1
|
Zhao D, Wang H, Wang Z, Lu S. Understanding competitive Cu 2+ and Zn 2+ adsorption onto functionalized cellulose fiber via experimental and theoretical approach. Int J Biol Macromol 2024; 273:132782. [PMID: 38825284 DOI: 10.1016/j.ijbiomac.2024.132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Amidoxime groups were successfully introduced to develop a novel amidoxime-functionalized cellulose fiber (AO-Cell) for absorptive removal of heavy metal ions in wastewater. The chemical structure, and the competitive adsorption of Cu2+ and Zn2+ by AO-Cell were investigated by experiments study, Density functional theory (DFT) and molecular dynamic (MD) simulation. The results showed the N and O atoms in the amidoxime group can spontaneously interact with Cu2+ and Zn2+ through sharing long pair electrons to generate stable coordination structure, which was the dominant adsorption mechanism. Besides, the enlarged surface area, improved hydrophilicity and dispersion offered by AO-Cell facilitate the adsorption process by increasing the accessibility of absorption sites. As results of these synergetic modification, AO-Cell can remain effective in a wide pH range (1-6) and reach adsorption equilibrium within 60 min. At optimal conditions, the achieved theoretical adsorption capacity is as high as 84.81 mg/g for Cu2+ and 61.46 mg/g for Zn2+ in the solution with multiple ions. The competition between Cu2+ and Zn2+ in occupying the absorption sites arises from the difference in the metallic ion affinity and covalent index with the adsorbent as demonstrated by the MD analysis. Importantly, AO-Cell demonstrated favorable recyclability after up to 10 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Dezhi Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China.
| | - Hexiang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China
| | - Zheng Wang
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Lu
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Duan M, Li Z, Yan R, Zhou B, Su L, Li M, Xu H, Zhang Z. Mechanism for combined application of biochar and Bacillus cereus to reduce antibiotic resistance genes in copper contaminated soil and lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163422. [PMID: 37087005 DOI: 10.1016/j.scitotenv.2023.163422] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The remediation of agricultural soil contaminated by antibiotic resistance genes (ARGs) is of great significance for protecting food safety and human health. Reducing the availability of copper in soil may control coresistance to ARGs. However, the feasibility of applying nano-biochar and Bacillus cereus to mitigate the spread of ARGs in Cu contaminated soil remains unclear. Therefore, this study investigated the use of biochar with different particle sizes (2 % apple branch biochar and 0.5 % nano-biochar) and 3 g m-2B. cereus in a 60-day pot experiment with growing lettuce. The effects of single and combined application on the abundances of ARGs in Cu-contaminated soil (Cu = 200 mg kg-1) were compared, and the related mechanisms were explored. Studies have shown that the addition of biochar alone is detrimental to mitigating ARGs in soil-lettuce systems. The combined application of 3 g m-2B. cereus and 0.5 % nano-biochar effectively inhibited the proliferation of ARGs in Cu-contaminated soil, and 3 g m-2B. cereus effectively inhibited the proliferation of ARGs in lettuce. Partial least squares-path modeling and network analysis showed that bacterial communities and mobile genetic elements were the key factors that affected the abundances of ARGs in rhizosphere soil, and Cu resistance genes and bioavailable copper (acid extractable state Cu (F1) + reducing state Cu (F2)) had less direct impacts. The bacterial community was the key factor that affected the abundances of ARGs in lettuce. Rhodobacter (Proteobacteria), Corynebacterium (Actinobacteria), and Methylobacterium (Proteobacteria) may have been hosts of ARGs in lettuce plants. B. cereus and nano-biochar affected the abundances of ARGs by improving the soil properties and reducing the soil bioavailability of Cu, as well as directly or indirectly changing the bacterial community composition in soil and lettuce, thereby impeding the transport of ARGs to aboveground plant parts.
Collapse
Affiliation(s)
- Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Zhijian Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China; China Energy Engineering Group Guangxi Electric Power Design Institute Co., Ltd., Nanning 530007, China
| | - Rupan Yan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Beibei Zhou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Lijun Su
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Mingxiu Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Hongbo Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Zhenshi Zhang
- Northwest Engineering Corporation Limited Power China, Xi'an 710065, China
| |
Collapse
|
3
|
Na4P2O7-Modified Biochar Derived from Sewage Sludge: Effective Cu(II)-Adsorption Removal from Aqueous Solution. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/8217910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
With the rapid development of industrialization, the amount of copper-containing wastewater is increasing, thereby posing a threat to the aquatic ecological environment and human health. Sludge biochar has received extensive concern in recent years due to its advantages of low cost and sustainability for the treatment of heavy-metal-containing wastewater. However, the heavy-metal-adsorption capacity of sludge biochar is limited. This study prepared a sodium pyrophosphate- (Na4P2O7-) modified municipal sludge-based biochar (SP-SBC) and evaluated its adsorption performance for Cu(II). Results showed that SP-SBC had higher yield, ash content, pH, Na and P content, and surface roughness than original sewage sludge biochar (SBC). The Cu(II)-adsorption capacity of SP-SBC was 4.55 times than that of SBC at room temperature. For Cu(II) adsorption by SP-SBC, the kinetics and isotherms conformed to the pseudo-second-order model and the Langmuir–Freundlich model, respectively. The maximum adsorption capacity of SP-SBC was 38.49 mg·g−1 at 35°C. Cu(II) adsorption by SP-SBC primarily involved ion exchange, electrostatic attraction, and precipitation. The desired adsorption performance for Cu(II) in the fixed-bed column experiment indicated that SP-SBC can be reused and had good application potential to treat copper-containing wastewater. Overall, this study provided a desirable sorbent (SP-SBC) for Cu(II) removal, as well as a new simple chemical-modification method for SBC to enhance Cu(II)-adsorption capacity.
Collapse
|
4
|
Wang Q, Duan CJ, Liang HX, Ren JW, Geng ZC, Xu CY. Phosphorus acquisition strategies of wheat are related to biochar types added in cadmium-contaminated soil: Evidence from soil zymography and root morphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159033. [PMID: 36183665 DOI: 10.1016/j.scitotenv.2022.159033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Biochar application for the remediation of cadmium (Cd)-contaminated soils may result in a relative deficiency of phosphorus (P) due to the disruption of soil nutrient balance. However, the P acquisition strategies of plants in such situation are still unclear. In this study, analyses on soil zymography and root morphology were combined for the first time to investigate the effects of pristine and P-modified biochars from apple tree branches on the P acquisition strategies of wheat under Cd stress. The results show that the application of pristine biochar exacerbated the soil's relative P deficiency. Wheat was forced to improve foraging for P by forming longer and thinner roots (average diameter 0.284 mm) as well as releasing more phosphatase to promote P mobilization in the soil. Moreover, bioavailable Cd affected the P acquisition strategies of wheat through stimulating the release of phosphatase from roots. The P-modified biochar maintained high levels of Olsen-P (>100 mg kg-1) in the soil over time by slow release, avoiding the creation of relative P deficiency in the soil; and increased the average root diameter (0.338 mm) and growth performance index, which promoted shoot growth (length and biomass). Furthermore, the P-modified biochar reduced DTPA-extracted Cd concentration in soils by 79.8 % (pristine biochar by 26.9 %), and decreased the Cd translocation factor from root to shoot as well as Cd concentration in the shoots. Therefore, P-modified biochar has a great potential to regulate the soil element balance (carbon, nitrogen, and P), promote wheat growth, and remediate the Cd-contaminated soil.
Collapse
Affiliation(s)
- Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Cheng-Jiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jia-Wei Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zeng-Chao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.; Key Laboratory for Agricultural Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chen-Yang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.; Key Laboratory for Agricultural Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Tomczyk A, Kubaczyński A, Szewczuk-Karpisz K. Assessment of agricultural waste biochars for remediation of degraded water-soil environment: Dissolved organic carbon release and immobilization of impurities in one- or two-adsorbate systems. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:87-98. [PMID: 36356434 DOI: 10.1016/j.wasman.2022.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/26/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
This paper presents a method of agricultural waste management - the production of two biochars (BC) from potato and raspberry stems. It defines the potential of these materials for remediation of degraded water and soil environments. The performed study included analyses of BC physicochemistry, dissolved organic carbon (DOC) release and ability to immobilize copper (Cu), tetracycline (TC) and carboxin (CB) in one- and two-adsorbate systems. The BCs were obtained with pyrolysis at 600 °C for 30 min in a nitrogen atmosphere. Their DOC was predominantly constituted of substances with large molecular weights and high aromaticity, meaning that both BCs can be safely applied as soil additives. Potato-biochar (P-BC) had a more developed surface than raspberry-biochar (R-BC). The specific surface area (SBET) of P-BC was 122 m2/g, whilst of R-BC was 87 m2/g. As a result, the efficiency of impurity adsorption in the one-adsorbate systems was higher for P-BC (61.75% for Cu, 73.84% for TC, and 54.43% for CB). In the two-adsorbate systems, organic impurities improved the immobilization of heavy metal ions on BCs. The efficiency of Cu adsorption on P-BC when TC was present was 88.29%. Desorption of Cu from BC was highest using HCl, whilst that of TC and CB was highest using NaOH. Maximum desorption was observed in a two-adsorbate system with TC + CB (up to 63.6% for TC). These results confirmed that potato and raspberry stems can be used to produce highly effective BCs with large application potential, especially for remediation of degraded soils and polluted waters.
Collapse
Affiliation(s)
- Agnieszka Tomczyk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Adam Kubaczyński
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | | |
Collapse
|
6
|
Labanya R, Srivastava PC, Pachauri SP, Shukla AK, Shrivastava M, Mukherjee P, Srivastava P. Sorption-desorption of some transition metals, boron and sulphur in a multi-ionic system onto phyto-biochars prepared at two pyrolysis temperatures. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2378-2397. [PMID: 36321468 DOI: 10.1039/d2em00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The sorption-desorption of transition metals, B and S onto phyto-biochars prepared from lantana, pine needles and wheat straw by pyrolysis at 300 °C and 450 °C were studied using the batch method. Their sorption-desorption onto phyto-biochars conformed to Freundlich isotherms. Phyto-biochars pyrolyzed at 450 °C had higher sorption capacity for transition metals (Zn, Cu, Fe, and Mn) but lower sorption capacity for S as compared to those pyrolyzed at 300 °C. The desorption capacity of phyto-biochars pyrolyzed at 450 °C for transition metals, B and S was also higher than that of phyto-biochars pyrolyzed at 300 °C except for S in pine needle biochar. Percent desorption of all transition metals, B and S was lower for phyto-biochars pyrolyzed at 450 °C compared to those pyrolyzed at 300 °C; however, an opposite trend was noted for Mn and S in the case of pine needle and wheat biochars, respectively. Simple correlation analysis of Freundlich model constants, desorption index and percent desorption values of transition metals, B and S with the properties of phyto-biochars and changes in Fourier transform infra-red spectra after sorption revealed that several conjunctive mechanisms such as cation exchange, complexation and co-precipitation for the sorption of transition metals, H-bonding/ligand exchange for B and H-bonding/cation bridging for S were operative in phyto-biochars. Phyto-biochars produced from plant biomass wastes by pyrolysis at 300 °C, which have been enriched with Zn, Cu, Fe, Mn, B and S may serve as a potential slow-release nutrient carrier in agriculture.
Collapse
Affiliation(s)
- Rini Labanya
- Department of Soil Science, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Prakash C Srivastava
- Department of Soil Science, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Satya P Pachauri
- Department of Soil Science, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Arvind K Shukla
- Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal 462038, MP, India
| | - Manoj Shrivastava
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Poulomi Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Prashant Srivastava
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, Waite Campus, Waite Road, Urrbrae, SA 5064, Australia
| |
Collapse
|
7
|
Soudani A, Youcef L, Bulgariu L, Youcef S, Toumi K, Soudani N. Characterizing and modeling of Oak fruit shells biochar as an adsorbent for the removal of Cu, Cd, and Zn in single and in competitive systems. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Xiao Y, Luo R, Ji Y, Li S, Hu H, Zhang X. Removal of Copper(II) from Aqueous Environment Using Silk Sericin-Derived Carbon. Int J Mol Sci 2022; 23:ijms231911202. [PMID: 36232512 PMCID: PMC9570140 DOI: 10.3390/ijms231911202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Sericin is a by-product of the silk industry. Its recycling contributes to environmental protection and the sustainable development of the cocoon silk industry. In this paper, on the basis of realizing sericin enrichment in solution, the Cu(II) adsorption capacities of sericin-derived carbon (SC), prepared at different pyrolysis temperatures, were studied. SC was characterized using scanning electron microscopy (SEM) and the zeta potential. The effects of the initial concentration of Cu(II), pH, adsorption temperature, and contact time on the adsorption process were evaluated, followed by an investigation of the mechanism of Cu(II) adsorption by SC. The results showed that SC has a porous structure that provides sites for Cu(II) adsorption. The maximum adsorption capacity of Cu(II) onto SC1050, 17.97 mg/g, was obtained at an adsorption temperature of 35 °C and a pH of 5.5. In addition, the pseudo-second-order kinetic model and Langmuir isotherm model correctly described the adsorption process of Cu(II) onto SC1050. Therefore, SC can act as a potential adsorbent for removing Cu(II) from water. This study helps promote the effective use of cocoon silk resources.
Collapse
Affiliation(s)
- Yuting Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Westa College, Southwest University, Chongqing 400715, China
| | - Ruixiao Luo
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yansong Ji
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Shiwei Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Westa College, Southwest University, Chongqing 400715, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiaoning Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
9
|
Wang Q, Duan CJ, Xu CY, Geng ZC. Efficient removal of Cd(II) by phosphate-modified biochars derived from apple tree branches: Processes, mechanisms, and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152876. [PMID: 34998767 DOI: 10.1016/j.scitotenv.2021.152876] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Phosphate (P)-modified biochar is a good material for cadmium (Cd) immobilization, and the pore-forming effect of potassium ions (K+) can favor the P loading on biochar. However, few studies have been done specifically on Cd(II) removal by composites of potassium phosphates with biochar, and the removal potential and mechanisms are not clear. Herein, apple tree branches, a major agricultural waste suitable for the development of porous materials, were pyrolyzed individually or together with KH2PO4, K2HPO4·3H2O, or K3PO4·3H2O to obtain biochars to remove Cd(II), denoted as pristine BC, BC-1, BC-2, and BC-3, respectively. The results showed that the orthophosphates containing more K+ enlarged the specific surface area, total pore volume and phosphorus loading of biochar. Co-pyrolysis of apple tree branches and P promoted the thermochemical transformation of P species. Only weak signal of orthophosphate was observed in the pristine BC, while the presence of orthophosphate, pyrophosphate and metaphosphate were detected in BC-1, and BC-2 and BC-3 showed the presence of orthophosphate and pyrophosphate. The maximum Cd(II) adsorption capacities of pristine BC, BC-1, BC-2 and BC-3 were 10.4, 88.5, 95.8, and 116 mg·g-1, respectively. Orthophosphate modification enhanced the Cd(II) adsorption capacity due to the formation of Cd-P-precipitates, namely Cd5(PO4)3Cl, Cd5(PO4)3OH, Cd3(PO4)2, Cd2P2O7, and Cd(PO3)2. Furthermore, higher cation exchange efficiencies between Cd(II) and K+ in P-modified biochars also contributed to their high Cd(II) adsorption capacity. Cd(II) removal by BC-3 from artificially polluted water bodies showed more than 99.98% removal rates. Application of BC-3 also reduced the diethylene triamine pentaacetic acid-extracted Cd(II) in soil by 69.1%. The co-pyrolysis of apple tree branches and potassium phosphates shows great prospect in Cd(II) wastewater/soil treatment and provide a promising solution for agricultural waste utilization and carbon sequestration.
Collapse
Affiliation(s)
- Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri‑environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Cheng-Jiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen-Yang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri‑environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.; Key Laboratory for Agricultural Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zeng-Chao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri‑environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.; Key Laboratory for Agricultural Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Gürkan EH, İlyas B. Adsorption of copper, and zinc onto novel Ca-alginate-biochar composite prepared by biochars produced from pyrolysis of groundnut husk. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1350-1363. [PMID: 35234107 DOI: 10.1080/15226514.2022.2025759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alginate-based composites have been studied for adsorption technology as adsorbents due to their biocompatible, non-toxic, and cost-effective properties. In this work, groundnut husk biochar (GHB), calcium alginate (CA), and groundnut husk biochar/calcium alginate novel composites (%10) (CA-GHB1) and (% 20) (CA-GHB2) are synthesized and characterized using BET, SEM, EDX, FTIR, TGA. Adsorption performance is compared among GHB, CA, CA-GHB1, and CA-GHB2 composites to remove Cu(II), Zn (II) from aqueous solutions. Factors affecting adsorption, as well as kinetics, equilibrium, and thermal properties of adsorption, were studied using conventional equations. Adsorption isotherm models were used for two and three-parameter isotherm models to understand the interaction between the adsorbent and the adsorbate. 24.3, 44.6, 45.6, and 40.73 mg g-1 for removal of Cu(II) on GHB, CA, CA-GHB1, and CA-GHB2 and 32.16, 25.07, 36.09, and 40.55 mg g-1 for removal of Zn(II) on GHB, CA, CA-GHB1, and CA-GHB2 found maximum adsorption capacity (Qm) calculated from Langmuir isotherm. According to D-R isotherm data, the adsorption process is classified as physical adsorption. Thermodynamically, the adsorption process is non-spontaneous and endothermic.
Collapse
Affiliation(s)
- Elif Hatice Gürkan
- Department of Chemical Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Berkay İlyas
- Department of Chemical Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
11
|
Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review. Molecules 2021; 26:molecules26165063. [PMID: 34443648 PMCID: PMC8398246 DOI: 10.3390/molecules26165063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Over the past decade, biochar (BC) has received significant attention in many environmental applications, including water purification, since it is available as a low-cost by-product of the energetic valorisation of biomass. Biochar has many intrinsic characteristics, including its porous structure, which is similar to that of activated carbon (AC), which is the most widely used sorbent in water treatment. The physicochemical and performance characteristics of BCs are usually non-homogenously investigated, with several studies only evaluating limited parameters, depending on the individual perspective of the author. Within this review, we have taken an innovative approach to critically survey the methodologies that are generally used to characterize BCs and ACs to propose a comprehensive and ready-to-use database of protocols. Discussion about the parameters of chars that are usually correlated with adsorption performance in water purification is proposed, and we will also consider the physicochemical properties of pollutants (i.e., Kow). Uniquely, an adsorption efficiency index BC/AC is presented and discussed, which is accompanied by an economic perspective. According to our survey, non-homogeneous characterization approaches limit the understanding of the correlations between the pollutants to be removed and the physicochemical features of BCs. Moreover, the investigations of BC as an adsorption medium necessitate dedicated parallel studies to compare BC characteristics and performances with those of ACs.
Collapse
|