1
|
Ghajavand B, Avesani C, Stenvinkel P, Bruchfeld A. Unlocking the Potential of Brewers' Spent Grain: A Sustainable Model to Use Beer for Better Outcome in Chronic Kidney Disease. J Ren Nutr 2024; 34:482-492. [PMID: 38621435 DOI: 10.1053/j.jrn.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The rising global incidence of chronic inflammatory diseases calls for innovative and sustainable medical solutions. Brewers' spent grain (BSG), a byproduct of beer production, presents a unique opportunity in this regard. This review explores the multifaceted health benefits of BSG, with a focus on managing chronic kidney disease (CKD). BSG is identified as a potent prebiotic with potential as a therapeutic agent in CKD. We emphasize the role of gut dysbiosis in CKD and discuss how BSG could help mitigate metabolic derangements resulting from dysbiosis and CKD. Fermentation of BSG further enhances its positive impact on gut health. Incorporating fermented BSG as a key component in preventive health care could promote a more sustainable and healthier future. By optimizing the use of this typically discarded byproduct, we can align proactive health-care strategies with responsible resource management, benefiting both people and the environment.
Collapse
Affiliation(s)
- Babak Ghajavand
- Department of Renal Medicine, Linköping University Hospital, Linköping, Sweden.
| | - Carla Avesani
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Matthews K, Cavagnaro T, Weinstein P, Stanhope J. Health by design; optimising our urban environmental microbiomes for human health. ENVIRONMENTAL RESEARCH 2024; 257:119226. [PMID: 38797467 DOI: 10.1016/j.envres.2024.119226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Humans have evolved in direct and intimate contact with their environment and the microbes that it contains, over a period of 2 million years. As a result, human physiology has become intrinsically linked to environmental microbiota. Urbanisation has reduced our exposure to harmful pathogens, however there is now increasing evidence that these same health-protective improvements in our environment may also be contributing to a hidden disease burden: immune dysregulation. Thoughtful and purposeful design has the potential to ameliorate these health concerns by providing sources of microbial diversity for human exposure. In this narrative review, we highlight the role of environmental microbiota in human health and provide insights into how we can optimise human health through well-designed cities, urban landscapes and buildings. The World Health Organization recommends there should be at least one public green space of least 0.5 ha in size within 300m of a place of residence. We argue that these larger green spaces are more likely to permit functioning ecosystems that deliver ecosystem services, including the provision of diverse aerobiomes. Urban planning must consider the conservation and addition of large public green spaces, while landscape design needs to consider how to maximise environmental, social and public health outcomes, which may include rewilding. Landscape designers need to consider how people use these spaces, and how to optimise utilisation, including for those who may experience challenges in access (e.g. those living with disabilities, people in residential care). There are also opportunities to improve health via building design that improves access to diverse environmental microbiota. Considerations include having windows that open, indoor plants, and the relationship between function, form and organization. We emphasise possibilities for re-introducing potentially health-giving microbial exposures into urban environments, particularly where the benefits of exposure to biodiverse environments may have been lost.
Collapse
Affiliation(s)
- Kate Matthews
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Timothy Cavagnaro
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia; Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Philip Weinstein
- Environment Institute, The University of Adelaide, Adelaide, SA, Australia; School of Public Health, The University of Adelaide, Adelaide, SA, Australia; South Australian Museum, Adelaide, SA, Australia
| | - Jessica Stanhope
- Environment Institute, The University of Adelaide, Adelaide, SA, Australia; School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Azamian Y, Abdollahzad H, Rezaeian S, Rouhani MH, Fatehi MH. The effect of synbiotic supplementation on plasma levels of advanced glycation end products and cardiovascular risk factors in hemodialysis patients: A double-blind clinical trial. Food Sci Nutr 2024; 12:6864-6872. [PMID: 39554367 PMCID: PMC11561817 DOI: 10.1002/fsn3.4338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 11/19/2024] Open
Abstract
There is increasing evidence supporting the relationship between imbalance of gut microbiota and development of chronic kidney and cardiovascular diseases. This study aimed to investigate the effect of synbiotic supplementation on plasma levels of advanced glycation end products (AGEs) and cardiovascular risk factors in hemodialysis (HD) patients. In this randomized, double-blind, placebo-controlled clinical trial, 36 HD patients were randomly allocated into two groups to receive two synbiotic supplements (n = 19) or placebo (n = 17) daily for 12 weeks. Levels of AGEs, fibrinogen, hemoglobin A1c (HbA1c), and other measures were assessed at the beginning and end of the study. The data were analyzed using independent t-tests, paired t-tests, and analysis of covariance (ANCOVA). At the end of the study, the plasma levels of AGEs increased significantly in both the synbiotic (p < .001) and control (p = .001) groups, but the difference between the groups was not significant (p = .272). Plasma levels of fibrinogen decreased specifically within the synbiotic group (p = .007), and a statistically significant disparity between the groups persisted at the study's conclusion (p = .016). The mean levels of blood urea nitrogen (BUN) decreased (p < .05) in both groups, but there was no difference between the two groups at the end of the study (p = .116). No significant differences were observed in other measured biomarkers. Synbiotic supplementation improved plasma fibrinogen and BUN levels in HD patients, but did not significantly improve AGEs and HbA1c. Further investigations are needed to investigate the effect of probiotics on AGEs in HD patients at different stages of kidney disease.
Collapse
Affiliation(s)
- Yasaman Azamian
- Student Research Committee, School of Nutritional Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| | - Hadi Abdollahzad
- Department of Nutrition, School of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Shahab Rezaeian
- Infectious Diseases Research Center, Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Hossein Rouhani
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Mohammad Hossein Fatehi
- Department of Internal Medicine, Farabi HospitalIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
4
|
Salvadori M, Rosso G. Update on the reciprocal interference between immunosuppressive therapy and gut microbiota after kidney transplantation. World J Transplant 2024; 14:90194. [PMID: 38576749 PMCID: PMC10989467 DOI: 10.5500/wjt.v14.i1.90194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/15/2024] Open
Abstract
Gut microbiota is often modified after kidney transplantation. This principally happens in the first period after transplantation. Antibiotics and, most of all, immunosuppressive drugs are the main responsible. The relationship between immunosuppressive drugs and the gut microbiota is bilateral. From one side immunosuppressive drugs modify the gut microbiota, often generating dysbiosis; from the other side microbiota may interfere with the immunosuppressant pharmacokinetics, producing products more or less active with respect to the original drug. These phenomena have influence over the graft outcomes and clinical consequences as rejections, infections, diarrhea may be caused by the dysbiotic condition. Corticosteroids, calcineurin inhibitors such as tacrolimus and cyclosporine, mycophenolate mofetil and mTOR inhibitors are the immunosuppressive drugs whose effect on the gut microbiota is better known. In contrast is well known how the gut microbiota may interfere with glucocorticoids, which may be transformed into androgens. Tacrolimus may be transformed by micro biota into a product called M1 that is 15-fold less active with respect to tacrolimus. The pro-drug mycophenolate mofetil is normally transformed in mycophenolic acid that according the presence or not of microbes producing the enzyme glu curonidase, may be transformed into the inactive product.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Tuscany, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, Florence 50143, Toscana, Italy
| |
Collapse
|
5
|
Zhou M, Li X, Liu J, Wu Y, Tan Z, Deng N. Adenine's impact on mice's gut and kidney varies with the dosage administered and relates to intestinal microorganisms and enzyme activities. 3 Biotech 2024; 14:88. [PMID: 38406640 PMCID: PMC10884393 DOI: 10.1007/s13205-024-03959-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
This study aimed to investigate the effects of different dosages of adenine on intestinal microorganisms and enzyme activities, laying the experimental groundwork for subsequent exploration of the microbial mechanisms underlying diarrhea with kidney yang deficiency syndrome. Twenty-four mice were assigned to the following four groups: the control (NC) group, low-dosage adenine (NML) group, middle-dosage adenine (NMM) group, and high-dosage adenine (NMH) group. Mice in the NML, NMM, and NMH groups received 25 mg/(kg·d), 50 mg/(kg·d), and 100 mg/(kg·d) of adenine, respectively, 0.4 mL/each, once a day for 14 days. The NC group received 0.4 mL sterile water. Parameters including body weight, rectal temperature, intestinal microorganisms, enzyme activities, and microbial activity were measured. Results indicated that mice in the experimental group displayed signs of a poor mental state, curled up with their backs arched, and felt sleepy and lazy, with sparse fur that was easily shed, and damp bedding. Some mice showed fecal adhesion contamination in the perianal and tail areas. Dosage-dependent effects were observed, with decreased food intake, body weight, rectal temperature, and microbial activity and increased water intake and fecal water content. Enzyme activity analyses revealed significantly higher activities of protease, sucrase, amylase, and cellulase in intestinal contents and lactase, sucrase, amylase, and cellulase in the mucosa of the NMM group compared to those of other groups. Ultimately, the higher adenine dosage was associated with more pronounced symptoms of kidney yang deficiency syndrome, with 50 mg/kg adenine exhibiting the most substantial impact on the number of intestinal microbial colonies and enzyme activities.
Collapse
Affiliation(s)
- Mengsi Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650000 China
| | - Jin Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| |
Collapse
|
6
|
Xu C, Tsihlis G, Chau K, Trinh K, Rogers NM, Julovi SM. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci 2024; 25:2658. [PMID: 38473905 PMCID: PMC10931927 DOI: 10.3390/ijms25052658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.
Collapse
Affiliation(s)
- Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
| | - George Tsihlis
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Katrina Chau
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
- Blacktown Clinical School, School of Medicine, Western Sydney University, Sydney, NSW 2148, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
| | - Natasha M. Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| | - Sohel M. Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| |
Collapse
|
7
|
Ghavidel F, Amiri H, Tabrizi MH, Alidadi S, Hosseini H, Sahebkar A. The Combinational Effect of Inulin and Resveratrol on the Oxidative Stress and Inflammation Level in a Rat Model of Diabetic Nephropathy. Curr Dev Nutr 2024; 8:102059. [PMID: 38292928 PMCID: PMC10826146 DOI: 10.1016/j.cdnut.2023.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Background Using inulin can enhance resveratrol's effects by improving the intestinal microbiome and the stability of resveratrol. Objectives We aimed to investigate the effect of therapeutic intervention with combined inulin and resveratrol on kidney function in diabetic rats. Methods Diabetic model was induced by intraperitoneal injection of streptozotocin. Afterward, rats were divided into 6 groups: control, diabetic without treatment, diabetic treated with insulin, diabetic treated with resveratrol, diabetic treated with inulin, and diabetic treated with a combination of inulin and resveratrol. After 10 wk, the creatinine, urea, insulin, urinary proteins, and inflammatory and oxidative stress markers were evaluated. Pathologic changes were examined in kidney tissues. Results Renal dysfunction, accompanied by increased inflammation and oxidative stress, was observed. Our results showed that treatment with resveratrol and inulin had antidiabetic effects and was associated with reduced renal dysfunction, oxidative stress, and kidney inflammation. In addition, it was observed that combined treatment with inulin and resveratrol outperformed monotherapies in improving kidney function and reducing oxidative stress and inflammation. Conclusions Treatment with resveratrol and inulin can have renoprotective effects by improving oxidative stress and inflammation in kidney tissues. Therefore, employing these 2 compounds is suggested as an inexpensive and available method for diabetic nephropathy.
Collapse
Affiliation(s)
- Farideh Ghavidel
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Schwarz A, Hernandez L, Arefin S, Sartirana E, Witasp A, Wernerson A, Stenvinkel P, Kublickiene K. Sweet, bloody consumption - what we eat and how it affects vascular ageing, the BBB and kidney health in CKD. Gut Microbes 2024; 16:2341449. [PMID: 38686499 PMCID: PMC11062370 DOI: 10.1080/19490976.2024.2341449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
In today's industrialized society food consumption has changed immensely toward heightened red meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. These dietary changes affect public health in general through an increased incidence of metabolic diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. Research shows that high red meat intake and artificial sweeteners ingestion can alter the microbial composition and further intestinal wall barrier permeability allowing increased transmission of uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylglutamine into the blood stream causing an array of pathophysiological effects especially as a strain on the kidneys, since they are responsible for clearing out the toxins. In this review, we address how the burden of the Western diet affects the gut microbiome in altering the microbial composition and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implications for dietary changes/interventions to preserve the health issues related to chronic diseases in future.
Collapse
Affiliation(s)
- Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Sartirana
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy
| | - Anna Witasp
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Zoccali C, Mallamaci F, Adamczak M, de Oliveira RB, Massy ZA, Sarafidis P, Agarwal R, Mark PB, Kotanko P, Ferro CJ, Wanner C, Burnier M, Vanholder R, Wiecek A. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc Res 2023; 119:2017-2032. [PMID: 37249051 PMCID: PMC10478756 DOI: 10.1093/cvr/cvad083] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 05/31/2023] Open
Abstract
Chronic kidney disease (CKD) is classified into five stages with kidney failure being the most severe stage (stage G5). CKD conveys a high risk for coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. Cardiovascular complications are the most common causes of death in patients with kidney failure (stage G5) who are maintained on regular dialysis treatment. Because of the high death rate attributable to cardiovascular (CV) disease, most patients with progressive CKD die before reaching kidney failure. Classical risk factors implicated in CV disease are involved in the early stages of CKD. In intermediate and late stages, non-traditional risk factors, including iso-osmotic and non-osmotic sodium retention, volume expansion, anaemia, inflammation, malnutrition, sympathetic overactivity, mineral bone disorders, accumulation of a class of endogenous compounds called 'uremic toxins', and a variety of hormonal disorders are the main factors that accelerate the progression of CV disease in these patients. Arterial disease in CKD patients is characterized by an almost unique propensity to calcification and vascular stiffness. Left ventricular hypertrophy, a major risk factor for heart failure, occurs early in CKD and reaches a prevalence of 70-80% in patients with kidney failure. Recent clinical trials have shown the potential benefits of hypoxia-inducible factor prolyl hydroxylase inhibitors, especially as an oral agent in CKD patients. Likewise, the value of proactively administered intravenous iron for safely treating anaemia in dialysis patients has been shown. Sodium/glucose cotransporter-2 inhibitors are now fully emerged as a class of drugs that substantially reduces the risk for CV complications in patients who are already being treated with adequate doses of inhibitors of the renin-angiotensin system. Concerted efforts are being made by major scientific societies to advance basic and clinical research on CV disease in patients with CKD, a research area that remains insufficiently explored.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, 315 E, 62nd St., New York, NY 10065, USA
- Associazione Ipertensione Nefrologia e Trapianto Renale (IPNET) c/o Nefrologia e CNR, Grande Ospedale Metropolitano, Contrada Camporeale, 83031 Ariano Irpino Avellino, Italy
| | - Francesca Mallamaci
- Nephrology and Transplantation Unit, Grande Ospedale Metropolitano Reggio Cal and CNR-IFC, Via Giuseppe Melacrino 21, 89124 Reggio Calabria, Italy
| | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Francuska 20-24 St. 40-027 Katowice, Poland
| | - Rodrigo Bueno de Oliveira
- Department of Internal Medicine (Nephrology), School of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Ziad A Massy
- Ambroise Paré University Hospital, APHP, Boulogne Billancourt/Paris, and INSERM U-1018, Centre de recherche en épidémiologie et santé des populations (CESP), Equipe 5, Paris-Saclay University (PSU) and University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), FCRIN INI-CRCT, Villejuif, France
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Rajiv Agarwal
- Indiana University School of Medicine and Richard L. Roudebush VA Medical Center, 1481 W 10th St, Indianapolis, IN 46202, USA
| | - Patrick B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Peter Kotanko
- Renal Research Institute, LLC Icahn School of Medicine at Mount Sinai, 315 East 62nd Street, 3rd Floor, New York, NY 10065, USA
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham, Birmingham, UK
| | - Christoph Wanner
- Division of Nephrology, University Hospital of Würzburg, Würzburg, Germany
| | - Michel Burnier
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, University Hospital, Ghent, Belgium
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Francuska 20-24 St. 40-027 Katowice, Poland
| |
Collapse
|
10
|
Kim KR, Kim SM, Kim JH. A pilot study of alterations of the gut microbiome in canine chronic kidney disease. Front Vet Sci 2023; 10:1241215. [PMID: 37691637 PMCID: PMC10484476 DOI: 10.3389/fvets.2023.1241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Gut dysbiosis has been noted in humans and animals with chronic kidney disease (CKD). However, little is known about the gut microbiome in canine patients with CKD. This study aimed to analyze and compare the gut microbiome profiles of healthy and CKD dogs, including differences in the gut microbiome between each CKD stage. Methods The study was conducted on 29 client-owned dogs who underwent physical examination, complete blood count (CBC), serum biochemistry, and urinalysis. The gut microbiome profile of healthy dogs (n = 10) and dogs with CKD (n = 19) was analyzed employing 16S rRNA sequencing. Results Significant differences were seen in the composition of the gut microbiome, with increased operational taxonomic units from the phylum Proteobacteria (p = 0.035), family Enterobacteriaceae (p < 0.001), and genus Enterococcus (p = 0.002) in dogs with CKD, and a decrease in the genus Ruminococcus (p = 0.007). Furthermore, an increase in both the progression of CKD and abundance of genus Klebsiella (Jonckheere-Terpstra test statistic value (JT) = 2.852, p = 0.004) and Clostridium (JT = 2.018, p = 0.044) was observed. Discussion Our study demonstrated that in dogs with CKD, the composition of the gut microbiome varied depending on the stage of CKD. Alterations in gut microbiome composition observed in CKD patients are characterized by an increase in proteolytic bacteria and a decrease in saccharolytic bacteria. These findings suggest specific gut microbiota could be targeted for clinical management of uremic dogs with CKD.
Collapse
Affiliation(s)
- Kyung-Ryung Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | | | - Jung-Hyun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Hayeeawaema F, Muangnil P, Jiangsakul J, Tipbunjong C, Huipao N, Khuituan P. A novel model of adenine-induced chronic kidney disease-associated gastrointestinal dysfunction in mice: The gut-kidney axis. Saudi J Biol Sci 2023; 30:103660. [PMID: 37213695 PMCID: PMC10193294 DOI: 10.1016/j.sjbs.2023.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023] Open
Abstract
Although constipation is a common complication of chronic kidney disease (CKD), there is no animal model that can be used to study the association between renal impairment and gastrointestinal function without interfering with the gastrointestinal tract of the model. Therefore, we determined whether adenine could induce CKD in association with gastrointestinal dysfunction. Six-week-old ICR mice were intraperitoneally injected with saline, 25, 50, or 75 mg adenine/kg body weight for 21 days. Blood urea nitrogen (BUN), plasma creatinine, and renal histopathology were evaluated. Defecation status was evaluated from defecation frequency and fecal water content. Colonic smooth muscle contraction was measured by the organ bath technique, and transepithelial electrical resistance (TEER) was measured using an Ussing chamber. In the 50 mg/kg treatment group, BUN and creatinine were significantly increased compared with control, and inflammatory cell infiltration, glomerular necrosis, tubular dilatation, and interstitial fibrosis were observed in renal tissues. Mice in this group also showed a significant decrease in defecation frequency, fecal water content, colonic motility index, and TEER. Overall, 50 mg/kg of adenine was the best dose to induce CKD with associated constipation and intestinal barrier impairment. Therefore, this adenine administration model can be recommended for CKD-associated gastrointestinal dysfunction research.
Collapse
Affiliation(s)
- Fittree Hayeeawaema
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
| | - Paradorn Muangnil
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
- Faculty of Veterinary Science, Prince of Songkla University, Thailand
| | | | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
| | - Nawiya Huipao
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
| | - Pissared Khuituan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
- Corresponding author at: Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
12
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
13
|
Martín-Del-Campo F, Avesani CM, Stenvinkel P, Lindholm B, Cueto-Manzano AM, Cortés-Sanabria L. Gut microbiota disturbances and protein-energy wasting in chronic kidney disease: a narrative review. J Nephrol 2023; 36:873-883. [PMID: 36689170 PMCID: PMC9869315 DOI: 10.1007/s40620-022-01560-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 01/24/2023]
Abstract
Protein-energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with increased morbidity and mortality, and lower quality of life. It is a complex syndrome, in which inflammation and retention of uremic toxins are two main factors. Causes of inflammation and uremic toxin retention in CKD are multiple; however, gut dysbiosis plays an important role, serving as a link between those entities and PEW. Besides, there are several pathways by which microbiota may influence PEW, e.g., through effects on appetite mediated by microbiota-derived proteins and hormonal changes, or by impacting skeletal muscle via a gut-muscle axis. Hence, microbiota disturbances may influence PEW independently of its relationship with local and systemic inflammation. A better understanding of the complex interrelationships between microbiota and the host may help to explain how changes in the gut affect distant organs and systems of the body and could potentially lead to the development of new strategies targeting the microbiota to improve nutrition and clinical outcomes in CKD patients. In this review, we describe possible interactions of gut microbiota with nutrient metabolism, energy balance, hunger/satiety signals and muscle depletion, all of which are strongly related to PEW in CKD patients.
Collapse
Affiliation(s)
- Fabiola Martín-Del-Campo
- Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Carla Maria Avesani
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, M99 Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, M99 Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, M99 Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden.
| | - Alfonso M Cueto-Manzano
- Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Laura Cortés-Sanabria
- Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| |
Collapse
|
14
|
Yamada S, Tanaka S, Arase H, Hiyamuta H, Kitamura H, Tokumoto M, Mitsuiki K, Tsuruya K, Kitazono T, Nakano T. Association between prevalence of laxative use and history of bone fractures and cardiovascular diseases in patients with chronic kidney disease: the Fukuoka Kidney disease Registry (FKR) study. Clin Exp Nephrol 2023; 27:151-160. [PMID: 36318395 DOI: 10.1007/s10157-022-02289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Constipation is a common complication in patients with chronic kidney disease (CKD) and is involved in the pathogenesis of dysbiosis and progression of CKD. However, little is known about its association with disorders of the bone-cardiovascular axis in patients with CKD. METHODS We performed a cross-sectional analysis of 3878 patients with CKD using the baseline dataset of the Fukuoka Kidney disease Registry study, as a multicenter, prospective cohort study of pre-dialysis CKD patients. The main exposure of interest was constipation defined as use of at least one type of laxative. The main outcomes were the histories of bone fractures and cardiovascular diseases (CVDs) as manifestations of disorders of the bone-cardiovascular axis. RESULTS The prevalences of laxative use and histories of bone fractures and CVDs increased as kidney function declined. Among the 3878 patients, 532 (13.7%) patients used laxatives, 235 (6.1%) patients had prior bone fractures, and 1001 (25.8%) patients had prior CVDs. Histories of bone fractures and CVDs were significantly more prevalent among laxative users (P < 0.05). Multivariable-adjusted logistic regression analysis revealed that patients with laxatives had a significantly higher odds ratios for histories of bone fractures and CVDs than those without laxatives [adjusted odds ratios (95% confidence intervals) 1.67 (1.20-2.31) and 1.70 (1.30-2.22), respectively, P < 0.05]. CONCLUSIONS These results suggest that constipation indicated by laxative use is associated with increased prevalences of historical bone fractures and CVDs in pre-dialysis patients with CKD.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Shigeru Tanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Hokuto Arase
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Hiroto Hiyamuta
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Hiromasa Kitamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Masanori Tokumoto
- Division of Nephrology, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Koji Mitsuiki
- Division of Nephrology, Harasanshin Hospital, Fukuoka, Japan
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
| |
Collapse
|
15
|
Liu L, Tian X, Zhao Y, Zhao Z, Luo L, Luo H, Han Z, Kang X, Wang X, Liu X, Guo X, Tao L, Luo Y. Long-term exposure to PM 2.5 and PM 10 and chronic kidney disease: the Beijing Health Management Cohort, from 2013 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17817-17827. [PMID: 36203044 DOI: 10.1007/s11356-022-23251-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Long-term exposure to ambient particulate pollutants (PM2.5 and PM10) may increase the risk of chronic kidney disease (CKD), but the results of previous research were limited and inconsistent. The purpose of this study was to assess the relationships of PM2.5 and PM10 with CKD. This study was a cohort study based on the physical examination data of 2082 Beijing residents from 2013 to 2018 in the Beijing Health Management Cohort (BHMC). A land-use regression model was used to estimate the individual exposure concentration of air pollution based on the address provided by each participant. CKD events were identified based on self-report or medical evaluation (estimated glomerular filtration rate, eGFR less than 60 ml/min/1.73 m2). Finally, the associations of PM2.5 and PM10 with CKD were calculated using univariate and multivariate logistic regression models. During the research period, we collected potentially confounding information. After adjusting for confounders, each 10 μg/m3 increase in PM2.5 and PM10 exposure was associated with an 84% (OR: 1.84; 95% CI: 1.45, 2.33) and 37% (OR: 1.37; 95% CI: 1.15, 1.63) increased risk of CKD. Adjusting for the four common gaseous air pollutants (CO, NO2, SO2, O3), the effect of PM2.5 and PM10 on CKD was significantly enhanced, but the effect of PM10 was no longer significant in the multi-pollutant model. The results of the stratified analysis showed that PM2.5 and PM10 were more significant in males, middle-aged and elderly people over 45 years old, smokers, drinkers, BMI ≥ 24 kg/m2, and abnormal metabolic components. In conclusion, long-term exposure to ambient PM2.5 and PM10 was associated with an increased risk of CKD.
Collapse
Affiliation(s)
- Lulu Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xue Tian
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Yuhan Zhao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Zemeng Zhao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Lili Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Hui Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Ze Han
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiaoping Kang
- Beijing Xiaotangshan Hospital, No. 390 Wenquan Street, Xiaotangshan Town, Changping District, Beijing, 102211, China
| | - Xiaonan Wang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiangtong Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Lixin Tao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
16
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
17
|
Wu C, Hu Q, Peng X, Luo J, Zhang G. Marine Fish Protein Peptide Regulating Potassium Oxonate-Induced Intestinal Dysfunction in Hyperuricemia Rats Helps Alleviate Kidney Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:320-330. [PMID: 36530149 DOI: 10.1021/acs.jafc.2c04017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The metabolic disease hyperuricemia (HUA) is characterized by a disturbance in purine metabolism. Peptides, such as marine fish-derived peptides, have previously been shown to be effective in alleviating HUA. In this study, HUA rats were induced by potassium oxonate with 100 mg/kg (L), 200 mg/kg (M), and 400 mg/kg (H) of marine fish protein peptide (MFPP). The results showed that MFPP could effectively reduce the serum uric acid (SUA) levels compared with the model group rats; kidney histopathology and the levels of inflammatory factors (TNF-α, IL-6, and IL-10) indicated that MFPP attenuated HUA-induced kidney inflammation. Meanwhile, MFPP restored the abundance of beneficial bacteria, including Lactobacillus, Blautia, Colidextribacter, and Intestinimonas. MFPP further repaired the intestinal barrier by recovering the expression of gene Ildr2 encoding the tricellular tight junction protein ILDR2 and the immune-related genes Ccr7 and Nr4a3 and also regulated the expression of Entpd8 and Cyp27b1 to restore kidney function and uric acid metabolism. MFPP was proved to have potential as a therapeutic strategy to be included in dietary intervention to relieve HUA.
Collapse
Affiliation(s)
- Changyu Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632 Guangdong, China
| | - Qing Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632 Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632 Guangdong, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632 Guangdong, China
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632 Guangdong, China
| |
Collapse
|
18
|
Traditional Chinese Medicine: An Exogenous Regulator of Crosstalk between the Gut Microbial Ecosystem and CKD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7940684. [DOI: 10.1155/2022/7940684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) is often accompanied by an imbalance in the gut microbial ecosystem. Notably, the imbalanced gut microbiota and impaired intestinal barrier are the keys to the crosstalk between the gut microbial ecosystem and CKD, which was the central point of previous studies. Traditional Chinese medicine (TCM) has shown considerable efficacy in the treatment of CKD. However, the therapeutic mechanisms have not been fully elucidated. In this review, we explored therapeutic mechanisms by which TCM improved CKD via the gut microbial ecosystem. In particular, we focused on the restored gut microbiota (i.e., short-chain fatty acid- and uremic toxin-producing bacteria), improved gut-derived metabolites (i.e., short-chain fatty acid, indoxyl sulfate, p-Cresyl sulfate, and trimethylamine-N-oxide), and intestinal barrier (i.e., permeability and microbial translocation) as therapeutic mechanisms. The results found that the metabolic pattern of gut microbiota and the intestinal barrier were improved through TCM treatment. Moreover, the microbiota-transfer study confirmed that part of the protective effect of TCM was dependent on gut microbiota, especially SCFA-producing bacteria. In conclusion, TCM may be an important exogenous regulator of crosstalk between the gut microbial ecosystem and CKD, which was partly attributable to the mediation of microbiota-targeted intervention.
Collapse
|
19
|
Effect of Gypenosides on the composition of gut microbiota and metabolic activity in the treatment of CCl4-induced liver injury in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Lockwood MB, Fischer MJ, Silva K, Contreras BN, Zamora G, Goldstein A, Meinel M, Holden C, Lash J, Steffens A, Doorenbos A. Acceptability and feasibility of fecal microBIOME and serum metabolite sample collection in people with end-stage kidney disease and pain being treated with HemoDialysis: A pilot study (BIOME-HDp). Contemp Clin Trials Commun 2022; 29:100995. [PMID: 36105265 PMCID: PMC9464895 DOI: 10.1016/j.conctc.2022.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Pain is known to reduce hemodialysis treatment adherence, reduce quality of life, and increase mortality. The absence of effective strategies to treat pain without medications has contributed to poor health outcomes for people with end-stage kidney disease (ESKD) on hemodialysis. It is now recognized that symbiotic microbiota in the gut play a critical role in health and disease, and new evidence sheds light on the role of the microbiome in chronic pain. The pilot study protocol presented here (BIOME-HDp) employs a longitudinal repeated measures design to interrogate the effects of a nonpharmacological pain intervention on the composition and function of the gut microbiome and circulating metabolites. This pilot study is an ancillary study of the HOPE Consortium Trial to reduce pain and opioid use in hemodialysis, which is part of the NIH's Helping to End Addiction Long-term (HEAL) initiative. The BIOME-HDp pilot study will establish clinical microbiome research methods and determine the acceptability and feasibility of fecal microbiome and serum metabolite sample collection.
Collapse
Affiliation(s)
- Mark B. Lockwood
- Department of Behavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Michael J. Fischer
- Department of Internal Medicine, University of Illinois Hospital and Health Sciences Center, Medical Service, Jesse Brown VA Medical Center, Center of Innovation for Complex Chronic Health Care, Edward Hines Jr. VA Hospital, Hines, Chicago, IL, USA
| | - Kimberly Silva
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Blanca N. Contreras
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Guillermo Zamora
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Amanda Goldstein
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Monya Meinel
- College of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Christopher Holden
- Department of Psychiatry, University of Illinois College of Medicine, UI Health, Chicago, IL, USA
| | - James Lash
- Department of Internal Medicine, University of Illinois Hospital and Health Sciences Center, Chicago, IL, USA
| | - Alana Steffens
- Department of Population Health Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Ardith Doorenbos
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Chen R, Zhu D, Yang R, Wu Z, Xu N, Chen F, Zhang S, Chen H, Li M, Hou K. Gut microbiota diversity in middle-aged and elderly patients with end-stage diabetic kidney disease. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:750. [PMID: 35957707 PMCID: PMC9358493 DOI: 10.21037/atm-22-2926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD), but the mechanism between DKD and ESRD remains unclear. Some experts have put forward the "microbial-centered ESRD development theory", believing that the bacterial load caused by gut microecological imbalance and uremia toxin transfer are the core pathogenic links. The purpose of this study was to analyze the genomic characteristics of gut microbiota in patients with ESRD, specifically DKD or non-diabetic kidney disease (NDKD). METHODS In this cross-sectional study, patients with ESRD were recruited in a community, including 22 DKD patients and 22 NDKD patients matched using gender and age. Fecal samples of patients were collected for 16S rDNA sequencing and gut microbiota analysis. The distribution structure, diversity, and abundance of microflora in DKD patients were analyzed by constructing species evolutionary trees and analyzing alpha diversity, beta diversity, and linear discriminant analysis effect size (LEfSe). RESULTS The results of our study showed that there were statistically significant differences in the richness and species of gut microbiota at the total level between DKD patients and NDKD patients. The analysis of genus level between the two groups showed significant differences in 16 bacterial genera. Among them, Oscillibacter, Bilophila, UBA1819, Ruminococcaceae UCG-004, Anaerotruncus, Ruminococcaceae, and Ruminococcaceae NK4A214 bacteria in DKD patients were higher than those in NDKD patients. CONCLUSIONS 16S rDNA sequencing technology was used in this study to analyze the characteristics of intestinal flora in ESRD patients with or without diabetes. We found that there was a significant difference in the intestinal flora of ESRD patients caused by DKD and NDKD, suggesting that these may be potential causative bacteria for the development of ERSD in DKD patients.
Collapse
Affiliation(s)
- Rongping Chen
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Rui Yang
- Department of Endocrine and Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ningning Xu
- Department of Endocrine and Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuo Zhang
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hong Chen
- Department of Endocrine and Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Ming Li
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Jinxia Community Health Service Centre, Shantou, China
| |
Collapse
|
22
|
Gabarre P, Loens C, Tamzali Y, Barrou B, Jaisser F, Tourret J. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. Am J Transplant 2022; 22:1014-1030. [PMID: 34510717 DOI: 10.1111/ajt.16836] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the involvement of the gut microbiota (GM) in human health has expanded exponentially over the last few decades, particularly in the fields of metabolism, inflammation, and immunology. Immunosuppressive treatment (IST) prescribed to solid organ transplant (SOT) recipients produces GM changes that affect these different processes. This review aims at describing the current knowledge of how IST changes the GM. Overall, SOT followed by IST results in persistent changes in the GM, with a consistent increase in proteobacteria including opportunistic pathobionts. In mice, Tacrolimus induces dysbiosis and metabolic disorders, and alters the intestinal barrier. The transfer of the GM from Tacrolimus-treated hosts confers immunosuppressive properties, suggesting a contributory role for the GM in this drug's efficacy. Steroids induce dysbiosis and intestinal barrier alterations, and also seem to depend partly on the GM for their immunosuppressive and metabolic effects. Mycophenolate Mofetil, frequently responsible for digestive side effects such as diarrhea and colitis, is associated with pro-inflammatory dysbiosis and increased endotoxemia. Alemtuzumab, m-TOR inhibitors, and belatacept have shown more marginal impact on the GM. Most of these observations are descriptive. Future studies should explore the underlying mechanism of IST-induced dysbiosis in order to better understand their efficacy and safety characteristics.
Collapse
Affiliation(s)
- Paul Gabarre
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Christopher Loens
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Yanis Tamzali
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Benoit Barrou
- Assistance Publique - Hôpitaux Paris APHP, Medical and Surgical Unit of Kidney Transplantation Unit, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jérôme Tourret
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France.,Assistance Publique - Hôpitaux Paris APHP, Medical and Surgical Unit of Kidney Transplantation Unit, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| |
Collapse
|
23
|
Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin Nutr 2022; 76:489-501. [PMID: 34584224 PMCID: PMC8477631 DOI: 10.1038/s41430-021-00991-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK.
| | - Ana M Valdes
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Gebrayel P, Nicco C, Al Khodor S, Bilinski J, Caselli E, Comelli EM, Egert M, Giaroni C, Karpinski TM, Loniewski I, Mulak A, Reygner J, Samczuk P, Serino M, Sikora M, Terranegra A, Ufnal M, Villeger R, Pichon C, Konturek P, Edeas M. Microbiota medicine: towards clinical revolution. J Transl Med 2022; 20:111. [PMID: 35255932 PMCID: PMC8900094 DOI: 10.1186/s12967-022-03296-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Collapse
|
25
|
Liu J, Zhong J, Yang H, Wang D, Zhang Y, Yang Y, Xing G, Kon V. Biotic Supplements in Patients With Chronic Kidney Disease: Meta-Analysis of Randomized Controlled Trials. J Ren Nutr 2022; 32:10-21. [PMID: 34666930 PMCID: PMC9793596 DOI: 10.1053/j.jrn.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Gut flora imbalance characterizes patients with chronic kidney disease (CKD). Although biotic supplementation has been proposed to lessen inflammation and oxidative stress and, thus, reduce the risk of progressive kidney damage and cardiovascular disease, the effects remain controversial. We conducted a meta-analysis to assess the therapeutic benefits of biotics in CKD. METHODS PubMed, Embase, and Cochrane databases were systematically searched for randomized controlled trials that evaluated any biotic (prebiotic, probiotic, synbiotics) supplements in patients with CKD (CKD, stage 3-4 to end-stage renal disease). Primary endpoints included changes in renal function, markers of inflammation, and oxidative stress. Secondary endpoints included changes in levels of uremic toxins and variations in lipid metabolism. RESULTS Twenty-three eligible studies included 842 participants. In a pooled-analysis, biotics did not change estimated glomerular filtration rate (mean difference [MD] = 0.08, P = .92) or serum albumin (MD = -0.01, P = .86), although prebiotics reduced serum creatinine (standardized mean difference [SMD] = -0.23, P = .009) and blood urea nitrogen (MD = -6.05, P < .00001). Biotics improved total antioxidative capacity (SMD = 0.37, P = .007) and malondialdehyde (SMD = -0.96, P = .006) and reduced the inflammatory marker interleukin-6 (SMD = -0.30, P = .01) although not C-reactive protein (SMD = -0.22, P = .20). Biotic intervention reduced some uremic toxins, including p-cresol sulfate (SMD = -2.18, P < .0001) and indoxyl sulfate (MD = -5.14, P = .0009), which decreased in dialysis-dependent patients. Another toxin, indole-3-acetic acid (MD = -0.22, P = .63), did not change. Lipids were unaffected by biotic intervention (total cholesterol: SMD = -0.01, P = .89; high-density lipoprotein: SMD = -0.08, P = .76; low-density lipoprotein: MD = 3.54, P = .28; triglyceride: MD = -2.26, P = .58). CONCLUSION The results highlight the favorable influence of biotics on circulating markers of creatinine, oxidant stress (malondialdehyde, total antioxidative capacity), inflammation (interleukin-6), and uremic toxins (p-cresol sulfate) in patients with CKD. Biotics did not affect estimated glomerular filtration rate, albumin, indole-3-acetic acid, or lipids in either predialysis or dialysis patients.
Collapse
Affiliation(s)
- Jing Liu
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University Institute of Nephrology, Zhengzhou, China.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - JianYong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - HaiChun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - DongQin Wang
- Dongjing Town Health Service Center, Songjiang District, Shanghai, China
| | - Ying Zhang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University Institute of Nephrology, Zhengzhou, China
| | - YuMeng Yang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University Institute of Nephrology, Zhengzhou, China
| | - GuoLan Xing
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University Institute of Nephrology, Zhengzhou, China
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
26
|
Wang XH, Yang YN, Liang Y, Lang R, Zeng Q, Yan L, Yu RH, Wu CM. Structural modulation of gut microbiota during alleviation of experimental passive Heymann nephritis in rats by a traditional Chinese herbal formula. Biomed Pharmacother 2021; 145:112475. [PMID: 34861636 DOI: 10.1016/j.biopha.2021.112475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Jianpi-Qushi-Heluo formula (JQHF) has been used to treat idiopathic membranous nephropathy (IMN) in hospitals for many years. PURPOSE Elucidating the protective effect and exploring the potential mechanism of JQHF against IMN. METHODS Passive Heymann nephritis (PHN) was induced in rats by a single tail vein injection of anti-Fx1A antiserum. Then, the animals were treated with JQHF at 16.2 g/kg or 32.4 g/kg, with benzepril (10 mg/kg) as a positive control. Renal function was evaluated by biochemical measurements and pathological testing. Fecal samples were collected before and after treatment to analyze the gut microbiota composition by shotgun whole metagenome sequencing. RESULTS JQHF exhibited potent efficacy in ameliorating PHN at both doses, as revealed by decreasing the deposition of IgG and C5b-9, relieving podocyte injury, and reducing glomerular and tubular cell apoptosis. The lower dose was corresponding to the clinical dosage and showed better therapeutic effects than the higher dose. Metagenomic analysis showed that gavage with 16.2 g/kg of JQHF shifted the structure of the gut microbiota in PHN rats and significantly increased the relative abundances of Prevotella copri, Lactobacillus vaginalis and Subdoligranulum variabile. Particularly, S. variabile was strongly negatively correlated with serum levels of TC and TG, the deposition of IgG and C5b-9, and apoptosis of glomerular cells. CONCLUSIONS The JQHF is an effective agent for the treatment of experimental PHN. The PHN-allevating effect of JQHF is associated with specific alternation of gut microbiota.
Collapse
Affiliation(s)
- Xin-Hui Wang
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Ya-Nan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Ying Liang
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Rui Lang
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Qin Zeng
- Graduate School of Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lei Yan
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ren-Huan Yu
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Chong-Ming Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
27
|
Lockwood MB, Steel JL, Doorenbos AZ, Contreras BN, Fischer MJ. Emerging Patient-Centered Concepts in Pain Among Adults With Chronic Kidney Disease, Maintenance Dialysis, and Kidney Transplant. Semin Nephrol 2021; 41:550-562. [PMID: 34973699 PMCID: PMC8740641 DOI: 10.1016/j.semnephrol.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patient reports of moderate to severe pain are common across the spectrum of chronic kidney disease. The synergistic effects of comorbid depression and anxiety can lead to maladaptive coping responses to pain, namely pain catastrophizing and illness-related post-traumatic stress disorder. If underlying depression and anxiety and associated maladaptive coping responses are not treated, patients can experience an increased perception of pain, worsened disability, decreased quality of life, withdrawal from social activities, and increased morbidity and mortality. Meanwhile, interest in nonpharmacologic treatments for pain that targets coping as well as comorbid anxiety and depression has been increasing, particularly given the significant societal damage that has resulted from the opioid epidemic. Evidence-based, nonpharmacologic treatments have shown promise in treating pain in areas outside of nephrology. Currently, little is known about the effects of these treatments among adults with CKD, and particularly end-stage kidney disease, when chronic pain can become debilitating. In this review, we examine patient-centered concepts related to pain that have received little attention in the nephrology literature. We also describe emerging areas of research, including omics technologies for biomarker discovery and advanced symptom clustering methods for symptom phenotyping, which may be useful to future kidney disease research and treatment.
Collapse
Affiliation(s)
- Mark B Lockwood
- Department of Behavioral Nursing Science, University of Illinois Chicago, College of Nursing, Chicago, IL.
| | - Jennifer L Steel
- Center for Excellence in Behavioral Medicine, Department of Surgery, University of Pittsburg, Pittsburg, PA
| | - Ardith Z Doorenbos
- Department of Biobehavioral Nursing Science, University of Illinois Chicago, College of Nursing, Chicago, IL
| | - Blanca N Contreras
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Michael J Fischer
- Department of Internal Medicine, University of Illinois Hospital and Health Sciences Center, Chicago, IL; Renal Section, Medical Service, Jesse Brown VA Medical Center, Chicago, IL; Center of Innovation for Complex Chronic Health Care, Edward Hines, Jr. VA Hospital, Hines, IL
| |
Collapse
|
28
|
Taguchi K, Fukami K, Elias BC, Brooks CR. Dysbiosis-Related Advanced Glycation Endproducts and Trimethylamine N-Oxide in Chronic Kidney Disease. Toxins (Basel) 2021; 13:361. [PMID: 34069405 PMCID: PMC8158751 DOI: 10.3390/toxins13050361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually filtered and excreted by the kidneys. With the decline of renal function, uremic toxins are accumulated in the systemic circulation and tissues, which hastens the progression of CKD and concomitant comorbidities. Gut microbial dysbiosis, defined as an imbalance of the gut microbial community, is one of the comorbidities of CKD. Meanwhile, gut dysbiosis plays a pathological role in accelerating CKD progression through the production of further uremic toxins in the gastrointestinal tracts. Therefore, the gut-kidney axis has been attracting attention in recent years as a potential therapeutic target for stopping CKD. Trimethylamine N-oxide (TMAO) generated by gut microbiota is linked to the progression of cardiovascular disease and CKD. Also, advanced glycation endproducts (AGEs) not only promote CKD but also cause gut dysbiosis with disruption of the intestinal barrier. This review summarizes the underlying mechanism for how gut microbial dysbiosis promotes kidney injury and highlights the wide-ranging interventions to counter dysbiosis for CKD patients from the view of uremic toxins such as TMAO and AGEs.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| |
Collapse
|
29
|
Canale MP, Noce A, Di Lauro M, Marrone G, Cantelmo M, Cardillo C, Federici M, Di Daniele N, Tesauro M. Gut Dysbiosis and Western Diet in the Pathogenesis of Essential Arterial Hypertension: A Narrative Review. Nutrients 2021; 13:nu13041162. [PMID: 33915885 PMCID: PMC8066853 DOI: 10.3390/nu13041162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome is a cluster of the most dangerous cardiovascular (CV) risk factors including visceral obesity, insulin resistance, hyperglycemia, alterations in lipid metabolism and arterial hypertension (AH). In particular, AH plays a key role in the complications associated with metabolic syndrome. High salt intake is a well-known risk factor for AH and CV diseases. Vasoconstriction, impaired vasodilation, extracellular volume expansion, inflammation, and an increased sympathetic nervous system (SNS) activity are the mechanisms involved in the pathogenesis of AH, induced by Western diet. Gut dysbiosis in AH is associated with reduction of short chain fatty acid-producing bacteria: acetate, butyrate and propionate, which activate different pathways, causing vasoconstriction, impaired vasodilation, salt and water retention and a consequent high blood pressure. Moreover, increased trimethylamine N-oxide and lipopolysaccharides trigger chronic inflammation, which contributes to endothelial dysfunction and target organs damage. Additionally, a high salt-intake diet impacts negatively on gut microbiota composition. A bidirectional neuronal pathway determines the “brain–gut” axis, which, in turn, influences blood pressure levels. Then, we discuss the possible adjuvant novel treatments related to gut microbiota modulation for AH control.
Collapse
Affiliation(s)
- Maria Paola Canale
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.P.C.); (M.F.)
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
- Correspondence: (A.N.); (M.T.); Tel.: +39-06-2090-2194 (A.N.); +39-06-2090-2982 (M.T.)
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Maria Cantelmo
- School of Specialization in Geriatrics, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Carmine Cardillo
- Department of Internal Medicine and Geriatrics, Policlinico A. Gemelli IRCCS, 00168 Roma, Italy;
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.P.C.); (M.F.)
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
| | - Manfredi Tesauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
- Correspondence: (A.N.); (M.T.); Tel.: +39-06-2090-2194 (A.N.); +39-06-2090-2982 (M.T.)
| |
Collapse
|
30
|
Elucidating the Relations between Gut Bacterial Composition and the Plasma and Fecal Metabolomes of Antibiotic Treated Wistar Rats. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gut microbiome is vital to the health and development of an organism, specifically in determining the host response to a chemical (drug) administration. To understand this, we investigated the effects of six antibiotic (AB) treatments (Streptomycin sulfate, Roxithromycin, Sparfloxacin, Vancomycin, Clindamycin and Lincomycin hydrochloride) and diet restriction (–20%) on the gut microbiota in 28-day oral toxicity studies on Wistar rats. The fecal microbiota was determined using 16S rDNA marker gene sequencing. AB-class specific alterations were observed in the bacterial composition, whereas restriction in diet caused no observable difference. These changes associated well with the changes in the LC–MS/MS- and GC–MS-based metabolome profiles, particularly of feces and to a lesser extent of plasma. Particularly strong and AB-specific metabolic alterations were observed for bile acids in both plasma and feces matrices. Although AB-group-specific plasma metabolome changes were observed, weaker associations between fecal and plasma metabolome suggest a profound barrier between them. Numerous correlations between the bacterial families and the fecal metabolites were established, providing a holistic overview of the gut microbial functionality. Strong correlations were observed between microbiota and bile acids, lipids and fatty acids, amino acids and related metabolites. These microbiome–metabolome correlations promote understanding of the functionality of the microbiome for its host.
Collapse
|
31
|
Yang CY, Chen TW, Lu WL, Liang SS, Huang HD, Tseng CP, Tarng DC. Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease. Cells 2021; 10:cells10010114. [PMID: 33435396 PMCID: PMC7826693 DOI: 10.3390/cells10010114] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) has long been known to cause significant digestive tract pathology. Of note, indoxyl sulfate is a gut microbe-derived uremic toxin that accumulates in CKD patients. Nevertheless, the relationship between gut microbiota, fecal indole content, and blood indoxyl sulfate level remains unknown. In our study, we established an adenine-induced CKD rat model, which recapitulates human CKD-related gut dysbiosis. Synbiotic treatment in CKD rats showed a significant reduction in both the indole-producing bacterium Clostridium and fecal indole amount. Furthermore, gut microbiota diversity was reduced in CKD rats but was restored after synbiotic treatment. Intriguingly, in our end-stage kidney disease (ESKD) patients, the abundance of indole-producing bacteria, Bacteroides, Prevotella, and Clostridium, is similar to that of healthy controls. Consistently, the fecal indole tends to be higher in the ESKD patients, but the difference did not achieve statistical significance. However, the blood level of indoxyl sulfate was significantly higher than that of healthy controls, implicating that under an equivalent indole production rate, the impaired renal excretion contributes to the accumulation of this notorious uremic toxin. On the other hand, we did identify two short-chain fatty acid-producing bacteria, Faecalibacterium and Roseburia, were reduced in ESKD patients as compared to the healthy controls. This may contribute to gut dysbiosis. We also identified that three genera Fusobacterium, Shewanella, and Erwinia, in the ESKD patients but not in the healthy controls. Building up gut symbiosis to treat CKD is a novel concept, but once proved effective, it will provide an additional treatment strategy for CKD patients.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Hsinchu 30010, Taiwan
| | - Ting-Wen Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; (T.-W.C.); (W.-L.L.); (H.-D.H.)
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wan-Lun Lu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; (T.-W.C.); (W.-L.L.); (H.-D.H.)
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute of Biomedical Science, College of Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hsien-Da Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; (T.-W.C.); (W.-L.L.); (H.-D.H.)
| | - Ching-Ping Tseng
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Hsinchu 30010, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; (T.-W.C.); (W.-L.L.); (H.-D.H.)
- Correspondence: (C.-P.T.); (D.-C.T.)
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Hsinchu 30010, Taiwan
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Correspondence: (C.-P.T.); (D.-C.T.)
| |
Collapse
|
32
|
Demidova TY, Lobanova KG, Oinotkinova OS. [Gut microbiota is a factor of risk for obesity and type 2 diabetes]. TERAPEVT ARKH 2020; 92:97-104. [PMID: 33346486 DOI: 10.26442/00403660.2020.10.000778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiota (GM) is a set of bacteria which colonize the gastrointestinal tract. GM and its active metabolites take part in intestinal and hepatic gluconeogenesis, in the synthesis of incretin hormones, and affect the regulation of appetite. Thus, GM and its metabolites participate in the homeostasis of carbohydrates and fats. An imbalance in the set of the intestinal flora and a disturbance of the production of active metabolites sharply increases the risk of developing obesity and type 2 diabetes. There are conflicting data in the literature on the role of specific microorganisms in the development of metabolic disorders. Research is needed to identify specific types of bacteria and their active metabolites which affect the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- T Y Demidova
- Pirogov Russian National Research Medical University
| | - K G Lobanova
- Pirogov Russian National Research Medical University
| | - O S Oinotkinova
- Pirogov Russian National Research Medical University.,Lomonosov Moscow State University.,Research Institute of Health Organization and Medical Management
| |
Collapse
|
33
|
Kim SM, Song IH. The clinical impact of gut microbiota in chronic kidney disease. Korean J Intern Med 2020; 35:1305-1316. [PMID: 32872729 PMCID: PMC7652652 DOI: 10.3904/kjim.2020.411] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Gut microorganisms play critical roles in both maintaining host homeostasis and the development of diverse diseases. Gut dysbiosis, an alteration of the composition and function of gut microorganisms, is commonly seen in patients with chronic kidney disease (CKD). CKD itself contributes to a disruption of the symbiotic relationship between the gut microbiota and the host, while the resulting gut dysbiosis may play a part in stage progression of CKD. This bidirectional relationship supports the concept that the gut microbiota is considered a novel focus for the pathogenesis and management of CKD. This article examines the interaction between the gut microbiota and the kidney, the mutual effects of dysbiosis and CKD, and possible treatment options to restore gut eubiosis, and reduce CKD progression and its related complications.
Collapse
Affiliation(s)
- So Mi Kim
- Division of Nephrology, Department of Internal Medicine, Dankook University Hospital, Cheonan, Korea
| | - Il han Song
- Division of Hepatology, Department of Internal Medicine, Dankook University Hospital, Cheonan, Korea
- Correspondence to Il Han Song, M.D. Division of Hepatology, Department of Internal Medicine, Dankook University Hospital, 201 Manghyang-ro, Dongnam-gu, Cheonan 31116, Korea Tel: +82-41-550-3924 Fax: +82-41-556-3256 E-mail:
| |
Collapse
|
34
|
Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel) 2020; 12:toxins12090590. [PMID: 32932981 PMCID: PMC7551879 DOI: 10.3390/toxins12090590] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts more than 500 million people worldwide and is one of the fastest growing global causes of mortality. When glomerular filtration rate begins to fall, uremic toxins accumulate in the serum and significantly increase the risk of death from cardiovascular disease and other causes. Several of the most harmful uremic toxins are produced by the gut microbiota. Furthermore, many such toxins are protein-bound and are therefore recalcitrant to removal by dialysis. We review the derivation and pathological mechanisms of gut-derived, protein-bound uremic toxins (PBUTs). We further outline the emerging relationship between kidney disease and gut dysbiosis, including the bacterial taxa altered, the regulation of microbial uremic toxin-producing genes, and their downstream physiological and neurological consequences. Finally, we discuss gut-targeted therapeutic strategies employed to reduce PBUTs. We conclude that targeting the gut microbiota is a promising approach for the treatment of CKD by blocking the serum accumulation of PBUTs that cannot be eliminated by dialysis.
Collapse
Affiliation(s)
- Amanda L. Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA;
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
- Correspondence:
| |
Collapse
|
35
|
Underwood MA, Umberger E, Patel RM. Safety and efficacy of probiotic administration to preterm infants: ten common questions. Pediatr Res 2020; 88:48-55. [PMID: 32855513 PMCID: PMC8210852 DOI: 10.1038/s41390-020-1080-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In spite of a large number of randomized placebo-controlled clinical trials and observational cohort studies including >50,000 preterm infants from 29 countries that have demonstrated a decrease in the risk of necrotizing enterocolitis, death, and sepsis, routine prophylactic probiotic administration to preterm infants remains uncommon in much of the world. This manuscript reflects talks given at NEC Society Symposium in 2019 and is not intended to be a state-of-the-art review or systematic review, but a summary of the probiotic-specific aspects of the symposium with limited additions including a recent strain-specific network analysis and position statement from the European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN). We address ten common questions related to the intestinal microbiome and probiotic administration to the preterm infant.
Collapse
Affiliation(s)
- Mark A Underwood
- Division of Neonatology, Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA.
| | - Erin Umberger
- Necrotizing Enterocolitis (NEC) Society, Davis, CA, USA
| | - Ravi M Patel
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
36
|
Ahlawat S, Asha, Sharma KK. Gut-organ axis: a microbial outreach and networking. Lett Appl Microbiol 2020; 72:636-668. [PMID: 32472555 DOI: 10.1111/lam.13333] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Human gut microbiota (GM) includes a complex and dynamic population of microorganisms that are crucial for well-being and survival of the organism. It has been reported as diverse and relatively stable with shared core microbiota, including Bacteroidetes and Firmicutes as the major dominants. They are the key regulators of body homeostasis, involving both intestinal and extra-intestinal effects by influencing many physiological functions such as metabolism, maintenance of barrier homeostasis, inflammation and hematopoiesis. Any alteration in GM community structures not only trigger gut disorders but also influence other organs and cause associated diseases. In recent past, the GM has been defined as a 'vital organ' with its involvement with other organs; thus, establishing a link or a bi- or multidirectional communication axis between the organs via neural, endocrine, immune, humoral and metabolic pathways. Alterations in GM have been linked to several diseases known to humans; although the exact interaction mechanism between the gut and the organs is yet to be defined. In this review, the bidirectional relationship between the gut and the vital human organs was envisaged and discussed under several headings. Furthermore, several disease symptoms were also revisited to redefine the communication network between the gut microbes and the associated organs.
Collapse
Affiliation(s)
- S Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Asha
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - K K Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
37
|
Chronic kidney disease in cats alters response of the plasma metabolome and fecal microbiome to dietary fiber. PLoS One 2020; 15:e0235480. [PMID: 32614877 PMCID: PMC7331996 DOI: 10.1371/journal.pone.0235480] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
The objectives were to determine the effects of feeding different fiber types to healthy cats and cats with chronic kidney disease (CKD) on plasma metabolites and the fecal microbiome.
Collapse
|
38
|
Leylabadlo HE, Ghotaslou R, Feizabadi MM, Farajnia S, Moaddab SY, Ganbarov K, Khodadadi E, Tanomand A, Sheykhsaran E, Yousefi B, Kafil HS. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microb Pathog 2020; 149:104344. [PMID: 32534182 DOI: 10.1016/j.micpath.2020.104344] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Faecalibacterium prausnitzii (F. prausnitzii) is one of the most abundant bacterial species in the colon of healthy human adults and representing more than 5% of the total bacterial population. Recently, it has been known as a major actor in human intestinal health and a biosensor. Changes in this species population richness and quantity have been observed in many illnesses and several investigations have reported that abundance of F. prausnitzii is reduced in different intestinal disorders. In the current review, we aim to consider literature from various library databases and electronic searches (Science Direct, PubMed, and Google Scholar) which were randomly collected and serve as an overview of different features of F. prausnitzii including metabolites, anti-inflammatory action, and correlation of dysbiosis of this bacterium with various complications in human.
Collapse
Affiliation(s)
- Hamed Ebrahimzadeh Leylabadlo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Ghotaslou
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Ehsaneh Khodadadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Asghar Tanomand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Elham Sheykhsaran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Samadi Kafil
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Lau WL, Chang Y, Vaziri ND. The consequences of altered microbiota in immune-related chronic kidney disease. Nephrol Dial Transplant 2020; 36:1791-1798. [PMID: 32437554 DOI: 10.1093/ndt/gfaa087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
The normal gut microbiome modulates host enterocyte metabolism and shapes local and systemic immunity. Accumulation of urea and other waste products in chronic kidney disease induces gut dysbiosis and intestinal wall inflammation (leaky gut). There are decreased numbers of bacteria that generate short-chain fatty acids, which are an important nutrient source for host enterocytes and also contribute to regulation of the host immune system. Anaerobic proteolytic bacteria that express urease, uricase and indole and p-cresol enzymes, such as Enterobacteria and Enterococci, are increased. Microbial-derived uremic toxins such as indoxyl sulfate and trimethylamine N-oxide contribute to the pathophysiology of immune-related kidney diseases such as diabetic nephropathy, lupus nephritis and immunoglobulin A (IgA) nephropathy. Animal and clinical studies suggest potential benefits of dietary and probiotic interventions in slowing the progression of immune-related kidney diseases.
Collapse
Affiliation(s)
- Wei Ling Lau
- Division of Nephrology and Hypertension, University of California Irvine, Orange, CA, USA
| | - Yongen Chang
- Division of Nephrology and Hypertension, University of California Irvine, Orange, CA, USA
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California Irvine, Orange, CA, USA
| |
Collapse
|
40
|
Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020; 12:E1330. [PMID: 32392758 PMCID: PMC7284902 DOI: 10.3390/nu12051330] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) is generated in a microbial-mammalian co-metabolic pathway mainly from the digestion of meat-containing food and dietary quaternary amines such as phosphatidylcholine, choline, betaine, or L-carnitine. Fish intake provides a direct significant source of TMAO. Human observational studies previously reported a positive relationship between plasma TMAO concentrations and cardiometabolic diseases. Discrepancies and inconsistencies of recent investigations and previous studies questioned the role of TMAO in these diseases. Several animal studies reported neutral or even beneficial effects of TMAO or its precursors in cardiovascular disease model systems, supporting the clinically proven beneficial effects of its precursor, L-carnitine, or a sea-food rich diet (naturally containing TMAO) on cardiometabolic health. In this review, we summarize recent preclinical and epidemiological evidence on the effects of TMAO, in order to shed some light on the role of TMAO in cardiometabolic diseases, particularly as related to the microbiome.
Collapse
|
41
|
Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Arch 2020; 472:303-320. [PMID: 32064574 DOI: 10.1007/s00424-020-02352-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) represents a growing public health problem associated with loss of kidney function and cardiovascular disease (CVD), the main leading cause of morbidity and mortality in CKD. It is well established that CKD is associated with gut dysbiosis. Over the past few years, there has been a growing interest in studying the composition of the gut microbiota in patients with CKD as well as the mechanisms by which gut dysbiosis contributes to CKD progression, in order to identify possible therapeutic targets to improve the morbidity and survival in CKD. The purpose of this review is to explore the clinical evidence and the mechanisms involved in the gut-kidney crosstalk as well as the possible interventions to restore a normal balance of the gut microbiota in CKD. It is well known that the influence of the gut microbiota on the gut-kidney axis acts in a reciprocal way: on the one hand, CKD significantly modifies the composition and functions of the gut microbiota. On the other hand, gut microbiota is able to manipulate the processes leading to CKD onset and progression through inflammatory, endocrine, and neurologic pathways. Understanding the complex interaction between these two organs (gut microbiota and kidney) may provide novel nephroprotective interventions to prevent the progression of CKD by targeting the gut microbiota. The review is divided into three main sections: evidences from clinical studies about the existence of a gut microbiota dysbiosis in CKD; the complex mechanisms that explain the bidirectional relationship between CKD and gut dysbiosis; and reports regarding the effects of prebiotic, probiotic, and synbiotic supplementation to restore gut microbiota balance in CKD.
Collapse
|
42
|
Shinjyo N, Parkinson J, Bell J, Katsuno T, Bligh A. Berberine for prevention of dementia associated with diabetes and its comorbidities: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:125-151. [PMID: 32005442 DOI: 10.1016/j.joim.2020.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A growing number of epidemiological studies indicate that metabolic syndrome (MetS) and its associated features play a key role in the development of certain degenerative brain disorders, including Alzheimer's disease and vascular dementia. Produced by several different medicinal plants, berberine is a bioactive alkaloid with a wide range of pharmacological effects, including antidiabetic effects. However, it is not clear whether berberine could prevent the development of dementia in association with diabetes. OBJECTIVE To give an overview of the therapeutic potential of berberine as a treatment for dementia associated with diabetes. SEARCH STRATEGY Database searches A and B were conducted using PubMed and ScienceDirect. In search A, studies on berberine's antidementia activities were identified using "berberine" and "dementia" as search terms. In search B, recent studies on berberine's effects on diabetes were surveyed using "berberine" and "diabetes" as search terms. INCLUSION CRITERIA Clinical and preclinical studies that investigated berberine's effects associated with MetS and cognitive dysfunction were included. DATA EXTRACTION AND ANALYSIS Data from studies were extracted by one author, and checked by a second; quality assessments were performed independently by two authors. RESULTS In search A, 61 articles were identified, and 22 original research articles were selected. In search B, 458 articles were identified, of which 101 were deemed relevant and selected. Three duplicates were removed, and a total of 120 articles were reviewed for this study. The results demonstrate that berberine exerts beneficial effects directly in the brain: enhancing cholinergic neurotransmission, improving cerebral blood flow, protecting neurons from inflammation, limiting hyperphosphorylation of tau and facilitating β-amyloid peptide clearance. In addition, evidence is growing that berberine is effective against diabetes and associated disorders, such as atherosclerosis, cardiomyopathy, hypertension, hepatic steatosis, diabetic nephropathy, gut dysbiosis, retinopathy and neuropathy, suggesting indirect benefits for the prevention of dementia. CONCLUSION Berberine could impede the development of dementia via multiple mechanisms: preventing brain damages and enhancing cognition directly in the brain, and indirectly through alleviating risk factors such as metabolic dysfunction, and cardiovascular, kidney and liver diseases. This study provided evidence to support the value of berberine in the prevention of dementia associated with MetS.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - James Parkinson
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom
| | - Jimmy Bell
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom.
| | - Tatsuro Katsuno
- Kashiwanoha Clinic of East Asian Medicine, Chiba University Hospital, Kashiwa, Chiba 277-0882, Japan
| | - Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, NT 999077, Hong Kong, China.
| |
Collapse
|
43
|
Effect of Low-Protein Diet and Inulin on Microbiota and Clinical Parameters in Patients with Chronic Kidney Disease. Nutrients 2019; 11:nu11123006. [PMID: 31818021 PMCID: PMC6950025 DOI: 10.3390/nu11123006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction: The gut microbiota has coevolved with humans for a mutually beneficial coexistence and plays an important role in health and disease. A dysbiotic gut microbiome may contribute to progression to chronic kidney disease (CKD) and CKD-related complications such as cardiovascular disease. Microbiota modulation through the administration of prebiotics may represent an important therapeutic target. Aim: We sought to evaluate the effects of a low-protein diet (LPD) (0.6 g/kg/day) with or without the intake of the prebiotic inulin (19 g/day) on microbiota and clinical parameters in CKD patients. Materials and Methods: We performed a longitudinal, prospective, controlled, and interventional study on 16 patients: 9 patients treated with LPD (0.6 g/kg/day) and inulin (19 g/day) and 7 patients (control group) treated only with LPD (0.6 g/kg/day). Clinical evaluations were performed and fecal samples were collected for a subsequent evaluation of the intestinal microbiota in all patients. These tests were carried out before the initiation of LPD, with or without inulin, at baseline (T0) and at 6 months (T2). The microbiota of 16 healthy control (HC) subjects was also analyzed in order to identify potential dysbiosis between patients and healthy subjects. Results: Gut microbiota of CKD patients was different from that of healthy controls. The LPD was able to significantly increase the frequencies of Akkermansiaceae and Bacteroidaceae and decrease the frequencies of Christensenellaceae, Clostridiaceae, Lactobacillaceae, and Pasteurellaceae. Only Bifidobacteriaceae were increased when the LPD was accompanied by oral inulin intake. We showed a significant reduction of serum uric acid (SUA) and C-reactive protein (CRP) in patients treated with LPD and inulin (p = 0.018 and p = 0.003, respectively), an improvement in SF-36 (physical role functioning and general health perceptions; p = 0.03 and p = 0.01, respectively), and a significant increase of serum bicarbonate both in patients treated with LPD (p = 0.026) or with LPD and inulin (p = 0.01). Moreover, in patients treated with LPD and inulin, we observed a significant reduction in circulating tumor necrosis factor alpha (TNF-α) (p = 0.041) and plasma nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) (p = 0.027) levels. We did not find a significant difference in the circulating levels of Interleukin (IL)-1β (p = 0.529) and IL-6 (p = 0.828) in the two groups. Conclusions: LPD, associated or not with inulin, modified gut microbiota and modulated inflammatory and metabolic parameters in patients with CKD. Our results suggest that interventions attempting to modulate the gut microbiome may represent novel strategies to improve clinical outcomes in CKD patients and may provide useful therapeutic effects.
Collapse
|
44
|
Tanaka S, Hammond B, Rosin DL, Okusa MD. Neuroimmunomodulation of tissue injury and disease: an expanding view of the inflammatory reflex pathway. Bioelectron Med 2019; 5:13. [PMID: 32232102 PMCID: PMC7098254 DOI: 10.1186/s42234-019-0029-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroimmunomodulation through peripheral nerve activation is an important therapeutic approach to various disorders. Central to this approach is the inflammatory reflex pathway in which the cholinergic anti-inflammatory pathway represents the efferent limb. Recent studies provide a framework for understanding this control pathway, however our understanding remains incomplete. Genetically modified mice, using optogenetics and pharmacogenomics, have been invaluable resources that will allow investigators to disentangle neural pathways that provide a unifying mechanism by which vagal nerve stimulation (and other means of stimulating the pathway) leads to an anti-inflammatory and tissue protective effect. In this review we describe disease models that contribute to our understanding of how vagal nerve stimulation attenuates inflammation and organ injury: acute kidney injury, rheumatoid arthritis, and inflammatory gastrointestinal disease. The gut microbiota contributes to health and disease and the potential role of the vagus nerve in affecting the relationship between gut microbiota and the immune system and modifying diseases remains an intriguing opportunity to attenuate local and systemic inflammation that undergird disease processes.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| | | | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| |
Collapse
|
45
|
Risk Factors for Unhealthy Weight Gain and Obesity among Children with Autism Spectrum Disorder. Int J Mol Sci 2019; 20:ijms20133285. [PMID: 31277383 PMCID: PMC6650879 DOI: 10.3390/ijms20133285] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental disorder characterized by social and communication deficits and repetitive behaviors. Children with ASD are also at a higher risk for developing overweight or obesity than children with typical development (TD). Childhood obesity has been associated with adverse health outcomes, including insulin resistance, diabetes, heart disease, and certain cancers. Importantly some key factors that play a mediating role in these higher rates of obesity include lifestyle factors and biological influences, as well as secondary comorbidities and medications. This review summarizes current knowledge about behavioral and lifestyle factors that could contribute to unhealthy weight gain in children with ASD, as well as the current state of knowledge of emerging risk factors such as the possible influence of sleep problems, the gut microbiome, endocrine influences and maternal metabolic disorders. We also discuss some of the clinical implications of these risk factors and areas for future research.
Collapse
|
46
|
Dai L, Qureshi AR, Witasp A, Lindholm B, Stenvinkel P. Early Vascular Ageing and Cellular Senescence in Chronic Kidney Disease. Comput Struct Biotechnol J 2019; 17:721-729. [PMID: 31303976 PMCID: PMC6603301 DOI: 10.1016/j.csbj.2019.06.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is a clinical model of premature ageing characterized by progressive vascular disease, systemic inflammation, muscle wasting and frailty. The predominant early vascular ageing (EVA) process mediated by medial vascular calcification (VC) results in a marked discrepancy between chronological and biological vascular age in CKD. Though the exact underlying mechanisms of VC and EVA are not fully elucidated, accumulating evidence indicates that cellular senescence - and subsequent chronic inflammation through the senescence-associated secretary phenotype (SASP) - plays a fundamental role in its initiation and progression. In this review, we discuss the pathophysiological links between senescence and the EVA process in CKD, with focus on cellular senescence and media VC, and potential anti-ageing therapeutic strategies of senolytic drugs targeting cellular senescence and EVA in CKD.
Collapse
Affiliation(s)
| | | | | | | | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| |
Collapse
|