and cognitive symptoms, including forgetfulness (r = 0.76 and 0.74, respectively, p < 0.001), poor concentration (r = 0.68 and 0.76, respectively, p < 0.001), and time required for information processing (r = 0.77 and 0.81, respectively, p < 0.001). cfDNA exhibited a strong correlation with depression (r = 0.79, p < 0.01) and dizziness (r = 0.69, p < 0.01). While cfDNA demonstrated positive correlation with dizziness and depression (r = 0.69 and 0.79, respectively, p < 0.001), no significant correlation was observed between cumulative RPCSQ and cfDNA (r = 0.07, p = 0.81). Conclusion: We provide proof-of-principle results supporting the utility of ACE microchip for plasma biomarker analysis in patients with minor TBI.
Collapse
Affiliation(s)
- Jean M Lewis
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, United States
| | - Sanjay Dhawan
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Augustine C Obirieze
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, United States
| | - Benjamin Sarno
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, United States
| | - Johnny Akers
- VisiCELL Medical Inc., San Diego, CA, United States
| | - Michael J Heller
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
33
|
Hossain I, Mohammadian M, Takala RSK, Tenovuo O, Azurmendi Gil L, Frantzén J, van Gils M, Hutchinson PJ, Katila AJ, Maanpää HR, Menon DK, Newcombe VF, Tallus J, Hrusovsky K, Wilson DH, Gill J, Blennow K, Sanchez JC, Zetterberg H, Posti JP. Admission Levels of Total Tau and β-Amyloid Isoforms 1-40 and 1-42 in Predicting the Outcome of Mild Traumatic Brain Injury. Front Neurol 2020; 11:325. [PMID: 32477238 PMCID: PMC7237639 DOI: 10.3389/fneur.2020.00325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The purpose of this study was to investigate if admission levels of total tau (T-tau) and β-amyloid isoforms 1-40 (Aβ40) and 1-42 (Aβ42) could predict clinical outcome in patients with mild traumatic brain injury (mTBI). Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13] recruited in Turku University Hospital, Turku, Finland were included in this study. Blood samples were drawn within 24 h of admission for analysis of plasma T-tau, Aβ40, and Aβ42. Patients were divided into computed tomography (CT)-positive and CT-negative groups. The outcome was assessed 6–12 months after the injury using the Extended Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8) or incomplete (GOSE < 8) recovery. The Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) was also used to assess mTBI-related symptoms. Predictive values of the biomarkers were analyzed independently, in panels and together with clinical parameters. Results: The admission levels of plasma T-tau, Aβ40, and Aβ42 were not significantly different between patients with complete and incomplete recovery. The levels of T-tau, Aβ40, and Aβ42 could poorly predict complete recovery, with areas under the receiver operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort, there was a significant negative correlation between the levels of T-tau and ordinal GOSE score (Spearman ρ = −0.231, p = 0.018). In a multivariate logistic regression model including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time from injury to sampling, and CT findings, none of the biomarkers could predict complete recovery independently or together with the other two biomarkers. Plasma levels of T-tau, Aβ40, and Aβ42 did not significantly differ between the outcome groups either within the CT-positive or CT-negative subgroups. Levels of Aβ40 and Aβ42 did not significantly correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly correlated with ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The levels of T-tau, Aβ40, and Aβ42 were not correlated with the RPCSQ scores. Conclusions: The early levels of T-tau are correlated with the outcome in patients with mTBI, but none of the biomarkers either alone or in any combinations could predict complete recovery in patients with mTBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mehrbod Mohammadian
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Olli Tenovuo
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Leire Azurmendi Gil
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Janek Frantzén
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mark van Gils
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Peter J Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jussi Tallus
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Department of Radiology, Turku University Hospital, Turku, Finland
| | | | | | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Doxycycline improves traumatic brain injury outcomes in a murine survival model. J Trauma Acute Care Surg 2020; 89:435-440. [DOI: 10.1097/ta.0000000000002801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Hiskens MI, Schneiders AG, Angoa-Pérez M, Vella RK, Fenning AS. Blood biomarkers for assessment of mild traumatic brain injury and chronic traumatic encephalopathy. Biomarkers 2020; 25:213-227. [PMID: 32096416 DOI: 10.1080/1354750x.2020.1735521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mild traumatic brain injuries (mTBI) are prevalent and can result in significant debilitation. Current diagnostic methods have implicit limitations, with clinical assessment tools reliant on subjective self-reported symptoms or non-specific clinical observations, and commonly available imaging techniques lacking sufficient sensitivity to detect mTBI. A blood biomarker would provide a readily accessible detector of mTBI to meet the current measurement gap. Suitable options would provide objective and quantifiable information in diagnosing mTBI, in monitoring recovery, and in establishing a prognosis of resultant neurodegenerative disease, such as chronic traumatic encephalopathy (CTE). A biomarker would also assist in progressing research, providing suitable endpoints for testing therapeutic modalities and for further exploring mTBI pathophysiology. This review highlights the most promising blood-based protein candidates that are expressed in the central nervous system (CNS) and released into systemic circulation following mTBI. To date, neurofilament light (NF-L) may be the most suitable candidate for assessing neuronal damage, and glial fibrillary acidic protein (GFAP) for assessing astrocyte activation, although further work is required. Ultimately, the heterogeneity of cells in the brain and each marker's limitations may require a combination of biomarkers, and recent developments in microRNA (miRNA) markers of mTBI show promise and warrant further exploration.
Collapse
Affiliation(s)
- Matthew I Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Anthony G Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
36
|
Using Serum Amino Acids to Predict Traumatic Brain Injury: A Systematic Approach to Utilize Multiple Biomarkers. Int J Mol Sci 2020; 21:ijms21051786. [PMID: 32150890 PMCID: PMC7084695 DOI: 10.3390/ijms21051786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) can cause biochemical and metabolomic alterations in the brain tissue and serum. These alterations can be used for diagnosis and prognosis of TBI. Here, the serum concentrations of seventeen amino acids (AA) were studied for their potential utility as biomarkers of TBI. Twenty-five female, 4-week-old piglets received diffuse (n = 13) or focal (n = 12) TBI. Blood samples were obtained both pre-injury and at either 24-h or 4-days post-TBI. To find a robust panel of biomarkers, the results of focal and diffuse TBIs were combined and multivariate logistic regression analysis, coupled with the best subset selection technique and repeated k-fold cross-validation method, was used to perform a thorough search of all possible subsets of AAs. The combination of serum glycine, taurine, and ornithine was optimal for TBI diagnosis, with 80% sensitivity and 86% overall prediction rate, and showed excellent TBI diagnostic performance, with 100% sensitivity and 78% overall prediction rate, on a separate validation dataset including four uninjured and five injured animals. We found that combinations of biomarkers outperformed any single biomarker. We propose this 3-AA serum biomarker panel to diagnose mild-to-moderate focal/diffuse TBI. The systematic approaches implemented herein can be used for combining parameters from various TBI assessments to develop/evaluate optimal multi-factorial diagnostic/prognostic TBI metrics.
Collapse
|
37
|
Mayaki AM, Abdul Razak IS, Noraniza MA, Mazlina M, Rasedee A. Biofluid Markers of Equine Neurological Disorders Reviewed From Human Perspectives. J Equine Vet Sci 2019; 86:102907. [PMID: 32067661 DOI: 10.1016/j.jevs.2019.102907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
Neurological disorders (NDs) are often fatal to horses. Thus, symptoms of equine NDs commonly indicate euthanasia. Current diagnostic approaches for equine NDs is based on clinical signs, differential diagnoses, analysis of cerebrospinal fluid (CSF), assessment of histopathological lesions, and imaging. However, advances in biofluid biomarkers in the diagnosis of human neurological diseases can potentially be applied to equine NDs. In this review, we described the established human blood and CSF neurobiomarkers that could potentially be used to diagnose equine NDs.
Collapse
Affiliation(s)
- Abubakar Musa Mayaki
- Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Intan Shameha Abdul Razak
- Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Mohd Adzahan Noraniza
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mazlan Mazlina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
38
|
The Neutrophil/Lymphocyte Count Ratio Predicts Mortality in Severe Traumatic Brain Injury Patients. J Clin Med 2019; 8:jcm8091453. [PMID: 31547411 PMCID: PMC6780814 DOI: 10.3390/jcm8091453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction: Neutrophil-lymphocyte count ratio (NLCR) is a simple and low-cost marker of inflammatory response. NLCR has shown to be a sensitive marker of clinical severity in inflammatory-related tissue injury, and high value of NLCR is associated with poor outcome in traumatic brain injured (TBI) patients. The purpose of this study was to retrospectively analyze NLCR and its association with outcome in a cohort of TBI patients in relation to the type of brain injury. Methods: Adult patients admitted for isolated TBI with Glasgow Coma Score lower than eight were included in the study. NLCR was calculated as the ratio between the absolute neutrophil and lymphocyte count immediately after admission to the hospital, and for six consecutive days after admission to the intensive care unit (ICU). Brain injuries were classified according to neuroradiological findings at the admission computed tomography (CT) as DAI—patients with severe diffuse axonal injury; CE—patients with hemispheric or focal cerebral edema; ICH—patients with intracerebral hemorrhage; S-EH/SAH—patients with subdural and/or epidural hematoma/subarachnoid hemorrhage. Results: NLCR was calculated in 144 patients. Admission NLCR was significantly higher in the non-survivors than in those who survived at 28 days (p < 0.05) from admission. Persisting high NLCR value was associated with poor outcome, and admission NLCR higher than 15.63 was a predictor of 28-day mortality. The highest NLCR value at admission was observed in patients with DAI compared with other brain injuries (p < 0.001). Concussions: NLCR can be a useful marker for predicting outcome in TBI patients. Further studies are warranted to confirm these results.
Collapse
|
39
|
Chau CYC, Craven CL, Rubiano AM, Adams H, Tülü S, Czosnyka M, Servadei F, Ercole A, Hutchinson PJ, Kolias AG. The Evolution of the Role of External Ventricular Drainage in Traumatic Brain Injury. J Clin Med 2019; 8:E1422. [PMID: 31509945 PMCID: PMC6780113 DOI: 10.3390/jcm8091422] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
External ventricular drains (EVDs) are commonly used in neurosurgery in different conditions but frequently in the management of traumatic brain injury (TBI) to monitor and/or control intracranial pressure (ICP) by diverting cerebrospinal fluid (CSF). Their clinical effectiveness, when used as a therapeutic ICP-lowering procedure in contemporary practice, remains unclear. No consensus has been reached regarding the drainage strategy and optimal timing of insertion. We review the literature on EVDs in the setting of TBI, discussing its clinical indications, surgical technique, complications, clinical outcomes, and economic considerations.
Collapse
Affiliation(s)
- Charlene Y C Chau
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge CB20QQ, UK
| | - Claudia L Craven
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N3BG, UK
| | - Andres M Rubiano
- Neurosciences Institute, INUB-MEDITECH Research Group, El Bosque University, 113033 Bogotá, Colombia
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge CB20QQ, UK
| | - Hadie Adams
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge CB20QQ, UK
| | - Selma Tülü
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge CB20QQ, UK
- Department of Neurosurgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge CB20QQ, UK
| | - Franco Servadei
- Department of Neurosurgery, Humanitas University and Research Hospital, 20090 Milan, Italy
| | - Ari Ercole
- Division of Anaesthesia, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge CB20QQ, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge CB20QQ, UK
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge CB20QQ, UK
| | - Angelos G Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital and University of Cambridge, Cambridge Biomedical Campus, Cambridge CB20QQ, UK.
- NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge CB20QQ, UK.
| |
Collapse
|
40
|
Bergman L, Torres-Vergara P, Penny J, Wikström J, Nelander M, Leon J, Tolcher M, Roberts JM, Wikström AK, Escudero C. Investigating Maternal Brain Alterations in Preeclampsia: the Need for a Multidisciplinary Effort. Curr Hypertens Rep 2019; 21:72. [PMID: 31375930 DOI: 10.1007/s11906-019-0977-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To provide insight into the mechanisms underlying cerebral pathophysiology and to highlight possible methods for evaluation, screening, and surveillance of cerebral complications in preeclampsia. RECENT FINDINGS The pathophysiology of eclampsia remains enigmatic. Animal studies show that the cerebral circulation in pregnancy and preeclampsia might be affected with increased permeability over the blood-brain barrier and altered cerebral blood flow due to impaired cerebral autoregulation. The increased blood pressure cannot be the only underlying cause of eclampsia and cerebral edema, since some cases of eclampsia arise without simultaneous hypertension. Findings from animal studies need to be confirmed in human tissues. Evaluation of brain alterations in preeclampsia and eclampsia is challenging and demands a multidisciplinary collaboration, since no single method can accurately and fully describe how preeclampsia affects the brain. Cerebral complications of preeclampsia are significant factors in maternal morbidity and mortality worldwide. No single method can accurately describe the full picture of how preeclampsia affects the brain vasculature and parenchyma. We recommend an international and multidisciplinary effort not only to overcome the issue of limited sample availability but also to optimize the quality of research.
Collapse
Affiliation(s)
- Lina Bergman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
- Center for Clinical Research Dalarna, Falun, Uppsala, Sweden.
| | - Pablo Torres-Vergara
- Pharmacy Department, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Johan Wikström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Maria Nelander
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jose Leon
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, (LFV-GIANT), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Mary Tolcher
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - James M Roberts
- Magee Womens Research Institute, Dept of Obstetrics Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna-Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, (LFV-GIANT), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile.
| |
Collapse
|
41
|
Characterisation of serum total tau following paediatric traumatic brain injury: a case-control study. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:558-567. [PMID: 31231066 DOI: 10.1016/s2352-4642(19)30194-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major health problem in children. Blood-based biomarkers interpreted by use of normative values might improve the accuracy of diagnosis. Ultrasensitive assays can quantify serum concentrations of the neuronal microtubule-associated protein tau, which is increased in adult brains following TBI. We aimed to determine if serum total tau correlates with TBI diagnosis, severity, and radiological findings on CT scans in children younger than 18 years. METHODS In this case-control study, we included venous blood samples from healthy control children in the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) biobank. For TBI cases, we recruited children (aged 0-17 years) who presented to the emergency department within 24 h of a TBI in three tertiary-care paediatric hospitals (Toronto, Vancouver, and Melbourne). Children were eligible if they required hospital observation for a minimum of 4 h or admission to the intensive care unit, and were excluded if they had had hospital treatment for a previous TBI, had birth trauma, or their parents could not speak English or French and therefore could not readily give consent. All available control samples were used and a case-control match was therefore not done. Venous and arterial blood samples were collected from patients with TBI within 28 h of injury (day 1). We used an ultrasensitive single-molecule immunoassay to measure serum total tau in blood samples. We first generated reference intervals of serum total tau from the control group, and used these normative data to interpret injury-associated changes in serum total tau in children with TBI. Concentrations of serum tau were measured in all CALIPER participants and patients with TBI, and no participants were excluded before analysis. FINDINGS We included samples from 416 control participants from the CALIPER cohort. Median total tau concentrations did not differ between sexes (p=0·12), but three significant reference intervals based on age groups were identified (1-3 years [0·88-19·2 pg/mL], 4-15 years [0·93-5·31 pg/mL], and 16-19 years [0·79-4·20 pg/mL]). Blood samples were obtained from 158 patients with TBI recruited between April 30, 2011, and June 28, 2013. Serum total tau on day 1 of TBI was negatively associated with Glasgow Coma Scale (GCS) score (rs=-0·42, 95% CI -0·55 to -0·28, p<0·0001). Median total tau was 2·86 pg/mL (IQR 1·52-4·83) in patients with GCS score 13-15 points (n=114), 7·08 pg/mL (3·75-41·1) in those with GCS score 9-12 points (n=13), and 8·48 pg/mL (2·53-70·6) in those with GCS score 3-8 points (n=31). Notably, participants who had GCS scores of 15 points had median total tau concentrations (2·57 pg/mL [1·50-4·61]) indistinguishable from those of control participants (2·46 pg/mL [1·77-3·42]), whereas those with GCS score 13-14 points had elevated total tau (6·41 pg/mL [2·97-42·5]). Serum total tau was not strongly associated with CT findings in patients with mild TBI. INTERPRETATION Serum total tau might help to differentiate between patients with mild TBI (GCS 13-14 vs GCS 15), but larger studies are needed to validate these results before this biomarker can be used for diagnosis and prognosis. FUNDING Canadian Institutes of Health Research, Ontario Neurotrauma Foundation, and Victoria Neurotrauma Foundation.
Collapse
|
42
|
Hiskens MI, Angoa-Pérez M, Schneiders AG, Vella RK, Fenning AS. Modeling sports-related mild traumatic brain injury in animals-A systematic review. J Neurosci Res 2019; 97:1194-1222. [PMID: 31135069 DOI: 10.1002/jnr.24472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Sports-related head trauma has emerged as an important public health issue, as mild traumatic brain injuries (mTBIs) may result in neurodegenerative disorders such as chronic traumatic encephalopathy (CTE). Research into mTBI and CTE pathophysiology are difficult to undertake in athletes, with observational trials and post-mortem analysis the current mainstays. Thus, animal models play an important role in the study of mTBI, however, traditional animal models have focused on acute, severe injuries rather than the more typical mTBI's seen in sport injuries. Recently, a number of animal models have been developed that are both appropriately scaled and biomechanically relevant to the forces sustained by athletes. This review aimed to examine the literature for variables included in these animal models, and the resulting neurotrauma as evidenced by pathology and behavioral deficits. A systematic search of the literature was performed in multiple electronic databases. The inclusion criteria required mimicry of athlete mTBI conditions: freedom of head movement, lack of surgical alteration of the skull, and application of direct contact force. Studies were analyzed for variables including apparatus design features (impact force, change in animal head velocity, and kinetic energy transfer to the head), demonstrated pathology (phosphorylated tau, TDP-43 aggregation, diffuse axonal injury, gliosis, cytokine inflammation response, and genetic integrity), and behavioral changes. These studies suggested that appropriate animal models can assist in understanding the pathological and functional outcomes of athlete mTBI, and could be used as a platform for future studies of diagnostic/prognostic markers and in the development of treatment interventions.
Collapse
Affiliation(s)
- Matthew I Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Mariana Angoa-Pérez
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Anthony G Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Branyan, Australia
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
43
|
Gan ZS, Stein SC, Swanson R, Guan S, Garcia L, Mehta D, Smith DH. Blood Biomarkers for Traumatic Brain Injury: A Quantitative Assessment of Diagnostic and Prognostic Accuracy. Front Neurol 2019; 10:446. [PMID: 31105646 PMCID: PMC6498532 DOI: 10.3389/fneur.2019.00446] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Blood biomarkers have been explored for their potential to provide objective measures in the assessment of traumatic brain injury (TBI). However, it is not clear which biomarkers are best for diagnosis and prognosis in different severities of TBI. Here, we compare existing studies on the discriminative abilities of serum biomarkers for four commonly studied clinical situations: detecting concussion, predicting intracranial damage after mild TBI (mTBI), predicting delayed recovery after mTBI, and predicting adverse outcome after severe TBI (sTBI). We conducted a literature search of publications on biomarkers in TBI published up until July 2018. Operating characteristics were pooled for each biomarker for comparison. For detecting concussion, 4 biomarker panels and creatine kinase B type had excellent discriminative ability. For detecting intracranial injury and the need for a head CT scan after mTBI, 2 biomarker panels, and hyperphosphorylated tau had excellent operating characteristics. For predicting delayed recovery after mTBI, top candidates included calpain-derived αII-spectrin N-terminal fragment, tau A, neurofilament light, and ghrelin. For predicting adverse outcome following sTBI, no biomarker had excellent performance, but several had good performance, including markers of coagulation and inflammation, structural proteins in the brain, and proteins involved in homeostasis. The highest-performing biomarkers in each of these categories may provide insight into the pathophysiologies underlying mild and severe TBI. With further study, these biomarkers have the potential to be used alongside clinical and radiological data to improve TBI diagnostics, prognostics, and evidence-based medical management.
Collapse
Affiliation(s)
- Zoe S Gan
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Sherman C Stein
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Randel Swanson
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Rehabilitation Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States.,Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States.,Department of Neurosurgery, Perelman School of Medicine, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Shaobo Guan
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lizette Garcia
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Devanshi Mehta
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Douglas H Smith
- Department of Neurosurgery, Perelman School of Medicine, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
44
|
Sandsmark DK, Bogoslovsky T, Qu BX, Haber M, Cota MR, Davis C, Butman JA, Latour LL, Diaz-Arrastia R. Changes in Plasma von Willebrand Factor and Cellular Fibronectin in MRI-Defined Traumatic Microvascular Injury. Front Neurol 2019; 10:246. [PMID: 30972003 PMCID: PMC6445052 DOI: 10.3389/fneur.2019.00246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
The neuropathology of traumatic brain injury (TB) is diverse, including primary injury to neurons, axons, glial cells, vascular structures, and secondary processes, such as edema and inflammation that vary between individual patients. Traumatic microvascular injury is an important endophenotype of TBI-related injury. We studied patients who sustained a TBI requiring ER evaluation and had an MRI performed within 48 h of injury. We classified patients into 3 groups based on their MRI findings: (1) those that had evidence of traumatic microvascular injury on susceptibility or diffusion weighted MRI sequences without frank hemorrhage [Traumatic Vascular Injury (TVI) group; 20 subjects]. (2) those who had evidence of intraparenchymal, subdural, epidural, or subarachnoid hemorrhage [Traumatic Hemorrhage (TH) group; 26 subjects], and (3) those who had no traumatic injuries detected by MRI [MRI-negative group; 30 subjects]. We then measured plasma protein biomarkers of vascular injury [von Willebrand Factor (vWF) or cellular fibronectin (cFn)] and axonal injury (phosphorylated neurofilament heavy chain; pNF-H). We found that the TVI group was characterized by decreased expression of plasma vWF (p < 0.05 compared to MRI-negative group; p < 0.00001 compared to TH group) ≤48 h after injury. cFN was no different between groups ≤48 h after injury, but was increased in the TVI group compared to the MRI-negative (p < 0.00001) and TH (p < 0.00001) groups when measured >48 h from injury. pNF-H was increased in both the TH and TVI groups compared to the MRI-negative group ≤48 h from injury. When we used the MRI grouping and molecular biomarkers in a model to predict Glasgow Outcome Scale-Extended (GOS-E) score at 30–90 days, we found that inclusion of the imaging data and biomarkers substantially improved the ability to predict a good outcome over clinical information alone. These data indicate that there is a distinct, vascular-predominant endophenotype in a subset of patients who sustain a TBI and that these injuries are characterized by a specific biomarker profile. Further work to will be needed to determine whether these biomarkers can be useful as predictive and pharmacodynamic biomarkers for vascular-directed therapies after TBI.
Collapse
Affiliation(s)
- Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Tanya Bogoslovsky
- Division of Clinical Neurosciences, Turku University Hospital, University of Turku, Turku, Finland
| | - Bao-Xi Qu
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin R Cota
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Cora Davis
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - John A Butman
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,National Institutes of Health, Radiology and Imaging Sciences, Bethesda, MD, United States
| | - Lawrence L Latour
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States.,Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
45
|
Qin X, Li L, Lv Q, Shu Q, Zhang Y, Wang Y. Expression profile of plasma microRNAs and their roles in diagnosis of mild to severe traumatic brain injury. PLoS One 2018; 13:e0204051. [PMID: 30226895 PMCID: PMC6143266 DOI: 10.1371/journal.pone.0204051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with trauma-related death. In this study, we evaluated differences in the expression of plasma microRNAs (miRNAs) in patients with different degrees of TBI, and explored the potential of miRNAs for use as diagnostic TBI biomarkers. The miRNA microarray results showed upregulation of 65, 33, and 16 miRNAs and downregulation of 29, 27, and 6 miRNAs in patients with mild, moderate, and severe TBI, respectively, compared with healthy controls. Thirteen miRNAs (seven upregulated and six downregulated) were found to be present in all TBI groups. Seven upregulated miRNAs were selected for validation in an enlarged cohort of samples and showed good diagnostic accuracy. The expression levels of miR-3195 and miR-328-5p were higher in the severe TBI group than in the mild and moderate TBI groups. In summary, our study demonstrates different expression profiles in plasma miRNAs among patients with mild to severe TBI. A subset of seven miRNAs can be used for diagnosis of TBI. Moreover, miR-3195 and miR-328-5p may be utilized during diagnosis to distinguish mild and moderate TBI from severe TBI.
Collapse
Affiliation(s)
- Xiaojing Qin
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Department of Pathology, Affiliated Hospital of Logistic University of PAP, Tianjin, China
| | - Lingzhi Li
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
| | | | - Yongliang Zhang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China
- * E-mail: (YW); (YZ)
| | - Yaping Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- * E-mail: (YW); (YZ)
| |
Collapse
|
46
|
Toffolo K, Osei J, Kelly W, Poulsen A, Donahue K, Wang J, Hunter M, Bard J, Wang J, Poulsen D. Circulating microRNAs as biomarkers in traumatic brain injury. Neuropharmacology 2018; 145:199-208. [PMID: 30195586 DOI: 10.1016/j.neuropharm.2018.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022]
Abstract
Preclinical and clinical studies can be greatly improved through the inclusion of diagnostic, prognostic, predictive or pharmacodynamics biomarkers. Circulating microRNAs (miRNAs) represent highly stable targets that respond to physiological and pathological changes. MicroRNA biomarkers can be detected by highly sensitive and absolutely quantitative methods currently available in most clinical laboratories. Here we review preclinical and clinical studies that have examined circulating miRNAs as potential diagnostic and prognostic biomarkers. We also present data that suggests pharmacodynamics biomarkers can be identified that are associated with neuroprotection in general. Although circulating miRNA can serve as useful tools, it is clear their expression profiles are highly sensitive to changing conditions and are influenced by a broad range of parameters including age, sex, body mass index, injury severity, time of collection, as well as methods of processing, purification and detection. Thus, considerable effort will be required to standardize methods and experimental design conditions before circulating miRNAs can prove useful in a heterologous injury like TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kathryn Toffolo
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jennifer Osei
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - William Kelly
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Austin Poulsen
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kaitlynn Donahue
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jiefei Wang
- Department of Biostatistics, University at Buffalo, Buffalo, NY, USA
| | - Madison Hunter
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jonathan Bard
- New York State Center for Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Jianxin Wang
- New York State Center for Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - David Poulsen
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
47
|
Combining H-FABP and GFAP increases the capacity to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury. PLoS One 2018; 13:e0200394. [PMID: 29985933 PMCID: PMC6037378 DOI: 10.1371/journal.pone.0200394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) patients may have trauma-induced brain lesions detectable using CT scans. However, most patients will be CT-negative. There is thus a need for an additional tool to detect patients at risk. Single blood biomarkers, such as S100B and GFAP, have been widely studied in mTBI patients, but to date, none seems to perform well enough. In many different diseases, combining several biomarkers into panels has become increasingly interesting for diagnoses and to enhance classification performance. The present study evaluated 13 proteins individually-H-FABP, MMP-1, MMP-3, MMP-9, VCAM, ICAM, SAA, CRP, GSTP, NKDA, PRDX1, DJ-1 and IL-10-for their capacity to differentiate between patients with and without a brain lesion according to CT results. The best performing proteins were then compared and combined with the S100B and GFAP proteins into a CT-scan triage panel. Patients diagnosed with mTBI, with a Glasgow Coma Scale score of 15 and one additional clinical symptom were enrolled at three different European sites. A blood sample was collected at hospital admission, and a CT scan was performed. Patients were divided into two two-centre cohorts and further dichotomised into CT-positive and CT-negative groups for statistical analysis. Single markers and panels were evaluated using Cohort 1. Four proteins-H-FABP, IL-10, S100B and GFAP-showed significantly higher levels in CT-positive patients. The best-performing biomarker was H-FABP, with a specificity of 32% (95% CI 23-40) and sensitivity reaching 100%. The best-performing two-marker panel for Cohort 1, subsequently validated in Cohort 2, was a combination of H-FABP and GFAP, enhancing specificity to 46% (95% CI 36-55). When adding IL-10 to this panel, specificity reached 52% (95% CI 43-61) with 100% sensitivity. These results showed that proteins combined into panels could be used to efficiently classify CT-positive and CT-negative mTBI patients.
Collapse
|
48
|
Bergman L, Zetterberg H, Kaihola H, Hagberg H, Blennow K, Åkerud H. Blood-based cerebral biomarkers in preeclampsia: Plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia - A nested case control study. PLoS One 2018; 13:e0196025. [PMID: 29719006 PMCID: PMC5931625 DOI: 10.1371/journal.pone.0196025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/23/2018] [Indexed: 11/26/2022] Open
Abstract
Objective To evaluate if concentrations of the neuronal proteins neurofilament light chain and tau are changed in women developing preeclampsia and to evaluate the ability of a combination of neurofilament light chain, tau, S100B and neuron specific enolase in identifying neurologic impairment before diagnosis of preeclampsia. Methods A nested case-control study within a longitudinal study cohort was performed. 469 healthy pregnant women were enrolled between 2004–2007 and plasma samples were collected at gestational weeks 10, 25, 28, 33 and 37. Plasma concentrations of tau and neurofilament light chain were analyzed in 16 women who eventually developed preeclampsia and 36 controls throughout pregnancy with single molecule array (Simoa) method and compared within and between groups. S100B and NSE had been analyzed previously in the same study population. A statistical model with receiving characteristic operation curve was constructed with the four biomarkers combined. Results Plasma concentrations of neurofilament light chain were significantly increased in women who developed preeclampsia in gestational week 33 (11.85 ng/L, IQR 7.48–39.93 vs 6.80 ng/L, IQR 5.65–11.40) and 37 (22.15 ng/L, IQR 10.93–35.30 vs 8.40 ng/L, IQR 6.40–14.30) and for tau in gestational week 37 (4.33 ng/L, IQR 3.97–12.83 vs 3.77 ng/L, IQR 1.91–5.25) in contrast to healthy controls. A combined model for preeclampsia with tau, neurofilament light chain, S100B and neuron specific enolase in gestational week 25 displayed an area under the curve of 0.77, in week 28 it was 0.75, in week 33 it was 0.89 and in week 37 it was 0.83. Median week for diagnosis of preeclampsia was at 38 weeks of gestation. Conclusion Concentrations of both tau and neurofilament light chain are increased in the end of pregnancy in women developing preeclampsia in contrast to healthy pregnancies. Cerebral biomarkers might reflect cerebral involvement before onset of disease.
Collapse
Affiliation(s)
- Lina Bergman
- Department for Women’s and Children’s health, Uppsala University, Uppsala, Sweden
- Center for Clinical Research, Falun, Sweden
- * E-mail:
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, London, United Kingdom
| | - Helena Kaihola
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Hagberg
- Perinatal Center, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for the Developing Brain, King's College, London, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Helena Åkerud
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Lagerstedt L, Egea-Guerrero JJ, Rodríguez-Rodríguez A, Bustamante A, Montaner J, El Rahal A, Andereggen E, Rinaldi L, Sarrafzadeh A, Schaller K, Sanchez JC. Early measurement of interleukin-10 predicts the absence of CT scan lesions in mild traumatic brain injury. PLoS One 2018; 13:e0193278. [PMID: 29466474 PMCID: PMC5821397 DOI: 10.1371/journal.pone.0193278] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury is a common event where 70%-90% will be classified as mild TBI (mTBI). Among these, only 10% will have a brain lesion visible via CT scan. A triage biomarker would help clinicians to identify patients with mTBI who are at risk of developing a brain lesion and require a CT scan. The brain cells damaged by the shearing, tearing and stretching of a TBI event set off inflammation cascades. These cause altered concentrations of a high number of both pro-inflammatory and anti-inflammatory proteins. This study aimed to discover a novel diagnostic biomarker of mTBI by investigating a broad panel of inflammation biomarkers and their capacity to correctly identify CT-positive and CT-negative patients. Patients enrolled in this study had been diagnosed with mTBI, had a GCS score of 15 and suffered from at least one clinical symptom. There were nine patients in the discovery group, 45 for verification, and 133 mTBI patients from two different European sites in the validation cohort. All patients gave blood samples, underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. The ability of each protein to classify patients was evaluated with sensitivity set at 100%. Three of the 92 inflammation proteins screened-MCP-1, MIP-1alpha and IL-10 -were further investigated in the verification group, and at 100% sensitivity their specificities reached 7%, 0% and 31%, respectively. IL-10 was validated on a larger cohort in comparison to the most studied mTBI diagnostic triage protein to date, S100B. Levels of both proteins were significantly higher in CT-positive than in CT-negative patients (p < 0.001). S100B's specificity at 100% sensitivity was 18% (95% CI 10.8-25.2), whereas IL-10 reached a specificity of 27% (95% CI 18.9-35.1). These results showed that IL-10 might be an interesting and clinically useful diagnostic tool, capable of differentiating between CT-positive and CT-negative mTBI patients.
Collapse
Affiliation(s)
- Linnéa Lagerstedt
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Research Programme, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Amir El Rahal
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Elisabeth Andereggen
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
- Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Lara Rinaldi
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
| | - Asita Sarrafzadeh
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury. Front Neurol 2017; 8:599. [PMID: 29209266 PMCID: PMC5702013 DOI: 10.3389/fneur.2017.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/25/2017] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI) is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key risk factor for neurodegeneration and dementias at long-term following TBI, the secondary injury processes may require prolonged monitoring. The aim of the present review is to summarize the clinical short- and long-term monitoring possibilities of axonal injury in TBI. Increased knowledge of the underlying pathophysiology achieved by advanced clinical monitoring raises hope for the development of novel treatment strategies for axonal injury in TBI.
Collapse
Affiliation(s)
- Parmenion P Tsitsopoulos
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Sami Abu Hamdeh
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|