1
|
Malik U, Pal D. Isoxazole compounds: Unveiling the synthetic strategy, in-silico SAR & toxicity studies and future perspective as PARP inhibitor in cancer therapy. Eur J Med Chem 2024; 279:116898. [PMID: 39353240 DOI: 10.1016/j.ejmech.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Latest developments in cancer treatment have shed a light on the crucial role of PARP inhibitors that enhance the treatment effectiveness by modifying abnormal repair pathways. PARP inhibitors, such as Olaparib, Rucaparib, Niraparib, and Talazoparib have been approved in a number of cancers including BRCA 1/BRCA2 associated malignancies although there are many difficulties as therapeutical resistance. Besides the conventional synthetic drugs, natural compounds such as flavones and flavonoids have been found to be PARP inhibitors but only in preclinical studies. Isoxazole is very important class of potential candidates for medicinal chemistry with anti-cancer and other pharmacological activities. At present, there are no approved PARP inhibitors of isoxazole origin but their ability to hit many pathways inside the cancer cells points out on its importance for future treatments design. In drug development, isoxazoles are helpful because of the molecular design flexibility that may be enhanced using various synthetic approaches. This review highlights the molecular mechanisms of PARP inhibition, importance of isoxazole compounds and present advances in their synthetic strategies that demonstrate promise for these agents as new anticancer drugs. It emphasizes that isoxazole-based PARP inhibitors compounds could be novel anti-cancer drugs. Through this review, we hope to grow a curiosity in additional explorations of isoxazole-based PARP inhibitors and their applications in the trends of novel insights towards precision cancer therapy.
Collapse
Affiliation(s)
- Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India
| | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India.
| |
Collapse
|
2
|
Phillipps J, Nassief G, Morecroft R, Adeyelu T, Elliott A, Abdulla F, Vanderwalde A, Park S, Butt O, Zhou A, Ansstas G. Efficacy of PARP inhibitor therapy after targeted BRAF/MEK failure in advanced melanoma. NPJ Precis Oncol 2024; 8:187. [PMID: 39232122 PMCID: PMC11374802 DOI: 10.1038/s41698-024-00684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Modern advancements in targeted therapy and immunotherapy have significantly improved survival outcomes for advanced melanoma; however, there remains a need for novel approaches to overcome disease progression and treatment resistance. In recent years, PARPi therapy has shown great promise both as a single regimen and in combination with other therapeutics in melanoma. Here, we describe three unique cases of advanced BRAF V600 mutated melanoma that progressed on targeted BRAF/MEK agents that subsequently exhibited partial to near-complete responses to combinatory PARPi and BRAF/MEK inhibitors. This highlights both a potential synergy underlying this combinatory approach and its efficacy as a treatment option for patients with advanced melanoma refractory to targeted and/or immunotherapies. Prospective clinical trials are needed to explore this synergic effect in larger melanoma cohorts to investigate this combination for treating refractory advanced melanoma.
Collapse
Affiliation(s)
- Jordan Phillipps
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - George Nassief
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Renee Morecroft
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | | | | | | | | | - Soo Park
- University of California San Diego, San Diego, CA, USA
| | - Omar Butt
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Alice Zhou
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA.
| |
Collapse
|
3
|
Qiu L, Li R, Wang Y, Lu Z, Tu Z, Liu H. PTEN inhibition enhances sensitivity of ovarian cancer cells to the poly (ADP-ribose) polymerase inhibitor by suppressing the MRE11-RAD50-NBN complex. Br J Cancer 2024; 131:577-588. [PMID: 38866962 PMCID: PMC11300449 DOI: 10.1038/s41416-024-02749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPis) can effectively treat ovarian cancer patients with defective homologous recombination (HR). Loss or dysfunction of PTEN, a typical tumour suppressor, impairs double-strand break (DSB) repair. Hence, we explored the possibility of inhibiting PTEN to induce HR deficiency (HRD) for PARPi application. METHODS Functional studies using PTEN inhibitor VO-OHpic and PARPi olaparib were performed to explore the molecular mechanisms in vitro and in vivo. RESULTS In this study, the combination of VO-OHpic with olaparib exhibited synergistic inhibitory effects on ovarian cancer cells was demonstrated. Furthermore, VO-OHpic was shown to enhance DSBs by reducing nuclear expression of PTEN and inhibiting HR repair through the modulation of MRE11-RAD50-NBN (MRN) complex, critical for DSB repair. TCGA and GTEx analysis revealed a strong correlation between PTEN and MRN in ovarian cancer. Mechanistic studies indicated that VO-OHpic reduced expression of MRN, likely by decreasing PTEN/E2F1-mediated transcription. Moreover, PTEN-knockdown inhibited expression of MRN, increased sensitivities to olaparib, and induced DSBs. In vivo experiments showed that the combination of VO-OHpic with olaparib exhibited enhanced inhibitory effects on tumour growth. CONCLUSIONS Collectively, this study highlights the potential of PTEN inhibitors in combination therapy with PARPis to create HRD for HRD-negative ovarian cancers.
Collapse
Affiliation(s)
- Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ruyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- School of Health Medicine, Nantong Institute of Technology, Nantong, 226000, Jiangsu, China
| | - Yue Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
4
|
Almaraz-Postigo S, Sanz E, Pandiella A, Díaz-Rodríguez E. Ocoxin Oral Solution Triggers DNA Damage and Cell Death in Ovarian Cancer. Nutrients 2024; 16:2416. [PMID: 39125297 PMCID: PMC11313973 DOI: 10.3390/nu16152416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Ovarian cancer is the most fatal of all the reproductive cancers within the female population, mainly due to its late diagnosis that limits surgery and medical treatment. Classically, ovarian cancer therapy has included conventional chemotherapy, and other therapeutic approaches are now being used to treat these patients, but the outcomes of the disease are still poor. Therefore, new strategies are needed to improve life expectancy and life quality of ovarian cancer patients. Considering that, we investigated the effect of the nutritional supplement Ocoxin Oral Solution (OOS) in ovarian cancer models. OOS contains several nutritional supplements, some of them with demonstrated antitumoral action. In vitro studies showed that OOS inhibited the proliferation of several ovarian cancer cell lines, especially of those representative of the endometrioid subtype, in a time- and dose-dependent manner. A fast cell death induction after OOS treatment was observed, and when the molecular mechanisms leading to this effect were investigated, an activation of the DNA damage checkpoint was detected, as shown by activation (phosphorylation) of CHK1 and CHK2 kinases that was followed by the phosphorylation of the target protein histone H2AX. When tested in animal models of ovarian cancer, OOS reduced tumor growth without any observed secondary effects. Moreover, such reduction in tumor proliferation was caused by the induction of DNA damage as corroborated by the in vivo phosphorylation of CHK2 and Histone H2AX. Finally, OOS potentiated the action of carboplatin or olaparib, the standard of care treatments used in ovarian clinics, opening the possibility of including OOS in combination with those standard of care agents in patients with ovarian cancer.
Collapse
Affiliation(s)
- Sheila Almaraz-Postigo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Campus Miguel de Unamuno, 37007 Salamanca, Spain; (S.A.-P.); (A.P.)
| | | | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Campus Miguel de Unamuno, 37007 Salamanca, Spain; (S.A.-P.); (A.P.)
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Campus Miguel de Unamuno, 37007 Salamanca, Spain; (S.A.-P.); (A.P.)
- Department of Biochemistry, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
5
|
Sajjad F, Jalal A, Jalal A, Gul Z, Mubeen H, Rizvi SZ, Un-Nisa EA, Asghar A, Butool F. Multi-omic analysis of dysregulated pathways in triple negative breast cancer. Asia Pac J Clin Oncol 2024. [PMID: 38899578 DOI: 10.1111/ajco.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The aggressive characteristics of triple-negative breast cancer (TNBC) and the absence of targeted medicines make TNBC a challenging clinical case. The molecular landscape of TNBC has been well-understood thanks to recent developments in multi-omic analysis, which have also revealed dysregulated pathways and possible treatment targets. This review summarizes the utilization of multi-omic approaches in elucidating TNBC's complex biology and therapeutic avenues. Dysregulated pathways including cell cycle progression, immunological modulation, and DNA damage response have been uncovered in TNBC by multi-omic investigations that integrate genomes, transcriptomics, proteomics, and metabolomics data. Methods like this pave the door for the discovery of new therapeutic targets, such as the EGFR, PARP, and mTOR pathways, which in turn direct the creation of more precise treatments. Recent developments in TNBC treatment strategies, including immunotherapy, PARP inhibitors, and antibody-drug conjugates, show promise in clinical trials. Emerging biomarkers like MUC1, YB-1, and immune-related markers offer insights into personalized treatment approaches and prognosis prediction. Despite the strengths of multi-omic analysis in offering a more comprehensive view and personalized treatment strategies, challenges exist. Large sample sizes and ensuring high-quality data remain crucial for reliable findings. Multi-omic analysis has revolutionized TNBC research, shedding light on dysregulated pathways, potential targets, and emerging biomarkers. Continued research efforts are imperative to translate these insights into improved outcomes for TNBC patients.
Collapse
Affiliation(s)
- Fatima Sajjad
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmer Jalal
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Amir Jalal
- Department of Biochemistry, Sahara Medical College, Narowal, Pakistan
| | - Zulekha Gul
- Environmental and Biological Science, Nanjing University of Science and Technology, Nanjing, China
| | - Hira Mubeen
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Seemal Zahra Rizvi
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ex Alim Un-Nisa
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Farah Butool
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University Lahore, Lahore, Pakistan
| |
Collapse
|
6
|
Preetam S, Mondal S, Priya S, Bora J, Ramniwas S, Rustagi S, Qusty NF, Alghamdi S, Babalghith AO, Siddiqi A, Malik S. Targeting tumour markers in ovarian cancer treatment. Clin Chim Acta 2024; 559:119687. [PMID: 38663473 DOI: 10.1016/j.cca.2024.119687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Ovarian cancers (OC) are the most common, lethal, and stage-dependent cancers at the global level, specifically in female patients. Targeted therapies involve the administration of drugs that specifically target the alterations in tumour cells responsible for their growth, proliferation, and metastasis, with the aim of treating particular patients. Presently, within the realm of gynaecological malignancies, specifically in breast and OCs, there exist various prospective therapeutic targets encompassing tumour-intrinsic signalling pathways, angiogenesis, homologous-recombination deficit, hormone receptors, and immunologic components. Breast cancers are often detected in advanced stages, primarily due to the lack of a reliable screening method. However, various tumour markers have been extensively researched and employed to evaluate the condition, progression, and effectiveness of medication treatments for this ailment. The emergence of recent technological advancements in the domains of bioinformatics, genomics, proteomics, and metabolomics has facilitated the exploration and identification of hitherto unknown biomarkers. The primary objective of this comprehensive review is to meticulously investigate and analyze both established and emerging methodologies employed in the identification of tumour markers associated with OC.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST) Dalseong-gun, Daegu 42988, South Korea.
| | - Sagar Mondal
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Swati Priya
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Seema Ramniwas
- University Center for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, 248007 Dehradun, Uttarakhand, India.
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Abdullah Siddiqi
- Department of Clinical Laboratory, Makkah Park Clinics, Makkah, Saudi Arabia.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| |
Collapse
|
7
|
Elbeltagi S, Abdel Shakor AB, M Alharbi H, Tawfeek HM, Aldosari BN, E Eldin Z, Amin BH, Abd El-Aal M. Synergistic effects of quercetin-loaded CoFe 2O 4@Liposomes regulate DNA damage and apoptosis in MCF-7 cancer cells: based on biophysical magnetic hyperthermia. Drug Dev Ind Pharm 2024; 50:561-575. [PMID: 38832870 DOI: 10.1080/03639045.2024.2363231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Breast cancer (BC) is the most common malignancy in women globally. Significant progress has been made in developing structural nanoparticles (NPs) and formulations for targeted smart drug delivery (SDD) of pharmaceuticals, improving the precision of tumor cell targeting in therapy. SIGNIFICANCE Magnetic hyperthermia (MHT) treatment using magneto-liposomes (MLs) has emerged as a promising adjuvant cancer therapy. METHODS CoFe2O4 magnetic NPs (MNPs) were conjugated with nanoliposomes to form MLs, and the anticancer drug quercetin (Que) was loaded into MLs, forming Que-MLs composites for antitumor approach. The aim was to prepare Que-MLs for DD systems (DDS) under an alternating magnetic field (AMF), termed chemotherapy/hyperthermia (chemo-HT) techniques. The encapsulation efficiency (EE), drug loading capacity (DL), and drug release (DR) of Que and Que-MLs were evaluated. RESULTS The results confirmed successful Que-loading on the surface of MLs, with an average diameter of 38 nm and efficient encapsulation into MLs (69%). In vitro, experimental results on MCF-7 breast cells using MHT showed high cytotoxic effects of novel Que-MLs on MCF-7 cells. Various analyses, including cytotoxicity, apoptosis, cell migration, western blotting, fluorescence imaging, and cell membrane internalization, were conducted. The Acridine Orange-ethidium bromide double fluorescence test identified 35% early and 55% late apoptosis resulting from Que-MLs under the chemo-HT group. TEM results indicated MCF-7 cell membrane internalization and digestion of Que-MLs, suggesting the presence of early endosome-like vesicles on the cytoplasmic periphery. CONCLUSIONS Que-MLs exhibited multi-modal chemo-HT effects, displaying high toxicity against MCF-7 BC cells and showing promise as a potent cytotoxic agent for BC chemotherapy.
Collapse
Affiliation(s)
- Shehab Elbeltagi
- Department of Physics-Biophysics, Faculty of Science, New Valley University, New Valley, Egypt
| | - Abo Bakr Abdel Shakor
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
- School of biotechnology, Badr University in Assiut (BUA), Egypt
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hesham M Tawfeek
- Industrial Pharmacy Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zienab E Eldin
- Department of Material Science and nanotechnology, (PSAS), Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Center for Material Science, Zewail City of Science and Technology, Giza, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology (RCMB), Al - Azhar University, Egypt
| | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Saman S, Srivastava N, Yasir M, Chauhan I. A Comprehensive Review on Current Treatments and Challenges Involved in the Treatment of Ovarian Cancer. Curr Cancer Drug Targets 2024; 24:142-166. [PMID: 37642226 DOI: 10.2174/1568009623666230811093139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 08/31/2023]
Abstract
Ovarian cancer (OC) is the second most common gynaecological malignancy. It typically affects females over the age of 50, and since 75% of cases are only discovered at stage III or IV, this is a sign of a poor diagnosis. Despite intraperitoneal chemotherapy's chemosensitivity, most patients relapse and face death. Early detection is difficult, but treatment is also difficult due to the route of administration, resistance to therapy with recurrence, and the need for precise cancer targeting to minimize cytotoxicity and adverse effects. On the other hand, undergoing debulking surgery becomes challenging, and therapy with many chemotherapeutic medications has manifested resistance, a condition known as multidrug resistance (MDR). Although there are other therapeutic options for ovarian cancer, this article solely focuses on co-delivery techniques, which work via diverse pathways to overcome cancer cell resistance. Different pathways contribute to MDR development in ovarian cancer; however, usually, pump and non-pump mechanisms are involved. Striking cancerous cells from several angles is important to defeat MDR. Nanocarriers are known to bypass the drug efflux pump found on cellular membranes to hit the pump mechanism. Nanocarriers aid in the treatment of ovarian cancer by enhancing the delivery of chemotherapeutic drugs to the tumour sites through passive or active targeting, thereby reducing unfavorable side effects on the healthy tissues. Additionally, the enhanced permeability and retention (EPR) mechanism boosts the bioavailability of the tumour site. To address the shortcomings of conventional delivery, the current review attempts to explain the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors developed to treat ovarian cancer. In conclusion, tailored nanocarriers would optimize medication delivery into the intracellular compartment before optimizing intra-tumour distribution. Other novel treatment possibilities for ovarian cancer include tumour vaccines, gene therapy, targeting epigenetic alteration, and biologically targeted compounds. These characteristics might enhance the therapeutic efficacy.
Collapse
Affiliation(s)
- Saika Saman
- Department of Pharmaceutics, Faculty of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Department of Pharmaceutics, Faculty of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Mohd Yasir
- Department of Pharmacy (Pharmaceutics), College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Iti Chauhan
- Department of Pharmacy, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, India
| |
Collapse
|
9
|
Martorana F, Scandurra G, Valerio MR, Cufari S, Vigneri P, Sanò MV, Scibilia G, Scollo P, Gebbia V. A review and metanalysis of metronomic oral single-agent cyclophosphamide for treating advanced ovarian carcinoma in the era of precision medicine. J Oncol Pharm Pract 2024; 30:173-181. [PMID: 38018146 DOI: 10.1177/10781552231216689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
OBJECTIVE Oral metronomic cyclophosphamide has been used as a single agent or in combination with other drugs for several solid tumors with interesting results in disease palliation and mild to moderate toxicity, notably in patients with recurrent epithelial ovarian cancer (EOC) progressing after systemic chemotherapy. In this paper, we report a review and a metanalysis of heterogeneous data published up to date. DATA SOURCES The literature search was restricted to single-agent MOC. The analysis was conducted through March 2023 by consulting PubMed, Embase, Google Scholar, and The Cochrane Library databases. Research string and Medical Subject Headings included "ovarian tumor," "ovarian carcinoma," or "ovarian cancer," "fallopian tube cancer," "primary peritoneal cancer," "oral chemotherapy," and "metronomic cyclophosphamide." All articles were assessed for quality by at least two investigators independently, and a < 18 patients sample size cutoff was chosen as a lower limit with a Cohen's kappa statistical coefficient for accuracy and reliability. Metanalysis of selected papers was carried out according to a fixed model. DATA SUMMARY The percentage of agreement between investigators on literature study selection was very high, reaching 96.9% with a Cohen's k of 0.929. MOC pooled objective response rate (ORR) and disease control rate for recurrent or platinum-refractory ovarian cancer were 18.8% (range 4-44%) and 36.2% (range 16-58.8%), respectively. The mean progressive-free survival and overall survival were 3.16 months (range 1.9 to 5.0 months) and 8.7 months (range 8 to 13 months), respectively. The fixed model metanalysis of selected studies showed a 16% median ORR (12-20% CI, p < 0.001). CONCLUSIONS Single-agent oral cyclophosphamide in EOC holds promise as a treatment option, even in the era of precision medicine. Genetic factors, such as DNA repair gene polymorphisms, may influence treatment response. Combining cyclophosphamide with biological agents such as PARP inhibitors or immunotherapy agents is an area of active investigation.
Collapse
Affiliation(s)
- Federica Martorana
- Medical Oncology Unit, Humanitas istituto Clinico Catanese, Catania, Italy
- Department of Clinical and Experimental Medicine, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | | | | | | | - Paolo Vigneri
- Medical Oncology Unit, Humanitas istituto Clinico Catanese, Catania, Italy
- Department of Clinical and Experimental Medicine, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Maria Vita Sanò
- Medical Oncology Unit, Humanitas istituto Clinico Catanese, Catania, Italy
| | | | - Paolo Scollo
- Gynecological Oncology Unit, Ospedale Cannizzaro, Catania, Italy
- Faculty of Medicine, Chair of Gynecology Kore University, Enna, Italy
| | - Vittorio Gebbia
- Chair of Medical Oncology, Faculty of Medicine, University of Enna Kore, Enna, Italy
- Medical Oncology Unit, CdC Torina, Palermo, Italy
| |
Collapse
|
10
|
Ferretti LP, Böhi F, Leslie Pedrioli DM, Cheng PF, Ferrari E, Baumgaertner P, Alvarado-Diaz A, Sella F, Cereghetti A, Turko P, Wright RH, De Bock K, Speiser DE, Ferrari R, Levesque MP, Hottiger MO. Combinatorial Treatment with PARP and MAPK Inhibitors Overcomes Phenotype Switch-Driven Drug Resistance in Advanced Melanoma. Cancer Res 2023; 83:3974-3988. [PMID: 37729428 DOI: 10.1158/0008-5472.can-23-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Metastatic melanoma is either intrinsically resistant or rapidly acquires resistance to targeted therapy treatments, such as MAPK inhibitors (MAPKi). A leading cause of resistance to targeted therapy is a dynamic transition of melanoma cells from a proliferative to a highly invasive state, a phenomenon called phenotype switching. Mechanisms regulating phenotype switching represent potential targets for improving treatment of patients with melanoma. Using a drug screen targeting chromatin regulators in patient-derived three-dimensional MAPKi-resistant melanoma cell cultures, we discovered that PARP inhibitors (PARPi) restore sensitivity to MAPKis, independent of DNA damage repair pathways. Integrated transcriptomic, proteomic, and epigenomic analyses demonstrated that PARPis induce lysosomal autophagic cell death, accompanied by enhanced mitochondrial lipid metabolism that ultimately increases antigen presentation and sensitivity to T-cell cytotoxicity. Moreover, transcriptomic and epigenetic rearrangements induced by PARP inhibition reversed epithelial-mesenchymal transition-like phenotype switching, which redirected melanoma cells toward a proliferative and MAPKi-sensitive state. The combination of PARP and MAPKis synergistically induced cancer cell death both in vitro and in vivo in patient-derived xenograft models. Therefore, this study provides a scientific rationale for treating patients with melanoma with PARPis in combination with MAPKis to abrogate acquired therapy resistance. SIGNIFICANCE PARP inhibitors can overcome resistance to MAPK inhibitors by activating autophagic cell death and reversing phenotype switching, suggesting that this synergistic combination could help improve the prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Lorenza P Ferretti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Phil F Cheng
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Abdiel Alvarado-Diaz
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Alessandra Cereghetti
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Roni H Wright
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Liu Y, Guo Z, Lang F, Li J, Jiang J. Anticancer Effect of Active Component of Astragalus Membranaceus Combined with Olaparib on Ovarian Cancer Predicted by Network-Based Pharmacology. Appl Biochem Biotechnol 2023; 195:6994-7020. [PMID: 36976504 DOI: 10.1007/s12010-023-04462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
In China, a traditional Chinese medicine formulation called astragalus membranaceus (AM) has been utilised for more than 20 years to treat tumors with extraordinary effectiveness. The fundamental mechanisms, nevertheless, are still not well understood. The aim of this study is identifying its possible therapeutic targets and to evaluate the effects of AM in combination with a PARP inhibitor (olaparib) in the treatment of BRCA wild-type ovarian cancer. Significant genes were collected from Therapeutic Target Database and Database of Gene-Disease Associations. The components of AM were analyzed using the Traditional Chinese Medicine System Pharmacology (TCMSP) database to screen the active ingredients of AM based on their oral bioavailability and drug similarity index. In order to find intersection targets, Venn diagrams and STRING website diagrams were employed. STRING was also used to create a protein-protein interaction network. In order to create the ingredient-target network, Cytoscape 3.8.0 was used. DAVID database was utilized to carry out enrichment and pathway analyses. The binding ability of the active compounds of AM to the core targets of AM-OC was verified with molecular docking using AutoDock software. Experimental validations, including cell scratch, cell transwell, cloning experiment, were conducted to verify the effects of AM on OC cells. A total of 14 active ingredients of AM and 28 AM-OC-related targets were screened by network pharmacology analysis. The ten most significant Gene Ontology (GO) biological function analyses, as well as the 20 foremost Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways were selected. Moreover, molecular docking results showed that bioactive compound (quercetin) demonstrated a good binding ability with tumor protein p53 (TP53), MYC, vascular endothelial growth factor A (VEGFA), phosphatase and tensin homolog (PTEN), AKT serine/threonine kinase 1 (AKT1) and cyclin D1 (CCND1) oncogenes. According to experimental methods, in vitro OC cell proliferation and migration appeared to be inhibited by quercetin, which also increased apoptosis. In addition, the combination with olaparib further enhanced the effect of quercetin on OC. Based on network pharmacology, molecular docking, and experimental validation, the combination of PARP inhibitor and quercetin enhanced the anti-proliferative activity in BRCA wild-type ovarian cancer cells, which supplies the theoretical groundwork for additional pharmacological investigation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Zhongkun Guo
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250118, Shandong, China
| | - Fangfang Lang
- Maternal and Child Health Hospital of Shandong Province, Jinan, 250014, Shandong, China
| | - Jie Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
12
|
Jia W, Luo S, Guo H, Kong D. Development of PI3Kα inhibitors for tumor therapy. J Biomol Struct Dyn 2023; 41:8587-8604. [PMID: 36221910 DOI: 10.1080/07391102.2022.2132293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
The PI3K/AKT/mTOR signaling pathway is well known to be involved in cell growth, proliferation, metabolism and other cellular physiological processes. Abnormal activation of this pathway is closely related to tumorigenesis and metastasis. As the starting node of the pathway, PI3K is known to contain 4 isoforms, including PI3Kα, a heterodimer composed of the catalytic subunit p110α and the regulatory subunit p85. PIK3CA, which encodes p110α, is frequently mutated in cancer, especially breast cancer. Abnormal activation of PI3Kα promotes cancer cell proliferation, migration, invasion, and angiogenesis; therefore, PI3Kα has become a key target for the development of anticancer drugs. The hinge region and the region of the mutation site in the PI3Kα protein are important for designing PI3Kα-specific inhibitors. As the group shared by the most PI3Kα-specific inhibitors reported thus far, carboxamide can produce hydrogen bonds with Gln859 and Ser854. Gln859 is specific to the p110α protein in producing hydrogen bond interactions with PI3Kα-specific inhibitors and this is a key point for designing PI3Kα inhibitors. To date, alpelisib is the only PI3Kα inhibitor approved for the treatment of breast cancer. Several other PI3Kα inhibitors are under evaluation in clinical trials. In this review, we briefly describe PI3Kα and its role in tumorigenesis, summarize the clinical trial results of some PI3Kα inhibitors as well as the synthetic routes of alpelisib, and finally give our proposal for the development of novel PI3Kα inhibitors for tumor therapy. HighlightsWe summarize the progress of PI3Kα and PI3Kα inhibitors in cancer from the second half of the 20th century to the present.We describe the clinical trial results of PI3Kα inhibitors as well as the synthetic routes of the only approved PI3Kα inhibitor alpelisib.Crystal structure of alpelisib bound to the PI3Kα receptor binding domain.This review gives proposal for the development of novel PI3Kα inhibitors and will serve as a complementary summary to other reviews in the research field of PI3K inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wenqing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shuyu Luo
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Han Guo
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Vollmer J, Ecker J, Hielscher T, Valinciute G, Ridinger J, Jamaladdin N, Peterziel H, van Tilburg CM, Oehme I, Witt O, Milde T. Class I HDAC inhibition reduces DNA damage repair capacity of MYC-amplified medulloblastoma cells. J Neurooncol 2023; 164:617-632. [PMID: 37783879 PMCID: PMC10589189 DOI: 10.1007/s11060-023-04445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE MYC-driven Group 3 medulloblastoma (MB) (subtype II) is a highly aggressive childhood brain tumor. Sensitivity of MYC-driven MB to class I histone deacetylase inhibitors (HDACi) has been previously demonstrated in vitro and in vivo. In this study we characterize the transcriptional effects of class I HDACi in MYC-driven MB and explore beneficial drug combinations. METHODS MYC-amplified Group 3 MB cells (HD-MB03) were treated with class I HDACi entinostat. Changes in the gene expression profile were quantified on a microarray. Bioinformatic assessment led to the identification of pathways affected by entinostat treatment. Five drugs interfering with these pathways (olaparib, idasanutlin, ribociclib, selinexor, vinblastine) were tested for synergy with entinostat in WST-8 metabolic activity assays in a 5 × 5 combination matrix design. Synergy was validated in cell count and flow cytometry experiments. The effect of entinostat and olaparib on DNA damage was evaluated by γH2A.X quantification in immunoblotting, fluorescence microscopy and flow cytometry. RESULTS Entinostat treatment changed the expression of genes involved in 22 pathways, including downregulation of DNA damage response. The PARP1 inhibitors olaparib and pamiparib showed synergy with entinostat selectively in MYC-amplified MB cells, leading to increased cell death, decreased viability and increased formation of double strand breaks, as well as increased sensitivity to additional induction of DNA damage by doxorubicin. Non-MYC-amplified MB cells and normal human fibroblasts were not susceptible to this triple treatment. CONCLUSION Our study identifies the combination of entinostat with olaparib as a new potential therapeutic approach for MYC-driven Group 3 MB.
Collapse
Affiliation(s)
- Johanna Vollmer
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Gintvile Valinciute
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Johannes Ridinger
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nora Jamaladdin
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Heike Peterziel
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Rana M, Thakur A, Kaur C, Pan CH, Lee SB, Liou JP, Nepali K. Prudent tactics to sail the boat of PARP inhibitors as therapeutics for diverse malignancies. Expert Opin Drug Discov 2023; 18:1169-1193. [PMID: 37525475 DOI: 10.1080/17460441.2023.2241818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION PARP inhibitors block the DNA-repairing mechanism of PARP and represent a promising class of anti-cancer therapy. The last decade has witnessed FDA approvals of several PARP inhibitors, with some undergoing advanced-stage clinical investigation. Medicinal chemists have invested much effort to expand the structure pool of PARP inhibitors. Issues associated with the use of PARP inhibitors that make their standing disconcerting in the pharmaceutical sector have been addressed via the design of new structural assemblages. AREA COVERED In this review, the authors present a detailed account of the medicinal chemistry campaigns conducted in the recent past for the construction of PARP1/PARP2 inhibitors, PARP1 biased inhibitors, and PARP targeting bifunctional inhibitors as well as PARP targeting degraders (PROTACs). Limitations associated with FDA-approved PARP inhibitors and strategies to outwit the limitations are also discussed. EXPERT OPINION The PARP inhibitory field has been rejuvenated with numerous tractable entries in the last decade. With numerous magic bullets in hand coupled with unfolded tactics to outwit the notoriety of cancer cells developing resistance toward PARP inhibitors, the dominance of PARP inhibitors as a sagacious option of targeted therapy is highly likely to be witnessed soon.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| | - Sung-Bau Lee
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| |
Collapse
|
15
|
Dehghani T, Shahrjerdi A, Kahrizi MS, Soleimani E, Ravandeh S, Merza MS, Rahnama N, Ebrahimzadeh F, Bakhshesh M. Targeting programmed cell death protein 1 (PD-1) for treatment of non-small-cell lung carcinoma (NSCLC); the recent advances. Pathol Res Pract 2023; 246:154470. [PMID: 37150133 DOI: 10.1016/j.prp.2023.154470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
The immune system uses various immune checkpoint axes to adjust responses, support homeostasis, and deter self-reactivity and autoimmunity. Nevertheless, non-small-cell lung carcinoma (NSCLC) can use protective mechanisms to facilitate immune evasion, which leads to potentiated cancer survival and proliferation. In this light, many blocking anti-bodies have been developed to negatively regulate checkpoint molecules, in particular, programmed cell death protein 1 (PD-1) / PD-ligand 1 (L1), and bypass these immune suppressive mechanisms. Meanwhile, anti-PD-1 anti-bodies such as nivolumab, pembrolizumab, cemiplimab, and sintilimab have shown excellent competence in successfully inspiring immune responses versus NSCLC. Accordingly, the United States Food and Drug Administration (FDA) has recently approved nivolumab (alone or in combination with ipilimumab) and pembrolizumab (alone or in combination with chemotherapy) as first-line treatment for advanced NSCLC patients. However, PD-1 blockade monotherapy remains inefficient in more than 60% of NSCLC patients, and many patients don't respond or acquire resistance to this modality. Also, toxicities related to anti-PD-1 anti-body have been progressively identified in clinical trials and oncology practice. Herein, we will outline the clinical benefits of PD-1 blockade therapy alone or in combination with other treatments (e.g., chemotherapy, radiotherapy, anti-angiogenic therapy) in NSCLC patients. Moreover, we will take a glimpse into the recently identified predictive biomarkers to determine patients most likely to suffer serious adverse events to decrease untoward toxicity risk and diminish treatment costs.
Collapse
Affiliation(s)
- Tannaz Dehghani
- Department of Internal Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Alireza Shahrjerdi
- National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box: 14965/161, Tehran, Iran
| | | | - Elnaz Soleimani
- Departmant of Genetic, Babol University of Medical Science, Babol, Iran
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal university College, Babylon 51001, Iraq
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Morteza Bakhshesh
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
16
|
Zhao J, Yu N, Zhao X, Quan W, Shu M. 3D-QSAR, molecular docking, and molecular dynamics analysis of dihydrodiazaindolone derivatives as PARP-1 inhibitors. J Mol Model 2023; 29:131. [PMID: 37020092 DOI: 10.1007/s00894-023-05525-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
CONTEXT PARP-1 plays an important role in DNA repair and apoptosis, and PARP-1 inhibitors have shown to be effective in the treatment of several malignancies. To evaluate the function of new PARP-1 inhibitors as anticancer adjuvant medicines, 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations of a sequence of dihydrodiazepinoindolone derivatives PARP-1 inhibitors were undertaken in this study. METHODS In this paper, 43 PARP-1 inhibitors were studied in a three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). CoMFA with q2 of 0.675 and r2 of 0.981 was achieved, as was CoMSIA with q2 of 0.755 and r2 of 0.992. The changed areas of these compounds are shown by steric, electrostatic, hydrophobic, and hydrogen-bonded acceptor field contour maps. Subsequently, molecular docking, and molecular dynamics simulations further confirmed that key residues Gly863 and Ser904 of PARP-1 are vital residues for protein interactions and their binding affinity. The effects of 3D-QSAR, molecular docking and molecular dynamics simulations supply a new route for the search of new PARP-1 inhibitors. Finally, we designed eight new compounds with exact activity and ADME/T properties.
Collapse
Affiliation(s)
- Jing Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Na Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xuemin Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wenxuan Quan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
17
|
Biegała Ł, Gajek A, Marczak A, Rogalska A. Olaparib-Resistant BRCA2MUT Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival. Cells 2023; 12:cells12071038. [PMID: 37048111 PMCID: PMC10093185 DOI: 10.3390/cells12071038] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The PARP inhibitor (PARPi) olaparib is currently the drug of choice for serous ovarian cancer (OC), especially in patients with homologous recombination (HR) repair deficiency associated with deleterious BRCA1/2 mutations. Unfortunately, OC patients who fail to respond to PARPi or relapse after treatment have limited therapeutic options. To elucidate olaparib resistance and enhance the efficacy of olaparib, intracellular factors exploited by OC cells to achieve decreased sensitivity to PARPi were examined. An olaparib-resistant OC cell line, PEO1-OR, was established from BRCA2MUT PEO1 cells. The anticancer activity and action of olaparib combined with inhibitors of the ATR/CHK1 pathway (ceralasertib as ATRi, MK-8776 as CHK1i) in olaparib-sensitive and -resistant OC cell lines were evaluated. Whole-exome sequencing revealed that PEO1-OR cells acquire resistance through subclonal enrichment of BRCA2 secondary mutations that restore functional full-length protein. Moreover, PEO1-OR cells upregulate HR repair-promoting factors (BRCA1, BRCA2, RAD51) and PARP1. Olaparib-inducible activation of the ATR/CHK1 pathway and G2/M arrest is abrogated in olaparib-resistant cells. Drug sensitivity assays revealed that PEO1-OR cells are less sensitive to ATRi and CHK1i agents. Combined treatment is less effective in olaparib-resistant cells considering inhibition of metabolic activity, colony formation, survival, accumulation of DNA double-strand breaks, and chromosomal aberrations. However, synergistic antitumor activity between compounds is achievable in PEO1-OR cells. Collectively, olaparib-resistant cells display co-existing HR repair-related mechanisms that confer resistance to olaparib, which may be effectively utilized to resensitize them to PARPi via combination therapy. Importantly, the addition of ATR/CHK1 pathway inhibitors to olaparib has the potential to overcome acquired resistance to PARPi.
Collapse
|
18
|
Wei B, Zheng J, Jiang C, Zhang H, Zhang M, Cheng T, Li J, Wang Z, Deng L, Wang L, Xia Q, Ma J. Improved detection of homologous recombination deficiency in Chinese patients with ovarian cancer: a novel non-exonic single-nucleotide polymorphism-based next-generation sequencing panel. Mol Oncol 2023. [PMID: 36852736 PMCID: PMC10399708 DOI: 10.1002/1878-0261.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
As homologous recombination deficiency (HRD) is a biomarker to predict the efficiency of PARP inhibitor treatment, this study developed a non-exonic single-nucleotide polymorphism (SNP)-based targeted next-generation sequencing panel and comprehensively examined it both on standard and clinical ovarian cancer tissues. The HRD scores calculated by the panel and whole-genome sequencing were consistent, with the analysis by sequenza being the most reliable. The results on clinical samples revealed that the panel performed better in HRD analysis compared with the SNP microarray. There are several distinctions between this newly developed kit and reported HRD detection panels. First, the panel covers only 52 592 SNPs, which makes it capable of detecting genomic instability. Secondly, all the SNPs are non-exonic; as a result, the panel can be used cooperatively with any exon panel. Thirdly, all the SNPs selected have a high minor allele frequency in Chinese people, making it a better choice for HRD detection in Chinese patients. In summary, this panel shows promise as a clinical application to guide PARP inhibitors or platinum drugs used in the treatment of ovarian and other cancers.
Collapse
Affiliation(s)
- Bing Wei
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Jinxiang Zheng
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Cai Jiang
- Nanodigmbio (Nanjing) Biotechnology Co., Ltd., China
| | - He Zhang
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Mingye Zhang
- Nanodigmbio (Nanjing) Biotechnology Co., Ltd., China
| | - Taoran Cheng
- Nanodigmbio (Nanjing) Biotechnology Co., Ltd., China
| | - Jun Li
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Zhizhong Wang
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Lijun Deng
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Li Wang
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Qingxin Xia
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Jie Ma
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| |
Collapse
|
19
|
Neves KB, Alves-Lopes R, Montezano AC, Touyz RM. Role of PARP and TRPM2 in VEGF Inhibitor-Induced Vascular Dysfunction. J Am Heart Assoc 2023; 12:e027769. [PMID: 36802924 PMCID: PMC10111475 DOI: 10.1161/jaha.122.027769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Background Hypertension and vascular toxicity are major unwanted side effects of antiangiogenic drugs, such as vascular endothelial growth factor inhibitors (VEGFis), which are effective anticancer drugs but have unwanted side effects, including vascular toxicity and hypertension. Poly (ADP-ribose) polymerase (PARP) inhibitors, used to treat ovarian and other cancers, have also been associated with elevated blood pressure. However, when patients with cancer receive both olaparib, a PARP inhibitor, and VEGFi, the risk of blood pressure elevation is reduced. Underlying molecular mechanisms are unclear, but PARP-regulated transient receptor potential cation channel, subfamily M, member 2 (TRPM2), a redox-sensitive calcium channel, may be important. We investigated whether PARP/TRPM2 plays a role in VEGFi-induced vascular dysfunction and whether PARP inhibition ameliorates the vasculopathy associated with VEGF inhibition. Methods and Results Human vascular smooth muscle cells (VSMCs), human aortic endothelial cells, and wild-type mouse mesenteric arteries were studied. Cells/arteries were exposed to axitinib (VEGFi) alone and in combination with olaparib. Reactive oxygen species production, Ca2+ influx, protein/gene analysis, PARP activity, and TRPM2 signaling were assessed in VSMCs, and nitric oxide levels were determined in endothelial cells. Vascular function was assessed by myography. Axitinib increased PARP activity in VSMCs in a reactive oxygen species-dependent manner. Endothelial dysfunction and hypercontractile responses were ameliorated by olaparib and a TRPM2 blocker (8-Br-cADPR). VSMC reactive oxygen species production, Ca2+ influx, and phosphorylation of myosin light chain 20 and endothelial nitric oxide synthase (Thr495) were augmented by axitinib and attenuated by olaparib and TRPM2 inhibition. Proinflammatory markers were upregulated in axitinib-stimulated VSMCs, which was reduced by reactive oxygen species scavengers and PARP-TRPM2 inhibition. Human aortic endothelial cells exposed to combined olaparib and axitinib showed nitric oxide levels similar to VEGF-stimulated cells. Conclusions Axitinib-mediated vascular dysfunction involves PARP and TRPM2, which, when inhibited, ameliorate the injurious effects of VEGFi. Our findings define a potential mechanism whereby PARP inhibitor may attenuate vascular toxicity in VEGFi-treated patients with cancer.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow United Kingdom.,Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow United Kingdom
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow United Kingdom.,Research Institute of the McGill University Health Centre (RI-MUHC) McGill University Montreal Canada
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow United Kingdom.,Research Institute of the McGill University Health Centre (RI-MUHC) McGill University Montreal Canada
| |
Collapse
|
20
|
Foglietta F, Macrì M, Panzanelli P, Francovich A, Durando G, Garello F, Terreno E, Serpe L, Canaparo R. Ultrasound boosts doxorubicin efficacy against sensitive and resistant ovarian cancer cells. Eur J Pharm Biopharm 2023; 183:119-131. [PMID: 36632905 DOI: 10.1016/j.ejpb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/10/2023]
Abstract
Ovarian cancer (OC) is characterised by the highest mortality of all gynaecological malignancies, frequent relapses, and the development of resistance to drug therapy. Sonodynamic therapy (SDT) is an innovative anticancer approach that combines a chemical/drug (sonosensitizer) with low-intensity ultrasound (US), which are both harmless per sé, with the sonosensitizer being acoustically activated, thus yielding localized cytotoxicity often via reactive oxygen species (ROS) generation. Doxorubicin (Doxo) is a potent chemotherapeutic drug that has also been recommended as a first-line treatment against OC. This research work aims to investigate whether Doxo can be used at very low concentrations, in order to avoid its significant side effects, as a sonosensitiser under US exposure to promote cancer cell death in Doxo non-resistant (A2780/WT) and Doxo resistant (A2780/ADR) human OC cell lines. Moreover, since recurrence is an important issue in OC, we have also investigated whether the proposed SDT with Doxo induces immunogenic cell death (ICD) and thus hinders OC recurrence. Our results show that the sonodynamic anticancer approach with Doxo is effective in both A2780/WT and A2780/ADR cell lines, and that it proceeds via a ROS-dependent mechanism of action and immune sensitization that is based on the activation of the ICD pathway.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| | - Manuela Macrì
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Torino, Italy
| | - Andrea Francovich
- Institut de Physiologie, Université de Fribourg, Fribourg 1770, Switzerland
| | - Gianni Durando
- National Institute of Metrological Research (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy.
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| |
Collapse
|
21
|
Targeted Therapy with PI3K, PARP, and WEE1 Inhibitors and Radiotherapy in HPV Positive and Negative Tonsillar Squamous Cell Carcinoma Cell Lines Reveals Synergy while Effects with APR-246 Are Limited. Cancers (Basel) 2022; 15:cancers15010093. [PMID: 36612094 PMCID: PMC9818008 DOI: 10.3390/cancers15010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC) is rising in incidence, but chemoradiotherapy is not curative for all. Therefore, targeted therapy with PI3K (BYL719), PARP (BMN-673), and WEE1 (MK-1775) inhibitors alone or combined was pursued with or without 10 Gy and their effects were analyzed by viability, proliferation, and cytotoxicity assays on the TSCC/BOTSCC cell lines HPV+ UPCI-SCC-154 and HPV- UT-SCC-60A. Effective single drug/10 Gy combinations were validated on additional TSCC lines. Finally, APR-246 was assessed on several TSCC/BOTSCC cell lines. BYL719, BMN-673, and MK-1775 treatments induced dose dependent responses in HPV+ UPCI-SCC-154 and HPV- UT-SCC-60A and when combined with 10 Gy, synergistic effects were disclosed, as was also the case upon validation. Using BYL719/BMN-673, BYL719/MK-1775, or BMN-673/MK-1775 combinations on HPV+ UPCI-SCC-154 and HPV- UT-SCC-60A also induced synergy compared to single drug administrations, but adding 10 Gy to these synergistic drug combinations had no further major effects. Low APR-246 concentrations had limited usefulness. To conclude, synergistic effects were disclosed when complementing single BYL719 BMN-673 and MK-1775 administrations with 10 Gy or when combining the inhibitors, while adding 10 Gy to the latter did not further enhance their already additive/synergistic effects. APR-246 was suboptimal in the present context.
Collapse
|
22
|
Zhang X, Wang L, Chen S, Huang P, Ma L, Ding H, Basappa B, Zhu T, Lobie PE, Pandey V. Combined inhibition of BADSer99 phosphorylation and PARP ablates models of recurrent ovarian carcinoma. COMMUNICATIONS MEDICINE 2022; 2:82. [PMID: 35791346 PMCID: PMC9250505 DOI: 10.1038/s43856-022-00142-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background Poly (ADP-ribose) polymerase inhibitors (PARPis) have been approved for the treatment of recurrent epithelial ovarian cancer (EOC), regardless of BRCA status or homologous recombination repair deficiency. However, the low response of platinum-resistant EOC, the emergence of resistance in BRCA-deficient cancer, and therapy-associated toxicities in patients limit the clinical utility of PARPis in recurrent EOC. Methods The association of phosphorylated (p) BADS99 with clinicopathological parameters and survival outcomes in an EOC cohort was assessed by immunohistochemistry. The therapeutic synergy, and mechanisms thereof, between a pBADS99 inhibitor and PARPis in EOC was determined in vitro and in vivo using cell line and patient-derived models. Results A positive correlation between pBADS99 in EOC with higher disease stage and poorer survival is observed. Increased pBADS99 in EOC cells is significantly associated with BRCA-deficiency and decreased Cisplatin or Olaparib sensitivity. Pharmacological inhibition of pBADS99 synergizes with PARPis to enhance PARPi IC50 and decreases survival, foci formation, and growth in ex vivo culture of EOC cells and patient-derived organoids (PDOs). Combined inhibition of pBADS99 and PARP in EOC cells or PDOs enhances DNA damage but impairs PARPi stimulated DNA repair with a consequent increase in apoptosis. Inhibition of BADS99 phosphorylation synergizes with Olaparib to suppress the xenograft growth of platinum-sensitive and resistant EOC. Combined pBADS99-PARP inhibition produces a complete response in a PDX derived from a patient with metastatic and chemoresistant EOC. Conclusions A rational and efficacious combination strategy involving combined inhibition of pBADS99 and PARP for the treatment of recurrent EOC is presented. Ovarian cancer is difficult to successfully treat because it often recurs as the cancer becomes resistant to drugs used to treat it. As such, new drugs or combinations of drugs are needed to treat patients with recurrent ovarian cancer. Here, a drug combination is reported that is effective in experimental models of ovarian cancer, including those derived from patients. The combination approach uses drugs that have previously been approved for use in patients, known as PARP inhibitors, and another drug to inhibit cancer cell survival by targeting activation of a specific protein involved in cancer cell survival. The net effect of this drug combination in ovarian cancer models is greater than the sum of the drugs used individually. With further testing, this combination may offer a potential strategy to treat patients with recurrent ovarian cancer. Zhang et al. test the therapeutic potential of an inhibitor of BAD phosphorylation, NPB, in epithelial ovarian cancer. The authors show that the small molecule synergises with PARP inhibition to kill patient-derived ovarian cancer organoids and suppress the growth of xenograft tumours, including a cisplatin-resistant model.
Collapse
|
23
|
Olaparib Conjugates with Selenopheno[3,2- c]quinolinone Inhibit PARP1 and Reverse ABCB1-Related Multidrug Resistance. Pharmaceutics 2022; 14:pharmaceutics14122571. [PMID: 36559065 PMCID: PMC9783898 DOI: 10.3390/pharmaceutics14122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The restoration of the efficacy of antitumor medicines is a cornerstone in the combat with multidrug resistant (MDR) cancers. The overexpression of the ABCB1 transporter is a major obstacle to conventional doxorubicin therapy. The synergy of ABCB1 suppression and PARP1 activity inhibition that hampers malignant cell DNA repair could be a powerful tool in anticancer therapy. Herein, we report the design and synthesis of three novel olaparib conjugates with selenophenoquinolinones, their ability to reverse doxorubicin resistance in uterus sarcoma cells as well as their mechanism of action. It was found that the most potent chemosensitizer among studied compounds preserves PARP1 inhibitory activity and attenuates cells' resistance to doxorubicin by inhibiting ABCB1 transporter activity. These results demonstrate that the conjugation of PARP inhibitors with selenophenoquinolinones is a prospective direction for the development of agents for the treatment of MDR cancers.
Collapse
|
24
|
Peng X, Pan W, Jiang F, Chen W, Qi Z, Peng W, Chen J. Selective PARP1 Inhibitors, PARP1-based Dual-Target Inhibitors, PROTAC PARP1 Degraders, and Prodrugs of PARP1 Inhibitors for Cancer Therapy. Pharmacol Res 2022; 186:106529. [DOI: 10.1016/j.phrs.2022.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
25
|
Xie T, Dickson KA, Yee C, Ma Y, Ford CE, Bowden NA, Marsh DJ. Targeting Homologous Recombination Deficiency in Ovarian Cancer with PARP Inhibitors: Synthetic Lethal Strategies That Impact Overall Survival. Cancers (Basel) 2022; 14:4621. [PMID: 36230543 PMCID: PMC9563432 DOI: 10.3390/cancers14194621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of molecular targeted therapies has made a significant impact on survival of women with ovarian cancer who have defects in homologous recombination repair (HRR). High-grade serous ovarian cancer (HGSOC) is the most common histological subtype of ovarian cancer, with over 50% displaying defective HRR. Poly ADP ribose polymerases (PARPs) are a family of enzymes that catalyse the transfer of ADP-ribose to target proteins, functioning in fundamental cellular processes including transcription, chromatin remodelling and DNA repair. In cells with deficient HRR, PARP inhibitors (PARPis) cause synthetic lethality leading to cell death. Despite the major advances that PARPis have heralded for women with ovarian cancer, questions and challenges remain, including: can the benefits of PARPis be brought to a wider range of women with ovarian cancer; can other drugs in clinical use function in a similar way or with greater efficacy than currently clinically approved PARPis; what can we learn from long-term responders to PARPis; can PARPis sensitise ovarian cancer cells to immunotherapy; and can synthetic lethal strategies be employed more broadly to develop new therapies for women with ovarian cancer. We examine these, and other, questions with focus on improving outcomes for women with ovarian cancer.
Collapse
Affiliation(s)
- Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Caroline E. Ford
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nikola A. Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
- Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
26
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol 2022; 13:964442. [PMID: 36177034 PMCID: PMC9513184 DOI: 10.3389/fimmu.2022.964442] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death protein-1 (PD-1) is a checkpoint receptor expressed on the surface of various immune cells. PD-L1, the natural receptor for PD-1, is mainly expressed in tumor cells. Studies have indicated that PD-1 and PD-L1 are closely associated with the progression of human cancers and are promising biomarkers for cancer therapy. Moreover, the interaction of PD-1 and PD-L1 is one of the important mechanism by which human tumors generate immune escape. This article provides a review on the role of PD-L1/PD-1, mechanisms of immune response and resistance, as well as immune-related adverse events in the treatment of anti-PD-1/PD-L1 immunotherapy in human cancers. Moreover, we summarized a large number of clinical trials to successfully reveal that PD-1/PD-L1 Immune-checkpoint inhibitors have manifested promising therapeutic effects, which have been evaluated from different perspectives, including overall survival, objective effective rate and medium progression-free survival. Finally, we pointed out the current problems faced by PD-1/PD-L1 Immune-checkpoint inhibitors and its future prospects. Although PD-1/PD-L1 immune checkpoint inhibitors have been widely used in the treatment of human cancers, tough challenges still remain. Combination therapy and predictive models based on integrated biomarker determination theory may be the future directions for the application of PD-1/PD-L1 Immune-checkpoint inhibitors in treating human cancers.
Collapse
Affiliation(s)
- Qing Tang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Chen
- Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojuan Li
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunqin Long
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Shi
- Department of Cerebrovascular Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wanyin Wu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Sumei Wang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| |
Collapse
|
27
|
Boussios S, Rassy E, Moschetta M, Ghose A, Adeleke S, Sanchez E, Sheriff M, Chargari C, Pavlidis N. BRCA Mutations in Ovarian and Prostate Cancer: Bench to Bedside. Cancers (Basel) 2022; 14:cancers14163888. [PMID: 36010882 PMCID: PMC9405840 DOI: 10.3390/cancers14163888] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary DNA damage is one of the hallmarks of cancer. Epithelial ovarian cancer (EOC) —especially the high-grade serous subtype—harbors a defect in at least one DNA damage response (DDR) pathway. Defective DDR results from a variety of lesions affecting homologous recombination (HR) and nonhomologous end joining (NHEJ) for double strand breaks, base excision repair (BER), and nucleotide excision repair (NER) for single strand breaks and mismatch repair (MMR). Apart from the EOC, mutations in the DDR genes, such as BRCA1 and BRCA2, are common in prostate cancer as well. Among them, BRCA2 lesions are found in 12% of metastatic castration-resistant prostate cancers, but very rarely in primary prostate cancer. Better understanding of the DDR pathways is essential in order to optimize the therapeutic choices, and has led to the design of biomarker-driven clinical trials. Poly(ADP-ribose) polymerase (PARP) inhibitors are now a standard therapy for EOC patients, and more recently have been approved for the metastatic castration-resistant prostate cancer with alterations in DDR genes. They are particularly effective in tumours with HR deficiency. Abstract DNA damage repair (DDR) defects are common in different cancer types, and these alterations can be exploited therapeutically. Epithelial ovarian cancer (EOC) is among the tumours with the highest percentage of hereditary cases. BRCA1 and BRCA2 predisposing pathogenic variants (PVs) were the first to be associated with EOC, whereas additional genes comprising the homologous recombination (HR) pathway have been discovered with DNA sequencing technologies. The incidence of DDR alterations among patients with metastatic prostate cancer is much higher compared to those with localized disease. Genetic testing is playing an increasingly important role in the treatment of patients with ovarian and prostate cancer. The development of poly (ADP-ribose) polymerase (PARP) inhibitors offers a therapeutic strategy for patients with EOC. One of the mechanisms of PARP inhibitors exploits the concept of synthetic lethality. Tumours with BRCA1 or BRCA2 mutations are highly sensitive to PARP inhibitors. Moreover, the synthetic lethal interaction may be exploited beyond germline BRCA mutations in the context of HR deficiency, and this is an area of ongoing research. PARP inhibitors are in advanced stages of development as a treatment for metastatic castration-resistant prostate cancer. However, there is a major concern regarding the need to identify reliable biomarkers predictive of treatment response. In this review, we explore the mechanisms of DDR, the potential for genomic analysis of ovarian and prostate cancer, and therapeutics of PARP inhibitors, along with predictive biomarkers.
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence:
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France
| | - Michele Moschetta
- Novartis Institutes for BioMedical Research, CH 4033 Basel, Switzerland
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London E1 1BB, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London KT1 2EE, UK
- Centre for Education, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | - Sola Adeleke
- High Dimensional Neurology Group, UCL Queen’s Square Institute of Neurology, London WC1N 3BG, UK
- Department of Oncology, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Cyrus Chargari
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France
| | - Nicholas Pavlidis
- Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110 Ioannina, Greece
| |
Collapse
|
28
|
The Current State of the Art in PARP Inhibitor-Based Delivery Nanosystems. Pharmaceutics 2022; 14:pharmaceutics14081647. [PMID: 36015275 PMCID: PMC9413625 DOI: 10.3390/pharmaceutics14081647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Poly (adenosine diphosphate [ADP]–ribose) polymerases inhibitors (PARPi), the first clinically approved drug that exhibits synthetic lethality, are moving to the forefront of cancer treatments. Currently, the oral bioavailability of PARPi is quite low; thus, it is a major challenge to effectively and safely deliver PARPi during clinical cancer therapy. Nanotechnology has greatly advanced the development of drug delivery. Based on the basic characteristics and various forms of nanoparticles, drug delivery systems can prolong the time that drugs circulate, realize the controlled release of drugs, provide drugs with an active targeting ability, and spatiotemporally present combination treatment. Furthermore, nanosystems may not only enhance drug efficiency but also reduce adverse side effects. This review focuses on strategies involving nanoparticle-based delivery for PARPi, including single administration and codelivery with other agents. We believe that nanosystems have great potential in advancing PARPi efficacy for cancer therapy.
Collapse
|
29
|
Nag S, Aggarwal S, Rauthan A, Warrier N. Maintenance therapy for newly diagnosed epithelial ovarian cancer- a review. J Ovarian Res 2022; 15:88. [PMID: 35902911 PMCID: PMC9331490 DOI: 10.1186/s13048-022-01020-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 02/11/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological cancer among women worldwide, with the 5-year survival rate ranging between 30 and 40%. Due to the asymptomatic nature of the condition, it is more likely to be diagnosed at an advanced stage, requiring an aggressive therapeutic approach. Cytoreductive surgery (CRS) along with systemic chemotherapy with paclitaxel and carboplatin has been the mainstay of the treatment in the frontline management of EOC. In recent years, neo-adjuvant chemotherapy, followed by interval CRS has become an important strategy for the management of advanced EOC. Due to the high rate of recurrence, the oncology community has begun to shift its focus to molecular-targeted agents and maintenance therapy in the frontline settings. The rationale for maintenance therapy is to delay the progression or relapse of the disease, as long as possible after first-line treatment, irrespective of the amount of residual disease. Tumours with homologous recombination deficiency (HRD) including BReast CAncer gene (BRCA) mutations are found to be sensitive to polyadenosine diphosphate-ribose polymerase (PARP) inhibitors and understanding of HRD status has become important in the frontline setting. PARP inhibitors are reported to provide a significant improvement in progression-free survival and have an acceptable safety profile. PARP inhibitors have also been found to act regardless of BRCA status. Recently, PARP inhibitors as maintenance therapy in the frontline settings showed encouraging results in EOC; however, the results from further trials and survival data from ongoing trials are awaited for understanding the role of this pathway in treatment of EOC. This review discusses an overview of maintenance strategies in newly diagnosed EOC along with considerations for maintenance therapy in EOC with a focus on PARP inhibitors.
Collapse
Affiliation(s)
- Shona Nag
- Sahyadri Speciality Hospitals, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
30
|
Revythis A, Limbu A, Mikropoulos C, Ghose A, Sanchez E, Sheriff M, Boussios S. Recent Insights into PARP and Immuno-Checkpoint Inhibitors in Epithelial Ovarian Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8577. [PMID: 35886427 PMCID: PMC9317199 DOI: 10.3390/ijerph19148577] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is one of the most common gynecologic cancers and has the highest mortality rate of any other cancer of the female reproductive system. Epithelial ovarian cancer (EOC) accounts for approximately 90% of all ovarian malignancies. The standard therapeutic strategy includes cytoreductive surgery accompanied by pre- or postoperative platinum-based chemotherapy. Nevertheless, up to 80% of the patients relapse within the following 12-18 months from the completion of the treatment and then receive first-line chemotherapy depending on platinum sensitivity. Mutations in BRCA1/2 genes are the most significant molecular aberrations in EOC and serve as prognostic and predictive biomarkers. Poly ADP-ribose polymerase (PARP) inhibitors exploit defects in the DNA repair pathway through synthetic lethality. They have also been shown to trap PARP1 and PARP2 on DNA, leading to PARP-DNA complexes. Olaparib, rucaparib, and niraparib have all obtained Food and Drug Administration (FDA) and/or the European Medicine Agency (EMA) approval for the treatment of EOC in different settings. Immune checkpoint inhibitors (ICI) have improved the survival of several cancers and are under evaluation in EOC. However, despite the success of immunotherapy in other malignancies, the use of antibodies inhibiting the immune checkpoint programmed cell death (PD-1) or its ligand (PD-L1) obtained modest results in EOC so far, with median response rates of up to 10%. As such, ICI have not yet been approved for the treatment of EOC. We herein provided a comprehensive insight into the most recent progress in synthetic lethality PARP inhibitors, along with the mechanisms of resistance. We also summarised data regarding the role of immune checkpoint inhibitors, the use of vaccination therapy, and adoptive immunotherapy in treating epithelial ovarian cancer.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
| | - Anu Limbu
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
| | - Christos Mikropoulos
- St. Lukes Cancer Centre, Royal Surrey County Hospital, Egerton Rd., Guildford GU2 7XX, Surrey, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London KT1 2EE, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London KT1 2EE, UK
- Centre for Education, Faculty of Life Sciences and Medicine, King’s College London, London SE5 9NU, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki—Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
31
|
Shah S, Cheung A, Kutka M, Sheriff M, Boussios S. Epithelial Ovarian Cancer: Providing Evidence of Predisposition Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138113. [PMID: 35805770 PMCID: PMC9265838 DOI: 10.3390/ijerph19138113] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/19/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the cancers most influenced by hereditary factors. A fourth to a fifth of unselected EOC patients carry pathogenic variants (PVs) in a number of genes, the majority of which encode for proteins involved in DNA mismatch repair (MMR) pathways. PVs in BRCA1 and BRCA2 genes are responsible for a substantial fraction of hereditary EOC. In addition, PV genes involved in the MMR pathway account for 10–15% of hereditary EOC. The identification of women with homologous recombination (HR)-deficient EOCs has significant clinical implications, concerning chemotherapy regimen planning and development as well as the use of targeted therapies such as poly(ADP-ribose) polymerase (PARP) inhibitors. With several genes involved, the complexity of genetic testing increases. In this context, next-generation sequencing (NGS) allows testing for multiple genes simultaneously with a rapid turnaround time. In this review, we discuss the EOC risk assessment in the era of NGS.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK;
| | - Alison Cheung
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK; (A.C.); (M.K.)
| | - Mikolaj Kutka
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK; (A.C.); (M.K.)
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK;
| | - Stergios Boussios
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK;
- King’s College London, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
32
|
Wei Q, Chen DS, Liu YH. Case Report: Niraparib-Related Pulmonary Embolism During the Treatment of BRCA Mutant Advanced Ovarian Cancer. Front Oncol 2022; 12:853211. [PMID: 35359396 PMCID: PMC8960313 DOI: 10.3389/fonc.2022.853211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022] Open
Abstract
Niraparib, an oral, potent, highly selective poly (ADP-ribose) polymerase (PARP) inhibitor, has promising clinical benefit for maintenance treatment of patients with ovarian cancer in partial response to platinum-based chemotherapy, especially in patients with BRCA mutation. In publicly available niraparib treatment-related adverse events, gastrointestinal disorders and hematological toxicities were most commonly reported with manageable safety profile. Herein, we first describe a severe and never-reported pulmonary embolism (PE) associated with the use of niraparib in a patient with BRCA mutation advanced high-grade serous ovarian cancer and received anticoagulant therapy after PE. There have been no reports of PE caused by the use of niraparib in patients with advanced high-grade serous ovarian cancer; knowledge of the occurrence of PE after the use of niraparib may assist other clinicians in managing this rare but potentially serious toxic effect.
Collapse
Affiliation(s)
- Qiang Wei
- Ultrasonic Department, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dong-Sheng Chen
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co. Ltd., Nanjing, China
| | - Yuan-Hua Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
34
|
A Novel CDK4/6 and PARP Dual Inhibitor ZC-22 Effectively Suppresses Tumor Growth and Improves the Response to Cisplatin Treatment in Breast and Ovarian Cancer. Int J Mol Sci 2022; 23:ijms23052892. [PMID: 35270034 PMCID: PMC8911181 DOI: 10.3390/ijms23052892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, three PARP inhibitors and three CDK4/6 inhibitors have been approved by the FDA for the treatment of recurrent ovarian cancer and advanced ER-positive breast cancer, respectively. However, the clinical benefits of the PARPi or CDK4/6i monotherapy are not as satisfied as expected and benefit only a fraction of patients. Current studies have shown therapeutic synergy for combinations of PARPi and CDK4/6i in breast and ovarian cancers with homologous recombination (HR) proficiency, which represents a new synthetic lethal strategy for treatment of these cancers regardless HR status. Thus, any compounds or strategies that can combine PARP and CDK4/6 inhibition will likely have great potential in improving clinic outcomes and in benefiting more patients. In this study, we developed a novel compound, ZC-22, that effectively inhibited both PARP and CDK4/6. This dual-targeting compound significantly inhibited breast and ovarian cancer cells by inducing cell cycle arrest and severe DNA damage both in vitro and in vivo. Interestingly, the efficacy of ZC-22 is even higher than the combination of PARPi Olaparib and CDK4/6i Abemaciclib in most breast and ovarian cancer cells, suggesting that it may be an effective alternative for the PARPi and CDK4/6i combination therapy. Moreover, ZC-22 sensitized breast and ovarian cancer cells to cisplatin treatment, a widely used chemotherapeutic agent. Altogether, our study has demonstrated the potency of a novel CDK4/6 and PARP dual inhibitor, which can potentially be developed into a monotherapy or combinatorial therapy with cisplatin for breast and ovarian cancer patients with HR proficiency.
Collapse
|
35
|
Leung WH, Shih JW, Chen JS, Mokgautsi N, Wei PL, Huang YJ. Preclinical Identification of Sulfasalazine’s Therapeutic Potential for Suppressing Colorectal Cancer Stemness and Metastasis through Targeting KRAS/MMP7/CD44 Signaling. Biomedicines 2022; 10:biomedicines10020377. [PMID: 35203586 PMCID: PMC8962339 DOI: 10.3390/biomedicines10020377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 25% of colorectal cancer (CRC) patients will develop metastatic (m)CRC despite treatment interventions. In this setting, tumor cells are attracted to the epidermal growth factor receptor (EGFR) oncogene. Kirsten rat sarcoma (RAS) 2 viral oncogene homolog (KRAS) mutations were reported to drive CRC by promoting cancer progression in activating Wnt/β-catenin and RAS/extracellular signal-regulated kinase (ERK) pathways. In addition, KRAS is associated with almost 40% of patients who acquire resistance to EGFR inhibitors in mCRC. Multiple studies have demonstrated that cancer stem cells (CSCs) promote tumorigenesis, tumor growth, and resistance to therapy. One of the most common CSC prognostic markers widely reported in CRC is a cluster of differentiation 44 (CD44), which regulates matrix metalloproteinases 7/9 (MMP7/9) to promote tumor progression and metastasis; however, the molecular role of CD44 in CRC is still unclear. In invasive CRC, overexpression of MMP7 was reported in tumor cells compared to normal cells and plays a crucial function in CRC cetuximab and oxaliplatin resistance and distant metastasis. Here, we utilized a bioinformatics analysis and identified overexpression of KRAS/MMP7/CD44 oncogenic signatures in CRC tumor tissues compared to normal tissues. In addition, a high incidence of mutations in KRAS and CD44 were associated with some of the top tumorigenic oncogene’s overexpression, which ultimately promoted a poor response to chemotherapy and resistance to some FDA-approved drugs. Based on these findings, we explored a computational approach to drug repurposing of the drug, sulfasalazine, and our in silico molecular docking revealed unique interactions of sulfasalazine with the KRAS/MMP7/CD44 oncogenes, resulting in high binding affinities compared to those of standard inhibitors. Our in vitro analysis demonstrated that sulfasalazine combined with cisplatin reduced cell viability, colony, and sphere formation in CRC cell lines. In addition, sulfasalazine alone and combined with cisplatin suppressed the expression of KRAS/MMP7/CD44 in DLD-1 and HCT116 cell lines. Thus, sulfasalazine is worthy of further investigation as an adjuvant agent for improving chemotherapeutic responses in CRC patients.
Collapse
Affiliation(s)
- Wai-Hung Leung
- Division of Colon and Rectal Surgery, Department of Surgery, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei 10449, Taiwan; (W.-H.L.); (J.-S.C.)
| | - Jing-Wen Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (J.-W.S.); (N.M.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jian-Syun Chen
- Division of Colon and Rectal Surgery, Department of Surgery, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei 10449, Taiwan; (W.-H.L.); (J.-S.C.)
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (J.-W.S.); (N.M.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yan-Jiun Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
36
|
Zhi W, Li S, Wan Y, Wu F, Hong L. Short-term starvation synergistically enhances cytotoxicity of Niraparib via Akt/mTOR signaling pathway in ovarian cancer therapy. Cancer Cell Int 2022; 22:18. [PMID: 35016681 PMCID: PMC8753877 DOI: 10.1186/s12935-022-02447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022] Open
Abstract
Background Short-term starvation (STS) has gradually been confirmed as a treatment method that synergistically enhances the effect of chemotherapy on malignant tumours. In clinical applications, there are still some limitations of poly (ADP-ribose) polymerase inhibitors (PARPi), including understanding their effectiveness and side effects. Here, we sought to investigate the effect and mechanism of the combined use of STS and niraparib in the treatment of ovarian cancer. Methods In in vitro experiments, SKOV3 and A2780 ovarian cancer cells were treated with STS and niraparib alone or in combination. Cell viability was assessed with CCK-8, and cell cycle, apoptosis, DNA damage repair and autophagy were examined to explore the molecular mechanisms. Akt and mTOR inhibitors were used to examine any changes in DNA damage repair levels. Xenograft animal models were treated with STS and niraparib, and HE staining and immunohistochemistry were performed to examine the effects. Results The combined use of STS and niraparib inhibited cell proliferation and increased apoptosis more than niraparib application alone. In addition, compared with the niraparib group, the STS + niraparib group had increased G2/M arrest, DNA damage and autophagy, which indicated that STS pretreatment enhanced the cytotoxicity of niraparib. In animal experiments, STS did not affect the growth of transplanted tumours, but the combined treatment synergistically enhanced the cytotoxicity of niraparib. In in vivo experiments, STS did not affect the growth of transplanted tumours, but the combined treatment synergistically enhanced the cytotoxicity of niraparib and reduced the small intestinal side effects caused by niraparib chemotherapy. Conclusion STS pretreatment can synergistically enhance the cytotoxicity of niraparib. STS + niraparib is a potentially effective strategy in the maintenance therapy of ovarian cancer.
Collapse
Affiliation(s)
- Wang Zhi
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China
| | - Suting Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China
| | - Yuting Wan
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China
| | - Fuwen Wu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
37
|
Zhou M, Li B, Liu J, Hong L. Genomic, Immunological, and Clinical Characterization of Pyroptosis in Ovarian Cancer. J Inflamm Res 2022; 14:7341-7358. [PMID: 34992421 PMCID: PMC8714015 DOI: 10.2147/jir.s344554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Pyroptosis is a form of lytic programmed cell death that is associated with the pathogenesis of many tumors. However, the potential roles of pyroptosis-related genes (PRGs) in the tumor microenvironment (TME) remain unclear. Materials and Methods We systematically described the genetic and transcriptional alterations in PRGs in gynecological cancers. An unsupervised clustering method was used to investigate the molecular subtypes of ovarian cancer (OV) and systematically analyze the TME cell infiltration characteristics. A prognostic signature and nomogram were established to quantify the pyroptosis patterns of individual tumors. We also analyzed the expression levels of eight PRGs in the OV tissues. Results Two distinct molecular subtypes of OV were identified, and these two distinct molecular subtypes could predict clinicopathological features, prognosis, TME stromal activity, immune infiltrating cells, and immune checkpoints. A prognostic signature was established, and its predictive capability was validated. Low risk score, characterized by activation of immunity, upregulation of programmed death-ligand 1 expression, lower tumor immune dysfunction and exclusion scores, lower tumor mutation burden, and favorable prognosis. These findings suggested that low-risk patients with OV may be more sensitive to immunotherapy. In addition, this signature could effectively predict the response to chemotherapy in patients with OV. Furthermore, a prognostic nomogram was generated, which exhibited superior predictive accuracy. Conclusion This study highlights the crucial role of PRGs in the TME and may help develop immunotherapies and promote individualized therapeutic strategies for patients with OV.
Collapse
Affiliation(s)
- Min Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jianfeng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
38
|
The Clinical Challenges, Trials, and Errors of Combatting Poly(ADP-Ribose) Polymerase Inhibitors Resistance. Cancer J 2021; 27:491-500. [PMID: 34904812 DOI: 10.1097/ppo.0000000000000562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ABSTRACT The use of poly(ADP-ribose) polymerase inhibitor (PARPi) exploits synthetic lethality in solid tumors with homologous recombination repair (HRR) defects. Significant clinical benefit has been established in breast and ovarian cancers harboring BRCA1/2 mutations, as well as tumors harboring characteristics of "BRCAness." However, the durability of treatment responses is limited, and emerging data have demonstrated the clinical challenge of PARPi resistance. With the expanding use of PARPi, the significance of PARP therapy in patients pretreated with PARPi remains in need of significant further investigation. Molecular mechanisms contributing to this phenomenon include restoration of HRR function, replication fork stabilization, BRCA1/2 reversion mutations, and epigenetic changes. Current studies are evaluating the utility of combination therapies of PARPi with cell cycle checkpoint inhibitors, antiangiogenic agents, phosphatidylinositol 3-kinase/AKT pathway inhibitors, MEK inhibitors, and epigenetic modifiers to overcome this resistance. In this review, we address the mechanisms of PARPi resistance supported by preclinical models, examine current clinical trials applying combination therapy to overcome PARPi resistance, and discuss future directions to enhance the clinical efficacy of PARPi.
Collapse
|
39
|
Rizzo A, Ricci AD, Lanotte L, Lombardi L, Di Federico A, Brandi G, Gadaleta-Caldarola G. Immune-based combinations for metastatic triple negative breast cancer in clinical trials: current knowledge and therapeutic prospects. Expert Opin Investig Drugs 2021; 31:557-565. [PMID: 34802383 DOI: 10.1080/13543784.2022.2009456] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitor (ICI) monotherapy appears to be effective in a small cohort of patients with metastatic triple negative breast cancer (mTNBC). This supports the exploration of strategies for increasing the efficacy of immunotherapy. To enhance overall response and clinical outcomes, several immune-based combinations are being investigated. AREAS COVERED The authors present a synopsis of current, state-of-art immune-based combinations in this setting and reflect on future possibilities. They shed light on recently presented and published clinical trials and ongoing studies. A literature search was conducted in October 2021; in addition, abstracts of international cancer meetings were reviewed. EXPERT OPINION Clinical trials suggest that ICI monotherapy could be beneficial in a minority of mTNBC patients; conversely, several immune-based combinations have reported notable results in recently presented or published studies. Some of these combination strategies have been approved for mTNBC - as in the case of chemoimmunotherapy in PD-L1 positive patients. Numerous trials are investigating novel ICI-based combinations and their results are eagerly awaited.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia.,Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, Barletta, Italy
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia.,Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, Barletta, Italy
| | - Laura Lanotte
- Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, Barletta, Italy
| | - Lucia Lombardi
- Medical Oncology Unit, "Mons. R. Dimiccoli" Hospital, Barletta (BT), ASL BT, Barletta, Italy
| | | | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | | |
Collapse
|
40
|
Scotto G, Borella F, Turinetto M, Tuninetti V, Valsecchi AA, Giannone G, Cosma S, Benedetto C, Valabrega G. Biomarkers of Central Nervous System Involvement from Epithelial Ovarian Cancer. Cells 2021; 10:3408. [PMID: 34943916 PMCID: PMC8699445 DOI: 10.3390/cells10123408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among women affected by gynaecological malignancies. Most patients show advanced disease at diagnosis (FIGO stage III-IV) and, despite the introduction of new therapeutic options, most women experience relapses. In most cases, recurrence is abdominal-pelvic; however, EOC can occasionally metastasize to distant organs, including the central nervous system. The incidence of brain metastases (BMs) from EOC is low, but it has grown over time; currently, there are no follow-up strategies available. In the last decade, a few biomarkers able to predict the risk of developing BMs from OC or as potential therapeutic targets have been investigated by several authors; to date, none have entered clinical practice. The purpose of this review is to offer a summary on the role of the most relevant predictors of central nervous system (CNS) involvement (hormone receptors; BRCA; MRD1; PD-1/PD-L1) and to highlight possible therapeutic strategies for the management of metastatic brain disease in EOC.
Collapse
Affiliation(s)
- Giulia Scotto
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Fulvio Borella
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (F.B.); (S.C.); (C.B.)
| | - Margherita Turinetto
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Valentina Tuninetti
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Anna A. Valsecchi
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Gaia Giannone
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Stefano Cosma
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (F.B.); (S.C.); (C.B.)
| | - Chiara Benedetto
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (F.B.); (S.C.); (C.B.)
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, 10123 Torino, Italy; (G.S.); (M.T.); (V.T.); (A.A.V.); (G.G.)
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| |
Collapse
|
41
|
Mehta P, Bothra SJ. PARP inhibitors in hereditary breast and ovarian cancer and other cancers: A review. ADVANCES IN GENETICS 2021; 108:35-80. [PMID: 34844716 DOI: 10.1016/bs.adgen.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There has been a paradigm shift in the management of cancer, with the immense progress in cancer genomics. More and more targeted therapies are becoming available by the day and personalized medicine is becoming popular with specific drugs being designed for selected subgroups of patients. One such new class of targeted drugs in the armamentarium is Poly ADP Ribose Polymerase (PARP) inhibitors (PARPi), which inhibit the enzyme PARP, thus interfering with DNA repair. This strategy utilizes a pre-existing genomic lesion in tumors with homologous recombination repair defects (including BRCA mutations), weakening tumor cells further by blocking the alternate pathway of DNA repair. In this review, we discuss in detail, the evolution, genetics, mechanism of action, mechanism of resistance, indications of use of PARP inhibitors, as well as combination with other agents and future directions.
Collapse
Affiliation(s)
- Prashant Mehta
- Department of Medical Oncology, Hematology and BMT, Asian Institute of Medical Sciences, Faridabad, India.
| | - Sneha J Bothra
- Department of Medical Oncology, Action Cancer Institute, New Delhi, India
| |
Collapse
|
42
|
Shah S, Rachmat R, Enyioma S, Ghose A, Revythis A, Boussios S. BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations. Int J Mol Sci 2021; 22:12628. [PMID: 34884434 PMCID: PMC8657599 DOI: 10.3390/ijms222312628] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer ranks fifth in cancer-related mortality in men worldwide. DNA damage is implicated in cancer and DNA damage response (DDR) pathways are in place against this to maintain genomic stability. Impaired DDR pathways play a role in prostate carcinogenesis and germline or somatic mutations in DDR genes have been found in both primary and metastatic prostate cancer. Among these, BRCA mutations have been found to be especially clinically relevant with a role for germline or somatic testing. Prostate cancer with DDR defects may be sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors which target proteins in a process called PARylation. Initially they were used to target BRCA-mutated tumor cells in a process of synthetic lethality. However, recent studies have found potential for PARP inhibitors in a variety of other genetic settings. In this review, we explore the mechanisms of DNA repair, potential for genomic analysis of prostate cancer and therapeutics of PARP inhibitors along with their safety profile.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Rachelle Rachmat
- Department of Radiology, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Synthia Enyioma
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK;
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
43
|
Pham MM, Ngoi NYL, Peng G, Tan DSP, Yap TA. Development of poly(ADP-ribose) polymerase inhibitor and immunotherapy combinations: progress, pitfalls, and promises. Trends Cancer 2021; 7:958-970. [PMID: 34158277 PMCID: PMC8458234 DOI: 10.1016/j.trecan.2021.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022]
Abstract
The efficacy of poly(ADP-ribose) polymerase inhibitors (PARPi) is restricted by inevitable drug resistance, while their use in combination with chemotherapy and targeted agents is commonly associated with dose-limiting toxicities. Immune checkpoint blockade (ICB) has demonstrated durable responses in different solid tumors and is well-established across multiple cancers. Despite this, single agent activity is limited to a minority of patients and drug resistance remains an issue. Building on the monotherapy success of both drug classes, combining PARPi with ICB may be a safe and well-tolerated strategy with the potential to improve survival outcomes. In this review, we present the preclinical, translational, and clinical data supporting the combination of DNA damage response (DDR) and ICB as well as consider important questions to be addressed with future research.
Collapse
Affiliation(s)
- Melissa M Pham
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Y L Ngoi
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Guang Peng
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S P Tan
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute, National University of Singapore, Singapore
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
44
|
Chan WY, Brown LJ, Reid L, Joshua AM. PARP Inhibitors in Melanoma-An Expanding Therapeutic Option? Cancers (Basel) 2021; 13:cancers13184520. [PMID: 34572747 PMCID: PMC8464708 DOI: 10.3390/cancers13184520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Melanomas with homologous recombination DNA damage repair pathways represent a subset of melanoma that may benefit from PARP inhibitors and immunotherapy. PARP inhibitors have an established role in treating cancers with underlying BRCA mutation through synthetic lethality; however, there is increasing evidence that it can be applied to a larger population including other types of homologous recombination defects. These gene mutations can be found in 20–40% of cutaneous melanoma. To date, PARP inhibitors and immunotherapy have been overlooked in the management of melanoma. This review explores the reasons for combining PARP inhibitors and immunotherapy. There is evidence to suggest that PARP inhibitors can improve the therapeutic effect of immune checkpoint inhibitors. Therefore, this combination approach has the potential to impact future treatment of patients with melanoma, particularly those with homologous recombination DNA damage repair defects. Abstract Immunotherapy has transformed the treatment landscape of melanoma; however, despite improvements in patient outcomes, monotherapy can often lead to resistance and tumour escape. Therefore, there is a need for new therapies, combination strategies and biomarker-guided decision making to increase the subset of patients most likely to benefit from treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors act by synthetic lethality to target tumour cells with homologous recombination deficiencies such as BRCA mutations. However, the application of PARP inhibitors could be extended to a broad range of BRCA-negative cancers with high rates of DNA damage repair pathway mutations, such as melanoma. Additionally, PARP inhibition has the potential to augment the therapeutic effect of immunotherapy through multi-faceted immune-priming capabilities. In this review, we detail the immunological role of PARP and rationale for combining PARP and immune checkpoint inhibitors, with a particular focus on a subset of melanoma with homologous recombination defects that may benefit most from this targeted approach. We summarise the biology supporting this combined regimen and discuss preclinical results as well as ongoing clinical trials in melanoma which may impact future treatment.
Collapse
Affiliation(s)
- Wei Yen Chan
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lauren J. Brown
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Lee Reid
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony M. Joshua
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Melanoma Institute of Australia, Sydney, NSW 2016, Australia
- Correspondence:
| |
Collapse
|
45
|
Zhou L, Xiang J, He Y. Research progress on the association between environmental pollutants and the resistance mechanism of PARP inhibitors in ovarian cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49491-49506. [PMID: 34370190 DOI: 10.1007/s11356-021-15852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and progression of ovarian cancer are closely related to genetics and environmental pollutants. Poly(ADP-ribose) polymerase (PARP) inhibitors have been a major breakthrough in the history of ovarian cancer treatment. PARP is an enzyme responsible for post-translational modification of proteins and repair of single-stranded DNA damage. PARP inhibitors can selectively inhibit PARP function, resulting in a synthetic lethal effect on tumor cells defective in homologous recombination repair. However, with large-scale application, drug resistance also inevitably appears. For PARP inhibitors, the diversity and complexity of drug resistance mechanisms have always been difficult problems in clinical treatment. Herein, we mainly summarized the research progress of DNA damage repair and drug resistance mechanisms related to PARP inhibitors and the impact of environmental pollutants on DNA damage repair to aid the development prospects and highlight urgent problems to be solved.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yinyan He
- Department of Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
46
|
Prevalence of mutations in BRCA and homologous recombination repair genes and real-world standard of care of Asian patients with HER2-negative metastatic breast cancer starting first-line systemic cytotoxic chemotherapy: subgroup analysis of the global BREAKOUT study. Breast Cancer 2021; 29:92-102. [PMID: 34467476 PMCID: PMC8732904 DOI: 10.1007/s12282-021-01283-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
Background The multinational BREAKOUT study (NCT03078036) sought to determine the prevalence of germline BRCA1/2 (gBRCA1/2) and somatic BRCA1/2 (sBRCA1/2) mutations and mutations in other homologous recombination repair (HRR) genes in women with HER2-negative metastatic breast cancer (MBC) starting first-line chemotherapy. Methods Genetic testing for gBRCA, sBRCA, and HRR gene mutations was performed in patients who started first-line chemotherapy for MBC in the last 90 days (341 patients across 14 countries) who were not selected based on risk factors for gBRCA mutations. We report data from the Asian cohort, which included patients in Japan (7 sites), South Korea (10 sites), and Taiwan (8 sites). Results Of 116 patients screened, 104 patients were enrolled in the Asian cohort. The median age was 53.0 (range 25–87) years. gBRCA1/2, gBRCA1, and gBRCA2 mutations were detected in 10.6% (11/104), 5.8% (6/104), and 4.8% (5/104) of patients, respectively; none had mutations in both gBRCA1 and gBRCA2. gBRCA1/2 mutations were detected in 10.0% (6/60) and 11.6% (5/43) of patients with hormone receptor-positive and triple-negative MBC, respectively. HRR gene mutations were tested in 48 patients without gBRCA mutations, and 5 (10.4%) had at least one HRR mutation in sBRCA, ATM, PALB2, and CHEK2. Conclusion We report for the first time the prevalence of gBRCA and HRR mutations in an Asian cohort of patients with HER2-negative MBC. Our results suggest that BRCA mutation testing is valuable to determine appropriate treatment options for patients with hormone receptor-positive or triple-negative MBC. Study registration NCT03078036. Supplementary Information The online version contains supplementary material available at 10.1007/s12282-021-01283-4.
Collapse
|
47
|
Cytocidal Antitumor Effects against Human Ovarian Cancer Cells Induced by B-Lactam Steroid Alkylators with Targeted Activity against Poly (ADP-Ribose) Polymerase (PARP) Enzymes in a Cell-Free Assay. Biomedicines 2021; 9:biomedicines9081028. [PMID: 34440232 PMCID: PMC8394033 DOI: 10.3390/biomedicines9081028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022] Open
Abstract
We evaluated three newly synthesized B-lactam hybrid homo-aza-steroidal alkylators (ASA-A, ASA-B and ASA-C) for their PARP1/2 inhibition activity and their DNA damaging effect against human ovarian carcinoma cells. These agents are conjugated with an alkylating component (POPA), which also served as a reference molecule (positive control), and were tested against four human ovarian cell lines in vitro (UWB1.289 + BRCA1, UWB1.289, SKOV-3 and OVCAR-3). The studied compounds were thereafter compared to 3-AB, a known PARP inhibitor, as well as to Olaparib, a standard third-generation PARP inhibitor, on a PARP assay investigating their inhibitory potential. Finally, a PARP1 and PARP2 mRNA expression analysis by qRT-PCR was produced in order to measure the absolute and the relative gene expression (in mRNA transcripts) between treated and untreated cells. All the investigated hybrid steroid alkylators and POPA decreased in vitro cell growth differentially, according to the sensitivity and different gene characteristics of each cell line, while ASA-A and ASA-B presented the most significant anticancer activity. Both these compounds induced PARP1/2 enzyme inhibition, DNA damage (alkylation) and upregulation of PARP mRNA expression, for all tested cell lines. However, ASA-C underperformed on average in the above tasks, while the compound ASA-B induced synthetic lethality effects on the ovarian cancer cells. Nevertheless, the overall outcome, leading to a drug-like potential, provides strong evidence toward further evaluation.
Collapse
|
48
|
Therapeutic Potential of PARP Inhibitors in the Treatment of Gastrointestinal Cancers. Biomedicines 2021; 9:biomedicines9081024. [PMID: 34440228 PMCID: PMC8392860 DOI: 10.3390/biomedicines9081024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal (GI) malignancies are a major global health burden, with high mortality rates. The identification of novel therapeutic strategies is crucial to improve treatment and survival of patients. The poly (ADP-ribose) polymerase (PARP) enzymes involved in the DNA damage response (DDR) play major roles in the development, progression and treatment response of cancer, with PARP inhibitors (PARPi) currently used in the clinic for breast, ovarian, fallopian, primary peritoneal, pancreatic and prostate cancers with deficiencies in homologous recombination (HR) DNA repair. This article examines the current evidence for the role of the DDR PARP enzymes (PARP1, 2, 3 and 4) in the development, progression and treatment response of GI cancers. Furthermore, we discuss the role of HR status as a predictive biomarker of PARPi efficacy in GI cancer patients and examine the pre-clinical and clinical evidence for PARPi and cytotoxic therapy combination strategies in GI cancer. We also include an analysis of the genomic and transcriptomic landscape of the DDR PARP genes and key HR genes (BRCA1, BRCA2, ATM, RAD51, MRE11, PALB2) in GI patient tumours (n = 1744) using publicly available datasets to identify patients that may benefit from PARPi therapeutic approaches.
Collapse
|
49
|
Perez-Fidalgo JA, Cortés A, Guerra E, García Y, Iglesias M, Bohn Sarmiento U, Calvo García E, Manso Sánchez L, Santaballa A, Oaknin A, Redondo A, Rubio MJ, González-Martín A. Olaparib in combination with pegylated liposomal doxorubicin for platinum-resistant ovarian cancer regardless of BRCA status: a GEICO phase II trial (ROLANDO study). ESMO Open 2021; 6:100212. [PMID: 34329939 PMCID: PMC8446804 DOI: 10.1016/j.esmoop.2021.100212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is limited evidence for the benefit of olaparib in platinum-resistant ovarian cancer (PROC) patients with BRCA wild-type tumors. This study investigated whether this combination of a DNA-damaging chemotherapy plus olaparib is effective in PROC regardless BRCA status. PATIENTS AND METHODS Patients with high-grade serous or endometrioid ovarian carcinoma and one previous PROC recurrence were enrolled regardless of BRCA status. Patients with ≤4 previous lines (up to 5 in BRCA-mut) with at least one previous platinum-sensitive relapse were included; primary PROC was allowed only in case of BRCA-mut. Patients initially received six cycles of olaparib 300 mg b.i.d. (biduum) + intravenous pegylated liposomal doxorubicin (PLD) 40 mg/m2 (PLD40) every 28 days, followed by maintenance with olaparib 300 mg b.i.d. until progression or toxicity. The PLD dose was reduced to 30 mg/m2 (PLD30) due to toxicity. The primary endpoint was progression-free survival (PFS) at 6 months (6m-PFS) by RECIST version 1.1. A proportion of 40% 6m-PFS or more was considered of clinical interest. RESULTS From 2017 to 2020, 31 PROC patients were included. BRCA mutations were present in 16%. The median of previous lines was 2 (range 1-5). The overall disease control rate was 77% (partial response rate of 29% and stable disease rate of 48%). After a median follow-up of 10 months, the 6m-PFS and median PFS were 47% and 5.8 months, respectively. Grade ≥3 treatment-related adverse events occurred in 74% of patients, with neutropenia/anemia being the most frequent. With PLD30 serious AEs were less frequent than with PLD40 (21% versus 47%, respectively); moreover, PLD30 was associated with less PLD delays (32% versus 38%) and reductions (16% versus 22%). CONCLUSIONS The PLD-olaparib combination has shown significant activity in PROC regardless of BRCA status. PLD at 30 mg/m2 is better tolerated in the combination.
Collapse
Affiliation(s)
- J A Perez-Fidalgo
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - A Cortés
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - E Guerra
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Y García
- Department of Medical Oncology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - M Iglesias
- Department of Medical Oncology, Hospital Son Llatzer, Palma De Mallorca, Spain
| | - U Bohn Sarmiento
- Department of Medical Oncology, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas De Gran Canaria, Spain
| | - E Calvo García
- Department of Medical Oncology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - L Manso Sánchez
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Santaballa
- Department of Medical Oncology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - A Oaknin
- Department of Medical Oncology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - A Redondo
- Department of Medical Oncology, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - M J Rubio
- Department of Medical Oncology, Hospital Universitario Reina Sofia, Córdoba, Spain
| | - A González-Martín
- Department of Medical Oncology Department, Clínica Universidad de Navarra, Madrid, Spain
| |
Collapse
|
50
|
Inhibition of PARP1 Dampens Pseudorabies Virus Infection through DNA Damage-Induced Antiviral Innate Immunity. J Virol 2021; 95:e0076021. [PMID: 34037418 DOI: 10.1128/jvi.00760-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudorabies virus (PRV) is the causative pathogen of Aujeszky's disease in pigs. Although vaccination is currently applied to prevent the morbidity of PRV infection, new applications are urgently needed to control this infectious disease. Poly(ADP-ribose) polymerase 1 (PARP1) functions in DNA damage repair. We report here that pharmacological and genetic inhibition of PARP1 significantly influenced PRV replication. Moreover, we demonstrate that inhibition of PARP1 induced DNA damage response and antiviral innate immunity. Mechanistically, PARP1 inhibition-induced DNA damage response resulted in the release of double-stranded DNA (dsDNA) into the cytosol, where dsDNA interacted with cyclic GMP-AMP (cGAMP) synthase (cGAS). cGAS subsequently catalyzed cGAMP production to activate the STING/TBK1/IRF3 innate immune signaling pathway. Furthermore, challenge of mice with PARP1 inhibitor stimulated antiviral innate immunity and protected mice from PRV infection in vivo. Our results demonstrate that PARP1 inhibitors may be used as a new strategy to prevent Aujeszky's disease in pigs. IMPORTANCE Aujeszky's disease is a notifiable infectious disease of pigs and causes economic losses worldwide in the pig industry. The causative pathogen is PRV, which is a member of the subfamily Alphaherpesvirinae of the family Herpesviridae. PRV has a wide range of hosts, such as ruminants, carnivores, and rodents. More seriously, recent reports suggest that PRV can cause human endophthalmitis and encephalitis, which indicates that PRV may be a potential zoonotic pathogen. Although vaccination is currently the major strategy used to control the disease, new applications are also urgently needed for the pig industry and public health. We report here that inhibition of PARP1 induces DNA damage-induced antiviral innate immunity through the cGAS-STING signaling pathway. Therefore, PARP1 is a therapeutic target for PRV infection as well as alphaherpesvirus infection.
Collapse
|