1
|
Labella-Ortega M, Martín C, Valledor L, Castiglione S, Castillejo MÁ, Jorrín-Novo JV, Rey MD. Unravelling DNA methylation dynamics during developmental stages in Quercus ilex subsp. ballota [Desf.] Samp. BMC PLANT BIOLOGY 2024; 24:823. [PMID: 39223458 PMCID: PMC11370289 DOI: 10.1186/s12870-024-05553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND DNA methylation is a critical factor influencing plant growth, adaptability, and phenotypic plasticity. While extensively studied in model and crop species, it remains relatively unexplored in holm oak and other non-domesticated forest trees. This study conducts a comprehensive in-silico mining of DNA methyltransferase and demethylase genes within the holm oak genome to enhance our understanding of this essential process in these understudied species. The expression levels of these genes in adult and seedling leaves, as well as embryos, were analysed using quantitative real-time PCR (qRT-PCR). Global DNA methylation patterns were assessed through methylation-sensitive amplified polymorphism (MSAP) techniques. Furthermore, specific methylated genomic sequences were identified via MSAP sequencing (MSAP-Seq). RESULT A total of 13 DNA methyltransferase and three demethylase genes were revealed in the holm oak genome. Expression levels of these genes varied significantly between organs and developmental stages. MSAP analyses revealed a predominance of epigenetic over genetic variation among organs and developmental stages, with significantly higher global DNA methylation levels observed in adult leaves. Embryos exhibited frequent demethylation events, while de novo methylation was prevalent in seedling leaves. Approximately 35% of the genomic sequences identified by MSAP-Seq were methylated, predominantly affecting nuclear genes and intergenic regions, as opposed to repetitive sequences and chloroplast genes. Methylation was found to be more pronounced in the exonic regions of nuclear genes compared to their promoter and intronic regions. The methylated genes were predominantly associated with crucial biological processes such as photosynthesis, ATP synthesis-coupled electron transport, and defence response. CONCLUSION This study opens a new research direction in analysing variability in holm oak by evaluating the epigenetic events and mechanisms based on DNA methylation. It sheds light on the enzymatic machinery governing DNA (de)methylation, and the changes in the expression levels of methylases and demethylases in different organs along the developmental stages. The expression level was correlated with the DNA methylation pattern observed, showing the prevalence of de novo methylation and demethylation events in seedlings and embryos, respectively. Several methylated genes involved in the regulation of transposable element silencing, lipid biosynthesis, growth and development, and response to biotic and abiotic stresses are highlighted. MSAP-seq integrated with whole genome bisulphite sequencing and advanced sequencing technologies, such as PacBio or Nanopore, will bring light on epigenetic mechanisms regulating the expression of specific genes and its correlation with the phenotypic variability and the differences in the response to environmental cues, especially those related to climate change.
Collapse
Affiliation(s)
- Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| | - Carmen Martín
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, Madrid, 28040, Spain
| | - Luis Valledor
- Plant Physiology Lab, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Cat. Rodrigo Uría s/n, Oviedo, 33006, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, Fisciano, Salerno, 84084, Italy
| | - María-Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Jesús V Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| |
Collapse
|
2
|
Babar V, Sharma S, Shaikh AR, Oliva R, Chawla M, Cavallo L. Detecting Hachimoji DNA: An Eight-Building-Block Genetic System with MoS 2 and Janus MoSSe Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21427-21437. [PMID: 38634539 PMCID: PMC11071042 DOI: 10.1021/acsami.3c18400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
In the pursuit of personalized medicine, the development of efficient, cost-effective, and reliable DNA sequencing technology is crucial. Nanotechnology, particularly the exploration of two-dimensional materials, has opened different avenues for DNA nucleobase detection, owing to their impressive surface-to-volume ratio. This study employs density functional theory with van der Waals corrections to methodically scrutinize the adsorption behavior and electronic band structure properties of a DNA system composed of eight hachimoji nucleotide letters adsorbed on both MoS2 and MoSSe monolayers. Through a comprehensive conformational search, we pinpoint the most favorable adsorption sites, quantifying their adsorption energies and charge transfer properties. The analysis of electronic band structure unveils the emergence of flat bands in close proximity to the Fermi level post-adsorption, a departure from the pristine MoS2 and MoSSe monolayers. Furthermore, leveraging the nonequilibrium Green's function approach, we compute the current-voltage characteristics, providing valuable insights into the electronic transport properties of the system. All hachimoji bases exhibit physisorption with a horizontal orientation on both monolayers. Notably, base G demonstrates high sensitivity on both substrates. The obtained current-voltage (I-V) characteristics, both without and with base adsorption on MoS2 and the Se side of MoSSe, affirm excellent sensing performance. This research significantly advances our understanding of potential DNA sensing platforms and their electronic characteristics, thereby propelling the endeavor for personalized medicine through enhanced DNA sequencing technologies.
Collapse
Affiliation(s)
- Vasudeo Babar
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sitansh Sharma
- Department
of Research and Innovation, STEMskills Research
and Education Lab Private Limited, Faridabad, Haryana 121002, India
| | - Abdul Rajjak Shaikh
- Department
of Research and Innovation, STEMskills Research
and Education Lab Private Limited, Faridabad, Haryana 121002, India
| | - Romina Oliva
- Department
of Sciences and Technologies, University
Parthenope of Naples, Centro Direzionale Isola C4, 80143 Naples, Italy
| | - Mohit Chawla
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
de Tomás C, Vicient CM. The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants. EPIGENOMES 2023; 8:2. [PMID: 38247729 PMCID: PMC10801548 DOI: 10.3390/epigenomes8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Carlos M. Vicient
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Zhao Y, Lu K, Zhang W, Guo W, Chao E, Yang Q, Zhang H. PagDA1a and PagDA1b expression improves salt and drought resistance in transgenic poplar through regulating ion homeostasis and reactive oxygen species scavenging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107898. [PMID: 37482028 DOI: 10.1016/j.plaphy.2023.107898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/02/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
DA1/DAR proteins play a crucial role in plant biomass production. However, their functions in woody plants in response to abiotic stress are still unknown. In this study, a total number of six PagDA1/DAR family genes were identified in the poplar genome, and the biological functions of PagDA1a and PagDA1b in the resistance to salt and drought stresses were investigated in transgenic poplar. PagDA1a and PagDA1b were ubiquitously expressed in roots, stems, and leaves, with predominant expression in roots, and were significantly induced by abiotic stress and ABA. Transgenic poplar overexpressing either PagDA1a or PagDA1b showed restrained growth but improved resistance to salt and drought stresses. Further ion content and antioxidant enzyme expression analyses exhibited that transgenic poplar accumulated less sodium (Na+), hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the leaves, accompanied with increased activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT), and up-regulated transcription of SOD1, APX1, and CAT2. Our observations demonstrate that PagDA1a and PagDA1b improve salt and drought tolerance through ion homeostasis optimization and ROS scavenging ability enhancement in transgenic poplar, and both can be used for the future genetic breeding of new salt and drought tolerant tree species.
Collapse
Affiliation(s)
- Yanqiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Kaifeng Lu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Weilin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, Zhejiang, 311300, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Luohanya Road, Taian, Shandong, 27100, China
| | - Erkun Chao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China; College of Life Sciences, Qufu Normal University, 57 Jingxuanxi Road, Qufu, Shandong, 273165, China
| | - Qingshan Yang
- Shandong Academy of Forestry, 42 Wenhua East Road, Jinan, Shandong, 250014, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China; College of Life Sciences, Qufu Normal University, 57 Jingxuanxi Road, Qufu, Shandong, 273165, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China.
| |
Collapse
|
5
|
Abdullah-Zawawi MR, Govender N, Harun S, Muhammad NAN, Zainal Z, Mohamed-Hussein ZA. Multi-Omics Approaches and Resources for Systems-Level Gene Function Prediction in the Plant Kingdom. PLANTS (BASEL, SWITZERLAND) 2022; 11:2614. [PMID: 36235479 PMCID: PMC9573505 DOI: 10.3390/plants11192614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
In higher plants, the complexity of a system and the components within and among species are rapidly dissected by omics technologies. Multi-omics datasets are integrated to infer and enable a comprehensive understanding of the life processes of organisms of interest. Further, growing open-source datasets coupled with the emergence of high-performance computing and development of computational tools for biological sciences have assisted in silico functional prediction of unknown genes, proteins and metabolites, otherwise known as uncharacterized. The systems biology approach includes data collection and filtration, system modelling, experimentation and the establishment of new hypotheses for experimental validation. Informatics technologies add meaningful sense to the output generated by complex bioinformatics algorithms, which are now freely available in a user-friendly graphical user interface. These resources accentuate gene function prediction at a relatively minimal cost and effort. Herein, we present a comprehensive view of relevant approaches available for system-level gene function prediction in the plant kingdom. Together, the most recent applications and sought-after principles for gene mining are discussed to benefit the plant research community. A realistic tabulation of plant genomic resources is included for a less laborious and accurate candidate gene discovery in basic plant research and improvement strategies.
Collapse
Affiliation(s)
- Muhammad-Redha Abdullah-Zawawi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Nisha Govender
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Sarahani Harun
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Zamri Zainal
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| |
Collapse
|
6
|
Villagómez-Aranda AL, Feregrino-Pérez AA, García-Ortega LF, González-Chavira MM, Torres-Pacheco I, Guevara-González RG. Activating stress memory: eustressors as potential tools for plant breeding. PLANT CELL REPORTS 2022; 41:1481-1498. [PMID: 35305133 PMCID: PMC8933762 DOI: 10.1007/s00299-022-02858-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/26/2022] [Indexed: 05/08/2023]
Abstract
Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strategies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and heritability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational memory to stimulate a priming state in plants to face the changing environment.
Collapse
Affiliation(s)
- A L Villagómez-Aranda
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - A A Feregrino-Pérez
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - L F García-Ortega
- Laboratory of Learning and Research in Biological Computing, Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - M M González-Chavira
- Molecular Markers Laboratory, Bajío Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Celaya-San Miguel de Allende, Celaya, Guanajuato, Mexico
| | - I Torres-Pacheco
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - R G Guevara-González
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
| |
Collapse
|
7
|
Ji SX, Wang XD, Lin ZK, Wan FH, Lü ZC, Liu WX. Characterization of Chromatin Remodeling Genes Involved in Thermal Tolerance of Biologically Invasive Bemisia tabaci. Front Physiol 2022; 13:865172. [PMID: 35669578 PMCID: PMC9163341 DOI: 10.3389/fphys.2022.865172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
As an invasive species, Bemisia tabaci Mediterranean (MED) has notable potential to adapt to a wide range of environmental temperatures, which enables it to successfully spread after invasion and occupy habitats over a wide latitude range. It has been postulated that chromatin remodeling mechanisms are related to the rapid acquisition of adaptive traits and thermal resistance in invasive species; however, relevant experimental evidence is scarce. To identify the molecular characteristics and assess the role of chromatin remodelers in thermal stress within invasive MED and native Asia II 1 of the B. tabaci species complex, we identified 13 switching defective/sucrose non-fermenting (SWI/SNF) and 10 imitation switch (ISWI) family members in the B. tabaci genome, analyzed their molecular characteristics and structures, and identified key mutation sites between MED and Asia II 1, then cloned the catalytic subunits, and revealed the difference in thermal tolerance function. The results showed that the expression levels of Bt-BRM-1 and Bt-BRM-2 were significantly higher in MED than in Asia II 1 during heat stress, and Bt-BRM-2 expression was significantly higher during cold stress. In addition, RNA interference results indicated that the two target genes had similar temperature tolerance function in the both two cryptic species. This study is the first to identify and analyze the molecular characteristics of SWI/SNF and ISWI family members and reveal their potential key roles in temperature tolerance in poikilothermic ectotherms. The results will assist in understanding the underlying temperature adaptation mechanism of invasive insects and will enrich stress adaptation research systems from an epigenetic perspective.
Collapse
Affiliation(s)
- Shun-Xia Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Di Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ze-Kai Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhi-Chuang Lü,
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Petruccelli R, Bartolini G, Ganino T, Zelasco S, Lombardo L, Perri E, Durante M, Bernardi R. Cold Stress, Freezing Adaptation, Varietal Susceptibility of Olea europaea L.: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:1367. [PMID: 35631792 PMCID: PMC9144808 DOI: 10.3390/plants11101367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Olive (Olea europaea L.) is an evergreen xerophytic tree characterizing vegetative landscape and historical-cultural identity of the Mediterranean Basin. More than 2600 cultivars constitute the rich genetic patrimony of the species cultivated in approximately 60 countries. As a subtropical species, the olive tree is quite sensitive to low temperatures, and air temperature is the most critical environmental factor limiting olive tree growth and production. In this present review, we explored the detrimental effects caused of low temperatures on olive cultivars, and analyzed the most frequently experimental procedures used to evaluate cold stress. Then, current findings freezing stress physiology and gene are summarized in olive tree, with an emphasis on adaptive mechanisms for cold tolerance. This review might clear the way for new research on adaptive mechanisms for cold acclimation and for improvement of olive growing management.
Collapse
Affiliation(s)
- Raffaella Petruccelli
- Institute of BioEconomy, National Research Council (CNR/IBE), 50019 Sesto Fiorentino, Italy; (R.P.); (G.B.)
| | - Giorgio Bartolini
- Institute of BioEconomy, National Research Council (CNR/IBE), 50019 Sesto Fiorentino, Italy; (R.P.); (G.B.)
| | - Tommaso Ganino
- Institute of BioEconomy, National Research Council (CNR/IBE), 50019 Sesto Fiorentino, Italy; (R.P.); (G.B.)
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Samanta Zelasco
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (S.Z.); (L.L.); (E.P.)
| | - Luca Lombardo
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (S.Z.); (L.L.); (E.P.)
| | - Enzo Perri
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (S.Z.); (L.L.); (E.P.)
| | - Mauro Durante
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, 56121 Pisa, Italy; (M.D.); (R.B.)
| | - Rodolfo Bernardi
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, 56121 Pisa, Italy; (M.D.); (R.B.)
| |
Collapse
|
9
|
Guarino F, Cicatelli A, Castiglione S, Agius DR, Orhun GE, Fragkostefanakis S, Leclercq J, Dobránszki J, Kaiserli E, Lieberman-Lazarovich M, Sõmera M, Sarmiento C, Vettori C, Paffetti D, Poma AMG, Moschou PN, Gašparović M, Yousefi S, Vergata C, Berger MMJ, Gallusci P, Miladinović D, Martinelli F. An Epigenetic Alphabet of Crop Adaptation to Climate Change. Front Genet 2022; 13:818727. [PMID: 35251130 PMCID: PMC8888914 DOI: 10.3389/fgene.2022.818727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 01/10/2023] Open
Abstract
Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change. In addition, we discuss a speculative point of view, in which we try to decipher the “epigenetic alphabet” that underlies crop adaptation mechanisms to climate change. The understanding of these mechanisms will pave the way to new strategies to design and implement the next generation of cultivars with a broad range of tolerance/resistance to stresses as well as balanced agronomic traits, with a limited loss of (epi)genetic variability.
Collapse
Affiliation(s)
- Francesco Guarino
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Dolores R. Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Gul Ebru Orhun
- Bayramic Vocational College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | | | - Julie Leclercq
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Institut Agro, Montpellier, France
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cristina Vettori
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Anna M. G. Poma
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, Aquila, Italy
| | - Panagiotis N. Moschou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Zagreb, Croatia
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Margot M. J. Berger
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| |
Collapse
|
10
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
11
|
In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. PLANTS 2021; 10:plants10061096. [PMID: 34070712 PMCID: PMC8227271 DOI: 10.3390/plants10061096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetics involves the heritable changes in patterns of gene expression determined by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic variation, which can induce phenotypic alterations in plants under stress. Some of the stress-driven changes in plants are temporary, while some modifications may be stable and inheritable to the next generations to allow them to cope with such extreme stress challenges in the future. In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic and biotic stresses that alter their growth and development. We emphasize the molecular process underlying changes in DNA methylation, differential variation for different species, the roles of non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize DNA methylation as a significant future research priority for tailoring crops according to various challenging environmental issues.
Collapse
|
12
|
Skorupa M, Szczepanek J, Mazur J, Domagalski K, Tretyn A, Tyburski J. Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. PLoS One 2021; 16:e0251675. [PMID: 34043649 PMCID: PMC8158878 DOI: 10.1371/journal.pone.0251675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 01/19/2023] Open
Abstract
Here we determined the impact of salt shock and salt stress on the level of DNA methylation in selected CpG islands localized in promoters or first exons of sixteen salt-responsive genes in beets. Two subspecies differing in salt tolerance were subjected for analysis, a moderately salt-tolerant sugar beet Beta vulgaris ssp. vulgaris cv. Huzar and a halophytic beet, Beta vulgaris ssp. maritima. The CpG island methylation status was determined. All target sequences were hyper- or hypomethylated under salt shock and/or salt stress in one or both beet subspecies. It was revealed that the genomic regions analyzed were highly methylated in both, the salt treated plants and untreated controls. Methylation of the target sequences changed in a salt-dependent manner, being affected by either one or both treatments. Under both shock and stress, the hypomethylation was a predominant response in sugar beet. In Beta vulgaris ssp. maritima, the hypermethylation occurred with higher frequency than hypomethylation, especially under salt stress and in the promoter-located CpG sites. Conversely, the hypomethylation of the promoter-located CpG sites predominated in sugar beet plants subjected to salt stress. This findings suggest that DNA methylation may be involved in salt-tolerance and transcriptomic response to salinity in beets.
Collapse
Affiliation(s)
- Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- * E-mail:
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Mazur
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Domagalski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Jarosław Tyburski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
13
|
Kumar S, Mohapatra T. Dynamics of DNA Methylation and Its Functions in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:596236. [PMID: 34093600 PMCID: PMC8175986 DOI: 10.3389/fpls.2021.596236] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/19/2021] [Indexed: 05/20/2023]
Abstract
Epigenetic modifications in DNA bases and histone proteins play important roles in the regulation of gene expression and genome stability. Chemical modification of DNA base (e.g., addition of a methyl group at the fifth carbon of cytosine residue) switches on/off the gene expression during developmental process and environmental stresses. The dynamics of DNA base methylation depends mainly on the activities of the writer/eraser guided by non-coding RNA (ncRNA) and regulated by the developmental/environmental cues. De novo DNA methylation and active demethylation activities control the methylation level and regulate the gene expression. Identification of ncRNA involved in de novo DNA methylation, increased DNA methylation proteins guiding DNA demethylase, and methylation monitoring sequence that helps maintaining a balance between DNA methylation and demethylation is the recent developments that may resolve some of the enigmas. Such discoveries provide a better understanding of the dynamics/functions of DNA base methylation and epigenetic regulation of growth, development, and stress tolerance in crop plants. Identification of epigenetic pathways in animals, their existence/orthologs in plants, and functional validation might improve future strategies for epigenome editing toward climate-resilient, sustainable agriculture in this era of global climate change. The present review discusses the dynamics of DNA methylation (cytosine/adenine) in plants, its functions in regulating gene expression under abiotic/biotic stresses, developmental processes, and genome stability.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | |
Collapse
|
14
|
Banerjee A, Singh A, Roychoudhury A. De novo RNA-Seq analysis in sensitive rice cultivar and comparative transcript profiling in contrasting genotypes reveal genetic biomarkers for fluoride-stress response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115378. [PMID: 33254681 DOI: 10.1016/j.envpol.2020.115378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 06/12/2023]
Abstract
The fluoride-sensitive indica rice cultivar, IR-64 was subjected to NaF-treatment for 25 days, following which RNA-Seq analysis identified significant up and down regulation of 1,303 and 93 transcripts respectively. Gene ontology (GO) enrichment analysis classified transcripts into groups related to 'cellular part', 'membrane', 'catalytic activity', 'transporter activity', 'binding', 'metabolic processes' and 'cellular processes'. Analysis of differentially expressed genes (DEGs) revealed fluoride-mediated suppression of abscisic acid (ABA) biosynthesis and signaling. Instead, the gibberellin-dependent pathway and signaling via ABA-independent transcription factors (TFs) was activated. Comparative profiling of selected DEGs in IR-64 and fluoride-tolerant variety, Khitish revealed significant cytoskeletal and nucleosomal remodelling, accompanied with escalated levels of autophagy in stressed IR-64 (unlike that in stressed Khitish). Genes associated with ion, solute and xenobiotic transport were strongly up regulated in stressed IR-64, indicating potential fluoride entry through these channels. On the contrary, genes associated with xenobiotic mobility were suppressed in the tolerant cultivar, which restricted bioaccumulation and translocation of fluoride. Pairwise expression profile analysis between stressed IR-64 and Khitish, supported by extensive statistical modelling predicted that fluoride susceptibility was associated with high expression of genes like amino acid transporter, ABC transporter2, CLCd, MFS monosaccharide transporter, SulfT2.1 and PotT2 while fluoride tolerance with high expression of Sweet11.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Ankur Singh
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
15
|
The mitochondrial isoform glutathione peroxidase 3 (OsGPX3) is involved in ABA responses in rice plants. J Proteomics 2020; 232:104029. [PMID: 33160103 DOI: 10.1016/j.jprot.2020.104029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Different environmental conditions can lead plants to a condition termed oxidative stress, which is characterized by a disruption in the equilibrium between the production of reactive oxygen species (ROS) and antioxidant defenses. Glutathione peroxidase (GPX), an enzyme that acts as a peroxide scavenger in different organisms, has been identified as an important component in the signaling pathway during the developmental process and in stress responses in plants and yeast. Here, we demonstrate that the mitochondrial isoform of rice (Oryza sativa L. ssp. Japonica cv. Nipponbare) OsGPX3 is induced after treatment with the phytohormone abscisic acid (ABA) and is involved in its responses and in epigenetic modifications. Plants that have been silenced for OsGPX3 (gpx3i) present substantial changes in the accumulation of proteins related to these processes. These plants also have several altered ABA responses, such as germination, ROS accumulation, stomatal closure, and dark-induced senescence. This study is the first to demonstrate that OsGPX3 plays a role in ABA signaling and corroborate that redox homeostasis enzymes can act in different and complex pathways in plant cells. SIGNIFICANCE: This work proposes the mitochondrial glutathione peroxidase (OsGPX3) as a novel ABA regulatory pathway component. Our results suggest that this antioxidant enzyme is involved in ABA-responses, highlighting the complex pathways that these proteins can participate beyond the regulation of cellular redox status.
Collapse
|
16
|
m 6A RNA Methylation in Marine Plants: First Insights and Relevance for Biological Rhythms. Int J Mol Sci 2020; 21:ijms21207508. [PMID: 33053767 PMCID: PMC7589960 DOI: 10.3390/ijms21207508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
Circadian regulations are essential for enabling organisms to synchronize physiology with environmental light-dark cycles. Post-transcriptional RNA modifications still represent an understudied level of gene expression regulation in plants, although they could play crucial roles in environmental adaptation. N6-methyl-adenosine (m6A) is the most prevalent mRNA modification, established by "writer" and "eraser" proteins. It influences the clockwork in several taxa, but only few studies have been conducted in plants and none in marine plants. Here, we provided a first inventory of m6A-related genes in seagrasses and investigated daily changes in the global RNA methylation and transcript levels of writers and erasers in Cymodocea nodosa and Zostera marina. Both species showed methylation peaks during the dark period under the same photoperiod, despite exhibiting asynchronous changes in the m6A profile and related gene expression during a 24-h cycle. At contrasting latitudes, Z. marina populations displayed overlapping daily patterns of the m6A level and related gene expression. The observed rhythms are characteristic for each species and similar in populations of the same species with different photoperiods, suggesting the existence of an endogenous circadian control. Globally, our results indicate that m6A RNA methylation could widely contribute to circadian regulation in seagrasses, potentially affecting the photo-biological behaviour of these plants.
Collapse
|
17
|
Jung J, Kim SK, Jung SH, Jeong MJ, Ryu CM. Sound Vibration-Triggered Epigenetic Modulation Induces Plant Root Immunity Against Ralstonia solanacearum. Front Microbiol 2020; 11:1978. [PMID: 32973716 PMCID: PMC7472266 DOI: 10.3389/fmicb.2020.01978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Sound vibration (SV) is one of the several environmental stimuli that induce physiological changes in plants including changes in plant immunity. Immune activation is a complicated process involving epigenetic modifications, however, SV-induced epigenetic modifications remain unexplored. Here, we performed an integrative analysis comprising chromatin immunoprecipitation (ChIP) and microRNA sequencing (miRNA-seq) to understand the role of SV-mediated epigenetic modifications in immune activation in Arabidopsis thaliana against the root pathogen Ralstonia solanacearum. Plants exposed to SV (10 kHz) showed abundant H3K27me3 modification in the promoter regions of aliphatic glucosinolate biosynthesis and cytokinin signaling genes, leading to transcriptional changes that promote immunity. Additionally, 10 kHz SV down-regulated miR397b expression, thus activating three target LACCASE transcripts that mediate cell wall reinforcement via lignin accumulation. Taken together, SV triggers epigenetic modification of genes involved in secondary metabolite biosynthesis, defense hormone signaling, and pre-formed defense in A. thaliana, leading to the activation of plant immunity against R. solanacearum.
Collapse
Affiliation(s)
- Jihye Jung
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sung-Hee Jung
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
18
|
Rathore P, Raina SN, Kumar S, Bhat V. Retro-Element Gypsy-163 Is Differentially Methylated in Reproductive Tissues of Apomictic and Sexual Plants of Cenchrus ciliaris. Front Genet 2020; 11:795. [PMID: 32849800 PMCID: PMC7387646 DOI: 10.3389/fgene.2020.00795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
Apomixis, an asexual mode of reproduction through seeds, has immense scope for crop improvement due to its ability to fix hybrid vigor. In C. ciliaris, a predominantly apomictically reproducing range grass, apomixis is genetically controlled by an apospory-specific-genomic-region (ASGR) which is enriched with retrotransposons. Earlier studies showed insertional polymorphisms of a few ASGR-specific retrotransposons between apomictic and sexual plants of C. ciliaris. REs are mainly regulated at the transcriptional level through cytosine methylation. To understand the possible association of ASGR-specific retrotransposon to apomixis, the extent and pattern of differential methylation of Gy163 RE and its impact on transcription were investigated in two genotypes each of apomictic and sexual plants of C. ciliaris. We observed that Gy163 encodes for an integrase domain of RE Ty3-Gypsy, is differentially methylated between reproductive tissues of apomictic and sexual plants. However, leaf tissues did not exhibit differential methylation between apomictic and sexual plants. Among the three contexts (CG, CHG, and CHH) of cytosine methylation, the maximum variation was observed in CHH context in reproductive (at aposporous initial and mature embryo sac stages) tissues of apomictic plants implicating RdDM pathway in methylation of Gy163. Quantitative PCR analysis showed that Gy163 transcripts are expressed more in the reproductive tissues of apomictic plants compared to that in the sexual plants, which was negatively correlated with the methylation level. Thus, the study helps in understanding the role of RE present in ASGR in epigenetic regulation of apomictic mode of reproduction in C. ciliaris.
Collapse
Affiliation(s)
- Priyanka Rathore
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishnu Bhat
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, India
| |
Collapse
|
19
|
Corbin KR, Bolt B, Rodríguez López CM. Breeding for Beneficial Microbial Communities Using Epigenomics. Front Microbiol 2020; 11:937. [PMID: 32477316 PMCID: PMC7242621 DOI: 10.3389/fmicb.2020.00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Affiliation(s)
- Kendall R Corbin
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States.,Biosystems and Agricultural Engineering, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Bridget Bolt
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Carlos M Rodríguez López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
20
|
Sui C, Wang Q, Zhou Y, Zhang D, Yin H, Ai S. Homogeneous detection of 5-hydroxymethylcytosine based on electrochemiluminescence quenching of g-C 3N 4/MoS 2 nanosheets by ferrocenedicarboxylic acid polymer. Talanta 2020; 219:121211. [PMID: 32887114 DOI: 10.1016/j.talanta.2020.121211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
Abstract
A sensitively homogeneous electrochemiluminescence (ECL) method was developed for 5-hydroxymethylcytosine (5hmC) detection using TiO2/MoS2/g-C3N4/GCE as substrate electrode, where g-C3N4 was employed as the ECL active material, the MoS2 nanosheets were used as co-catalyst, and TiO2 was adopted as phosphate group capture reagent. To achieve the specific recognition and capture of 5hmC, the covalent reaction between -CH2OH and -SH was employed under the catalysis of HhaI methyltransferase, in which, -SH functionalized ferrocenedicarboxylic acid polymer (PFc-SH) was prepared as 5hmC capture reagent and ECL signal quencher. Then, based on the interaction between TiO2 and phosphate group of 5hmC, the target was recognized and captured on electrode, resulting in a decreased ECL response due to the quenching effect of PFc-SH. Under optimal conditions, the biosensor presented the linear range from 0.01 to 500 nM with the detection limit of 3.21 pM (S/N = 3). The steric effect on electrode surface is a bottle-neck issue restricting devised biosensors advancement. In this work, the reaction between 5hmC and PFc was carried out in the solution, which can avoid steric effect on electrode surface to keep the high activity of enzyme. In addition, the biosensor was successfully applied to detect 5hmC in genomic DNA of chicken embryo fibroblast cells and different tissues of rice seedlings.
Collapse
Affiliation(s)
- Chengji Sui
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Qian Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Dingding Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| |
Collapse
|
21
|
Omony J, Nussbaumer T, Gutzat R. DNA methylation analysis in plants: review of computational tools and future perspectives. Brief Bioinform 2020; 21:906-918. [PMID: 31220217 DOI: 10.1093/bib/bbz039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA methylation studies have quickly expanded due to advances in next-generation sequencing techniques along with a wealth of computational tools to analyze the data. Most of our knowledge about DNA methylation profiles, epigenetic heritability and the function of DNA methylation in plants derives from the model species Arabidopsis thaliana. There are increasingly many studies on DNA methylation in plants-uncovering methylation profiles and explaining variations in different plant tissues. Additionally, DNA methylation comparisons of different plant tissue types and dynamics during development processes are only slowly emerging but are crucial for understanding developmental and regulatory decisions. Translating this knowledge from plant model species to commercial crops could allow the establishment of new varieties with increased stress resilience and improved yield. In this review, we provide an overview of the most commonly applied bioinformatics tools for the analysis of DNA methylation data (particularly bisulfite sequencing data). The performances of a selection of the tools are analyzed for computational time and agreement in predicted methylated sites for A. thaliana, which has a smaller genome compared to the hexaploid bread wheat. The performance of the tools was benchmarked on five plant genomes. We give examples of applications of DNA methylation data analysis in crops (with a focus on cereals) and an outlook for future developments for DNA methylation status manipulations and data integration.
Collapse
Affiliation(s)
- Jimmy Omony
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology, Department of Environmental Science, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Augsburg, Germany; CK CARE Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
22
|
Gallo-Franco JJ, Sosa CC, Ghneim-Herrera T, Quimbaya M. Epigenetic Control of Plant Response to Heavy Metal Stress: A New View on Aluminum Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:602625. [PMID: 33391313 PMCID: PMC7772216 DOI: 10.3389/fpls.2020.602625] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
High concentrations of heavy metal (HM) ions impact agronomic staple crop production in acid soils (pH ≤ 5) due to their cytotoxic, genotoxic, and mutagenic effects. Among cytotoxic ions, the trivalent aluminum cation (Al3+) formed by solubilization of aluminum (Al) into acid soils, is one of the most abundant and toxic elements under acidic conditions. In recent years, several studies have elucidated the different signal transduction pathways involved in HM responses, identifying complementary genetic mechanisms conferring tolerance to plants. Although epigenetics has become more relevant in abiotic stress studies, epigenetic mechanisms underlying plant responses to HM stress remain poorly understood. This review describes the main epigenetic mechanisms related to crop responses during stress conditions, specifically, the molecular evidence showing how epigenetics is at the core of plant adaptation responses to HM ions. We highlight the epigenetic mechanisms that induce Al tolerance. Likewise, we analyze the pivotal relationship between epigenetic and genetic factors associated with HM tolerance. Finally, using rice as a study case, we performed a general analysis over previously whole-genome bisulfite-seq published data. Specific genes related to Al tolerance, measured in contrasting tolerant and susceptible rice varieties, exhibited differences in DNA methylation frequency. The differential methylation patterns could be associated with epigenetic regulation of rice responses to Al stress, highlighting the major role of epigenetics over specific abiotic stress responses.
Collapse
Affiliation(s)
- Jenny Johana Gallo-Franco
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Cali, Colombia
| | - Chrystian Camilo Sosa
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Cali, Colombia
- Grupo de Investigación en Evolución, Ecología y Conservación EECO, Programa de Biología, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia
| | | | - Mauricio Quimbaya
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Cali, Colombia
- *Correspondence: Mauricio Quimbaya,
| |
Collapse
|
23
|
Sun RZ, Cheng G, Li Q, Zhu YR, Zhang X, Wang Y, He YN, Li SY, He L, Chen W, Pan QH, Duan CQ, Wang J. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. BMC PLANT BIOLOGY 2019; 19:583. [PMID: 31878879 PMCID: PMC6933938 DOI: 10.1186/s12870-019-2186-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/05/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Light conditions significantly influence grape berry ripening and the accumulation of phenolic compounds, but the underlying molecular basis remains partially understood. Here, we applied integrated transcriptomics and pathway-level metabolomics analyses to investigate the effect of cluster bagging during various developmental stages on phenolic metabolism in Cabernet Sauvignon grapes. RESULTS Bagging treatments had limited effects on berry quality attributes at harvest and did not consistently affect phenolic acid biosynthesis between seasons. Significantly elevated flavan-3-ol and flavonol contents were detected in re-exposed berries after bagging during early-developmental stages, while bagging after véraison markedly inhibited skin anthocyanin accumulation. Several anthocyanin derivatives and flavonol glycosides were identified as marker phenolic metabolites for distinguishing bagged and non-bagged grapes. Coordinated transcriptional changes in the light signaling components CRY2 and HY5/HYHs, transcription regulator MYBA1, and enzymes LAR, ANR, UFGT and FLS4, coincided well with light-responsive biosynthesis of the corresponding flavonoids. The activation of multiple hormone signaling pathways after both light exclusion and re-exposure treatments was inconsistent with the changes in phenolic accumulation, indicating a limited role of plant hormones in mediating light/darkness-regulated phenolic biosynthesis processes. Furthermore, gene-gene and gene-metabolite network analyses discovered that the light-responsive expression of genes encoding bHLH, MYB, WRKY, NAC, and MADS-box transcription factors, and proteins involved in genetic information processing and epigenetic regulation such as nucleosome assembly and histone acetylation, showed a high positive correlation with grape berry phenolic accumulation in response to different light regimes. CONCLUSIONS Altogether, our findings provide novel insights into the understanding of berry phenolic biosynthesis under light/darkness and practical guidance for improving grape features.
Collapse
Affiliation(s)
- Run-Ze Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Guo Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Qiang Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan-Rong Zhu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Nongfu Spring Co. Ltd., Hangzhou, 310000, China
| | - Xue Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Ruifeng Oseis (Yantai) Wine Manor Co. Ltd., Yantai, 264010, China
| | - Yu Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Yan-Nan He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Si-Yu Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Lei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Wu Chen
- CITIC Guoan Wine Co. Ltd., Xinjiang, 832200, Manasi, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| |
Collapse
|
24
|
Moshynets OV, Babenko LM, Rogalsky SP, Iungin OS, Foster J, Kosakivska IV, Potters G, Spiers AJ. Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PLoS One 2019; 14:e0209460. [PMID: 30802259 PMCID: PMC6388923 DOI: 10.1371/journal.pone.0209460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 01/07/2023] Open
Abstract
Several model plants are known to respond to bacterial quorum sensing molecules with altered root growth and gene expression patterns and induced resistance to plant pathogens. These compounds may represent novel elicitors that could be applied as seed primers to enhance cereal crop resistance to pathogens and abiotic stress and to improve yields. We investigated whether the acyl-homoserine lactone N-hexanoyl-L-homoserine lactone (C6-HSL) impacted winter wheat (Triticum aestivum L.) seed germination, plant development and productivity, using two Ukrainian varieties, Volodarka and Yatran 60, in both in vitro experiments and field trials. In vitro germination experiments indicated that C6-HSL seed priming had a small but significant positive impact on germination levels (1.2x increase, p < 0.0001), coleoptile and radicle development (1.4x increase, p < 0.0001). Field trials over two growing seasons (2015–16 and 2016–17) also demonstrated significant improvements in biomass at the tillering stage (1.4x increase, p < 0.0001), and crop structure and productivity at maturity including grain yield (1.4–1.5x increase, p < 0.0007) and quality (1.3x increase in good grain, p < 0.0001). In some cases variety effects were observed (p ≤ 0.05) suggesting that the effect of C6-HSL seed priming might depend on plant genetics, and some benefits of priming were also evident in F1 plants grown from seeds collected the previous season (p ≤ 0.05). These field-scale findings suggest that bacterial acyl-homoserine lactones such as C6-HSL could be used to improve cereal crop growth and yield and reduce reliance on fungicides and fertilisers to combat pathogens and stress.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev, Ukraine
- * E-mail: (OM); (AS)
| | - Lidia M. Babenko
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Sergiy P. Rogalsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Olga S. Iungin
- D.K. Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jessica Foster
- School of Science, Engineering and Technology, Abertay University, Dundee, United Kingdom
| | - Iryna V. Kosakivska
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Spiers
- School of Science, Engineering and Technology, Abertay University, Dundee, United Kingdom
- * E-mail: (OM); (AS)
| |
Collapse
|
25
|
Kumar S, Chinnusamy V, Mohapatra T. Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Front Genet 2018; 9:640. [PMID: 30619465 PMCID: PMC6305559 DOI: 10.3389/fgene.2018.00640] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Modification of DNA bases plays vital roles in the epigenetic control of gene expression in both animals and plants. Though much attention is given to the conventional epigenetic signature 5-methylcytosine (5-mC), the field of epigenetics is attracting increased scientific interest through the discovery of additional modifications of DNA bases and their roles in controlling gene expression. Theoretically, each of the DNA bases can be modified; however, modifications of cytosine and adenine only are known so far. This review focuses on the recent findings of the well-studied cytosine modifications and yet poorly characterized adenine modification which serve as an additional layer of epigenetic regulation in animals and discuss their potential roles in plants. Cytosine modification at symmetric (CG, CHG) and asymmetric (CHH) contexts is a key epigenetic feature. In addition to the ROS1 family mediated demethylation, Ten-Eleven Translocation family proteins-mediated hydroxylation of 5-mC to 5-hydroxymethylcytosine as additional active demethylation pathway are also discussed. The epigenetic marks are known to be associated with the regulation of several cellular and developmental processes, pluripotency of stem cells, neuron cell development, and tumor development in animals. Therefore, the most recently discovered N6-methyladenine, an additional epigenetic mark with regulatory potential, is also described. Interestingly, these newly discovered modifications are also found in the genomes which lack canonical 5-mC, signifying their independent epigenetic functions. These modified DNA bases are considered to be important players in epigenomics. The potential for combinatorial interaction among the known modified DNA bases suggests that epigenetic codon is likely to be substantially more complicated than it is thought today.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | |
Collapse
|
26
|
Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (Hordeum vulgare). EPIGENOMES 2018. [DOI: 10.3390/epigenomes2020012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|