1
|
Ikhlaq A, Kanwal M, Rizvi OS, Ramzan N, Akram A, Qazi UY, Qi F, Hassan SU, Javaid R. Decontamination of fish aquarium wastewater by ozonation catalyzed by multi-metal loaded activated carbons for sustainable aquaculture. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2025; 193:374-384. [DOI: 10.1016/j.psep.2024.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Ytteborg E, Lazado CC, Noble C, Hansen RI, Johansen LH. The skin mucosal barrier of lumpfish (Cyclopterus lumpus L.) is weakened by exposure to potential aquaculture production-related stressors. JOURNAL OF FISH BIOLOGY 2025; 106:33-47. [PMID: 36807134 DOI: 10.1111/jfb.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Various cleaner fish species, such as the lumpfish (Cyclopterus lumpus L.), are used in the sea cage production of Atlantic salmon (Salmo salar L.) as a control measure against the ectoparasitic salmon louse (Lepeophtheirus salmonis). Nonetheless, during severe lice infestation, alternative treatments are required to control parasitic burden. The aim of this study was to gain insight into how lumpfish skin responds to different chemicals used to treat parasites. The authors collected skin from lumpfish from both research facilities (tank-reared fish) and commercial production (cage-reared fish) and used operational welfare indicators, in vitro models, histology and transcriptomics to study how the skin responded to two anti-parasitic oxidative chemicals, hydrogen peroxide (H2O2) and peracetic acid. Lumpfish sampled from the farm were classified as clinically healthy or weak based on their morbidity status, and fish from each category were used to gain insight into how the therapeutics affect the skin barrier. Differences between healthy and weakened (moribund) fish, and between treated fish from each of the two groups, were observed. Histological examination showed an overall reduced skin quality in fish characterized as moribund, including different grades of exposed bony plates. In vitro oxidant-treated lumpfish skin had reduced the migration capacity of keratocytes, a weakened epidermal barrier, and altered gene transcription, changes that are known predisposing factors to secondary infections. Skin from non-treated, healthy fish sampled from commercial farms exhibited similar features and attributes to oxidant-exposed tank-reared fish from a research facility, suggesting that apparently healthy cage-held lumpfish exhibited stress responses in the epidermal barrier. The results of the study outline the risks and consequences lumpfish can face if accidentally subjected to potential anti-parasitic oxidant treatments aimed at Atlantic salmon. It also strengthens the evidence behind the requirement that lumpfish should be removed from the cages before being potentially exposed to this type of treatment and outlines the potential risks of differing husbandry practices upon lumpfish health, welfare and resilience.
Collapse
Affiliation(s)
| | | | - Chris Noble
- Division of Aquaculture, Nofima, Tromsø, Norway
| | | | | |
Collapse
|
3
|
El-Fahla NA, Saad El-Din MI, El Mageed YSMA, Gad El-Hak HN, El-Shenawy NS, Rashed HAEH. Seasonal fluctuations of heavy metal accumulation and gastrointestinal helminth induce oxidative stress and histological lesions in resident catfish Clarias gariepinus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124989. [PMID: 39306069 DOI: 10.1016/j.envpol.2024.124989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The exposure of the African catfish (Clarias gariepinus) to various environmental contaminants leads to physiological and histological alterations. Therefore, the study aimed to assess the impact of seasonal variations of ecological contaminants as external stressors and internal stressors via helminth infections on oxidative stress and histopathology in resident C. gariepinus at EL-Salam Canal, Egypt. Seasonal water and sediment samples were collected to assess physicochemical parameters and heavy metals. The length, weight, and sex were recorded for each fish sample. The gastrointestinal tract was dissected from the visceral cavity, and the helminths were extracted and identified using SEM photos based on their morphological characteristics. The parasitic dominance in the gastrointestinal helminths was calculated. The heavy metal concentrations, bioaccumulation (BAF), and biosedimentation (BSF) factors were considered in the muscles and intestine. Specimens of muscles and intestines were removed to determine oxidative status. In addition, pieces of skin, muscles, stomachs, and intestines were subjected to light microscopy to determine the alterations. The calcium, magnesium, and potassium levels were within safe limits. Sulfate levels consistently remained below the maximum permissible thresholds throughout the seasons. Among the heavy metals examined, the highest accumulation was found in the intestinal tissues of C. gariepinus, while muscle tissues showed lower levels. The variability in metal concentrations across water, sediment, muscles, and intestines underscores the different capacities of these environments to accumulate heavy metals. The elevated metal levels in fish tissues raise concerns about potential health risks for humans who consume contaminated fish, highlighting significant bioaccumulation within the food chain. The result indicated that Cu in the sediment samples was associated with parasite abundance. The dual stress from environmental pollutants and parasitic infections exacerbates oxidative stress and causes notable histopathological changes in the tissues of the catfish. These results highlight the intricate interplay between external and internal stressors, emphasizing the need for continuous monitoring and management of aquatic ecosystems to safeguard the health of resident fish populations. It provides insight into how these factors affect fish health.
Collapse
Affiliation(s)
- Nadia A El-Fahla
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Marwa I Saad El-Din
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Heba N Gad El-Hak
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | | |
Collapse
|
4
|
Dezfuli BS, Lorenzoni M, Carosi A, Bosi G, Franchella E, Poddubnaya LG. Glandular cell products in adult cestode: A new tale of tapeworm interaction with fish innate immune response. Int J Parasitol Parasites Wildl 2024; 25:100991. [PMID: 39329047 PMCID: PMC11426061 DOI: 10.1016/j.ijppaw.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
The caryophyllidean tapeworm Caryophyllaeus brachycollis (Janiszewska, 1953) is indigenous to the Lake Blidinje in the west-central part of Bosnia-Herzegovina where it infects chub Squalius tenellus (Heckel, 1843). Of 22 chubs examined, 45% were infected with C. brachycollis and a total of 912 specimens of this worm were counted. Histopathological and ultrastructural investigations were conducted on interface region between chub intestine and cestode scolex. Different sizes of lipid droplets in cestode tegument, in interface region and in chub enterocytes were observed. C. brachycollis lacks any specialized attachment organs and with an expanded, flattened scolex goes deep in mucosal folds and firmly attaches to them. In the epithelium of fish intestine, near the site of worm attachment, a high number of mucous cells and several rodlet cells were noticed. Indeed, within the intestinal tunica propria-submucosa, beneath the site of scolex attachment, numerous neutrophils and mast cells were encountered. Transmission electron microscopy of the apical part of the scolex of C. brachycollis showed the occurrence of a multicellular, syncytial glandular complex, the scolex produced membrane-bound secretory granules and their fibrillar contents discharged by merocrine and apocrine secretion onto the host-parasite interface. Our results are among the first to provide evidence on the sophisticated relationship between fish intestine and amorphous-undefinable substance produced by scolex glandular complex.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, St. Elce di Sotto 5, 06123, Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, St. Elce di Sotto 5, 06123, Perugia, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, St. University 6, 26900, Milan, Italy
| | - Emanuela Franchella
- Department of Life Sciences & Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy
| | - Larisa G Poddubnaya
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742, Borok, Yaroslavl District, Russia
| |
Collapse
|
5
|
Malik MS, Rebl A, Burgerhout E, Lazado CC. Embryonic Temperature Influences the Mucosal Responses of Atlantic Salmon Alevins to a Bacterial Challenge. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:1. [PMID: 39560796 DOI: 10.1007/s10126-024-10386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
The present work investigated the effects of embryonic temperature on the responses of Atlantic salmon (Salmo salar) alevins to a bacterial challenge using Yersinia ruckeri as a model pathogen. Embryos were reared at 4 °C, 6 °C, and 8 °C from fertilization to the eyed-egg stage. Alevins, before the start of feeding, were challenged with the pathogen, and mortality and early immune responses in mucosal organs were assessed. Fish from the 4 °C and 6 °C groups exhibited higher survival probabilities than those from the 8 °C group 72 h post-infection. Mild histopathological changes were observed in the gills and skin across all temperature groups, with bacterial antigen detected in the secondary lamellae of gills and in the skin epithelial and basal layers. Gene expression profiling revealed slightly distinct immune gene expression patterns in low-temperature groups (4 °C and 6 °C) compared to the 8 °C group. Gelsolin (gsn) expression increased in the skin across all temperature groups at 72 h post-infection. Claudin (cldn4) and collagen (col1a) were only upregulated in the skin of the 4 °C group, while heat shock protein 70 (hspa1a) was downregulated in the gills of infected fish at 72 h compared to controls. Toll-like receptor 13 (tlr13) expression increased in infected fish at 24 h compared to controls. In the 6 °C and 8 °C groups, gsn expression also increased at 72 h post-infection. Cldn4 expression increased only in the gills of 8 °C infected fish. This study revealed that low embryonic temperature could influence survival and mucosal immune defences following a bacterial challenge in Atlantic salmon alevins.
Collapse
Affiliation(s)
- Muhammad Salman Malik
- Department of Fish Health, Fisheries and Aquaculture Research, Nofima AS, The Norwegian Institute of Food, 1433, Ås, Norway.
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Erik Burgerhout
- Department of Production Biology, Fisheries and Aquaculture Research, Nofima AS, The Norwegian Institute of Food, 9019, Tromsø, Norway
| | - Carlo C Lazado
- Department of Fish Health, Fisheries and Aquaculture Research, Nofima AS, The Norwegian Institute of Food, 1433, Ås, Norway
| |
Collapse
|
6
|
Wang Q, Guo B, Yang H, Zhou W, Lv H, Yao X, Li X, Hu Z, Wang J. Biochemical and transcriptomic analyses reveal the toxicological response and potential mechanism of butyl benzyl phthalate in zebrafish gills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175623. [PMID: 39163942 DOI: 10.1016/j.scitotenv.2024.175623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Butyl benzyl phthalate (BBP), a common phthalate plasticizer, is frequently detected in aquatic environments. However, there has been relatively little research on its effects on gill-related responses. This study exposed adult zebrafish to BBP concentrations ranging from 5 to 500 μg/L for 28 days, specifically investigating its toxicity in the gills. Assessment of oxidative stress biomarkers and gene expression related to apoptosis and mitochondria was conducted. Results demonstrated that exposure to 500 μg/L of BBP disrupted the antioxidant defense system, leading to lipid peroxidation and DNA damage. Moreover, the expression level of the caspase-3 gene exhibited an approximate two-fold increase, whereas the expression of 18rs-rrn decreased by 50 % on day 28. Gene Ontology enrichment analysis indicated suppressed expression of antioxidant and metabolic process terms, alongside inhibition of metabolism, immune, and signal transduction-related pathways. This study offers novel insights into the toxic effects and mechanisms of BBP on fish, providing valuable data for assessing environmental risks linked to BBP contamination and advocating for its management in aquatic ecosystems.
Collapse
Affiliation(s)
- Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Bin Guo
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huiyan Yang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wensa Zhou
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhuran Hu
- Shandong Green and Blue Bio-technology Co. Ltd., Tai'an, Shandong 271400, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
7
|
Bacchetta C, Cazenave J, Mora C, Michlig MP, Repetti MR, Rossi AS. Non-lethal biomarkers as promising tools for fish health assessment: In situ exposure to bifenthrin as a case study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107083. [PMID: 39265221 DOI: 10.1016/j.aquatox.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Non-lethal biomonitoring should provide an innovative approach to establish bioethical protocols for the management of both aquaculture and wild fisheries resources. We aimed to assess non-lethal biomarkers in Piaractus mesopotamicus caged in a rice field during a bifenthrin (BF) application. We analyzed parameters related to the immune system, energy metabolism and oxidative stress in fish skin mucus and blood plasma. Fish exposed to BF showed a significant increase in skin mucus glucose levels and the enzymatic activities of protease, alkaline phosphatase and superoxide dismutase. Regarding plasmatic parameters, BF increased the levels of glucose, total protein and albumin, but decreased triglycerides. In addition, increased activities of lysozyme and alkaline phosphatase were found in the blood plasma of exposed fish. Our results indicated an increased energy demand, altered immune function and a mild oxidative stress response in fish exposed in situ to BF. We have shown that skin mucus and blood plasma are very promising matrices for the development of non-lethal biomarkers to assess fish health in a stressed environment.
Collapse
Affiliation(s)
- Carla Bacchetta
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina; Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Celeste Mora
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Melina P Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santiago del Estero 2654, Santa Fe 3000, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santiago del Estero 2654, Santa Fe 3000, Argentina
| | - Andrea S Rossi
- Instituto Nacional de Limnología, CONICET, UNL, Santa Fe, Argentina; Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina; Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe 3000, Argentina.
| |
Collapse
|
8
|
Ara-Díaz JB, Bergstedt JH, Albaladejo-Riad N, Malik MS, Andersen Ø, Lazado CC. Mucosal organs exhibit distinct response signatures to hydrogen sulphide in Atlantic salmon (Salmo salar). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116617. [PMID: 38905940 DOI: 10.1016/j.ecoenv.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Hydrogen sulphide (H2S) is considered an immunotoxicant, and its presence in the water can influence the mucosal barrier functions of fish. However, there is a significant knowledge gap on how fish mucosa responds to low environmental H2S levels. The present study investigated the consequences of prolonged exposure to sub-lethal levels of H2S on the mucosal defences of Atlantic salmon (Salmo salar). Fish were continuously exposed to two levels of H2S (low: 0.05 µM; and high: 0.12 µM) for 12 days. Unexposed fish served as control. Molecular and histological profiling focused on the changes in the skin, gills and olfactory rosette. In addition, metabolomics and proteomics were performed on the skin and gill mucus. The gene expression profile indicated that the gills and olfactory rosette were more sensitive to H2S than the skin. The olfactory rosette showed a dose-dependent response, but not the gills. Genes related to stress responses were triggered at mucosal sites by H2S. Moreover, H2S elicited strong inflammatory responses, particularly in the gills. All mucosal organs demonstrated the key molecular repertoire for sulphide detoxification, but their temporal and spatial expression was not substantially affected by sub-lethal H2S levels. Mucosal barrier integrity was not considerably affected by H2S. Mucus metabolomes of the skin and gills were unaffected, but a matrix-dependent response was identified. Comparing the high-concentration group's skin and gills mucus metabolomes identified altered amino acid biosynthesis and metabolism pathways. The skin and gill mucus exhibited distinct proteomic profiles. Enrichment analysis revealed that proteins related to immunity and metabolism were affected in both mucus matrices. The present study expands our knowledge of the defence mechanisms against H2S at mucosal sites in Atlantic salmon. The findings offer insights into the health and welfare consequences of sub-lethal H2S, which can be incorporated into the risk assessment protocols in salmon land-based farms.
Collapse
Affiliation(s)
- Juan Bosco Ara-Díaz
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Julie Hansen Bergstedt
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, PO Box 101, Hirtshals 9850, Denmark
| | - Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Muhammad Salman Malik
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Øivind Andersen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway.
| |
Collapse
|
9
|
Vega B, Toro-Araneda T, Alvarado JF, Cárcamo CB, Guzmán F, Acosta F, Oliva M, Serrano E, Galarza JI, Álvarez CA. Effects of Hypoxia on the Antibacterial Activity of Epidermal Mucus from Chilean Meagre ( Cilus gilberti). Animals (Basel) 2024; 14:2014. [PMID: 38998124 PMCID: PMC11240494 DOI: 10.3390/ani14132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024] Open
Abstract
Comprehending the immune defense mechanisms of new aquaculture species, such as the Chilean meagre (Cilus gilberti), is essential for sustaining large-scale production. Two bioassays were conducted to assess the impact of acute and intermittent hypoxia on the antibacterial activity of juvenile Chilean meagre epidermal mucus against the potential pathogens Vibrio anguillarum and Vibrio ordalii. Lysozyme and peroxidase activities were also measured. In general, fish exposed to hypoxia showed a 9-30% reduction in mucus antibacterial activity at the end of hypoxic periods and after stimulation with lipopolysaccharide. However, following water reoxygenation, the activity of non-stimulated fish was comparable to that of fish in normoxic conditions, inhibiting bacterial growth by 35-52%. In the case of fish exposed to chronic hypoxia, the response against V. anguillarum increased by an additional 19.8% after 6 days of control inoculation. Lysozyme exhibited a similar pattern, while no modulation of peroxidase activity was detected post-hypoxia. These results highlight the resilience of C. gilberti to dissolved oxygen fluctuations and contribute to understanding the potential of mucus in maintaining the health of cultured fish and the development of future control strategies.
Collapse
Affiliation(s)
- Belinda Vega
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
| | - Teresa Toro-Araneda
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
| | - Juan F Alvarado
- Facultad de Ciencias Agronómicas, Universidad de El Salvador, San Salvador 3110, El Salvador
| | - Claudia B Cárcamo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
- Marine Department, Tilad Group, Riyadh 12821, Saudi Arabia
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35214 Taliarte, Spain
| | - Marcia Oliva
- Laboratorio de Cultivo de Peces Marinos, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Edison Serrano
- Laboratorio de Cultivo de Peces Marinos, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Janeth I Galarza
- Centro de Investigaciones Biológicas y Prácticas Académicas, Facultad de Ciencias del Mar, Universidad Estatal Península de Santa Elena, La Libertad 240204, Ecuador
| | - Claudio A Álvarez
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
- Laboratorio de Cultivo de Peces Marinos, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| |
Collapse
|
10
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
11
|
Tammas I, Bitchava K, Gelasakis AI. Transforming Aquaculture through Vaccination: A Review on Recent Developments and Milestones. Vaccines (Basel) 2024; 12:732. [PMID: 39066370 PMCID: PMC11281524 DOI: 10.3390/vaccines12070732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaculture has rapidly emerged as one of the fastest growing industries, expanding both on global and on national fronts. With the ever-increasing demand for proteins with a high biological value, the aquaculture industry has established itself as one of the most efficient forms of animal production, proving to be a vital component of global food production by supplying nearly half of aquatic food products intended for human consumption. As in classic animal production, the prevention of diseases constitutes an enduring challenge associated with severe economic and environmental repercussions. Nevertheless, remarkable strides in the development of aquaculture vaccines have been recently witnessed, offering sustainable solutions to persistent health-related issues challenging resilient aquaculture production. These advancements are characterized by breakthroughs in increased species-specific precision, improved vaccine-delivery systems, and innovations in vaccine development, following the recent advent of nanotechnology, biotechnology, and artificial intelligence in the -omics era. The objective of this paper was to assess recent developments and milestones revolving around aquaculture vaccinology and provide an updated overview of strengths, weaknesses, opportunities, and threats of the sector, by incorporating and comparatively discussing various diffuse advances that span across a wide range of topics, including emerging vaccine technologies, innovative delivery methods, insights on novel adjuvants, and parasite vaccine development for the aquaculture sector.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
12
|
Libanio Reis Santos E, Silva O, Nascimento Araújo BJ, de Lima Rodrigues M, de Oliveira-Lima J, Camargo-Mathias MI. Effects of sodium dodecylbenzene sulfonate (SDBS) on zebrafish ( Danio rerio) gills and blood. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:357-370. [PMID: 38305282 DOI: 10.1080/15287394.2024.2312253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Sodium dodecylbenzene sulfonate (SDBS) is an important surfactant used as a cleaning agent and industrial additive to remove unwanted chemicals which have been detected in the aquatic environment. The aim of this study was to examine the toxicological potential of SDBS on the gills of adult male zebrafish (Danio rerio) exposed to this chemical. For the 96 hr acute exposure, fish were divided into three groups: control, 0.25 mg/L, and 0.5 mg/L of SDBS. After the experiment, morphophysiological analyses (gill histopathology and histochemistry), oxidative stress (determination of gill activities of superoxide dismutase (SOD) and catalase (CAT)), and hematological analyses (leukocyte differentiation) were conducted. Data demonstrated that SDBS at both tested concentrations altered the histopathological index and initiated circulatory disturbances, as well as adverse, progressive, and immunological changes in the gills. In the 0.5 mg/L group, SOD activity decreased significantly, but CAT activity was not altered. Prominent blood changes observed in this group were neutrophilia and lymphocytosis. The number of mucous and chloride cells increased significantly in both groups. Taken together, our findings demonstrated that exposure of D. rerio to SDBS, even for 96 hr, produced adverse morphological and hematological effects associated with a reduction in SOD activity. Our findings indicate that exposure of aquatic species to the anionic surfactant SDBS may lead to adverse consequences associated with oxidative stress. Therefore, this study highlights the risks that this substance may pose to aquatic ecosystems and emphasizes the need for further investigations and strict regulations on its disposal.
Collapse
Affiliation(s)
- Eduardo Libanio Reis Santos
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
- Faculty of Medicine, Universidade de Gurupi (UnirG), Paraíso do Tocantins, Tocantins, Brazil
| | - Odaiza Silva
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| | - Bruna Jéssyca Nascimento Araújo
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| | - Milena de Lima Rodrigues
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| | | | - Maria Izabel Camargo-Mathias
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Rio Claro, São Paulo, Brazil
| |
Collapse
|
13
|
Bu X, Zhao W, Zou H, Li W, Li M, Wang G. Immune response and apoptosis of gibel carp (Carassius auratus gibelio) gills to Chilodonella hexasticha infection: Insights from histopathological and multi-omics analyses. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109429. [PMID: 38342413 DOI: 10.1016/j.fsi.2024.109429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Gibel carp (Carassius auratus gibelio) is an important economically farmed fish in China. Chilodonella hexasticha parasitizes on the gills and fins of host fish, causing disruption to their normal respiration and movement, ultimately resulting in death of the fish. In this study, a combination of histopathological, immunohistochemical, transferase dUTP nick end labeling (TUNEL), multi-omics, and molecular approaches were employed to identify the immune reaction and cell apoptosis in gill tissue in response to C. hexasticha infection. Significant lamellae fusion, hyperplasia, hyperemia, necrosis, and desquamation of infected gibel carp gills were observed. In total, the expression of 3619 genes was higher, and 3143 lower, for gills in the infected group compared to the control group. Furthermore, 76 metabolites were significantly increased and 105 were significantly decreased in the infected group compared with the control group. From the qRT-PCR analysis results, immune system-related genes encoding IL-8, CXCL8a, and CXC11 were significantly up-regulated in infected gibel carp, while ZAP70 was significantly down-regulated. Immunohistochemical results also showed the down-regulated ZAP70 in the infected group. Apoptosis-related genes encoding CASP3 and Mcl-1b were up-regulated in response to C. hexasticha infection. These genes indicate the activation of CASP family-related apoptosis and Bim-mediated mitochondrial apoptotic pathways. TUNEL assays also revealed severe apoptosis in the infected group. Based on this study's results, it can be concluded that C. hexasticha infection leads to histopathological changes in the gills of infected fish, and induces both a significant immune response and apoptosis.
Collapse
Affiliation(s)
- Xialian Bu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weishan Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Wenxiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Ming Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| | - Guitang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| |
Collapse
|
14
|
Habib SS, Batool AI, Rehman MFU, Naz S. Evaluation of the antibacterial activity and protein profiling of Nile tilapia (Oreochromis niloticus) epidermal mucus under different feeds and culture systems (biofloc technology and earthen pond). JOURNAL OF FISH DISEASES 2024; 47:e13884. [PMID: 37929301 DOI: 10.1111/jfd.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The mucus layers of fish serve as the main interface between the organism and the environment. They play an important biological and ecological role. The current study focuses on Nile tilapia epidermal mucus reared under different commercial feeds (coded A and B) and environments (biofloc technology and earthen pond systems). Crude protein levels in feed A and B were 30% and 28%, respectively. Water parameters in all culturing systems were suitable for tilapia throughout the study period. The antimicrobial potency of tilapia (n = 5 from each) epidermal mucus was tested in vitro against human and fish pathogenic strains viz. Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Francisella noatunensis, and Aeromonas hydrophila. To determine the antimicrobial activity, zones of inhibition (ZOI) were measured in millimetres and compared with two antibiotics (chloramphenicol and ciprofloxacin). SDS-PAGE analysis was performed on skin mucus samples of tilapia to determine protein quantity and size (molecular weight). Results of tilapia skin mucus (crude and aqueous) revealed a strong antibacterial effect against all the selected pathogenic strains. However, variation has been observed in the mucus potency and ZOI values between the biofloc and pond tilapia mucus. The crude mucus of tilapia fed on feed A and cultured in the pond exhibited strong antibacterial effects and high ZOI values compared to the mucus of biofloc tilapia, aqueous mucus extracts and positive control chloramphenicol (antibiotic). The SDS-PAGE results showed that the high molecular weight proteins were found in the collected epidermal mucus of BFT-B (240 kDa) and EP-B (230 kDa). Several peptides in fish skin mucus may play a crucial role in the protection of fish against disease-causing pathogens. Thus, it can be utilized in the human and veterinary sectors as an 'antimicrobial' for treating various bacterial infections.
Collapse
Affiliation(s)
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | | | - Saira Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus, Sargodha, Pakistan
| |
Collapse
|
15
|
Yu F, Liu Y, Wang W, Yang S, Gao Y, Shi W, Hou H, Chen J, Guo R. Toxicity of TPhP on the gills and intestines of zebrafish from the perspectives of histopathology, oxidative stress and immune response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168212. [PMID: 37918726 DOI: 10.1016/j.scitotenv.2023.168212] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
As an organophosphate ester (OPE), triphenyl phosphate (TPhP) has been frequently detected in aquatic environments, and its environmental risk has been widely studied. The gills and intestines are the most important part of the mucosal immune barrier in fish as the first line of defense against the invasion of harmful substances. TPhP is more abundant in the gill and intestine of fish. However, knowledge of the toxic effects and potential mechanisms of TPhP on the intestine and gill is limited. Herein, the adverse effects of TPhP (0.01, 0.1 and 1 mg/L) on the gills and intestines of zebrafish after 75 days of exposure were investigated from the perspectives of histology, oxidative stress and immune level. The histological results of exposed zebrafish showed that TPhP caused significant damage to gills and intestines. TPhP significantly increased the activities of the antioxidant enzymes catalase (CAT) and glutathione s-transferase (GST), inducing oxidative damage to lipids, proteins, and DNA. Meanwhile, the immune function of the gills and intestines was significantly influenced by TPhP, as evidenced by the upregulation of the expression of interleukin-1β (IL-1β) and interleukin-6 (IL-6), upregulation of the content of complement 3 (C3) and complement 4 (C4), and downregulation of the activity of lysozyme (LZM) and the content of immunoglobulin M (IgM). Oxidative stress and the immune response were more severe in the gills. These findings indicate that TPhP, a typical OPE, caused tissue damage in aquatic organisms by inducing oxidative stress and immune damage and has strong environmental toxicity.
Collapse
Affiliation(s)
- Fanrui Yu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wuyue Wang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Shunsong Yang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Yaqian Gao
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haiyan Hou
- Qinhuai District Center for Disease Control and Prevention, Nanjing 210001, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Liu Z, Meng Y, Ishikura A, Kawakami A. Live tracking of basal stem cells of the epidermis during growth, homeostasis and injury response in zebrafish. Development 2024; 151:dev202315. [PMID: 38265193 DOI: 10.1242/dev.202315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
Basal stem cells of the epidermis continuously differentiate into keratinocytes and replenish themselves via self-renewal to maintain skin homeostasis. Numerous studies have attempted to reveal how basal cells undergo differentiation or self-renewal; however, this has been hampered by a lack of robust basal cell markers and analytical platforms that allow single-cell tracking. Here, we report that zebrafish integrin beta 4 is a useful marker for basal cell labelling, irrespective of the body region, stage and regenerative status. We employed Cre-loxP recombination in combination with live cell tracking of single basal clones in the caudal fin and investigated the embryonic origin and behaviour of basal cells during fish growth and homeostasis. Although most basal cells, including those in fins, became quiescent in the adult stage, genetic cell ablation showed that basal cells were reactivated to either self-renew or differentiate, depending on the injured cell type. Our study provides a simple and easy-to-use platform for quantitative in vivo imaging of basal stem cells at wider stages and under various conditions.
Collapse
Affiliation(s)
- Zhengcheng Liu
- School of Life Science and Technology , Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yidan Meng
- School of Life Science and Technology , Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Ayu Ishikura
- School of Life Science and Technology , Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Atsushi Kawakami
- School of Life Science and Technology , Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
17
|
Yang H, Zhong J, Leng X, Wu J, Cheng P, Shen L, Wu J, Li P, Du H. Effectiveness assessment of using water environmental microHI to predict the health status of wild fish. Front Microbiol 2024; 14:1293342. [PMID: 38274749 PMCID: PMC10808811 DOI: 10.3389/fmicb.2023.1293342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Aquatic wildlife health assessment is critically important for aquatic wildlife conservation. However, the health assessment of aquatic wildlife (especially aquatic wild animals) is difficult and often accompanied by invasive survey activities and delayed observability. As there is growing evidence that aquatic environmental microbiota could impact the health status of aquatic animals by influencing their symbiotic microbiota, we propose a non-invasive method to monitor the health status of wild aquatic animals using the environmental microbiota health index (microHI). However, it is unknown whether this method is effective for different ecotype groups of aquatic wild animals. To answer this question, we took a case study in the middle Yangtze River and studied the water environmental microbiota and fish gut microbiota at the fish community level, population level, and ecotype level. The results showed that the gut microHI of the healthy group was higher than that of the unhealthy group at the community and population levels, and the overall gut microHI was positively correlated with the water environmental microHI, whereas the baseline gut microHI was species-specific. Integrating these variations in four ecotype groups (filter-feeding, scraper-feeding, omnivorous, and carnivorous), only the gut microHI of the carnivorous group positively correlated with water environmental microHI. Alcaligenaceae, Enterobacteriaceae, and Achromobacter were the most abundant groups with health-negative-impacting phenotypes, had high positive correlations between gut sample group and environment sample group, and had significantly higher abundance in unhealthy groups than in healthy groups of carnivorous, filter-feeding, and scraper-feeding ecotypes. Therefore, using water environmental microHI to indicate the health status of wild fish is effective at the community level, is effective just for carnivorous fish at the ecotype level. In the middle Yangtze River, Alcaligenaceae, Enterobacteriaceae (family level), and Achromobacter (genus level) were the key water environmental microbial groups that potentially impacted wild fish health status. Of course, more data and research that test the current hypothesis and conclusion are encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
18
|
Singh J, Srivastava A, Nigam AK, Kumari U, Mittal S, Mittal AK. Alterations in certain immunological parameters in the skin mucus of the carp, Cirrhinus mrigala, infected with the bacteria, Edwardsiella tarda. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1303-1320. [PMID: 37870724 DOI: 10.1007/s10695-023-01258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The bacterial fish pathogen Edwardsiella tarda causes heavy stock mortality, severely hampering fish production, resulting in great economic loss to the farming industry. The first biological barriers that confer immune protection against pathogen entry are the fish mucosal surfaces. The present study was undertaken to investigate the influence of E. tarda on certain enzymatic and non-enzymatic parameters in the skin mucous secretions of the fish Cirrhinus mrigala using spectrophotometry and zymography. Fish were randomly divided into three groups: control, vehicle control, and infected. A sublethal dose of E. tarda (2.2 × 106 CFU/fish) suspended in 50 μL of PBS was injected intra-peritoneally at 0 day (d). Subsequently, mucus samples were collected at 2 d, 4 d, 6 d and 8 d post-infection. The activities of lysozyme (LYZ), protease (PROT), alkaline phosphatase (ALP), acid phosphatase (ACP), catalase (CAT), peroxidase (PER), superoxide dismutase (SOD), and glutathione S-transferase (GST) decreased significantly in the skin mucus of the challenged fish, indicating the suppressed immune system and decreased antioxidant capacity of C. mrigala to E. tarda infection. Lipid peroxidation (LPO) and total nitrate-nitrite were significantly higher at several time points post-infection, suggesting that physiological functions have been impaired following pathogen challenge. The present findings could be relevant for fish aquaculture and underline the importance of skin mucus not only for assessing fish immune status but also for identifying early warning signals of disease caused by pathogens.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ayan Srivastava
- Department of Zoology, MSM Samta College (BR Ambedkar Bihar University), Jandaha, Vaishali, Bihar, 844505, India
| | - Ashwini Kumar Nigam
- Udai Pratap Autonomous College, Bhojubir, Varanasi, Uttar Pradesh, 221002, India
| | - Usha Kumari
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Swati Mittal
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Ajay Kumar Mittal
- Department of Zoology, Banaras Hindu University, Present Address: 9, Mani Nagar, Near Asha Modern School, Kandawa road, Near Chitaipur, Varanasi, Uttar Pradesh, 221106, India
| |
Collapse
|
19
|
Bauer J, Adamek M, Miebach AC, Gährken J, Wessels S, Tetens J, Dietz C, Sünder A, Matras M, Stachnik M, Reichert M, Steinhagen D. In vitro modelling of the influence of alternative feeds (Hermetia illucens, Arthrospira platensis) on the resistance of different rainbow trout populations (Oncorhynchus mykiss) against the viral haemorrhagic septicaemia virus and Yersinia ruckeri. JOURNAL OF FISH DISEASES 2023; 46:1269-1283. [PMID: 37592444 DOI: 10.1111/jfd.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Replacing fishmeal, a finite resource with high market demand, in the diet of carnivorous rainbow trout with proteins from alternative sources may be a challenge for these fish. Therefore, this study investigated whether replacing fishmeal with protein derived from Hermetia illucens or Arthrospira platensis could promote disease susceptibility in local trout populations with different growth performance. This was assessed in vitro by measuring susceptibility to infection with the viral haemorrhagic septicaemia virus (VHSV) or the bacterium Yersinia ruckeri. Analysis of fin tissue explants and primary cell cultures from scales from the three trout populations infected in vitro with VHSV and gill explants infected with Y. ruckeri showed no significant differences in virus replication or bacterial counts. Evaluation of the virucidal or bactericidal effect of skin mucus showed a significant reduction in viral load and bacterial count for all samples with mucus addition, but no significant difference was observed between the experimental groups. This study documents no apparent impairment of innate immune mechanisms in the skin and gills of trout after feeding a diet replacing fishmeal with Arthrospira or Hermetia proteins. This underlines the potential of these alternative protein sources for the further development of sustainable trout aquaculture.
Collapse
Affiliation(s)
- Julia Bauer
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anne-Carina Miebach
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jakob Gährken
- Aquaculture and Water Ecology, University of Goettingen, Goettingen, Germany
| | - Stephan Wessels
- Aquaculture and Water Ecology, University of Goettingen, Goettingen, Germany
| | - Jens Tetens
- Aquaculture and Water Ecology, University of Goettingen, Goettingen, Germany
| | - Carsten Dietz
- Department of Animal Sciences, Animal Nutrition Physiology, University of Goettingen, Goettingen, Germany
| | - Angela Sünder
- Department of Animal Sciences, Animal Nutrition Physiology, University of Goettingen, Goettingen, Germany
| | - Marek Matras
- National Veterinary Research Institute, Puławy, Poland
| | | | | | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
20
|
Lazado CC, Iversen M, Johansen LH, Brenne H, Sundaram AYM, Ytteborg E. Nasal responses to elevated temperature and Francisella noatunensis infection in Atlantic cod (Gadus morhua). Genomics 2023; 115:110735. [PMID: 37898334 DOI: 10.1016/j.ygeno.2023.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
We report the histological and transcriptomic changes in the olfactory organ of Atlantic cod exposed to Francisella noatunensis. Experimental infection was performed at either 12 °C or 17 °C. Infected fish presented the classic gross pathologies of francisellosis. Nasal morpho-phenotypic parameters were not significantly affected by elevated temperature and infection, except for the number of mucus cells in the 12 °C group seven weeks after the challenge. A higher number of genes were altered through time in the group reared at 17 °C. At termination, the nasal transcriptome of infected fish in both groups was similar to the control. When both infected groups were compared, 754 DEGs were identified, many of which were involved in signalling, defence, transmembrane and enzymatic processes. In conclusion, the study reveals that elevated temperature could trigger responses in the olfactory organ of Atlantic cod and shape the nasal response to F. noatunensis infection.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1431, Norway.
| | - Marianne Iversen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø 9019, Norway
| | - Lill-Heidi Johansen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø 9019, Norway
| | - Hanne Brenne
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø 9019, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elisabeth Ytteborg
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1431, Norway
| |
Collapse
|
21
|
Tongsri P, Cheng G, Huang Z, Wang Z, Dong F, Wu Z, Kong W, Yu Y, Xu Z. Mucosal immunity and microbiota change in the rainbow trout (Oncorhynchus mykiss) gills after being challenged with infectious hematopoietic necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109166. [PMID: 37844853 DOI: 10.1016/j.fsi.2023.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
Respiratory structures are crucial for vertebrate survival, as they serve not only to perform gas-exchange processes but also as entry points for opportunistic pathogens. Previous studies have demonstrated that fish contain gill mucosal-associated lymphoid tissue, and harbor a large number of commensal bacteria on their surface and contribute to maintaining fish health. However, by far, very limited information is known regarding the effects of viral infection on gill mucosal immunity and microbiota homeostasis. In this study, we conducted an infection model by bath with infectious hematopoietic necrosis virus (IHNV) and revealed a 27 % mortality rate among rainbow trout in the first two weeks after infection. Moreover, we found that diseased fish with the highest IHNV loads in gills exhibiting severe damage, as well as increased goblet cell counts in both primary lamellae (PL) and secondary lamellae (SL). Additionally, RT-qPCR and RNA-seq analyses revealed that IHNV infection induced a strong innate and adaptive antiviral immune responses. Interestingly, an antibacterial immune response was also observed, suggesting that a secondary bacterial infection occurred in trout gills after viral infection. Furthermore, 16S rRNA analysis of trout gills revealed a profound dysbiosis marked by a loss of beneficial taxa and expansion of pathobionts following IHNV infection. Overall, our finding demonstrates that IHNV infection induces significant changes of the microbial community in the fish respiratory surface, thus triggering local antiviral and bacterial mucosal immunity.
Collapse
Affiliation(s)
- Pajongjit Tongsri
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofeng Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengben Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
22
|
Sayyaf Dezfuli B, Lorenzoni M, Carosi A, Giari L, Bosi G. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: who wins, who loses. Front Immunol 2023; 14:1250835. [PMID: 37908358 PMCID: PMC10613888 DOI: 10.3389/fimmu.2023.1250835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Fish, comprising over 27,000 species, represent the oldest vertebrate group and possess both innate and adaptive immune systems. The susceptibility of most wild fish to parasitic infections and related diseases is well-established. Among all vertebrates, the digestive tract creates a remarkably favorable and nutrient-rich environment, which, in turn, renders it susceptible to microparasites and macroparasites. Consequently, metazoan parasites emerge as important disease agents, impacting both wild and farmed fish and resulting in substantial economic losses. Given their status as pathogenic organisms, these parasites warrant considerable attention. Helminths, a general term encompassing worms, constitute one of the most important groups of metazoan parasites in fish. This group includes various species of platyhelminthes (digeneans, cestodes), nematodes, and acanthocephalans. In addition, myxozoans, microscopic metazoan endoparasites, are found in water-dwelling invertebrates and vertebrate hosts. It is worth noting that several innate immune cells within the fish alimentary canal and certain visceral organs (e.g., liver, spleen, and gonads) play active roles in the immune response against parasites. These immune cells include macrophages, neutrophils, rodlet cells, and mast cells also known as eosinophilic granular cells. At the site of intestinal infection, helminths often impact mucous cells number and alter mucus composition. This paper presents an overview of the state of the art on the occurrence and characteristics of innate immune cells in the digestive tract and other visceral organs in different fish-parasite systems. The data, coming especially from studies employed immunohistochemical, histopathological, and ultrastructural analyses, provide evidence supporting the involvement of teleost innate immune cells in modulating inflammatory responses to metazoan and protozoan parasitic infections.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
23
|
Ferreira M, Sousa V, Oliveira B, Canadas-Sousa A, Abreu H, Dias J, Kiron V, Valente LMP. An in-depth characterisation of European seabass intestinal segments for assessing the impact of an algae-based functional diet on intestinal health. Sci Rep 2023; 13:11686. [PMID: 37468554 DOI: 10.1038/s41598-023-38826-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Sustainable farming of fish species depends on emerging new feed ingredients, which can alter the features of the digestive tract and influence animals' overall health. Recent research has shown that functional feeds hold great potential for enhancing fish robustness by evoking appropriate responses at the intestine level. However, there is a lack of extensive and accurate descriptions of the morphology of the gastrointestinal tract of most farmed fish. We have characterised the intestine of European seabass thoroughly, by targeting four segments - anterior, mid, posterior and rectum. Results indicated that the anterior segment is mostly associated with absorption-related features; this segment has the largest absorptive area, the longest villi, and the highest number of neutral goblet cells (GC). The posterior segment and rectum have distinct histomorphometric features, but both seem to be important for immunity, displaying the highest count of acid GC and the highest expression of immune-related genes. The strongest proliferating cell nuclear antigen (PCNA) signal was observed in the anterior intestine and rectum, with PCNA+ cells appearing at the base of the villi and the corresponding villi branches. We have also evaluated the impact of a novel feed supplemented with a macro- and microalgae blend and found that there were no differences in terms of growth. However, the alterations observed in the mid intestine of fish fed the blend, such as thickening of the submucosa and lamina propria, an increased number of leucocytes, and higher expression of immune- and oxidative stress-related genes, suggest that algae may have an immunomodulatory effect. In the current article, we have described the morphology and expression patterns of the intestine segments of European seabass in detail and have presented a comprehensive report of the indices and methods used for the semi-quantitative and quantitative histomorphometric assessments, thereby providing useful information for future studies that aim to maintain intestinal health through dietary interventions.
Collapse
Affiliation(s)
- Mariana Ferreira
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal
| | - Vera Sousa
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal
| | - Beatriz Oliveira
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal
| | - Ana Canadas-Sousa
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal
- EUVG, Escola Universitária Vasco da Gama, Quinta de S. Jorge, Estrada da Conraria, Castelo Viegas, 3040-714, Coimbra, Portugal
| | - H Abreu
- ALGAplus, Production and Trading of Seaweed and Derived Products Ltd, 3830-196, Ílhavo, Portugal
| | - J Dias
- SPAROS Lda., 8700-221, Olhão, Portugal
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Luisa M P Valente
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208, Matosinhos, Portugal. *
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade Do Porto, 4050-313, Porto, Portugal. *
| |
Collapse
|
24
|
Samsing F, Zhang W, Zadoks RN, Whittington R, Venturini C, Giles C, Carson J, Becker JA. Cold temperature stress and damaged skin induced high mortality in barramundi (Lates calcarifer) challenged with Vibrio harveyi. JOURNAL OF FISH DISEASES 2023; 46:751-766. [PMID: 36966382 DOI: 10.1111/jfd.13784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/07/2023]
Abstract
Most diseases in aquaculture are caused by opportunistic pathogens. One of them, Vibrio harveyi, is a widespread Gram-negative bacterium that has become an important pathogen of aquatic species in marine environments. Here, we propose the use of the causal pie model as a framework to conceptualize the causation of vibriosis in juvenile barramundi (Lates calcarifer) and to establish an effective challenge model. In the model, a sufficient cause, or the causal pie, is a constellation of component causes that lead to an outcome (e.g. vibriosis). In the pilot study, a high cumulative mortality (63.3% ± 10.0%, mean ± SE) was observed when V. harveyi was administered by intraperitoneal injection using a high challenge dose [107 colony-forming units (CFU) fish-1 ], but low or no mortality was observed in fish subject to cold stress or fish with intact skin when challenged by immersion. We, therefore, tested the use of a skin lesion (induced with a 4-mm biopsy punch) combined with cold temperature stress to induce vibriosis following the causal pie model. After challenge, fish were immediately subject to cold stress (22°C) or placed at an optimal temperature of 30°C. All groups were challenged with 108 CFU mL-1 for 60 min. A considerably higher mortality level (72.7% ± 13.9%) was observed in fish challenged with both a skin lesion and cold stress compared with mortality in fish only having a skin lesion (14.6% ± 2.8%). V. harveyi was re-isolated from all moribund fish and was detected by species-specific real-time PCR in gills, head kidney and liver, regardless of challenge treatment confirming vibriosis as the cause of disease. Parenchymal tissues had histopathological changes consistent with vibriosis. Whole-genome sequence (WGS) is provided for the Vibrio harveyi isolate examined in this study. Overall, the causal pie model was a useful framework to conceptualize the design of the experimental challenge model, in which both cold stress and skin damage were identified as component causes of vibriosis with high mortality. This conceptual framework can be applied to other opportunistic pathogens in aquaculture or to the study of co-infections in fish.
Collapse
Affiliation(s)
- Francisca Samsing
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - William Zhang
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Richard Whittington
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Carola Venturini
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Carla Giles
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, Tasmania, Australia
| | - Jeremy Carson
- Carson BioConsulting, Launceston, Tasmania, Australia
| | - Joy A Becker
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
25
|
Kessabi K, Abbassi A, Lahmar S, Casado M, Banni M, Piña B, Messaoudi I. Combined toxic effects of cadmium and environmental microplastics in Aphanius fasciatus (Pisces, Cyprinodontidae). MARINE ENVIRONMENTAL RESEARCH 2023; 189:106071. [PMID: 37390514 DOI: 10.1016/j.marenvres.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Microplastics (MPs), plastic particles smaller than 5 mm in diameter, have received extensive attention as new environmental pollutants with still unexplored potential ecological risks. The main objective of the present study is to see if the concomitant exposure to MPs and Cd is more toxic than that to MPs or Cd separately in Aphanius fasciatus. Immature female were exposed to Cd and/or MPs for 21 days, and the subsequent effects were monitored by a combination of biochemical, histological and molecular toxicity markers. Exposure to Cd, but not to MPs, increased metallothioneins content and mRNA levels of the metallothioneins gene MTA both in liver and gills. In addition, we observed a significant oxidative stress response at histological, enzymatic (Catalase and Superoxide dismutase), non-enzymatic (proteins sulfhydryl and malondialdehyde) and gene expression levels to both toxicants in both tissues, particularly in gills, but no clear evidence for interaction between the two factors. Our results indicate a major effect of MPs on gills at different organizational levels. Finally, exposure to both MPs and Cd induced spinal deformities, although bone composition was only altered by the latter, whereas MTA mRNA bone levels were only increased realtive to controls in doubly-exposed samples. Interestingly, the simultaneous use of both pollutants produced the same effects as Cd and MPs alone, probably due to reduced bioavailability of this heavy metal.
Collapse
Affiliation(s)
- Kaouthar Kessabi
- LR11ES41: Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia.
| | - Amira Abbassi
- LR11ES41: Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| | - Samar Lahmar
- LR11ES41: Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| | - Marta Casado
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Meriem, Sousse, Tunisia
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Imed Messaoudi
- LR11ES41: Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
26
|
Bogevik AS, Puvanendran V, Vorkamp K, Burgerhout E, Hansen Ø, Fernández-Míguez M, Krasnov A, Afanasyev S, Høst V, Ytteborg E. Long-Term Influence of PCB- and PBDE-Spiked Microplastic Spheres Fed through Rotifers to Atlantic Cod ( Gadus morhua) Larvae. Int J Mol Sci 2023; 24:10326. [PMID: 37373473 DOI: 10.3390/ijms241210326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Omnipresent microplastics (MPs) in marine ecosystems are ingested at all trophic levels and may be a vector for the transfer of persistent organic pollutants (POPs) through the food web. We fed rotifers polyethylene MPs (1-4 µm) spiked with seven congeners of polychlorinated biphenyls (PCBs) and two congeners of polybrominated diphenyl ethers (PBDEs). In turn, these rotifers were fed to cod larvae from 2-30 days post-hatching (dph), while the control groups were fed rotifers without MPs. After 30 dph, all the groups were fed the same feed without MPs. Whole-body larvae were sampled at 30 and 60 dph, and four months later the skin of 10 g juveniles was sampled. The PCBs and PBDEs concentrations were significantly higher in MP larvae compared to the control larvae at 30 dph, but the significance dissipated at 60 dph. Expression of stress-related genes in cod larvae at 30 and 60 dph showed inconclusive minor random effects. The skin of MP juveniles showed disrupted epithelial integrity, fewer club cells and downregulation of a suite of genes involved in immunity, metabolism and the development of skin. Our study showed that POPs were transferred through the food web and accumulated in the larvae, but that the level of pollutants decreased once the exposure was ceased, possibly related to growth dilution. Considering the transcriptomic and histological findings, POPs spiked to MPs and/or MPs themselves may have long-term effects in the skin barrier defense system, immune response and epithelium integrity, which may potentially reduce the robustness and overall fitness of the fish.
Collapse
Affiliation(s)
| | | | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | | | - Øyvind Hansen
- Nofima, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway
| | | | | | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez 44, 194223 Saint-Petersburg, Russia
| | - Vibeke Høst
- Nofima, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway
| | | |
Collapse
|
27
|
Sánchez-Cueto P, Stavrakidis-Zachou O, Clos-Garcia M, Bosch M, Papandroulakis N, Lladó S. Mediterranean Sea heatwaves jeopardize greater amberjack's (Seriola dumerili) aquaculture productivity through impacts on the fish microbiota. ISME COMMUNICATIONS 2023; 3:36. [PMID: 37095196 PMCID: PMC10125963 DOI: 10.1038/s43705-023-00243-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
Climate change is dramatically increasing the frequency and severity of marine heatwaves (MHWs) in the Mediterranean basin, strongly affecting marine food production systems. However, how it will shape the ecology of aquaculture systems, and the cascading effects on productivity, is still a major knowledge gap. The present work aims to increase our understanding of future impacts, caused by raising water temperatures, on the interaction between water and fish microbiotas, and consequential effects upon fish growth. Thus, the bacterial communities present in the water tanks, and mucosal tissues (skin, gills and gut), of greater amberjack farmed in recirculatory aquaculture systems (RAS), at three different temperatures (24, 29 and 33 °C), were characterized in a longitudinal study. The greater amberjack (Seriola dumerili) is a teleost species with high potential for EU aquaculture diversification due to its fast growth, excellent flesh quality and global market. We show that higher water temperatures disrupt the greater amberjack's microbiota. Our results demonstrate the causal mediation exerted by this bacterial community shifts on the reduction of fish growth. The abundance of members of the Pseudoalteromonas is positively correlated with fish performance, whereas members of the Psychrobacter, Chryseomicrobium, Paracoccus and Enterovibrio are suggested as biomarkers for dysbiosis, at higher water temperatures. Hence, opening new evidence-based avenues for the development of targeted microbiota-based biotechnological tools, designed to increase the resilience and adaptation to climate change of the Mediterranean aquaculture industry.
Collapse
Affiliation(s)
| | - Orestis Stavrakidis-Zachou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | | | - Montse Bosch
- LEITAT Technological Center, 08225, Terrassa, Spain
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Salvador Lladó
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, E-08028, Barcelona, Spain.
| |
Collapse
|
28
|
Liang W, Li B, Jong MC, Ma C, Zuo C, Chen Q, Shi H. Process-oriented impacts of microplastic fibers on behavior and histology of fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130856. [PMID: 36753910 DOI: 10.1016/j.jhazmat.2023.130856] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution has raised global concern for its hazards to biota. To determine the direct impact of microplastics during their contact with fish, we exposed goldfish (Carassius auratus) to 100 and 1000 items/L waterborne microplastic fibers in the short- and long-term. In the presence of 1000 items/L of microplastic fibers, the coughing behavior of fish increased significantly after 2 h of exposure. Predatory behaviors decreased significantly by 53.0% after 45 d of exposure, and the reduction in daily food intake was negatively related to exposure duration in the 1000 items/L group. In addition, microplastic fibers stimulated dynamic mucus secretion across different fish tissues during the different processes evaluated in this study, with 30.0% and 62.9% overall increases in the secretory capacity of mucus cells in the 100 and 1000 items/L groups, respectively. These behavioral and histological alterations were derived from the ventilation, feeding, and swimming processes of goldfish. We regarded these changes as process-oriented impacts, suggesting the effects of microplastics on fish and how fish cope with microplastics.
Collapse
Affiliation(s)
- Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
29
|
Mateus AP, Costa RA, Sadoul B, Bégout ML, Cousin X, Canario AV, Power DM. Thermal imprinting during embryogenesis modifies skin repair in juvenile European sea bass (Dicentrarchus labrax). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108647. [PMID: 36842641 DOI: 10.1016/j.fsi.2023.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Fish skin is a multifunctional tissue that develops during embryogenesis, a developmental stage highly susceptible to epigenetic marks. In this study, the impact of egg incubation temperature on the regeneration of a cutaneous wound caused by scale removal in juvenile European sea bass was evaluated. Sea bass eggs were incubated at 11, 13.5 and 16 °C until hatching and then were reared at a common temperature until 9 months when the skin was damaged and sampled at 0, 1 and 3 days after scale removal and compared to the intact skin from the other flank. Skin damage elicited an immediate significant (p < 0.001) up-regulation of pcna in fish from eggs incubated at higher temperatures. In fish from eggs incubated at 11 °C there was a significant (p < 0.001) up-regulation of krt2 compared to fish from higher thermal backgrounds 1 day after skin damage. Damaged epidermis was regenerated after 3 days in all fish irrespective of the thermal background, but in fish from eggs incubated at 11 °C the epidermis was significantly (p < 0.01) thinner compared to other groups, had less goblet cells and less melanomacrophages. The thickness of the dermis increased during regeneration of wounded skin irrespective of the thermal background and by 3 days was significantly (p < 0.01) thicker than the dermis from the intact flank. The expression of genes for ECM remodelling (mmp9, colXα, col1α1, sparc, and angptl2b) and innate immunity (lyg1, lalba, sod1, csf-1r and pparγ) changed during regeneration but were not affected by egg thermal regime. Overall, the results indicate that thermal imprinting of eggs modifies the damage-repair response in juvenile sea bass skin.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rita A Costa
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bastien Sadoul
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France; DECOD, Ecosystem Dynamics and Sustainability, Institut Agro, Ifremer, INRAE, Rennes, France
| | - Marie-Laure Bégout
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Adelino Vm Canario
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
30
|
Gómez de la Torre Canny S, Nordgård CT, Mathisen AJH, Degré Lorentsen E, Vadstein O, Bakke I. A novel gnotobiotic experimental system for Atlantic salmon ( Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage. Front Cell Infect Microbiol 2023; 12:1068302. [PMID: 36817693 PMCID: PMC9929952 DOI: 10.3389/fcimb.2022.1068302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023] Open
Abstract
Gnotobiotic models have had a crucial role in studying the effect that commensal microbiota has on the health of their animal hosts. Despite their physiological and ecological diversity, teleost fishes are still underrepresented in gnotobiotic research. Moreover, a better understanding of host-microbe interactions in farmed fish has the potential to contribute to sustainable global food supply. We have developed a novel gnotobiotic experimental system that includes the derivation of fertilized eggs of farmed and wild Atlantic salmon, and gnotobiotic husbandry of fry during the yolk sac stage. We used a microscopy-based approach to estimate the barrier function of the skin mucus layer and used this measurement to select the derivation procedure that minimized adverse effects on the skin mucosa. We also used this method to demonstrate that the mucus barrier was reduced in germ-free fry when compared to fry colonized with two different bacterial communities. This alteration in the mucus barrier was preceded by an increase in the number of cells containing neutral mucosubstances in the anterior segment of the body, but without changes in the number of cells containing acidic substances in any of the other segments studied along the body axis. In addition, we showed how the microbial status of the fry temporarily affected body size and the utilization of internal yolk stores during the yolk sac stage. Finally, we showed that the presence of bacterial communities associated with the fry, as well as their composition, affected the size of adipose tissue. Fry colonized with water from a lake had a larger visceral adipose tissue depot than both conventionally raised and germ-free fry. Together, our results show that this novel gnotobiotic experimental system is a useful tool for the study of host-microbe interactions in this species of aquacultural importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ingrid Bakke
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
31
|
Alipio HRD, Albaladejo-Riad N, Lazado CC. Sulphide donors affect the expression of mucin and sulphide detoxification genes in the mucosal organs of Atlantic salmon ( Salmo salar). Front Physiol 2022; 13:1083672. [PMID: 36582361 PMCID: PMC9792478 DOI: 10.3389/fphys.2022.1083672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulphide (H2S) is a gas that affects mucosal functions in mammals. However, its detrimental effects are less understood in fish despite being known to cause mass mortality. Here we used explant models to demonstrate the transcriptional responses of Atlantic salmon (Salmo salar) mucosa to the sulphide donor sodium hydrosulphide (NaHS). The study focused on two groups of genes: those encoding for sulphide detoxification and those for mucins. Moreover, we performed pharmacological studies by exposing the organ explants to mucus-interfering compounds and consequently exposed them to a sulphide donor. Exposure to NaHS significantly affected the expression of sulphide:quinone oxidoreductase (sqor1, sqor2) and mucin-encoding genes (muc5ac, muc5b). The general profile indicated that NaHS upregulated the expression of sulphide detoxification genes while a significant downregulation was observed with mucins. These expression profiles were seen in both organ explant models. Pharmacological stimulation and inhibition of mucus production used acetylcholine (ACh) and niflumic acid (NFA), respectively. This led to a significant regulation of the two groups of marker genes in the gills and olfactory rosette explants. Treatment of the mucosal organ explants with the mucus-interfering compounds showed that low dose NFA triggered more substantial changes while a dose-dependent response could not be established with ACh. Pharmacological interference demonstrated that mucins played a crucial role in mucosal protection against H2S toxicity. These results offer insights into how a sulphide donor interfered with mucosal responses of Atlantic salmon and are expected to contribute to our understanding of the least explored H2S-fish interactions-particularly at the mucosa.
Collapse
Affiliation(s)
- Hanna Ross D. Alipio
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Carlo C. Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
32
|
Deng F, Wang D, Chen F, Lu T, Li S. Molecular characterization and expression analysis of claudin-4-like in rainbow trout involved in Flavobacterium psychrophilum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:244-251. [PMID: 36122640 DOI: 10.1016/j.fsi.2022.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The claudin family of proteins are pivotal components of tight junction (TJ) participating in the epithelial barrier function in fish. Our previous studies indicated that one of the claudins, claudin-4-like (OmCLDN4L) was differentially expressed in rainbow trout (Oncorhynchus mykiss) spleen post infection of Flavobacterium psychrophilum, which is the causative pathogen of bacterial coldwater disease (BCWD). However, little is known about the function of OmCLDN4L in rainbow trout against bacterial infection. In the present study, the OmCLDN4L was identified and functionally characterized from rainbow trout. The OmCLDN4L has an open reading frame (ORF) of 668 bp, encoding a 22.86 kDa four-transmembrane protein with function of bicellular tight junction and apical tight junction. OmCLDN4L has the highest similarity with CLDN28a, CLDN28b and CLDN30 in amino acid sequence. Phylogenetic analysis showed that all of CLDN4 and CLDN4-like from fish clustered together but diverged from their counterparts in mammals, with main differences lying in their N-terminus. RT-qPCR results indicated that OmCLDN4L was constitutively expressed in all tissues investigated under healthy conditions, primarily in mucus, liver, skin and intestine. The expression of OmCLDN4L in rainbow trout intestine was slightly down-regulated at day 1 while up-regulated at day 3 and day 7 post F. psychrophilum infection, with the similar profiling of CLDN30 and CLDN10e. The expression level of inflammatory cytokines TNF-α, IL4/13A, IL-6 and pattern recognition receptor TLR-2 showed the same trend with OmCLDN4L in the intestine at day 3 and day 7 post F. psychrophilum infection. Collectively, these findings demonstrate that OmCLDN4L participates in the immune response to bacterial infection, offering new insights into the molecular mechanism of intestinal barrier in rainbow trout against F. psychrophilum infection.
Collapse
Affiliation(s)
- Furong Deng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Di Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Fuguang Chen
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Tongyan Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Shaowu Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
33
|
Nikolić D, Poleksić V, Skorić S, Tasić A, Stanojević S, Rašković B. The European Chub (Squalius cephalus) as an indicator of reservoirs pollution and human health risk assessment associated with its consumption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119871. [PMID: 35940479 DOI: 10.1016/j.envpol.2022.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Five reservoirs (Vlasina, Medjuvršje, Zaovine, Perućac, and Garaši) in Serbia were chosen as study sites, which differ by their position, purpose, stages of eutrophication, management policies, and levels of anthropogenic pressure. The objectives of this research were to: determine the concentrations of 26 elements in muscle, gills, and liver of the European chub by inductively-coupled plasma optical emission spectrometry (ICP-OES); determine the concentrations of 17 organochlorine pesticides in fish muscle by gas chromatography with mass spectrometric detection (GC-MS); compare these findings with condition factor (CF) and histopathological (HP) biomarkers; and assess the potential human health risks due to consumption of chub muscle tissue. The highest elemental accumulation was found in the gills. The European chub was not a good indicator of Pb pollution between reservoirs. Concentrations of Hg, As, and Cu were low and did not exceed the proscribed maximum allowed concentrations (MACs). 4,4'-DDE was detected only in individuals from Vlasina, 4,4'-DDD from Perućac and Zaovine, and heptachlor from Zaovine. Low to moderate levels of HP were observed for both gills and liver in all studied reservoirs. HP index for gills was significantly higher for Zaovine compared to Vlasina. Significantly lower HP index for liver and the total HP index value were observed for fish from Vlasina compared to Perućac. No significant human health risks due to the intake of examined pollutants in each reservoir were recorded; women were at higher risk compared to men. A reason for concern is a few muscle samples from Garaši, Vlasina, Perućac, and Medjuvršje in which Cd exceeded the MAC. A reservoir for water supply (Garaši) is generally considered the safest for fish consumption.
Collapse
Affiliation(s)
- Dušan Nikolić
- University of Belgrade - Institute for Multidisciplinary Research, Department of Inland Water Biology and Protection, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| | - Vesna Poleksić
- University of Belgrade - Faculty of Agriculture, Institute of Animal Sciences, Nemanjina 6, Zemun, 11080, Belgrade, Serbia
| | - Stefan Skorić
- University of Belgrade - Institute for Multidisciplinary Research, Department of Inland Water Biology and Protection, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Aleksandra Tasić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Serbia
| | - Slobodan Stanojević
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Serbia
| | - Božidar Rašković
- University of Belgrade - Faculty of Agriculture, Institute of Animal Sciences, Nemanjina 6, Zemun, 11080, Belgrade, Serbia; University of Porto - Institute of Biomedical Sciences Abel Salazar (ICBAS) - School of Medicine and Biomedical Sciences, Department of Microscopy, Laboratory of Histology and Embryology, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
34
|
Thangsunan P, Kitiyodom S, Srisapoome P, Pirarat N, Yata T, Thangsunan P, Boonrungsiman S, Bunnoy A, Rodkhum C. Novel development of cationic surfactant-based mucoadhesive nanovaccine for direct immersion vaccination against Francisella noatunensis subsp. orientalis in red tilapia (Oreochromis sp.). FISH & SHELLFISH IMMUNOLOGY 2022; 127:1051-1060. [PMID: 35872335 DOI: 10.1016/j.fsi.2022.07.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Francisella noatunensis subsp. orientalis (Fno) is one of the infectious diseases that causes economic losses associated with tilapia mortality. Even though direct immersion administration of vaccines is more practicable for small fish and fry compared with oral and injection vaccination in the fields, the efficacy is still insufficient due to lower potency of antigen uptake. Herein, we accomplished the development of a mucoadhesive nanovaccine platform using cetyltrimethylammonium bromide (CTAB), a cationic surfactant, to improve the efficiency of immersion vaccination against Fno in tilapia. Cationic Fno nanovaccine (CAT-Fno-NV) was prepared though emulsification using an ultrasonic method. In our investigation, the CAT-Fno-NV increased the opportunity of Fno vaccine uptake by extending the contact time between vaccine and mucosal surface of fish gills and enhancing the protective efficacy against Fno infection. Fish were vaccinated with the CAT-Fno-NV by a direct immersion protocol. The challenge trial by Fno injection revealed that CAT-Fno-NV at the concentration 1:100 ratio (approximately 1 × 106 cfu/mL) had the highest efficacy to protect fish from Fno infection at day 30 after post challenge period according to the total number of Fno detected in head kidney, spleen and liver. A significant upregulation of IgM gene was observed in gills, skin, head kidney, serum and peripheral blood lymphocytes (PBLs) and spleen tissues treated with WC and CAT-Fno-NV (1:100) vaccines, while IgT gene was highly expressed in only gills and skin tissues for treated WC and CAT-Fno-NV (1:100) groups. We anticipate that the cationic surfactant-based nanovaccine developed in this study could become an efficient alternative for direct immersion vaccination to induce humoral immune responses against Fno in vaccinated tilapia.
Collapse
Affiliation(s)
- Patcharapong Thangsunan
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirikorn Kitiyodom
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Nopadon Pirarat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pattanapong Thangsunan
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suwimon Boonrungsiman
- National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
35
|
Molecular characterization and expression profiling of caveolin-1 from Amphiprion clarkii and elucidation of its involvement in antiviral response and redox homeostasis. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110775. [DOI: 10.1016/j.cbpb.2022.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
|
36
|
Lazado CC, Stiller KT, Shahzad K, Reiten BKM, Marchenko Y, Gerwins J, Radonjic FS, Eckel B, Berge A, Espmark ÅM. Health and Welfare of Atlantic Salmon in FishGLOBE V5 – a Novel Closed Containment System at Sea. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.871433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Closed-containment (CCS) systems offer several advantages in controlling the production environment for Atlantic salmon (Salmo salar) aquaculture, especially at sea, where fish are more exposed to challenging environmental conditions. Here, we report the health and welfare of Atlantic salmon in FishGLOBE V5, a 3500 m3 semi-closed containment system. A group of 200,000 post-smolts was followed from a recirculating aquaculture system (RAS) facility, then for three and a half months in FishGLOBE V5, and three months after release in net pens. Fish samples were collected at four time points during the production period, while water quality was evaluated when the fish were in FishGLOBE V5. The water quality in FishGLOBE V5 was within the recommended range for salmon post-smolts. The mortality rate was 1.4% in FishGLOBE V5 and 4.9% in net pens. There was an increase in the prevalence of eye, snout and dorsal fin damages before the fish left the FishGLOBE V5 phase. The plasma level of magnesium was slightly elevated during this phase as well, indicating osmotic imbalance and stress. Histological evaluation of skin and gills showed sporadic cases of non-specific pathologies. In particular, the transitory stay in FishGLOBE V5 partially improved skin health, but not gill health. Gene expression profiling of some biomarkers showed that rearing fish in FishGLOBE V5 could influence the expression of genes involved in stress response, mucus production, and epithelial integrity. This study documented that rearing salmon for a certain period in FishGLOBE V5 during production affected different health and welfare indicators. These changes should be taken into consideration for the improvement of FishGLOBE V5 as a viable technology for post-smolt production at sea.
Collapse
|
37
|
Reshmi MN, Karunakaran C, Priya Ta J, Kappalli S. Immune responses of Cyprinus carpio induced by protein extracts of Lernaea cyprinacea Linnaeus, 1758. Exp Parasitol 2022; 239:108306. [PMID: 35709887 DOI: 10.1016/j.exppara.2022.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Lernaea cyprinacea Linnaeus, 1758 is an ectoparasite showing widespread infections in tropical aquaculture, and the present study aimed to determine the specific immune responses against this parasite. For the experiment, whole parasite extracts were injected intraperitoneally into Cyprinus carpio Linnaeus, 1758, and samples of epidermal mucus and blood were drawn at 0, 1, 7 and 14-days post-injection (DPI). The results revealed high levels of protein, protease and lysozyme activities in the experimental fish which were injected with L. cyprinacea protein extract. In the epidermal mucus, the total protein concentration of the control fish was 460 μg/mL, and the level raised significantly to 800 μg/mL in the experimental fish. The lysozyme activity increased from 741.5 u/mL to a peak level of 1448.5 u/mL at 7DPI. The protease activity was also found elated gradually from 2.91 u/μL to 4.49 u/μL at 1 to 14 DPI. In the serum samples, the protein concentration remained steady throughout the experiment period. However, all the experimental fish displayed statistically high levels of lysozyme and protease activity, from 890 u/mL to 1220 u/mL, and 6.10 u/μL to 11.88 u/μL, respectively. In the whole blood samples, the haemoglobin content and the red blood cells (RBC) count did not show any significant change in any of the experimental groups. But, the percentage of lymphocytes showed a marginal increase from 0.47 to 0.6 in the experimental groups. Overall, the immune responses induced by L. cyprinacea protein extracts depicts a pattern of specific responses, in which the local humoral responses dominate the systemic humoral/cellular response. The results further revealed the possibility of futuristic approaches to control freshwater ectoparasites.
Collapse
Affiliation(s)
- Mv Nikhila Reshmi
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Charutha Karunakaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Jose Priya Ta
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| | - Sudha Kappalli
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| |
Collapse
|
38
|
Anderson KC, Ghosh B, Chetty T, Walker SP, Symonds JE, Nowak BF. Transcriptomic characterisation of a common skin lesion in farmed chinook salmon. FISH & SHELLFISH IMMUNOLOGY 2022; 124:28-38. [PMID: 35367374 DOI: 10.1016/j.fsi.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/20/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Little is known about host responses of farmed Chinook salmon with skin lesions, despite the lesions being associated with increased water temperatures and elevated mortality rates. To address this shortfall, a transcriptomic approach was used to characterise the molecular landscape of spot lesions, the most commonly reported lesion type in New Zealand Chinook salmon, versus healthy appearing skin in fish with and without spot lesions. Many biological (gene ontology) pathways were enriched in lesion adjacent tissue, relative to control skin tissue, including proteolysis, fin regeneration, calcium ion binding, mitochondrial transport, actin cytoskeleton organisation, epithelium development, and tissue development. In terms of specific transcripts of interest, pro-inflammatory cytokines (interleukin 1β and tumour necrosis factor), annexin A1, mucin 2, and calreticulin were upregulated, while cathepsin H, mucin 5AC, and perforin 1 were downregulated in lesion tissue. In some instances, changes in gene expression were consistent between lesion and healthy appearing skin from the same fish relative to lesion free fish, suggesting that host responses weren't limited to the site of the lesion. Goblet cell density in skin histological sections was not different between skin sample types. Collectively, these results provide insights into the physiological changes associated with common spot lesions in farmed Chinook salmon.
Collapse
Affiliation(s)
- Kelli C Anderson
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia.
| | - Bikramjit Ghosh
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia
| | - Thaveshini Chetty
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia
| | - Seumas P Walker
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Jane E Symonds
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia.
| |
Collapse
|
39
|
Scheifler M, Sanchez-Brosseau S, Magnanou E, Desdevises Y. Diversity and structure of sparids external microbiota (Teleostei) and its link with monogenean ectoparasites. Anim Microbiome 2022; 4:27. [PMID: 35418308 PMCID: PMC9009028 DOI: 10.1186/s42523-022-00180-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background Animal-associated microbial communities appear to be key factors in host physiology, ecology, evolution and its interactions with the surrounding environment. Teleost fish have received relatively little attention in the study of surface-associated microbiota. Besides the important role of microbiota in homeostasis and infection prevention, a few recent studies have shown that fish mucus microbiota may interact with and attract some specific parasitic species. However, our understanding of external microbial assemblages, in particular regarding the factors that determine their composition and potential interactions with parasites, is still limited. This is the objective of the present study that focuses on a well-known fish-parasite interaction, involving the Sparidae (Teleostei), and their specific monogenean ectoparasites of the Lamellodiscus genus. We characterized the skin and gill mucus bacterial communities using a 16S rRNA amplicon sequencing, tested how fish ecological traits and host evolutionary history are related to external microbiota, and assessed if some microbial taxa are related to some Lamellodiscus species. Results Our results revealed significant differences between skin and gill microbiota in terms of diversity and structure, and that sparids establish and maintain tissue and species-specific bacterial communities despite continuous exposure to water. No phylosymbiosis pattern was detected for either gill or skin microbiota, suggesting that other host-related and environmental factors are a better regulator of host-microbiota interactions. Diversity and structure of external microbiota were explained by host traits: host species, diet and body part. Numerous correlations between the abundance of given bacterial genera and the abundance of given Lamellodiscus species have been found in gill mucus, including species-specific associations. We also found that the external microbiota of the only unparasitized sparid species in this study, Boops boops, harbored significantly more Fusobacteria and three genera, Shewenella, Cetobacterium and Vibrio, compared to the other sparid species, suggesting their potential involvement in preventing monogenean infection. Conclusions This study is the first to explore the diversity and structure of skin and gill microbiota from a wild fish family and present novel evidence on the links between gill microbiota and monogenean species in diversity and abundance, paving the way for further studies on understanding host-microbiota-parasite interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00180-1.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France.
| | - Sophie Sanchez-Brosseau
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France
| | - Elodie Magnanou
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France
| | - Yves Desdevises
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France
| |
Collapse
|
40
|
Emam M, Caballero-Solares A, Xue X, Umasuthan N, Milligan B, Taylor RG, Balder R, Rise ML. Gill and Liver Transcript Expression Changes Associated With Gill Damage in Atlantic Salmon ( Salmo salar). Front Immunol 2022; 13:806484. [PMID: 35418993 PMCID: PMC8996064 DOI: 10.3389/fimmu.2022.806484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Gill damage represents a significant challenge in the teleost fish aquaculture industry globally, due to the gill's involvement in several vital functions and direct contact with the surrounding environment. To examine the local and systemic effects accompanying gill damage (which is likely to negatively affect gill function) of Atlantic salmon, we performed a field sampling to collect gill and liver tissue after several environmental insults (e.g., harmful algal blooms). Before sampling, gills were visually inspected and gill damage was scored; gill scores were assigned from pristine [gill score 0 (GS0)] to severely damaged gills (GS3). Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged (i.e., GS2) gill tissue. Rank Products analysis (5% percentage of false-positives) identified 254 and 34 upregulated and downregulated probes, respectively, in GS2 compared with GS0. Differentially expressed probes represented genes associated with functions including gill remodeling, wound healing, and stress and immune responses. We performed gill and liver qPCR for all four gill damage scores using microarray-identified and other damage-associated biomarker genes. Transcripts related to wound healing (e.g., neb and klhl41b) were significantly upregulated in GS2 compared with GS0 in the gills. Also, transcripts associated with immune and stress-relevant pathways were dysregulated (e.g., downregulation of snaclec 1-like and upregulation of igkv3) in GS2 compared with GS0 gills. The livers of salmon with moderate gill damage (i.e., GS2) showed significant upregulation of transcripts related to wound healing (i.e., chtop), apoptosis (e.g., bnip3l), blood coagulation (e.g., f2 and serpind1b), transcription regulation (i.e., pparg), and stress-responses (e.g., cyp3a27) compared with livers of GS0 fish. We performed principal component analysis (PCA) using transcript levels for gill and liver separately. The gill PCA showed that PC1 significantly separated GS2 from all other gill scores. The genes contributing most to this separation were pgam2, des, neb, tnnt2, and myom1. The liver PCA showed that PC1 significantly separated GS2 from GS0; levels of hsp70, cyp3a27, pparg, chtop, and serpind1b were the highest contributors to this separation. Also, hepatic acute phase biomarkers (e.g., serpind1b and f2) were positively correlated to each other and to gill damage. Gill damage-responsive biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon welfare.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | | | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
41
|
Zhong ZM, Zhang J, Tang BG, Yu FF, Lu YS, Hou G, Chen JY, Du ZX. Transcriptome and metabolome analyses of the immune response to light stress in the hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀). Animal 2022; 16:100448. [PMID: 35065313 DOI: 10.1016/j.animal.2021.100448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
Light intensity is an important environmental factor that affects fish growth and health through multiple physiological activities and metabolism and eventually impacts aquaculture harvest. There is a need to evaluate the fish stress response to light intensities, which will benefit aquaculture. Here, hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) was treated with three light intensities for evaluation of the light stress response, including high light intensity (1 250 lx), low light intensity (10 lx) and moderate light intensity (250 lx). Transcriptome analysis showed that a total of 71 318 unigene sequences were obtained with an N50 of 2 589 bp. Compared to the control group (250 lx), 1 697 differentially expressed genes (DEGs), a considerable quantity, were detected in the 1 250 lx group. Among those genes, 548 were upregulated, and the remaining 149 genes showed decreased expression. Comparatively small numbers of DEGs were detected in the 10 lx group; 54 out of 103 genes exhibited upregulated expression, and 49 genes showed downregulation. For further KEGG analysis, 82 DEGs were enriched in nine common signalling pathways in immunity, of which 73 DEGs were significantly inhibited in the 1 250 lx group. In contrast, only 11 DEGs were enriched in three immunity pathways, with nine DEGs showing a significant increase in the 10 lx group. The metabolome analysis revealed 59 and 44 differential metabolites (DMs) from the 1 250 lx and 10 lx groups, respectively. Of note, those DMs from the 1 250 lx-treated group were tendentiously involved in amino acid metabolism and lipid metabolism pathways, while the purine metabolism, amino acid metabolism and lipid metabolism pathways were mostly found in the 10 lx treatment group. In summary, our data indicated that high light intensity significantly inhibited the immune response in hybrid grouper, while low light intensity presented low stimulation of immune activity. In addition, both high and low light intensity could inhibit protein synthesis and amino acid metabolism. Taken together, hybrid grouper exhibited a much milder stress response to low light intensity than to high light intensity.
Collapse
Affiliation(s)
- Z M Zhong
- College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - J Zhang
- College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, Guangdong 524006, China
| | - B G Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, Guangdong 524006, China
| | - F F Yu
- College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, Guangdong 524006, China.
| | - Y S Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518120, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - G Hou
- College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - J Y Chen
- College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Z X Du
- College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
42
|
Effects of Continuous Light (LD24:0) Modulate the Expression of Lysozyme, Mucin and Peripheral Blood Cells in Rainbow Trout. FISHES 2022. [DOI: 10.3390/fishes7010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Continuous photoperiod is extensively used in fish farming, to regulate the reproductive cycle, despite evidence suggesting that artificial photoperiods can act as a stressor and impair the immune system. We evaluated the potential effects of an artificial photoperiod on mucus components: lysozyme and mucin, in juvenile rainbow trout (Oncorhynchus mykiss) after exposure for one month to natural photoperiod (LD12:12) or constant light (LD24:0) artificial photoperiod. For each treatment, we assessed changes in peripheral blood cells (erythrocytes and leukocytes) and skin mucus component concentrations. Our results show a decrease in lysozyme concentration, while mucin levels are increased. Similarly, we find elevated monocytes and polymorphonuclears under constant light photoperiod. These findings suggest that LD24:0 regulates lysozyme, mucin, and leukocytes, implying that artificial photoperiods could be a stressful.
Collapse
|
43
|
Slinger J, Wynne JW, Adams MB. Profiling Branchial Bacteria of Atlantic Salmon (Salmo salar L.) Following Exposure to Antimicrobial Agents. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.756101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microbial gill diseases caused by either opportunistic or specific pathogens are an emerging area of concern for aquaculture producers in part due to their sometimes complex and/or cryptic nature. Many antimicrobial treatments used in aquacultural settings are broad spectrum in nature. The effect of such therapeutics upon reduction and recolonization of commensal or pathogenic microbiota post-treatment has received little attention to date. Commensal bacteria are an integral component of the barrier function of mucosal surfaces in animals. This study evaluated the effect of several commercially relevant antimicrobial treatments upon the diversity and composition of branchial bacteria of Atlantic salmon. Here we exposed Atlantic salmon smolt to a number of commercially relevant antimicrobial treatments including chemotherapeutants (chloramine-t and hydrogen peroxide) and antibiotics (oxytetracycline and florfenicol) in vivo. Subsequently we examined the change in bacterial load, 16S rRNA gene expression, and taxonomic diversity post-treatment upon the gills. Results revealed a decrease in cultivable bacterial colonies after antimicrobial treatment, and a downstream decrease in bacterial richness and abundance post-treatment, with colonization of several prominent pathogenic taxa including Vibrio and Tenacibaculum. Temporal tracing over a 14-day period demonstrated that the bacteriome of gill mucus is sensitive to change, and altered by antimicrobial treatment and handling. This study identified candidate antimicrobial treatments which could be implemented in future studies to illustrate the effect of dysbiosis on microbial gill diseases.
Collapse
|
44
|
Effects of Different Temperatures on the Antibacterial, Immune and Growth Performance of Crucian Carp Epidermal Mucus. FISHES 2021. [DOI: 10.3390/fishes6040066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fish is one of the important sources of energy and protein, and proper water temperature is key to successful fish breeding. The authors of this study evaluated crucian carp growth, mucus antibacterial properties, and immune indicators at 17, 21, 24, 27, and 31 °C. The results indicated that in the range of 17–31 °C, the resistance of epidermal mucus to Vibrio harveyi decreased with temperature rising. At 24 and 27 °C, the activities of lysozyme and catalase significantly increased; alkaline phosphatase activity, superoxide dismutase activity, and total protein concentration first increased and then decreased with rising temperature; the highest values were observed at 24 °C, with increases of 56.55%, 26.64%, and 44.52%, respectively, compared to those under the 17 °C treatment. When the treatment reached 27 °C, the temperature had an effect on the growth and antibacterial properties of crucian carp, and the activities of alkaline phosphatase and superoxide dismutase were significantly reduced. At temperatures of 17–24 °C, the survival rate of crucian carp could reach more than 93%, and at the temperature of 24 °C, the specific growth rate reached the highest value of 43.29%. Therefore, the most favorable temperature for the long-term breeding of crucian carp was found to be 24 °C. This study provides a favorable experimental basis for the establishment of intelligent aquaculture systems and the setting of water environment parameters.
Collapse
|
45
|
Lima PC, Hartley-Tassell L, Wynne JW. The ability of Neoparamoeba perurans to bind to and digest non-fish-derived mucin: Insights into the amoeba's mechanism of action to overcome gill mucus production. JOURNAL OF FISH DISEASES 2021; 44:1355-1367. [PMID: 33990985 DOI: 10.1111/jfd.13394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Amoebic gill disease (AGD) is caused by the marine amoeba Neoparamoeba perurans, a facultative parasite. Despite the significant impact this disease has on production of Atlantic salmon worldwide, the mechanisms involved in host-parasite interaction remains unknown. Excessive gill mucus secretion is reported as a host defence mechanism to prevent microbial colonization in the gill epithelium. Despite this response, N. perurans still attaches and proliferates. The present study aimed to investigate the interaction between N. perurans and mucin, the most abundant component in mucus. An in vitro adhesion assay using bovine submaxillary mucin (BSM) demonstrated that amoeba binding to mucin-coated substrate was significantly higher than to the BSA control. This binding interaction is likely glycan-mediated as pre-incubation with galactose, galactosamine, N-acetylgalactosamine and fucose reduced mucin adhesion to control levels. The ability of N. perurans to secrete proteases that target mucin was also investigated. Protease activity was detected in the amoeba culture media in the presence of BSM, but not when protease inhibitor was added. Mucin degradation was visually assessed on protein gels. This study provides preliminary evidence that N. perurans has developed mechanisms to interact with and evade mucus by binding to mucin glycan receptors and secreting proteases with mucolytic activity.
Collapse
Affiliation(s)
- Paula C Lima
- CSIRO Livestock & Aquaculture Program, Queensland, Australia
| | | | - James W Wynne
- CSIRO Livestock & Aquaculture Program, Tasmania, Australia
| |
Collapse
|
46
|
Lazado CC, Stiller KT, Reiten BKM, Osório J, Kolarevic J, Johansen LH. Consequences of continuous ozonation on the health and welfare of Atlantic salmon post-smolts in a brackish water recirculating aquaculture system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105935. [PMID: 34407494 DOI: 10.1016/j.aquatox.2021.105935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the biological consequences of 45-day continuous ozonation on Atlantic salmon (Salmo salar) post-smolts in a brackish water recirculating aquaculture system (RAS). There was no significant difference in survival, operational welfare indicators, and average weight at termination between the ozone-treated and control groups. Plasma biochemical analyses revealed that the creatinine level was significantly higher in the ozone-treated group than in the control at termination. Histological evaluation of skin health showed no significant difference between the two groups. On the other hand, quantitative histopathology disclosed that the ozone group exhibited a better gill health status than did the control group, particularly at the end of the trial. Mucosal transcriptomics revealed a distinct response profile between the gills and skin. At day 45, there were no differentially expressed genes (DEG) identified in the skin, in contrast to 242 ozone-induced DEGs in the gills. Assessment of the transcriptomic profiles over time revealed that temporal effects were of greater impact in skin compared to gills, regardless of the treatment. The treatment did not result in metabolomic dysregulation and the overall profile lent support to the transcriptomics data that temporal effects had a greater influence on the changes observed. Exposure to handling-confinement stress revealed that ozone treatment did not alter the ability of post-smolts to respond to a secondary stressor. In summary, the suite of health and welfare indicators collectively indicated that continuous ozonation resulted in minimal physiological perturbations in salmon post-smolts. The results are expected to contribute to optimising the rearing conditions for post-smolts in RAS.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway.
| | - Kevin T Stiller
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 6600 Sunndalsøra, Norway
| | | | - João Osório
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Jelena Kolarevic
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 6600 Sunndalsøra, Norway
| | - Lill-Heidi Johansen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 9019 Tromsø, Norway
| |
Collapse
|
47
|
Firmino JP, Galindo-Villegas J, Reyes-López FE, Gisbert E. Phytogenic Bioactive Compounds Shape Fish Mucosal Immunity. Front Immunol 2021; 12:695973. [PMID: 34220858 PMCID: PMC8252966 DOI: 10.3389/fimmu.2021.695973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaculture growth will unavoidably involve the implementation of innovative and sustainable production strategies, being functional feeds among the most promising ones. A wide spectrum of phytogenics, particularly those containing terpenes and organosulfur compounds, are increasingly studied in aquafeeds, due to their growth promoting, antimicrobial, immunostimulant, antioxidant, anti-inflammatory and sedative properties. This trend relies on the importance of the mucosal barrier in the fish defense. Establishing the phytogenics' mode of action in mucosal tissues is of importance for further use and safe administration. Although the impact of phytogenics upon fish mucosal immunity has been extensively approached, most of the studies fail in addressing the mechanisms underlying their pharmacological effects. Unstandardized testing as an extended practice also questions the reproducibility and safety of such studies, limiting the use of phytogenics at commercial scale. The information presented herein provides insight on the fish mucosal immune responses to phytogenics, suggesting their mode of action, and ultimately encouraging the practice of reliable and reproducible research for novel feed additives for aquafeeds. For proper screening, characterization and optimization of their mode of action, we encourage the evaluation of purified compounds using in vitro systems before moving forward to in vivo trials. The formulation of additives with combinations of compounds previously characterized is recommended to avoid bacterial resistance. To improve the delivery of phytogenics and overcome limitations associated to compounds volatility and susceptibility to degradation, the use of encapsulation is advisable. Besides, newer approaches and dedicated methodologies are needed to elucidate the phytogenics pharmacokinetics and mode of action in depth.
Collapse
Affiliation(s)
- Joana P. Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
- R&D Technical Department, TECNOVIT – FARMFAES, S.L., Alforja, Spain
| | | | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
48
|
Ordóñez-Grande B, Guerreiro PM, Sanahuja I, Fernández-Alacid L, Ibarz A. Environmental Salinity Modifies Mucus Exudation and Energy Use in European Sea Bass Juveniles. Animals (Basel) 2021; 11:ani11061580. [PMID: 34071210 PMCID: PMC8230262 DOI: 10.3390/ani11061580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022] Open
Abstract
The European sea bass (Dicentrarchus labrax) is a euryhaline marine teleost that can often be found in brackish and freshwater or even in hypersaline environments. Here, we exposed sea bass juveniles to sustained salinity challenges for 15 days, simulating one hypoosmotic (3‰), one isosmotic (12‰) and one hyperosmotic (50‰) environment, in addition to control (35‰). We analyzed parameters of skin mucus exudation and mucus biomarkers, as a minimally invasive tool, and plasma biomarkers. Additionally, Na+/K+-ATPase activity was measured, as well as the gill mucous cell distribution, type and shape. The volume of exuded mucus increased significantly under all the salinity challenges, increasing by 130% at 50‰ condition. Significantly greater amounts of soluble protein (3.9 ± 0.6 mg at 50‰ vs. 1.1 ± 0.2 mg at 35‰, p < 0.05) and lactate (4.0 ± 1.0 µg at 50‰ vs. 1.2 ± 0.3 µg at 35‰, p < 0.05) were released, with clear energy expenditure. Gill ATPase activity was significantly higher at the extreme salinities, and the gill mucous cell distribution was rearranged, with more acid and neutral mucin mucous cells at 50‰. Skin mucus osmolality suggested an osmoregulatory function as an ion-trap layer in hypoosmotic conditions, retaining osmosis-related ions. Overall, when sea bass cope with different salinities, the hyperosmotic condition (50‰) demanded more energy than the extreme hypoosmotic condition.
Collapse
Affiliation(s)
- Borja Ordóñez-Grande
- Department of Cell Biology, Physiology and Immunology, University of Barcelona (UB), 08028 Barcelona, Spain; (B.O.-G.); (I.S.); (A.I.)
| | - Pedro M. Guerreiro
- CCMAR—Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal;
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, University of Barcelona (UB), 08028 Barcelona, Spain; (B.O.-G.); (I.S.); (A.I.)
| | - Laura Fernández-Alacid
- Department of Cell Biology, Physiology and Immunology, University of Barcelona (UB), 08028 Barcelona, Spain; (B.O.-G.); (I.S.); (A.I.)
- Correspondence:
| | - Antoni Ibarz
- Department of Cell Biology, Physiology and Immunology, University of Barcelona (UB), 08028 Barcelona, Spain; (B.O.-G.); (I.S.); (A.I.)
| |
Collapse
|
49
|
Slinger J, Adams MB, Stratford CN, Rigby M, Wynne JW. The Effect of Antimicrobial Treatment upon the Gill Bacteriome of Atlantic Salmon ( Salmo salar L.) and Progression of Amoebic Gill Disease (AGD) In Vivo. Microorganisms 2021; 9:987. [PMID: 34063289 PMCID: PMC8147422 DOI: 10.3390/microorganisms9050987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
Branchial surfaces of finfish species contain a microbial layer rich in commensal bacteria which can provide protection through competitive colonization and production of antimicrobial products. Upon disturbance or compromise, pathogenic microbiota may opportunistically infiltrate this protective barrier and initiate disease. Amoebic gill disease (AGD) is a globally significant health condition affecting salmonid mariculture. The current study examined whether altering the diversity and/or abundance of branchial bacteria could influence the development of experimentally induced AGD. Here, we challenged Atlantic salmon (Salmo salar) with Neoparamoeba perurans in a number of scenarios where the bacterial community on the gill was altered or in a state of instability. Administration of oxytetracycline (in-feed) and chloramine-T (immersion bath) significantly altered the bacterial load and diversity of bacterial taxa upon the gill surface, and shifted the community profile appreciably. AGD severity was marginally higher in fish previously subjected to chloramine-T treatment following 21 days post-challenge. This research suggests that AGD progression and severity was not clearly linked to specific bacterial taxa present in these systems. However, we identified AGD associated taxa including known pathogenic genus (Aliivibrio, Tenacibaculum and Pseudomonas) which increased in abundance as AGD progressed. Elucidation of a potential role for these bacterial taxa in AGD development is warranted.
Collapse
Affiliation(s)
- Joel Slinger
- CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia;
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Mark B. Adams
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Chris N. Stratford
- CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia;
| | - Megan Rigby
- CSIRO Agriculture and Food, Castray Esplanade, Hobart, TAS 7004, Australia; (M.R.); (J.W.W.)
| | - James W. Wynne
- CSIRO Agriculture and Food, Castray Esplanade, Hobart, TAS 7004, Australia; (M.R.); (J.W.W.)
| |
Collapse
|
50
|
Mateus AP, Mourad M, Power DM. Skin damage caused by scale loss modifies the intestine of chronically stressed gilthead sea bream (Sparus aurata, L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103989. [PMID: 33385418 DOI: 10.1016/j.dci.2020.103989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The present study was designed to test if the damage caused by scale loss provokes a change in other innate immune barriers such as the intestine and how chronic stress affects this response. Sea bream (Sparus aurata) were kept in tanks at low density (16 kg m-3, LD) or exposed to a chronic high density (45 kg m-3, HD) stress for 4 weeks. Scales were then removed (approximately 50%) from the left flank in the LD and HD fish. Intestine samples (n = 8/group) were examined before and at 12 h, 3 days and 7 days after scale removal. Changes in the morphology of the intestine revealed that chronic stress and scale loss was associated with intestinal inflammation. Specifically, enterocyte height and the width of the lamina propria, submucosa and muscle layer were significantly increased (p < 0.05) 3 days after skin damage in fish under chronic stress (HD) compared to other treatments (LDWgut3d or HDgut0h). This was associated with a significant up-regulation (p < 0.05) in the intestine of gene transcripts for cell proliferation (pcna) and anti-inflammatory cytokine tgfβ1 and down-regulation of gene transcripts for the pro-inflammatory cytokines tnf-α and il1β (p < 0.05) in HD and LD fish 3 days after scale removal compared to the undamaged control (LDgut0h). Furthermore, a significant up-regulation of kit, a marker of mast cells, in the intestine of HDWgut3d and LDWgut3d fish suggests they may mediate the crosstalk between immune barriers. Skin damage induced an increase in cortisol levels in the anterior intestine in HDWgut12 h fish and significant (p < 0.05) down-regulation of mr expression, irrespective of stress. These results suggest glucocorticoid levels and signalling in the intestine of fish are modified by superficial cutaneous wounds and it likely modulates intestine inflammation.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Mona Mourad
- Laboratory of Fish Reproduction and Spawning, Aquaculture Division, National Institute of Oceanography & Fisheries, Kayet-bey, Al-Anfoushy, 21556, Alexandria, Egypt.
| | - Deborah M Power
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|