1
|
Sima S, Chen X, Diwan AD. The association between inflammatory biomarkers and low back disorder: a systematic review and meta-analysis. Biomarkers 2024; 29:171-184. [PMID: 38578280 DOI: 10.1080/1354750x.2024.2339285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Low back disorder (LBD) is a major cause of disability worldwide. Inflammation results in proliferation of cytokines or consequent degradation products (collectively known as inflammatory biomarkers) that activate pain pathways which can result in non-specific LBD. This systematic review and meta-analysis aim to evaluate the relationship between inflammatory biomarkers and clinical outcomes in patients with LBD. METHODS The PRISMA guideline was followed for the systematic reivew. Three online databases were searched. Four RCTs and sixteen observational studies with 1142 LBD patients were analysed. The primary outcomes were back and leg pain scores, back-specific disability scores and expression of inflammatory biomarkers. Standardized mean difference (SMD) and their 95% confidence intervals (CI) were evaluated. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to summarize the strength of evidence. RESULTS Four RCTs and sixteen observational studies were included in the analysis of 1142 patients with LBD. There was a statistically significant reduction in back pain score and IL-1 beta and increase in the expression of CTX-1 and IL-10 levels post treatment. There was a significant relationship between increase in the expression of MCP- and reduction in the expression of hsCRP with increase in back pain. Significant relationship was also observed between increase in the expression of MCP-1 and reduction in the expression of IL-6 with increase in leg pain. Increase in the expression of IL-8 and reduction in the expression of hsCRP was also associated with increased disability score. CONCLUSION Inflammatory biomarkers play a significant role in the pathogenesis of LBD. CTX-1, IL-10 and IL-1 beta may be responsible for the decrease in back pain scores post treatment. There is a relationship between MCP-1, IL-6, IL-8 and hsCRP with clinical and functional assessments for LBD. Further studies will improve understanding of the pathogenesis of LBD and aid in targeted management strategies.
Collapse
Affiliation(s)
- Stone Sima
- Spine Labs, St George and Sutherland Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Xiaolong Chen
- Spine Labs, St George and Sutherland Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Department of Orthopaedic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ashish D Diwan
- Spine Labs, St George and Sutherland Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Spine Service, Department of Orthopaedic Surgery, St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| |
Collapse
|
2
|
Leite Pereira C, Grad S, Gonçalves RM. Biomarkers for intervertebral disc and associated back pain: From diagnosis to disease prognosis and personalized treatment. JOR Spine 2023; 6:e1280. [PMID: 38156062 PMCID: PMC10751979 DOI: 10.1002/jsp2.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 12/30/2023] Open
Abstract
Biomarkers are commonly recognized as objective indicators of a medical state or clinical outcome and have been widely used as clinical and diagnostic tools and surrogate endpoints in many pathological conditions. In the context of intervertebral disc (IVD) and associated back pain, also known as degenerative disc disease (DDD), the use of biomarkers has been poorly explored. DDD is currently diagnosed using imaging techniques and subjective pain scales, limiting an objective association between DDD and pain levels, as well as an evaluation of disease progression. There is a need for objective and reliable measurements for DDD, pain and pathology progression. DDD predictors could also help clinicians in deciding on the optimal treatment for distinct patient groups. This review addresses the current candidate biomarkers in DDD, including imaging, genetic, metabolite and protein-based parameters, both at the tissue and systemic levels, that may become a major advance in the diagnosis and prognosis of the disease, as well as in the management of therapeutic approaches to DDD.
Collapse
Affiliation(s)
- Catarina Leite Pereira
- I3S, Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB, Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
| | | | - Raquel M. Gonçalves
- I3S, Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB, Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS, Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
3
|
Mylenbusch H, Schepers M, Kleinjan E, Pol M, Tempelman H, Klopper-Kes H. Efficacy of stepped care treatment for chronic discogenic low back pain patients with Modic I and II changes. INTERVENTIONAL PAIN MEDICINE 2023; 2:100292. [PMID: 39239218 PMCID: PMC11372892 DOI: 10.1016/j.inpm.2023.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 09/07/2024]
Abstract
Objective This study investigated whether patients with Modic changes (MC) of types I, I/II, and II would respond to an anti-inflammatory-based, stepped care treatment with three treatment steps: first, oral administration of NSAIDs, 2 × 200 mg celecoxib daily for two weeks; second, an intradiscal steroid injection (ID) with dexamethasone and cefazolin; and third, oral treatment with antibiotics (AB), 3 × 1 g amoxicillin daily for 100 days. Design This was an observational clinical study based on analyses of categorical data of patient-reported outcome measurements. Subjects Subjects were consecutive patients with chronic low back pain (CLBP), diagnosed by assessment of anamnestic signs of inflammation; a pain score ≥6 on the Numeric Pain Rating Scale (NPRS); a mechanical assessment; MC I, I/II, or II based on MRI; and lack of response to conservative treatment. Methods From January 1, 2015, to December 31, 2021, 833 eligible patients were selected for the stepped care treatment. A total of 332 patients completed requested follow-up questionnaires at baseline and 12 months (optional at 3 and 6 months). Primary outcomes were pain (at least 50 % pain relief) and/or a minimum of 40 % improvement in functionality as measured by the Roland Morris Disability Questionnaire (RMDQ) or the Oswestry Disability Questionnaire (ODI). Secondary outcome measures were use of pain medication and return to work. Results At 1 year of follow-up, 179 (53.6 %) of 332 patients reported improvement according to the responder criteria. Of the 138 patients that had received only NSAIDs, 88 (63.8 %) had improved. In addition, 50 (56.8 %) of the 183 patients that had received ID had improved, and 41 (38.7 %) of the 106 patients treated with AB had improved. None of the patients reported complications. 12.0 % of patients using AB stopped preterm due to undesirable side effects. Conclusion Treatment with a stepped care model for inflammatory pain produced clinically relevant, positive reported outcomes on pain and/or function. Our stepped care model appears to be a useful, safe, and cost-saving treatment option that is easily reproducible. Further studies, including randomized controlled trials and analyses of subgroups, may help to develop a more patient-tailored approach and further avoidance of less-effective treatments and costs.
Collapse
Affiliation(s)
- Heidi Mylenbusch
- Stichting Rugpoli Twente, Veluwe, Brabant, Randstad - Multidisciplinary Center for Spine and Musculoskeletal Disorders, the Netherlands
| | - Michiel Schepers
- Stichting Rugpoli Twente, Veluwe, Brabant, Randstad - Multidisciplinary Center for Spine and Musculoskeletal Disorders, the Netherlands
| | - Elmar Kleinjan
- Stichting Rugpoli Twente, Veluwe, Brabant, Randstad - Multidisciplinary Center for Spine and Musculoskeletal Disorders, the Netherlands
| | - Marije Pol
- Stichting Rugpoli Twente, Veluwe, Brabant, Randstad - Multidisciplinary Center for Spine and Musculoskeletal Disorders, the Netherlands
| | - Henk Tempelman
- Stichting Rugpoli Twente, Veluwe, Brabant, Randstad - Multidisciplinary Center for Spine and Musculoskeletal Disorders, the Netherlands
| | - Hanneke Klopper-Kes
- Stichting Rugpoli Twente, Veluwe, Brabant, Randstad - Multidisciplinary Center for Spine and Musculoskeletal Disorders, the Netherlands
| |
Collapse
|
4
|
Tao S, Yu H, You T, Kong X, Wei X, Zheng Z, Zheng L, Feng Z, Huang B, Zhang X, Chen F, Chen X, Song H, Li J, Chen B, Chen J, Yao Q, Zhao F. A Dual-Targeted Metal-Organic Framework Based Nanoplatform for the Treatment of Rheumatoid Arthritis by Restoring the Macrophage Niche. ACS NANO 2023. [PMID: 37429012 DOI: 10.1021/acsnano.3c03828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Inflammatory infiltration and bone destruction are important pathological features of rheumatoid arthritis (RA), which originate from the disturbed niche of macrophages. Here, we identified a niche-disrupting process in RA: due to overactivation of complement, the barrier function of VSIg4+ lining macrophages is disrupted and mediates inflammatory infiltration within the joint, thereby activating excessive osteoclastogenesis and bone resorption. However, complement antagonists have poor biological applications due to superphysiologic dose requirements and inadequate effects on bone resorption. Therefore, we developed a dual-targeted therapeutic nanoplatform based on the MOF framework to achieve bone-targeted delivery of the complement inhibitor CRIg-CD59 and pH-responsive sustained release. The surface-mineralized zoledronic acid (ZA) of ZIF8@CRIg-CD59@HA@ZA targets the skeletal acidic microenvironment in RA, and the sustained release of CRIg-CD59 can recognize and prevent the complement membrane attack complex (MAC) from forming on the surface of healthy cells. Importantly, ZA can inhibit osteoclast-mediated bone resorption, and CRIg-CD59 can promote the repair of the VSIg4+ lining macrophage barrier to achieve sequential niche remodeling. This combination therapy is expected to treat RA by reversing the core pathological process, circumventing the pitfalls of traditional therapy.
Collapse
Affiliation(s)
- Siyue Tao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Hao Yu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang, China
| | - Tao You
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Xiangxi Kong
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Xiaoan Wei
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Zeyu Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Lin Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Zhenhua Feng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Bao Huang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Feng Chen
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Xiao Chen
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Haixin Song
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, 315100 Zhejiang, China
| | - Binhui Chen
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, 315100 Zhejiang, China
| | - Jian Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
- Department of Orthopedic Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, 325000 Zhejiang, China
| | - Qingqing Yao
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang, China
| | - Fengdong Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016 Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang, China
- Department of Orthopedic Surgery, Wenzhou Medical University First Affiliated Hospital, Wenzhou, 325000 Zhejiang, China
| |
Collapse
|
5
|
Lessons learned from long-term side effects after zoledronic acid infusion following denosumab treatment: a case report and review of the literature. J Med Case Rep 2022; 16:473. [PMID: 36522673 PMCID: PMC9754987 DOI: 10.1186/s13256-022-03695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Zoledronic acid is an intravenous, highly potent aminobisphosphonate for use in patients with primary or secondary osteoporosis. Zoledronic acid-induced prolonged side-effects are well known and quite common. However, severe side-effects can be a threat to life. We report a case of severe side-effects induced by zoledronic acid infusion, and its positive effect on long-term back pain. CASE PRESENTATION In 2012, a 62-year-old white native Finnish woman was operated on for an estrogen and progesterone receptor-positive breast cancer. After radiotherapy, an aromatase inhibitor (letrozole) was started. Nine months after the operation, the patient suffered a low-energy compression fracture of Th XII. She received denosumab to prevent fragility fractures and to improve bone mineral density. Letrozole was discontinued after 5.5 years, and the last denosumab injection was given after 7 years. Six months later, at the age of 71 years, the patient received a single intravenous zoledronic acid infusion. Suddenly, at 10 hours from the infusion, she complained of severe trismus, muscle twitching, spasms, and tingling, matching hypocalcemia and several other symptoms. Her serum 25-hydroxyvitamin D concentration was high (163 nmol/L), the concentration of serum calcium and calcium-ion was normal (2.32 mmol/L and 1.23 mmol/L, respectively). However, the neutrophil to lymphocyte ratio (NLR) was low (1.6). A complete recovery took 2 months. Zoledronic acid infusion also had a positive effect: for many years, the patient had suffered low back pain and strain, which came to an end after this single infusion. CONCLUSION It is important that the potential patients receive sufficient information about the possibility of side-effects following the administration of intravenous zoledronic acid. To ensure that a zoledronic acid infusion is given as safely as possible, the safety information should include that the patient should not be left without monitoring for a minimum 24 hours after the infusion. Being alone and experiencing serious side-effects may lead to acute cardiac problems. Furthermore, the chronic low back pain and strain that our patient suffered for many years has clearly reduced for 16 months after infusion, so far. We conclude that this is a positive effect of zoledronic acid.
Collapse
|
6
|
Le Maitre CL, Dahia CL, Giers M, Illien‐Junger S, Cicione C, Samartzis D, Vadala G, Fields A, Lotz J. Development of a standardized histopathology scoring system for human intervertebral disc degeneration: an Orthopaedic Research Society Spine Section Initiative. JOR Spine 2021; 4:e1167. [PMID: 34337340 PMCID: PMC8313169 DOI: 10.1002/jsp2.1167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Histopathological analysis of intervertebral disc (IVD) tissues is a critical domain of back pain research. Identification, description, and classification of attributes that distinguish abnormal tissues form a basis for probing disease mechanisms and conceiving novel therapies. Unfortunately, lack of standardized methods and nomenclature can limit comparisons of results across studies and prevent organizing information into a clear representation of the hierarchical, spatial, and temporal patterns of IVD degeneration. Thus, the following Orthopaedic Research Society (ORS) Spine Section Initiative aimed to develop a standardized histopathology scoring scheme for human IVD degeneration. METHODS Guided by a working group of experts, this prospective process entailed a series of stages that consisted of reviewing and assessing past grading schemes, surveying IVD researchers globally on current practice and recommendations for a new grading system, utilizing expert opinion a taxonomy of histological grading was developed, and validation performed. RESULTS A standardized taxonomy was developed, which showed excellent intra-rater reliability for scoring nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous end plate (CEP) regions (interclass correlation [ICC] > .89). The ability to reliably detect subtle changes varied by IVD region, being poorest in the NP (ICC: .89-.95) where changes at the cellular level were important, vs the AF (ICC: .93-.98), CEP (ICC: .97-.98), and boney end plate (ICC: .96-.99) where matrix and structural changes varied more dramatically with degeneration. CONCLUSIONS The proposed grading system incorporates more comprehensive descriptions of degenerative features for all the IVD sub-tissues than prior criteria. While there was excellent reliability, our results reinforce the need for improved training, particularly for novice raters. Future evaluation of the proposed system in real-world settings (eg, at the microscope) will be needed to further refine criteria and more fully evaluate utility. This improved taxonomy could aid in the understanding of IVD degeneration phenotypes and their association with back pain.
Collapse
Affiliation(s)
| | - Chitra L. Dahia
- Orthopaedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of Cell and Developmental BiologyWeill Cornell Medicine, Graduate School of Medical SciencesNew YorkNew YorkUSA
| | - Morgan Giers
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | | | - Claudia Cicione
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma SurgeryCampus Bio‐Medico University of RomeRomeItaly
| | - Dino Samartzis
- Department of Orthopaedic SurgeryRush University Medical CenterChicagoIllinoisUSA
- International Spine Research and Innovation InitiativeRush University Medical CenterChicagoIllinoisUSA
| | - Gianluca Vadala
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma SurgeryCampus Bio‐Medico University of RomeRomeItaly
| | - Aaron Fields
- Department of Orthopaedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Jeffrey Lotz
- Department of Orthopaedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
7
|
Li L, Zhou Z, Xiong W, Fang J, Scotti A, Shaghaghi M, Zhu W, Cai K. Characterization of microenvironmental changes in the intervertebral discs of patients with chronic low back pain using multiparametric MRI contrasts extracted from Z-spectrum. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1063-1071. [PMID: 33475842 PMCID: PMC11421479 DOI: 10.1007/s00586-021-06733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Z-spectral MRI data were analyzed to produce multiparametric metabolic and microenvironmental contrasts for identifying intervertebral discs with/without pain symptom and sore pain. METHODS Z-spectra data were collected from the lumbar discs of 26 patients with non-specific chronic low bck pain (CLBP) and 21 asymptomatic controls (AC) with a chemical exchange saturation transfer (CEST). Data were fitted to quantify the CEST effects from glycosaminoglycan, amide proton transfer (APT), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer contrast effects, and the direct saturation of water. Multiparametric maps were computed from the fitted peak amplitudes, and the average values were calculated from all five lumber discs. Those parameters were compared between the CLBP and AC groups and between the subgroups with and without (Nsore) sore pain. RESULTS The discs in symptomatic patients have lower water content, collagen-bound water and collagen than the discs in AC (P < 0.05). Additionally, Z-sepctral MRI indicated that the discs in the sore subgroup had less water, collagen-bound water and collagen, and likely lower pH compared to the Nsore subgroup (P < 0.05). Lower pH as measured with reduced APT and NOE effects may be an important pathological factor causing sore pain of the back. CONCLUSION Z-spectral MRI with its multiparametric metabolic and microenvironmental contrasts has been demonstrated to identify discs with and without pain symptom or sore pain, providing more important information of CLBP.
Collapse
Affiliation(s)
- Li Li
- Radiological Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhiguo Zhou
- Department of Orthopedics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
| | - Jicheng Fang
- Radiological Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
| | - Alessandro Scotti
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Mehran Shaghaghi
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - WenZhen Zhu
- Radiological Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China.
| | - Kejia Cai
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Mallow GM, Siyaji ZK, Galbusera F, Espinoza-Orías AA, Giers M, Lundberg H, Ames C, Karppinen J, Louie PK, Phillips FM, Pourzal R, Schwab J, Sciubba DM, Wang JC, Wilke HJ, Williams FMK, Mohiuddin SA, Makhni MC, Shepard NA, An HS, Samartzis D. Intelligence-Based Spine Care Model: A New Era of Research and Clinical Decision-Making. Global Spine J 2021; 11:135-145. [PMID: 33251858 PMCID: PMC7882816 DOI: 10.1177/2192568220973984] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- G. Michael Mallow
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Zakariah K. Siyaji
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | | | - Alejandro A. Espinoza-Orías
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Morgan Giers
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Hannah Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Christopher Ames
- Department of Neurosurgery, University of California San Francisco, CA, USA
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | | - Frank M. Phillips
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Joseph Schwab
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Daniel M. Sciubba
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey C. Wang
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Ulm, Germany
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | | | - Melvin C. Makhni
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Nicholas A. Shepard
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
9
|
Serum Biomarkers for Connective Tissue and Basement Membrane Remodeling are Associated with Vertebral Endplate Bone Marrow Lesions as Seen on MRI (Modic Changes). Int J Mol Sci 2020; 21:ijms21113791. [PMID: 32471173 PMCID: PMC7312719 DOI: 10.3390/ijms21113791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/27/2023] Open
Abstract
Vertebral endplate bone marrow lesions, visualized on magnetic resonance imaging (MRI) as Modic changes (MC), are associated with chronic low back pain (cLBP). Since guidelines recommend against routine spinal MRI for cLBP in primary care, MC may be underdiagnosed. Serum biomarkers for MC would allow early diagnosis, inform clinical care decisions, and supplement treatment monitoring. We aimed to discover biomarkers in the blood serum that correlate with MC pathophysiological processes. For this single-site cross-sectional study, we recruited 54 subjects with 38 cLBP patients and 16 volunteers without a history of LBP. All subjects completed an Oswestry Disability Index (ODI) questionnaire and 10-cm Visual Analog Score (VAS) for LBP (VASback) and leg pain. Lumbar T1-weighted and fat-saturated T2-weighted MRI were acquired at 3T and used for MC classification in each endplate. Blood serum was collected on the day of MRI. Biomarkers related to disc resorption and bone marrow fibrosis were analyzed with enzyme-linked immune-absorbent assays. The concentration of biomarkers between no MC and any type of MC (AnyMC), MC1, and MC2 were compared. The Area Under the Curve (AUC) of the Receiver Operating Characteristics were calculated for each biomarker and for bivariable biomarker models. We found that biomarkers related to type III and type IV collagen degradation and formation tended to correlate with the presence of MC (p = 0.060-0.088). The bivariable model with the highest AUC was PRO-C3 + C4M and had a moderate diagnostic value for AnyMC in cLBP patients (AUC = 0.73, specificity = 78.9%, sensitivity = 73.7%). In conclusion, serum biomarkers related to the formation and degradation of type III and type IV collagen, which are key molecules in bone marrow fibrosis, correlated with MC presence. Bone marrow fibrosis may be an important pathophysiological process in MC that should be targeted in larger biomarker and treatment studies.
Collapse
|
10
|
Viswanathan VK, Shetty AP, Rajasekaran S. Modic changes - An evidence-based, narrative review on its patho-physiology, clinical significance and role in chronic low back pain. J Clin Orthop Trauma 2020; 11:761-769. [PMID: 32879563 PMCID: PMC7452231 DOI: 10.1016/j.jcot.2020.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Lumbar degenerative spinal ailments are the most important causes for chronic low back pain. Modic changes (MC) are vertebral bone marrow signal intensity changes seen on MRI, commonly in association with degenerative disc disease (DDD). Despite being widely studied, majority of issues concerning MC are still controversial. The current narrative, evidence-based review comprehensively discusses the various aspects related to MC. LITERATURE SEARCH An elaborate search was made using keywords "Modic changes", "lumbar Modic changes", "Modic changes in lumbar spine", and "vertebral Endplate Spinal Changes", on pubmed and google (scholar.google.com) databases on the 3rd of March 2020. We identified crucial questions regarding Modic changes and included relevant articles pertaining to these topics for this narrative review. RESULTS The initial search using the keywords "Modic changes", "lumbar Modic changes", "Modic changes in lumbar spine", and "vertebral Endplate Spinal Changes" on pubmed yielded a total of 568, 412, 394 and 216 articles on "pubmed" database, respectively. A similar search using the aforementioned keywords yielded a total of 3650, 3548, 3726 and 21570 articles on "google scholar" database. The initial screening involved exclusion of duplicate articles, articles unrelated to MC, animal or other non-clinical studies, and articles in non-English literature based on abstracts or the titles of articles. This initial screening resulted in the identification of 405 articles. Full manuscripts were obtained for all these selected articles and thoroughly scrutinised at the second stage of article selection. All articles not concerning Modic changes, not pertaining to concerned questions, articles concerning other degenerative phenomena, articles discussing cervical or thoracic MC, case reports or animal studies, articles in non-English language and duplicate articles were excluded. Review articles, randomised controlled trials and level 1 studies were given preference. Overall, 69 articles were included in this review. CONCLUSION Modic change (MC) is a dynamic phenomenon and its true etiology is still not definitely known. Disc/end plate injury, occult discitis and autoimmune reactions seem to trigger an inflammatory cascade, which leads to their development. Male sex, older age, diabetes mellitus, genetic factors, smoking, obesity, spinal deformities, higher occupational loads and DDD are known risk factors. There is no conclusive evidence on the causative role of MC in chronic low back pain (LBP) or any influence on the long term outcome in patients with LBP or lumbar disc herniations (LDH). Patients with MC have been reported to have less satisfactory outcome following conservative treatment or discectomy, although the evidence is still unclear.
Collapse
Affiliation(s)
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Medical Center and Hospitals, Coimbatore, India,Corresponding author.
| | - S. Rajasekaran
- Department of Spine Surgery, Ganga Medical Center and Hospitals, Coimbatore, India,Department of Orthopedics, Ganga Medical Center and Hospitals, Coimbatore, India
| |
Collapse
|