1
|
Bergamini APC, de Almeida Bergamini BVS, Pessoa IS, de Sousa Cutrim TA, Dos Santos TC, Dos Santos MC, da Rocha Fonseca V, Romão W, Scherer R, Endringer DC, Fronza M. Chemical profile, antioxidant, antifungal, and cytotoxic activities of propolis from the stingless bee Tetragona clavipes. Braz J Microbiol 2024:10.1007/s42770-024-01591-9. [PMID: 39673050 DOI: 10.1007/s42770-024-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/08/2024] [Indexed: 12/15/2024] Open
Abstract
Propolis is derived from plant resin and bees' salivary secretions, are commonly used in folk medicine. Studies on propolis from stingless bees have increased in recent years, highlighting their relevance due to the variety of species and the bioactive components. However, scientific records confirming these activities in species occurring in Brazil are still scarce. In that context, this study aims to determine the chemical profile and the antioxidant, antifungal, and cytotoxic activities of the stingless bees Tetragona clavipes propolis. The hydroalcoholic extract was prepared, and its chemical profile was determined by Fourier transform ion cyclotron resonance mass spectrometry combined with a direct infusion electrospray ionization. Total polyphenols and flavonoid content were determined by colorimetric methods. We determined the antioxidant activity by the ability to scavenge the free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). The antifungal activity was evaluated by determining the minimum inhibitory concentration and minimum fungicidal concentration against Aspergillus fumigatus, Trichophyton rubrum, Candida albicans, and Candida parapisilosis. The results revealed high contents of total phenolics and promising antioxidant and antifungal activities. T. clavipes propolis from the rainy season showed better antioxidant and antifungal activities and higher content of flavonoids, with less variability of chemical species. The extracts exhibited fungistatic activity for C. albicans, C. parapisilosis, and A. fumigatus and fungicide for T. rubrum. Additionally, a sample collected during the rainy season demonstrated synergism with fluconazole and amphotericin B for T. rubrum and additivity for C. albicans and C. parapisilosis. In summary, the results of T. clavipes propolis revealed elevated levels of total phenolics, indicating its potential as a rich source of bioactive compounds, significant antioxidant activity, and promising antifungal activity against common pathogenic fungi. These findings contribute to our understanding of the therapeutic potential of T. clavipes propolis and provide a basis for further research and development of natural products for various applications in medicine and healthcare.
Collapse
Affiliation(s)
- Ariane Pinheiro Cruz Bergamini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha - UVV, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha, CEP 29102-920, ES, Brasil
| | - Brendo Victor Siqueira de Almeida Bergamini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha - UVV, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha, CEP 29102-920, ES, Brasil
| | - Iana Soares Pessoa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha - UVV, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha, CEP 29102-920, ES, Brasil
| | - Thiago Antônio de Sousa Cutrim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha - UVV, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha, CEP 29102-920, ES, Brasil
| | - Tamires Cruz Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha - UVV, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha, CEP 29102-920, ES, Brasil
| | - Matheus Campos Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha - UVV, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha, CEP 29102-920, ES, Brasil
| | - Victor da Rocha Fonseca
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, CEP: 29075-910, ES, Brasil
| | - Wanderson Romão
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, CEP: 29075-910, ES, Brasil
| | - Rodrigo Scherer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha - UVV, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha, CEP 29102-920, ES, Brasil
| | - Denise Coutinho Endringer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha - UVV, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha, CEP 29102-920, ES, Brasil
| | - Marcio Fronza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Produtos Naturais, Universidade Vila Velha - UVV, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha, CEP 29102-920, ES, Brasil.
| |
Collapse
|
2
|
Mirzazadeh M, Bagheri H, Rasi F, Mirzazadeh N, Alam Z, Akhavan-Mahdavi S. Optimization of Instant Beverage Powder Containing Propolis Extract Nanoliposomes. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9099501. [PMID: 39687482 PMCID: PMC11649347 DOI: 10.1155/ijfo/9099501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Propolis is a natural resinous complex mixture produced by honeybees that contain various bioactive compounds. However, these bioactive compounds are chemically unstable and their absorption in the gastrointestinal tract is influenced by their solubility and stability. Encapsulation technology has been employed to increase their bioavailability and protect them against hostile conditions. Nanoliposomes are nanoscale lipid-based vesicles that can encapsulate various bioactive compounds, including propolis extracts. Therefore, in this study, propolis extract was encapsulated by nanoliposome technique and used in instant drink formulation. Nanoliposome characterization was done regarding particle size (255 ± 0.21 nm), zeta potential (-37.6 ± 1.14 mV), and encapsulation efficiency (73.71 ± 0.94). Response surface methodology (RSM) was employed to determine the effect of nanoliposome concentration (0%-5%) on the beverage characteristics including Brix, acidity, hygroscopicity, water solubility index, total phenol content, total microbial count, and sensory analyses. RSM predicted that a 3.19% nanoliposome would provide the overall optimum region for preparing the beverage with the best characteristics. Therefore, nanoliposome containing propolis can be successfully used in the enrichment of the beverage formulation by maintaining the sensory characteristics and improving its quality.
Collapse
Affiliation(s)
- Mehdi Mirzazadeh
- Department of Food Science and Technology, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Hadiseh Bagheri
- Department of Food Science and Technology, Sari Branch, Islamic Azad University, Sari, Iran
| | - Fatemeh Rasi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Nasim Mirzazadeh
- Department of Food Science Engineering, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran
| | - Zahra Alam
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Sahar Akhavan-Mahdavi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
3
|
Al Balawi AN, Eldiasty JG, Mosallam SAER, El-Alosey AR, Elmetwalli A. Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in silico study. BIORESOUR BIOPROCESS 2024; 11:108. [PMID: 39604740 PMCID: PMC11602940 DOI: 10.1186/s40643-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
There is an urgent need for preventive and therapeutic drugs to effectively treat and prevent viral diseases from resurfacing as they emerge during the COVID-19 pandemic. This study aims to assess the antiviral effects of four natural compounds commonly used in traditional medicine to treat SARS-CoV-2 infection. A cytotoxicity, dose-dependent, and plaque reduction assay was performed on Vero CCL-81 cells to figure out their effects on the cells. Quantification of cytokines was assessed. In silico analysis for the selected compound was also evaluated. Results revealed that the compounds could disrupt the viral replication cycle through direct inhibition of the virus or immune system stimulation. The cytotoxicity assay results revealed that the compounds were well tolerated by the cells, indicating that the compounds were not toxic to the cells. This study evaluated the antioxidant capacities of propolis, curcumin, quercetin, and ginseng using ABTS, FRAP, and CUPRAC assays, revealing that propolis exhibited the highest antioxidant activity of ABTS with 1250.40 ± 17.10 μmol Trolox eq/g, with FRAP values reaching 1200.55 ± 15.90 μmol Fe2⁺ eq/g and CUPRAC values of 1150.80 ± 14.20 μmol Trolox eq/g at 1000 µg/mL, highlighting its potential as a potent natural antioxidant. The results of the plaque reduction assay revealed that the compounds could reduce the size and number of plaques, indicating that the compounds could inhibit the virus replication cycle. Subsequently, using molecular docking to analyze the effect of propolis, curcumin, quercetin, and ginseng as inhibitors, it was unveiled that the four compounds are likely to have the potential to inhibit the protease activity, spike protein S1, and RNA polymerase of SARS-CoV-2 and the virus titer was reduced by 100% after post-infection using propolis as an inhibitor control.
Collapse
Affiliation(s)
- Aisha Nawaf Al Balawi
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia.
| | - Jayda G Eldiasty
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia
| | | | - Alaa R El-Alosey
- Department of Mathematics, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| |
Collapse
|
4
|
Friedman-DeLuca M, Karagiannis GS, Condeelis JS, Oktay MH, Entenberg D. Macrophages in tumor cell migration and metastasis. Front Immunol 2024; 15:1494462. [PMID: 39555068 PMCID: PMC11563815 DOI: 10.3389/fimmu.2024.1494462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a phenotypically diverse, highly plastic population of cells in the tumor microenvironment (TME) that have long been known to promote cancer progression. In this review, we summarize TAM ontogeny and polarization, and then explore how TAMs enhance tumor cell migration through the TME, thus facilitating metastasis. We also discuss how chemotherapy and host factors including diet, obesity, and race, impact TAM phenotype and cancer progression. In brief, TAMs induce epithelial-mesenchymal transition (EMT) in tumor cells, giving them a migratory phenotype. They promote extracellular matrix (ECM) remodeling, allowing tumor cells to migrate more easily. TAMs also provide chemotactic signals that promote tumor cell directional migration towards blood vessels, and then participate in the signaling cascade at the blood vessel that allows tumor cells to intravasate and disseminate throughout the body. Furthermore, while chemotherapy can repolarize TAMs to induce an anti-tumor response, these cytotoxic drugs can also lead to macrophage-mediated tumor relapse and metastasis. Patient response to chemotherapy may be dependent on patient-specific factors such as diet, obesity, and race, as these factors have been shown to alter macrophage phenotype and affect cancer-related outcomes. More research on how chemotherapy and patient-specific factors impact TAMs and cancer progression is needed to refine treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Madeline Friedman-DeLuca
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - George S. Karagiannis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy of Cancer and Inflammatory Disorders, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
5
|
Manole F, Hoermann K, Passali D, Rombaux P, Maria Bellussi L, Rudenko M, Milkov M, Kopacheva-Barsova G, Prokopakis E, Chabolle F, Doulaptsi M, Bal C, Cingi C. A Prospective, Multicenter European Study on the Effects of Anatolian Propolis and Hypertonic Saline Combination Nasal Spray on Allergic Rhinitis Symptoms. EAR, NOSE & THROAT JOURNAL 2024; 103:168S-175S. [PMID: 39491482 DOI: 10.1177/01455613241290502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Objectives: The current study examined the effectiveness of Rhinapi, a hypertonic saline nasal spray with Anatolian propolis added, on allergic rhinitis (AR) symptoms in a European population. Methods: Four hundred and forty AR patients (251 males and 189 females) from various European centers were enrolled. Nasal examination, overall symptom scores, individual AR symptoms (nasal discharge, sneezing, nasal itching, and nasal obstruction), and quality of life (QoL) were assessed before and after 3 weeks of treatment with Rhinapi, the nasal spray made of hypertonic saline with Anatolian propolis added (Bee&You, Istanbul, Turkey). Results: Rhinapi nasal drop use was associated with a substantial decrease (P < .05) in AR symptom ratings, including nasal discharge, sneezing, nasal itching, and nasal obstruction. QoL scores showed a significant improvement (P < .05), and the spray also alleviated swelling and improved concha color (P < .05). Conclusion: Rhinapi, Anatolian propolis-added hypertonic saline nasal spray (Bee&You, Istanbul, Turkey), when used for 3 weeks, reduced AR symptom scores and improved QoL. Both the concha color and the edema were also enhanced.
Collapse
Affiliation(s)
- Felicia Manole
- Faculty of Medicine, Department of ENT, University of Oradea, Oradea, Romania
| | - Karl Hoermann
- Mannheim Medical Faculty, Department of Otorhinolaryngology, Head, and Neck Surgery, University Hospital Mannheim, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
| | - Desiderio Passali
- IFOS Former President, ORL Head and Neck Surgery, University of Siena, Siena, Italy
| | - Philippe Rombaux
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Michael Rudenko
- Section of Allergy and Immunology, The London Allergy and Immunology Center, London, UK
| | - Mario Milkov
- Faculty of Dental Medicine, Medical University of Varna, Varna, Bulgaria
| | | | - Emmanuel Prokopakis
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Greece
| | - Frédéric Chabolle
- Department of Otolaryngology, Head, and Neck Surgery, Foch Hospital, Suresnes, France
| | - Maria Doulaptsi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Greece
| | - Cengiz Bal
- Faculty of Medicine, Department of Biostatistics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cemal Cingi
- Faculty of Medicine, Department of Otorhinolaryngology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
6
|
Vică ML, Glevitzky M, Dumitrel GA, Popa M, Glevitzky I, Teodoru CA. Antimicrobial Activity of Honey and Propolis from Alba County, Romania. Antibiotics (Basel) 2024; 13:952. [PMID: 39452218 PMCID: PMC11504579 DOI: 10.3390/antibiotics13100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Investigating the quality of bee products obtained across different geographical regions and analyzing their antimicrobial activity is of significant interest to various scientific disciplines. This study focuses on comparing the antimicrobial activity of honey and propolis samples from different areas of Alba County, Romania. The quality parameters of five samples of two types of bee products (honey and propolis) were assessed. Then, the samples were tested to comparatively determine their antimicrobial properties against 12 species of bacteria (Escherichia coli, Salmonella typhimurium, Salmonella enteritidis, Salmonella anatum, Salmonella choleraesuis, Pseudomonas aeruginosa, Pseudomonas fluorescens, Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes) and 7 fungal strains (Candida albicans, Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Rhizopus stolonifer, Fusarium oxysporum, and Alternaria alternata). Of the bacterial strains, the most sensitive to the action of honey samples were the two strains of Staphylococcus followed by P. fluorescens. The two strains of Pseudomonas and L. monocytogenes were the most sensitive to the activity of propolis. Of the fungal strains, F. oxysporum was the most sensitive to the actions of both honey and propolis, followed by P. chrysogenum in the case of honey samples and the two Aspergillus strains in the case of propolis. These findings indicate that bee products are rich sources of bioactive compounds exhibiting strong antimicrobial properties and significant potential for the development of new phytopharmaceutical products.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Sanitary Veterinary and Food Safety Directorate of Alba County, 510217 Alba Iulia, Romania
| | - Gabriela-Alina Dumitrel
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 300223 Timișoara, Romania
| | - Maria Popa
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Ioana Glevitzky
- Sanitary Veterinary and Food Safety Directorate of Alba County, 510217 Alba Iulia, Romania
| | - Cosmin Adrian Teodoru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550025 Sibiu, Romania
| |
Collapse
|
7
|
Fan M, Guo M, Chen G, Rakotondrabe TF, Muema FW, Hu G. Exploring potential inhibitors of acetylcholinesterase, lactate dehydrogenases, and glutathione reductase from Hagenia abyssinica (Bruce) J.F. Gmel. based on multi-target ultrafiltration-liquid chromatography-mass spectrometry and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118356. [PMID: 38763372 DOI: 10.1016/j.jep.2024.118356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96% to 49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| | - Tojofaniry Fabien Rakotondrabe
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Felix Wambua Muema
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| |
Collapse
|
8
|
Svetikiene D, Zamokas G, Jokubaite M, Marksa M, Ivanauskas L, Babickaite L, Ramanauskiene K. The Comparative Study of the Antioxidant and Antibacterial Effects of Propolis Extracts in Veterinary Medicine. Vet Sci 2024; 11:375. [PMID: 39195829 PMCID: PMC11360084 DOI: 10.3390/vetsci11080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to human and animal health. Efforts to combat AMR include the introduction of antimicrobial drugs as alternative treatment options. To contribute to an effective plan for the treatment of infectious diseases caused by bacteria, the development of new antimicrobial agents is increasingly being explored. Propolis has garnered significant attention from both scientists and industry due to its extensive spectrum of biological activity. The growing interest in polyphenols of natural origin and their plant sources further encourages the investigation of their chemical composition and biological effects. Propolis serves as a rich source of phenolic compounds. Baltic region propolis, classified as poplar-type propolis, was selected for this study, and extracts were prepared using raw propolis materials from various Baltic countries. The production of liquid extracts utilized a combination of 70 percent ethanol, a mixture of water and poloxamer P407, and DES (deep eutectic solvent). The research aims to produce liquid propolis extracts using different solvents and to assess their chemical composition, antioxidant, and antimicrobial activity against different veterinary pathogens. Antioxidant activity was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl), revealing antioxidant activity in all extracts, with results correlating with the total phenolic compound content. It was found that p-coumaric acid predominated in the studied propolis extracts (in ethanol extracts 1155.90-1506.65 mg/g, in DES extracts 321.13-954.76 mg/g, and in polymeric extracts 5.34-30.80 mg/g), with smaller amounts of ferulic acid and vanillin detected. Clinical and reference bacterial strains were collected from the Lithuanian University of Health Sciences, the Academy of Veterinary Medicine, and the Institute of Microbiology and Virology. To effectively treat bacterial infections, the antimicrobial activity of propolis extracts was tested against six pathogenic bacterial species and one pathogenic fungus (S. aureus, S. agalactiae, B. cereus, E. faecalis, E. coli, P. aeruginosa, and C. albicans). Antimicrobial activity studies demonstrated that DES propolis extracts exhibited stronger antimicrobial activity compared to ethanolic propolis extracts. The minimum inhibitory concentration (MIC) values of DES propolis extracts against the tested strains ranged between 50 and 1000 μg/mL. Considering the study results, it can be concluded that propolis from the Baltic region is abundant in phenolic compounds exhibiting antioxidant and antibacterial activities.
Collapse
Affiliation(s)
- Dovile Svetikiene
- Department of Dr. L. Kriauceliunas Small Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (L.B.)
| | - Gintaras Zamokas
- Department of Dr. L. Kriauceliunas Small Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (L.B.)
| | - Monika Jokubaite
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania;
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (M.M.); (L.I.)
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (M.M.); (L.I.)
| | - Lina Babickaite
- Department of Dr. L. Kriauceliunas Small Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (L.B.)
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
9
|
Campos DES, Muniz IDAF, Brandão HN, Shinkai RSA, Trindade TGD, Cosme-Trindade DC. Adverse Effects of Natural Products in the Oral Mucosa and Face: A Scoping Review. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:720-734. [PMID: 38442321 DOI: 10.1089/jicm.2023.0675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Objective: This scoping review aimed to map the adverse reactions in the oral mucosa and face caused by the use of natural products. Methodology: This review was performed according to the Joanna Briggs Institute Manual for Evidence Synthesis and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines, with a protocol registered in the Open Science Framework (DOI 10.17605/OSF.IO/R57D8). The search was carried out systematically using PubMed, Scopus, Web of Science, Embase, LILACS, and LIVIVO databases, as well as gray literature through Google Scholar and OpenGrey. Reports of clinical cases on the adverse effects of natural products on the oral mucosa or perioral region of the face resulted from inappropriate use or self-medication were included. Data from the included studies were described in a narrative form. Results: Seven hundred and six studies were identified, and after removing duplicates and applying the eligibility criteria, 28 studies were included. The year of publication ranged from 1976 to 2022. The studies were conducted in 19 countries. Fifty patients were mentioned in the included studies and 34 were female (68%). The natural products most related to adverse reactions were propolis (n = 17), with manifestations such as perioral eczema, edema, erosions, erythema, allergic contact dermatitis, and garlic (n = 9), with manifestations such as chemical burn, burning sensation, vesicles and blisters, crusts, and ulcerations. Conclusion: Propolis and garlic were the natural products with the most reported adverse effects on the oral mucosa and perioral region.
Collapse
Affiliation(s)
- Débora E Silva Campos
- Department of Restorative Dentistry, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | | | - Heloísa Nunes Brandão
- Department of Restorative Dentistry, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | | | - Thiago Gomes da Trindade
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | |
Collapse
|
10
|
Islam S, Hussain EA, Shujaat S, Khan MU, Ali Q, Malook SU, Ali D. Antibacterial potential of Propolis: molecular docking, simulation and toxicity analysis. AMB Express 2024; 14:81. [PMID: 39014110 PMCID: PMC11252112 DOI: 10.1186/s13568-024-01741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
The issue of antibiotic resistance in pathogenic microbes is a global concern. This study was aimed to explore in silico and in vitro analysis of the antibacterial efficacy of different natural ligands against bacterial activity. The ligands included in the study were Propolis Neoflavanoide 1, Carvacrol, Cinnamaldehyde, Thymol, p-benzoquinone, and Ciprofloxacin (standard drug S*). The outcomes of molecular docking revealed that Propolis Neoflavaniode-1 showed a highly significant binding energy of - 7.1 and - 7.2 kcal/mol for the two gram-positive bacteria, as compared to the gram-negative bacteria. All ligands demonstrated acute toxicity (oral, dermal), except for Propolis Neoflavanoide 1 and S* drugs, with a confidence score range of 50-60%. Using a molecular dynamic simulation approach, we investigated Propolis Neoflavaniode-1's potential for therapeutic use in more detail. An MD simulation lasting 100 ns was performed using the Desmond Simulation software to examine the conformational stability and steady state of Propolis Neoflavaniode-1 in protein molecule complexes. Additionally, in vitro studies confirmed the antimicrobial activity of Propolis Neoflavaniode 1 by increasing the zone of inhibition against Gram-positive bacteria, p < 0.005 as compared to gram-negative bacteria. This study revealed the promising antibacterial efficacy of Propolis Neoflavaniode 1, demonstrated through robust in silico analyses, minimal toxicity, and confirmed in vitro antimicrobial activity, suggesting its potential as a viable alternative to combat antibiotic resistance.
Collapse
Affiliation(s)
- Shabana Islam
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Erum Akbar Hussain
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Shahida Shujaat
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Saif Ul Malook
- Department of Entomology and Nematology, University of Florida, Gainesville, USA
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Tandean S, Japardi I, Rusda M, Indharty RS, Lelo A, Aman RA, Amin MM, Siahaan AMP, Eyanoer PC, D’Prinzessin CA, Lesmana R, Popova M, Trusheva B, Bankova V, Zulhendri F. Chemical Composition and Neuroprotective Properties of Indonesian Stingless Bee ( Geniotrigona thoracica) Propolis Extract in an In-Vivo Model of Intracerebral Hemorrhage (ICH). Nutrients 2024; 16:1880. [PMID: 38931235 PMCID: PMC11206540 DOI: 10.3390/nu16121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is the world's second-leading cause of death. Current treatments for cerebral edema following intracerebral hemorrhage (ICH) mainly involve hyperosmolar fluids, but this approach is often inadequate. Propolis, known for its various beneficial properties, especially antioxidant and anti-inflammatory properties, could potentially act as an adjunctive therapy and help alleviate stroke-associated injuries. The chemical composition of Geniotrigona thoracica propolis extract was analyzed by GC-MS after derivatization for its total phenolic and total flavonoid content. The total phenolic content and total flavonoid content of the propolis extract were 1037.31 ± 24.10 μg GAE/mL and 374.02 ± 3.36 μg QE/mL, respectively. By GC-MS analysis, its major constituents were found to be triterpenoids (22.4% of TIC). Minor compounds, such as phenolic lipids (6.7% of TIC, GC-MS) and diterpenic acids (2.3% of TIC, GC-MS), were also found. Ninety-six Sprague Dawley rats were divided into six groups; namely, the control group, the ICH group, and four ICH groups that received the following therapies: mannitol, propolis extract (daily oral propolis administration after the ICH induction), propolis-M (propolis and mannitol), and propolis-B+A (daily oral propolis administration 7 days prior to and 72 h after the ICH induction). Neurocognitive functions of the rats were analyzed using the rotarod challenge and Morris water maze. In addition, the expression of NF-κB, SUR1-TRPM4, MMP-9, and Aquaporin-4 was analyzed using immunohistochemical methods. A TUNEL assay was used to assess the percentage of apoptotic cells. Mannitol significantly improved cognitive-motor functions in the ICH group, evidenced by improved rotarod and Morris water maze completion times, and lowered SUR-1 and Aquaporin-4 levels. It also significantly decreased cerebral edema by day 3. Similarly, propolis treatments (propolis-A and propolis-B+A) showed comparable improvements in these tests and reduced edema. Moreover, combining propolis with mannitol (propolis-M) further enhanced these effects, particularly in reducing edema and the Virchow-Robin space. These findings highlight the potential of propolis from the Indonesian stingless bee, Geniotrigona thoracica, from the Central Tapanuli region as a neuroprotective, adjunctive therapy.
Collapse
Affiliation(s)
- Steven Tandean
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Iskandar Japardi
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
| | - Muhammad Rusda
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Rr Suzy Indharty
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Aznan Lelo
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Renindra Ananda Aman
- Department of Neurosurgery, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National General Hospital, Jakarta 10430, Indonesia;
| | - Mustafa Mahmud Amin
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Psychiatry, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Andre Marolop Pangihutan Siahaan
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Putri Chairani Eyanoer
- Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (S.T.); (M.R.); (R.S.I.); (A.L.); (M.M.A.); (A.M.P.S.); (P.C.E.)
- Department of Community and Preventive Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Celine Augla D’Prinzessin
- Undergraduate Program in Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java 45363, Indonesia;
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Felix Zulhendri
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Kabupaten Sumedang, Jawa Barat 45363, Indonesia
- Kebun Efi, Kabupaten Karo, Sumatera Utara 22171, Indonesia
| |
Collapse
|
12
|
Lesmana R, Tandean S, Christoper A, Suwantika AA, Wathoni N, Abdulah R, Fearnley J, Bankova V, Zulhendri F. Propolis as an autophagy modulator in relation to its roles in redox balance and inflammation regulation. Biomed Pharmacother 2024; 175:116745. [PMID: 38761422 DOI: 10.1016/j.biopha.2024.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Autophagy is a degradation process that is evolutionarily conserved and is essential in maintaining cellular and physiological homeostasis through lysosomal removal and elimination of damaged peptides, proteins and cellular organelles. The dysregulation of autophagy is implicated in various diseases and disorders, including cancers, infection-related, and metabolic syndrome-related diseases. Propolis has been demonstrated in various studies including many human clinical trials to have antimicrobial, antioxidant, anti-inflammatory, immune-modulator, neuro-protective, and anti-cancer. Nevertheless, the autophagy modulation properties of propolis have not been extensively studied and explored. The role of propolis and its bioactive compounds in modulating cellular autophagy is possibly due to their dual role in redox balance and inflammation. The present review attempts to discuss the activities of propolis as an autophagy modulator in biological models in relation to various diseases/disorders which has implications in the development of propolis-based nutraceuticals, functional foods, and complementary therapies.
Collapse
Affiliation(s)
- R Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia; Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Indonesia.
| | - S Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara 20222, Indonesia.
| | - A Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - A A Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - N Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia.
| | - R Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - J Fearnley
- Apiceutical Research Centre, Unit 3b Enterprise Way, Whitby, North Yorkshire YO18 7NA, UK.
| | - V Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria.
| | - F Zulhendri
- Kebun Efi, Kabanjahe, North Sumatra 22171, Indonesia; Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
13
|
Darbanian N, Nobahar M, Ghorbani R. Effect of propolis mouthwash on the incidence of ventilator-associated pneumonia in intensive care unit patients: a comparative randomized triple-blind clinical trial. BMC Oral Health 2024; 24:636. [PMID: 38811949 PMCID: PMC11137970 DOI: 10.1186/s12903-024-04412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVES Ventilator-associated pneumonia (VAP) increases the length of hospitalization and mortality rate. This study aimed to determine the effect of propolis mouthwash on the incidence of VAP in intensive care unit (ICU) patients. MATERIALS AND METHODS Triple-blind, comparative randomized, controlled clinical trial was conducted over one year, with 110 ICU patients at Imam-Hossein and Bahar hospitals (Shahroud) and Kowsar Hospital (Semnan) in Iran. The intervention group used 15 cc of 0.06% propolis mouthwash solution twice daily at 8 AM and 4 PM for seven days. The control group used 15 cc of 0.2% chlorhexidine mouthwash at the same times and duration. Data were collected using a demographic questionnaire, APACHE II, Beck Oral Assessment Scale, and Modified Clinical Pulmonary Infection Score (MCPIS). RESULTS There was no significant difference in demographic information, disease severity, and oral health between the two groups before and after intervention (P > 0.05). The incidence of VAP in the intervention group compared to the control group was 10.9% vs. 30.9% on the third day (P = 0.0166, 95% CI: 0.53-0.83 and RR = 0.35), 23.6% vs. 43.6% on the fifth day (P = 0.0325 and 95% CI: 0.31-0.95 and RR = 0.54), and 25.5% vs. 47.3% on the seventh day (P = 0.0224, 95% CI: 0.32-0.92, and RR = 0.54). The Mann-Whitney indicated the incidence of VAP was significantly lower in the intervention group on the third, fifth, and seventh days. CONCLUSION Propolis mouthwash can be considered as an alternative to chlorhexidine mouthwash for ICU patients. CLINICAL RELEVANCE Propolis mouthwash serves as a simple, economical intervention to potentially reduce incidence of VAP. TRIAL REGISTRATION (IRCT20110427006318N12, date 02.04.2019).
Collapse
Affiliation(s)
- Nayereh Darbanian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Monir Nobahar
- Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, 3513138111, Iran.
- Department of Nursing, Faculty of Nursing and Midwifery, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raheb Ghorbani
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
14
|
Gupta D, Guliani E, Bajaj K. Coumarin-Synthetic Methodologies, Pharmacology, and Application as Natural Fluorophore. Top Curr Chem (Cham) 2024; 382:16. [PMID: 38722386 DOI: 10.1007/s41061-024-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/09/2024] [Indexed: 06/12/2024]
Abstract
Coumarins are secondary metabolites made up of benzene and α-pyrone rings fused together that can potentially treat various ailments, including cancer, metabolic, and degenerative disorders. Coumarins are a diverse category of both naturally occurring as well as synthesized compounds with numerous biological and therapeutic properties. Coumarins as fluorophores play a key role in fluorescent labeling of biomolecules, metal ion detection, microenvironment polarity detection, and pH detection. This review provides a detailed insight into the characteristics of coumarins as well as their biosynthesis in plants and metabolic pathways. Various synthetic strategies for coumarin core involving both conventional and green methods have been discussed comparing advantages and disadvantages of each method. Conventional methods discussed are Pechmann, Knoevenagel, Perkin, Wittig, Kostanecki, Buchwald-Hartwig, and metal-induced coupling reactions such as Heck and Suzuki, as well as green approaches involving microwave or ultrasound energy. Various pharmacological applications of coumarin derivatives are discussed in detail. The structural features and conditions responsible for influencing the fluorescence of coumarin core are also elaborated.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Noida, India.
| | - Eksha Guliani
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Kiran Bajaj
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Noida, India
| |
Collapse
|
15
|
Cingi C, Bayar Muluk N, Çukurova İ, Dündar R, Osma U, Bal C, Zirek A, Budak A, Seyed Resuli A, Selimoğlu A, Tanuğur Samancı AE, Karaoğullarından A, Yılmaz B, Arslan B, Sizer B, Cihan C, Koca ÇF, Avcı D, Aydenizöz D, Ünver E, Alaskarov E, Gülmez E, Gündoğan F, Günay G, Çetiner H, Güngör H, Salcan İ, Gündoğan ME, Akbay MÖ, Akdağ M, Kaplama ME, Yaşar M, Koparal M, Kar M, Altıntaş M, Torun MT, Bozan N, Sarı N, Susaman N, Küçük N, Erdoğan O, Gül O, Sancaklı Ö, Kundi P, Budak RO, Karaman S, Taşar S, Demir S, Belli Ş, Yağcı T, Bilici T, Çelik T, Yıldırım YSS, Atayoglu AT, Irkan RK, Zorlu D, Can D. Effects of Anatolian Propolis and Hypertonic Saline Combination Nasal Spray on Allergic Rhinitis Symptoms: A Prospective, Multicenter Study. EAR, NOSE & THROAT JOURNAL 2024; 103:NP190-NP198. [PMID: 38284348 DOI: 10.1177/01455613231204209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Objectives: This study aimed to evaluate how Rhinapi nasal spray affects symptoms of allergic rhinitis. Methods: In this prospective, multicenter, observational study, 10,000 patients (comprising 5028 males and 4972 females) exhibiting symptoms of allergic rhinitis (namely, nasal discharge, sneezing, nasal itching, and nasal obstruction) from different centers in different regions of Turkey were enrolled in the study between March 2022 and March 2023. All the patients wanted to participate in the study and were administered Rhinapi one puff to each nostril three times a day, for a period of 3 weeks. Total symptom scores, quality of life (QoL) scores, and otolaryngological examination scores were evaluated before and 3 weeks after treatment. Results: The scores for discharge from the nose, sneezing, nasal pruritus, and blockage of the nose all indicated improvement when compared to pre-medication and post-medication. This difference achieved statistical significance (P < .001). The mean total symptom score fell following treatment (P < .001): whilst the score was 11.09 ± 3.41 before administering Rhinapi; after administration, the average score was 6.23 ± 2.41. The mean QoL scores also altered after medication (P < .001), improving from a mean value of 6.44 ± 1.55 to a mean of 7.31 ± 1.24. Significant improvement was also noted in the scores for conchal color and degree of edema after the treatment had been administered (P < .001). Conclusion: The study demonstrates that Rhinapi nasal spray decreases total symptom scores, and results in improved QoL and otolaryngological examination scores. Propolis spray may be recommended for patients with allergic rhinitis alongside other treatments.
Collapse
Affiliation(s)
- Cemal Cingi
- Department of Otorhinolaryngology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir/Turkey
| | - Nuray Bayar Muluk
- Department of Otorhinolaryngology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - İbrahim Çukurova
- Department of Head and Neck Surgery, Izmir Faculty of Medicine, University of Health Sciences, Izmir, Turkey
| | - Rıza Dündar
- Department of Otorhinolaryngology, Faculty of Medicine, Seyh Edebali University, Bilecik, Turkey
| | - Ustün Osma
- Department of Otorhinolaryngology, Medical Faculty, Akdeniz University, Antalya, Turkiye
| | - Cengiz Bal
- Department of Biostatistics, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir/Turkey
| | - Alaattin Zirek
- Department of Otorhinolaryngology, Bakırköy Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Ali Budak
- Department of Otorhinolaryngology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Ali Seyed Resuli
- Department of Otorhinolaryngology, Faculty of Medicine, Istanbul Yeni Yüzyıl University, Istanbul, Turkey
| | - Asif Selimoğlu
- Department of Otorhinolaryngology, Ankara Private Yasam Hospital, Ankara, Turkiye
| | | | - Ayşe Karaoğullarından
- Department of Otorhinolaryngology, Faculty of Medicine, Adana City Hospital, Health Sciences University, Adana, Turkey
| | - Begüm Yılmaz
- Department of Otorhinolaryngology, Kırsehir Training and Research Hospital, Kırsehir, Turkey
| | - Bengi Arslan
- Department of Otorhinolaryngology, Ankara City Hospital, Ankara, Turkiye
| | - Bilal Sizer
- Department of Otorhinolaryngology, Faculty of Medicine, İstanbul Arel University, İstanbul, Turkey
| | - Celalettin Cihan
- Department of Otorhinolaryngology, Kayseri Kızılay Hospital, Kayseri, Turkey
| | - Çiğdem Fırat Koca
- Department of Otorhinolaryngology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya, Turkey
| | - Deniz Avcı
- Department of Otorhinolaryngology, Derince Training and Research Hospital, İstanbul, Turkey
| | - Doğukan Aydenizöz
- Department of Otorhinolaryngology, Dinar State Hospital, Afyon, Turkey
| | - Ethem Ünver
- Department of Chest Diseases, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Elvin Alaskarov
- Department of Otorhinolaryngology, Esenler Hospital, Medipol University, İstanbul, Turkey
| | - Emrah Gülmez
- Department of Otorhinolaryngology, Kayseri City Hospital, Kayseri, Turkey
| | - Fatih Gündoğan
- Department of Otorhinolaryngology, Kayseri City Hospital, Kayseri, Turkey
| | - Gözde Günay
- Department of Otorhinolaryngology, Devrek State Hospital, Zonguldak, Turkey
| | - Hasan Çetiner
- Department of Otorhinolaryngology, East Anatolia Hospital, Elazıg, Turkey
| | - Hilal Güngör
- İnternal Medicine, Eskisehir City Hospital, Eskişehir, Turkey
| | - İsmail Salcan
- Department of Otorhinolaryngology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Mahmut Emre Gündoğan
- Department of Otorhinolaryngology, Sanlıurfa Mehmet Akif İnan Training and Research Hospital, Sanlıurfa, Turkey
| | - Makbule Özlem Akbay
- Department of Pulmonology, Süreyyapaşa Chest Diseases and Thoracic Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Akdağ
- Department of Otorhinolaryngology, Sanlıurfa Mehmet Akif İnan Training and Research Hospital, Sanlıurfa, Turkey
| | - Mehmet Erkan Kaplama
- Department of Otorhinolaryngology, Sanlıurfa Mehmet Akif İnan Training and Research Hospital, Sanlıurfa, Turkey
| | - Mehmet Yaşar
- Department of Otorhinolaryngology, Faculty of Medicine, Health Sciences University, Kayseri, Turkey
| | - Mehtap Koparal
- Department of Otorhinolaryngology, Adıyaman Training and Research Hospital, Adıyaman, Turkey
| | - Murat Kar
- Department of Otorhinolaryngology, Alanya Training and Research Hospital, Alaaddin Keykubat University, Alanya, Turkey
| | - Mustafa Altıntaş
- ENT Department, Antalya Training and Research Hospital, Antalya, Turkey
| | - Mümtaz Taner Torun
- Department of Otorhinolaryngology, Faculty of Medicine, Bandırma Onyedi Eylül University, Bandırma, Balıkesir, Turkey
| | - Nazım Bozan
- Department of Otorhinolaryngology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| | - Neslihan Sarı
- Department of Otorhinolaryngology, Mardin Training and Research Hospital, Mardin, Turkey
| | - Nihat Susaman
- Department of Otorhinolaryngology, Elazig Fethi Sekin City Hospital, Health Sciences University, Elazıg, Turkey
| | - Nurten Küçük
- Department of Otorhinolaryngology, Medıcal Park Bahcelıevler Hospıtal, İstanbul, Turkey
| | - Osman Erdoğan
- Department of Otorhinolaryngology, Sanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Osman Gül
- Department of Otorhinolaryngology, Konya Beyhekim Training and Research Hospital, Konya, Turkey
| | - Özlem Sancaklı
- Department of Pediatrics, Dr. Behcet Uz Pediatric Diseases and Surgery Training and Research Hospital, Izmir, Turkey
| | - Pınar Kundi
- Department of Otorhinolaryngology, Başakşehir Çam ve Sakura City Hospital, İstanbul, Turkey
| | - Rezzan Okyay Budak
- Department of Otorhinolaryngology, Ankara Etimesgut Şehit Sait Ertürk State Hospital, Ankara, Turkey
| | - Sait Karaman
- Department of Pediatrics, Manisa City Hospital, Manisa, Turkey
| | - Soner Taşar
- Department of Otorhinolaryngology, Afyon State Hospital, Afyon, Turkey
| | - Songül Demir
- Department of Otorhinolaryngology, Mardin Training and Research Hospital, Mardin, Turkey
| | - Şeyda Belli
- Department of Otorhinolaryngology, Health Sciences University Bağcılar Education and Research Hospital, Istanbul, Turkey
| | - Tarık Yağcı
- Department of Otorhinolaryngology, Medical Faculty, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Taylan Bilici
- Department of Otorhinolaryngology, Adana Seyhan State Hospital, Adana, Turkey
| | - Turgut Çelik
- Department of Otolaryngology Head and Neck Surgery, Malatya Training and Research Hospital, Malatya, Turkey
| | | | - Ali Timucin Atayoglu
- Department of Family Medicine, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Reşat Kubilay Irkan
- SBS Scientific Bio Solutions R&D Center, and Health Sciences Institute, Marmara University, Istanbul, Turkey
| | - Duygu Zorlu
- Department of Pulmonology, International Medicana Izmir Hospital, Izmir, Turkey
| | - Demet Can
- Department of Pediatrics, Dr. Behcet Uz Pediatric Diseases and Surgery Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
16
|
Zhang K, Ma Q, Wang Y, Yuan Z, Yang Z, Luo X, Zhang H, Xia H, Lv X, Wang Y, Deng Q. Transcriptome and biochemical analyses reveal phenolic compounds-mediated flavor differences in loquat ( Eriobotrya japonica Lindl.) cultivars Chunhua No.1 and Dawuxing. Food Chem X 2024; 21:101145. [PMID: 38312488 PMCID: PMC10837488 DOI: 10.1016/j.fochx.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024] Open
Abstract
The novel loquat cultivar 'Chunhua No.1' (CH1) is a promising commercial cultivar. However, CH1 has texture characteristics different from those of common loquat, and its formation mechanism remains unclear. Here, we first identified the phenolic compounds of CH1 and its parent ('Dawuxing', DWX) and the effect on texture formation. The special presence of stone cells explained the flavor differences in CH1. Chlorogenic acid, neochlorogenic acid, and coniferyl alcohol were the main phenolic compounds in loquat, and the high content of coniferyl alcohol was a potential factor for the rough texture of CH1. Transcriptome reveals that phenylpropanoid metabolism was activated during CH1 fruit texture formation. Kyoto Encyclopedia of Genes and Genomes (KEGG) identified 51 structural genes involved in phenylpropanoid biosynthesis, and Weighted Gene Co-expression Network Analysis (WGCNA) identified four structural genes and 88 transcription factors. These findings provide new insights into the phenolic metabolism and flavor formation of loquat fruit.
Collapse
Affiliation(s)
- Kun Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiaoli Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenchao Yuan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiwu Yang
- Sichuan Academy of Forestry Sciences, Chengdu 610081, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huifen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongqing Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
HADJAB W, ZELLAGUI A, MOKRANI M, ÖZTÜRK M, CEYLAN Ö, GHERRAF N, BENSOUICI C. Pharmacological Potential Effects of Algerian Propolis Against Oxidative Stress, Multidrug-Resistant Pathogens Biofilm and Quorum-Sensing. Turk J Pharm Sci 2024; 21:71-80. [PMID: 38529559 PMCID: PMC10982881 DOI: 10.4274/tjps.galenos.2023.64369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/08/2023] [Indexed: 03/27/2024]
Abstract
Objectives This study sought to examine the chemical profile, antioxidant, antimicrobial, antibiofilm, and anti-quorum sensing potential of two propolis ethanolic extracts (PEEs) collected from northeast Algeria. Materials and Methods To achieve the main objectives of this study, multiple in vitro tests were employed. The phenolic and flavonoid contents were analyzed, and the chemical composition of both PEE was determined by high-performance liquid chromatography. The antioxidant properties of the propolis extracts were investigated using six complementary tests. The inhibitory effects of propolis extracts were evaluated against multidrug-resistant (MDR) clinical isolates using agar well diffusion and microdilution methods, whereas their antibiofilm and quorum-sensing disruption effects were determined by spectrophotometric microplate methods. Results The results demonstrated that phenolic and flavonoid contents were higher in propolis from the Guelma (PEEG) region (PEEG; 188.50 ± 0.33 μg GAE/mg E, 144.23 ± 1.03 μg QE/mg E), respectively. Interestingly, different components were identified, and cynarin was the major compound detected. The PEEG sample exhibited potential antioxidant effects in scavenging ABTS•+ radicals with minimal inhibitory concentration values equal to 10.46 ± 1.40 µg/mL. Furthermore, the highest antibacterial activity was recorded by PEEG against Gram-positive Staphylococcus aureus MDR1. Similarly, PEEG effectively inhibited the biofilm formation of S. aureus MDR1 and the degradation of biofilm was up to 60%. In addition, quorum sensing disruption revealed that both extracts have a moderate capacity for violacein inhibition by the Chromobacterium violaceum ATCC 12472 strain in a concentration-dependent manner. Conclusion These findings indicate that propolis can be regarded as a natural therapeutic agent for health problems associated with MDR bacteria and oxidative stress.
Collapse
Affiliation(s)
- Widad HADJAB
- Larbi Ben M’hidi University, Faculty of Exact Science and Life Science and Nature, Department of Laboratory of Biomolecules and Plant Breeding, Oum el-Bouaghi, Algeria
| | - Amar ZELLAGUI
- Larbi Ben M’hidi University, Faculty of Exact Science and Life Science and Nature, Department of Laboratory of Biomolecules and Plant Breeding, Oum el-Bouaghi, Algeria
| | - Meryem MOKRANI
- Larbi Ben M’hidi University, Faculty of Exact Science and Life Science and Nature, Department of Laboratory of Biomolecules and Plant Breeding, Oum el-Bouaghi, Algeria
| | - Mehmet ÖZTÜRK
- Muğla Sıtkı Koçman University, Ula Ali Koçman Vocational School, Department of Food Quality and Analysis Program, Muğla, Türkiye
| | - Özgür CEYLAN
- Muğla Sıtkı Koçman University, Ula Ali Koçman Vocational School, Department of Food Quality and Analysis Program, Muğla, Türkiye
| | - Noureddine GHERRAF
- Larbi Ben M’hidi University, Department of Laboratory of Natural Resources and Management of Sensitive Environments, Oum el-Bouaghi, Algeria
| | - Chawki BENSOUICI
- Abdelhamid Mehri Constantine 2 University, Biotechnology Research Centre, Constantine, Algeria
| |
Collapse
|
18
|
Son NT, Gianibbi B, Panti A, Spiga O, Bastos JK, Fusi F. 3,3'-O-dimethylquercetin: A bi-functional vasodilator isolated from green propolis of the Caatinga Mimosa tenuiflora. Eur J Pharmacol 2024; 967:176400. [PMID: 38331336 DOI: 10.1016/j.ejphar.2024.176400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
In the search for novel, bi-functional compounds acting as CaV1.2 channel blockers and K+ channel stimulators, which represent an effective therapy for hypertension, 3,3'-O-dimethylquercetin was isolated for the first time from Brazilian Caatinga green propolis. Its effects were investigated through electrophysiological, functional, and computational approaches. In rat tail artery myocytes, 3,3'-O-dimethylquercetin blocked Ba2+ currents through CaV1.2 channels (IBa1.2) in a concentration-dependent manner, with the inhibition being reversed upon washout. The compound also shifted the voltage dependence of the steady-state inactivation curve to more negative potentials without affecting the slope of the inactivation and activation curves. Furthermore, the flavonoid stimulated KCa1.1 channel currents (IKCa1.1). In silico simulations provided additional evidence for the binding of 3,3'-O-dimethylquercetin to KCa1.1 and CaV1.2 channels and elucidated its mechanism of action. In depolarized rat tail artery rings, the flavonoid induced a concentration-dependent relaxation. Moreover, in rat aorta rings its antispasmodic effect was inversely related to the transmembrane K+ gradient. In conclusion, 3,3'-O-dimethylquercetin demonstrates effective in vitro vasodilatory properties, encouraging the exploration of its scaffold to develop novel derivatives for potential use in the treatment of hypertension.
Collapse
Affiliation(s)
- Ninh The Son
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, S/N, 14040-903, Ribeirão Preto-SP, Brazil; Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam; Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Beatrice Gianibbi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Alice Panti
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, S/N, 14040-903, Ribeirão Preto-SP, Brazil.
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
19
|
González Montiel L, León-López A, García-Ceja A, Franco-Fernández MJ, Pérez-Soto E, Cenobio-Galindo ADJ, Campos-Montiel RG, Aguirre-Álvarez G. Stability, Content of Bioactive Compounds and Antioxidant Activity of Emulsions with Propolis Extracts during Simulated In Vitro Digestion. Foods 2024; 13:779. [PMID: 38472892 DOI: 10.3390/foods13050779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The objective in this work was the evaluation of the stability and content of bioactive compounds (total phenols and total flavonoids) and antioxidant activity of emulsions of ethanolic extracts of propolis obtained by ultrasound, during simulated in vitro digestion. The emulsions prepared with propolis extracts were evaluated on certain properties: their emulsion efficiency, stability (zeta potential, particle size, electrical conductivity), content of bioactive compound (total phenolics and total flavonoids), antioxidant activity and their behavior during simulated in vitro digestion. Based on the total phenol content, an emulsification efficiency of 87.8 ± 1.9% to 97.8 ± 3.8% was obtained. The particle size of the emulsions was 322.5 ± 15.33 nm to 463.9 ± 33.65 nm, with a zeta potential of -31.5 ± 0.66 mV to -28.2 ± 1.0 mV and electrical conductivity of 22.7 ± 1.96 µS/cm to 30.6 ± 0.91 µS/cm. These results indicate good emulsion stability. During simulated in vitro digestion, the content of bioactive compounds (total phenolics, total flavonoids) and antioxidant activity were affected during 77 days of storage at 4 °C. It was concluded that the emulsion process fulfills the function of protecting the bioactive compounds and therefore their biological activity.
Collapse
Affiliation(s)
- Lucio González Montiel
- Instituto de Tecnología de los Alimentos, Universidad de la Cañada, Teotitlán de Flores Magón 68540, Oaxaca, Mexico
| | - Arely León-López
- TecNM Campus Venustiano Carranza, Av. Tecnológico S/N, Col. el Huasteco, Ciudad Lázaro Cárdenas, Puebla 73049, Mexico
| | - Adelfo García-Ceja
- TecNM Campus Venustiano Carranza, Av. Tecnológico S/N, Col. el Huasteco, Ciudad Lázaro Cárdenas, Puebla 73049, Mexico
| | - Melitón Jesús Franco-Fernández
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico
| | - Elizabeth Pérez-Soto
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico
| | - Antonio de Jesús Cenobio-Galindo
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico
| | - Rafael G Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico
| |
Collapse
|
20
|
Elmahallawy EK, Ali FAZ, Raya-Álvarez E, Fehaid A, Abd El-Razik KA, El Fadaly HAM, El-Khadragy MF, Sayed ASM, Soror AH, Alhegaili AS, Saleh AA, Alkhaldi AAM, Madboli AENA, Agil A, Barakat AM. Ameliorative effects of propolis and wheat germ oil on acute toxoplasmosis in experimentally infected mice are associated with reduction in parasite burden and restoration of histopathological changes in the brain, uterus, and kidney. Front Vet Sci 2024; 11:1357947. [PMID: 38496314 PMCID: PMC10940321 DOI: 10.3389/fvets.2024.1357947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Toxoplasmosis continues to be a prevalent parasitic zoonosis with a global distribution. This disease is caused by an intracellular parasite known as Toxoplasma gondii, and the development of effective novel drug targets to combat it is imperative. There is limited information available on the potential advantages of wheat germ oil (WGO) and propolis, both individually and in combination, against the acute phase of toxoplasmosis. In this study, acute toxoplasmosis was induced in Swiss albino mice, followed by the treatment of infected animals with WGO and propolis, either separately or in combination. After 10 days of experimental infection and treatment, mice from all groups were sacrificed, and their brains, uteri, and kidneys were excised for histopathological assessment. Additionally, the average parasite load in the brain was determined through parasitological assessment, and quantification of the parasite was performed using Real-Time Polymerase Chain Reaction targeting gene amplification. Remarkably, the study found that treating infected animals with wheat germ oil and propolis significantly reduced the parasite load compared to the control group that was infected but not treated. Moreover, the group treated with a combination of wheat germ oil and propolis exhibited a markedly greater reduction in parasitic load compared to the other groups. Similarly, the combination treatment effectively restored the histopathological changes observed in the brain, uterus, and kidney, and the scoring of these reported lesions confirmed these findings. In summary, the present results reveal intriguing insights into the potential therapeutic benefits of wheat germ oil and propolis in the treatment of acute toxoplasmosis.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Enrique Raya-Álvarez
- Rheumatology Department, Hospital Universitario San Cecilio, Av. de la Investigación s/n, Granada, Spain
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled A. Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | | | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amal S. M. Sayed
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Ashraf H. Soror
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Alaa S. Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Amira A. Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Abd El-Nasser A. Madboli
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute Granada (IBs Granada) and Neuroscience Institute, School of Medicine, University of Granada, Granada, Spain
| | | |
Collapse
|
21
|
Zayed HS, Saleh S, Omar AE, Saleh AK, Salama A, Tolba E. Development of collagen-chitosan dressing gel functionalized with propolis-zinc oxide nanoarchitectonics to accelerate wound healing. Int J Biol Macromol 2024; 261:129665. [PMID: 38266853 DOI: 10.1016/j.ijbiomac.2024.129665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/01/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Using an in situ sol-gel technique, new nanoarchitectonics of propolis loaded zinc oxide nanoarchitectonics (PP/ZnO-NPs) were developed in order to improve the in vivo outcomes of collagen-chitosan gel in wounded rats. The obtained nanoarchitectonics were fully characterized. The XRD results indicate the presence of a Zincite phase for ZnO-NPs and Zincite accompanied by a minor amount of zinc hydroxide for PP/ZnO-NPs samples. While the TEM findings illustrate the transfer of the ZnO-NPs from agglomerated spheres with an average particle size of 230 ± 29 nm to needle-like NPs of 323 ± 173 nm length (PP1/ZnO-NPs) and to a sheet-like NPs of 500 ± 173 nm diameter (PP2/ZnO-NPs). In addition, the incorporation of PP results in an increase in the surface negativity of ZnO-NPs to -31.4 ± 6.4 mV for PP2/ZnO-NPs. The antimicrobial activities of the nanocomposite gel loaded with 10%PP1/ZnO-NPs (G6) revealed the highest inhibition zone against E. coli (26 ± 2.31 mm). Remarkably, the in vivo outcomes showed that the nanocomposite gel (G6) has exceptional collagen deposition, quick wound closure rates, and re-epithelization. The outcomes demonstrate the nanocomposite gel encouraging biological properties for the treatment of damaged and infected wounds.
Collapse
Affiliation(s)
- Heba S Zayed
- Department of Physics, Faculty of Science, Al-Azhar University, Girls Branch, P.O Box 11884, Cairo, Egypt
| | - Safaa Saleh
- Department of Physics, Faculty of Science, Al-Azhar University, Girls Branch, P.O Box 11884, Cairo, Egypt
| | - Areg E Omar
- Department of Physics, Faculty of Science, Al-Azhar University, Girls Branch, P.O Box 11884, Cairo, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Emad Tolba
- Polymers and Pigments Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
22
|
Shekari M, Hadi A, Daabo HMA, Allahyari ZH, Hjazi A, Rafie N, Heidari M. Propolis as an adjunctive therapy for treatment of uncomplicated cystitis in women: A randomized double-blind placebo-controlled trial. Phytother Res 2024; 38:520-526. [PMID: 37905787 DOI: 10.1002/ptr.8053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/29/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023]
Abstract
The current research is designed to investigate the effect of propolis supplementation on the clinical manifestations in women suffering from uncomplicated cystitis. In this randomized double-blind, placebo-controlled trial, 120 women with uncomplicated cystitis were selected and randomly assigned into two groups to receive two 500 mg capsules of propolis or placebo daily for 7 days along with ciprofloxacin (250 mg). Clinical symptoms including hematuria, urinary frequency, dysuria, suprapubic pain, and urgency, as well as bacteriuria, were assessed before and after the intervention. After supplementation, participants in the intervention group had significantly fewer days of urinary frequency (p < 0.001), dysuria (p = 0.005), and urgency (p = 0.03). However, there was no significant difference between the two groups regarding hematuria and suprapubic pain (p > 0.05). Furthermore, the severity of bacteriuria decreased significantly in both groups. In conclusion, it seems that propolis supplementation in women with uncomplicated cystitis could improve urinary frequency, dysuria, and urgency. However, further clinical trials should be conducted to fully understand the effects of propolis in women suffering from uncomplicated cystitis.
Collapse
Affiliation(s)
- Mahdi Shekari
- Department of Nutrition, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Amir Hadi
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | | | - Zahra Haj Allahyari
- Department of Nursing, Faculty of Nursing and Midwifery, Qom University of Medical Sciences, Qom, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nahid Rafie
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Heidari
- Department of Urology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
23
|
Kustiawan PM, Syaifie PH, Al Khairy Siregar KA, Ibadillah D, Mardliyati E. New insights of propolis nanoformulation and its therapeutic potential in human diseases. ADMET AND DMPK 2024; 12:1-26. [PMID: 38560717 PMCID: PMC10974817 DOI: 10.5599/admet.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background and purpose Scientific research is crucial to develop therapies for various disease severity levels, as modern drugs cause side effects and are difficult to predict. Researchers are exploring herbal alternatives with fewer side effects, particularly propolis, which has been validated through in vitro, in vivo, and clinical studies. This will focus on scientific evidence and its supporting technology for developing new bioactive compounds for chronic diseases. Nanotechnology can improve the delivery and absorption of herbal medicines, which often have poor bioavailability due to their high molecular weight and solubility in water, particularly in oral medicines. This technology can enhance propolis's effects through multi-target therapy and reduce side effects. Experimental approach All publications related to each section of this review were discovered using the search engines Google Scholar, Scopus, and Pubmed. This was only available for publication between 2013 and 2023. The selected publications were used as references in this review after being thoroughly studied. Key results Evaluation of propolis active compounds, the classification of propolis nano formulations, design concepts, and mechanisms of action of propolis nano formulation. Additionally, the challenges and prospects for how these insights can be translated into clinical benefits are discussed. Conclusion In the last ten years, a list of nanoformulation propolis has been reported. This review concludes the difficulties encountered in developing large-scale nanoformulations. To commercialize them, improvements in nano carrier synthesis, standardized evaluation methodology within the framework of strategy process improvement, and Good Manufacturing Practices would be required.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan 75124, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan 75124, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Delfritama Ibadillah
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| |
Collapse
|
24
|
Waqar SM, Razi A, Qureshi SS, Saher F, Zaidi SJA, Kumar C. Comparative evaluation of propolis mouthwash with 0.2% chlorhexidine mouthwash as an adjunct to mechanical therapy in improving the periodontitis among perimenopausal women: a randomized controlled trial. BMC Oral Health 2024; 24:26. [PMID: 38183081 PMCID: PMC10770993 DOI: 10.1186/s12903-023-03768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
OBJECTIVE To evaluate the efficacy of Propolis mouthwash compared to chlorhexidine mouthwash as an adjunct to mechanical therapy in improving clinical parameters in perimenopausal women with chronic periodontitis. METHODOLOGY A double-blind, randomized, controlled clinical trial was conducted by recruiting 144 subjects with mild to moderate chronic periodontitis. After scaling and root planning, subjects were allocated to two treatment groups: 0.2% chlorhexidine mouthwash and 20% propolis mouthwash twice daily for six weeks. Clinical parameters such as pocket probing depth (PPD), clinical attachment loss (CAL) and bleeding on probing (BOP) were analysed at baseline, six weeks, and 12 weeks. RESULT The mean value of PPD in the propolis group was 4.67 at baseline, reduced to 4.01 at six weeks and 3.59 at 12 weeks. While in the chlorhexidine group, the baseline value of 4.65 reduced to 4.44 and 4.25 at six weeks and 12 weeks, respectively. The baseline value of the mean CAL in the propolis group was 4.45. This value was reduced to 4.15 at six weeks and 3.77 at 12 weeks. For the chlorhexidine group, the baseline value of CAL was 4.80, which was reduced to 4.50 and 4.19 at six weeks and 12 weeks. The mean value of bleeding on probing in the propolis group was 77.20, which decreased to 46.30 at six weeks and 14.60 at the final visit. In the chlorhexidine group, the mean value of 77.30 was reduced to 49.60 and 22.80 at subsequent visits. CONCLUSION This study concludes that both propolis and chlorhexidine mouthwash positively improve clinical parameters; however, propolis is significantly more effective in improving BOP. TRIAL REGISTRATION ID: NCT05870059, Date of Registration: 02/02/2022. ( https://beta. CLINICALTRIALS gov/study/NCT05870059 ).
Collapse
Affiliation(s)
- Syeda Maliha Waqar
- Department of Oral Biology, Ziauddin College of Dentistry, Ziauddin University, Karachi, Pakistan
| | - Afifa Razi
- Department of Oral Medicine and Diagnosis, Ziauddin College of Dentistry, Ziauddin University, Karachi, Pakistan
| | - Saima Sameer Qureshi
- Department of Periodontology, Ziauddin College of Dentistry, Ziauddin University, Karachi, Pakistan
| | - Fizza Saher
- Department of Oral Biology, Ziauddin College of Dentistry, Ziauddin University, Karachi, Pakistan
| | - Syed Jaffar Abbas Zaidi
- Department of Oral Biology, Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan.
| | - Chander Kumar
- Department of Periodontology, Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
25
|
Rodriguez-Canales M, Medina-Romero YM, Rodriguez-Monroy MA, Nava-Solis U, Bolaños-Cruz SI, Mendoza-Romero MJ, Campos JE, Hernandez-Hernandez AB, Chirino YI, Cruz-Sanchez T, Garcia-Tovar CG, Canales-Martinez MM. Activity of propolis from Mexico on the proliferation and virulence factors of Candida albicans. BMC Microbiol 2023; 23:325. [PMID: 37924042 PMCID: PMC10625287 DOI: 10.1186/s12866-023-03064-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND This research evaluated the anti-Candida albicans effect of Mexican propolis from Chihuahua. Chemical composition of the ethanolic extract of propolis was determined by GC-MS, HPLC-DAD, and HPLC-MS. The presence of anthraquinone, aromatic acid, fatty acids, flavonoids, and carbohydrates was revealed. RESULTS The anti-Candida activity of propolis was determined. The inhibitions halos were between 10.0 to 11.8 mm; 25% minimum inhibitory concentration (0.5 mg/ml) was fungistatic, and 50% minimum inhibitory concentration (1.0 mg/ml) was fungicidal. The effect of propolis on the capability of C. albicans to change its morphology was evaluated. 25% minimum inhibitory concentration inhibited to 50% of germ tube formation. Staining with calcofluor-white and propidium iodide was performed, showing that the propolis affected the integrity of the cell membrane. INT1 gene expression was evaluated by qRT-PCR. Propolis significantly inhibited the expression of the INT1 gene encodes an adhesin (Int1p). Chihuahua propolis extract inhibited the proliferation of Candida albicans, the development of the germ tube, and the synthesis of adhesin INT1. CONCLUSIONS Given the properties demonstrated for Chihuahua propolis, we propose that it is a candidate to be considered as an ideal antifungal agent to help treat this infection since it would not have the toxic effects of conventional antifungals.
Collapse
Affiliation(s)
- Mario Rodriguez-Canales
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico.
| | - Yoli Mariana Medina-Romero
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Marco Aurelio Rodriguez-Monroy
- Biomedical Research Laboratory in Natural Products, Medicine Career, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla, Edo. de Mexico, C.P. 54090, Mexico
| | - Uriel Nava-Solis
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Sandra Isabel Bolaños-Cruz
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Maria Jimena Mendoza-Romero
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Jorge E Campos
- Molecular Biochemistry Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, México
| | - Ana Bertha Hernandez-Hernandez
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico
| | - Yolanda I Chirino
- Laboratory 10, Carcinogenesis and Toxicology, Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla, Edo. de Mexico, C.P. 54090, Mexico
| | - Tonatiuh Cruz-Sanchez
- Propolis Analysis Service Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, Av. Teoloyucan Km 2.5, San Sebastian Xhala, Cuautitlán Izcalli, Edo. de México, C.P. 54714, México
| | - Carlos Gerardo Garcia-Tovar
- Laboratory of Veterinary Morphology and Cell Biology, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, Av. Teoloyucan Km 2.5, San Sebastian Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, México
| | - Maria Margarita Canales-Martinez
- Pharmacognosy Laboratory, Biotechnology and Prototypes Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, C.P. 54090, Mexico.
| |
Collapse
|
26
|
Chuttong B, Lim K, Praphawilai P, Danmek K, Maitip J, Vit P, Wu MC, Ghosh S, Jung C, Burgett M, Hongsibsong S. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023; 12:3909. [PMID: 37959028 PMCID: PMC10648409 DOI: 10.3390/foods12213909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Bee propolis has been touted as a natural antimicrobial agent with the potential to replace antibiotics. Numerous reports and reviews have highlighted the functionalities and applications of the natural compound. Despite much clamor for the downstream application of propolis, there remain many grounds to cover, especially in the upstream production, and factors affecting the quality of the propolis. Moreover, geopropolis and cerumen, akin to propolis, hold promise for diverse human applications, yet their benefits and intricate manufacturing processes remain subjects of intensive research. Specialized cement bees are pivotal in gathering and transporting plant resins from suitable sources to their nests. Contrary to common belief, these resins are directly applied within the hive, smoothed out by cement bees, and blended with beeswax and trace components to create raw propolis. Beekeepers subsequently harvest and perform the extraction of the raw propolis to form the final propolis extract that is sold on the market. As a result of the production process, intrinsic and extrinsic factors, such as botanical origins, bee species, and the extraction process, have a direct impact on the quality of the final propolis extract. Towards the end of this paper, a section is dedicated to highlighting the antimicrobial potency of propolis extract.
Collapse
Affiliation(s)
- Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
| | - Kaiyang Lim
- ES-TA Technology Pte Ltd., Singapore 368819, Singapore;
| | - Pichet Praphawilai
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khanchai Danmek
- School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Jakkrawut Maitip
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Bankhai, Rayong 21120, Thailand;
| | - Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Merida 5001, Venezuela;
| | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Sampat Ghosh
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea;
| | - Chuleui Jung
- Department of Plant Medical, Andong National University, Andong 36729, Republic of Korea;
| | - Michael Burgett
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
27
|
Cho YR, Jo KA, Park SY, Choi JW, Kim G, Kim TY, Lee S, Lee DH, Kim SK, Lee D, Lee S, Lim S, Woo SO, Byun S, Kim JY. Combination of UHPLC-MS/MS with context-specific network and cheminformatic approaches for identifying bioactivities and active components of propolis. Food Res Int 2023; 172:113134. [PMID: 37689898 DOI: 10.1016/j.foodres.2023.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
Discovering new bioactivities and identifying active compounds of food materials are major fields of study in food science. However, the process commonly requires extensive experiments and can be technically challenging. In the current study, we employed network biology and cheminformatic approaches to predict new target diseases, active components, and related molecular mechanisms of propolis. Applying UHPLC-MS/MS analysis results of propolis to Context-Oriented Directed Associations (CODA) and Combination-Oriented Natural Product Database with Unified Terminology (COCONUT) systems indicated atopic dermatitis as a novel target disease. Experimental validation using cell- and human tissue-based models confirmed the therapeutic potential of propolis against atopic dermatitis. Moreover, we were able to find the major contributing compounds as well as their combinatorial effects responsible for the bioactivity of propolis. The CODA/COCONUT system also provided compound-associated genes explaining the underlying molecular mechanism of propolis. These results highlight the potential use of big data-driven network biological approaches to aid in analyzing the impact of food constituents at a systematic level.
Collapse
Affiliation(s)
- Ye-Ryeong Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyeong Ah Jo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soo-Yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jae-Won Choi
- Department of Physical Education, Yonsei University, Seoul 03722, Republic of Korea
| | - Gwangmin Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Tae Yeon Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Soohwan Lee
- Department of Food Science and Biotechnology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Doo-Hee Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Kuk Kim
- Department of Agrobiology, Division of Apiculture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Soon Ok Woo
- Department of Agrobiology, Division of Apiculture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
28
|
Shin SB, Lee JK, Ko MJ. Enhanced extraction of bioactive compounds from propolis (Apis mellifera L.) using subcritical water. Sci Rep 2023; 13:15038. [PMID: 37700092 PMCID: PMC10497595 DOI: 10.1038/s41598-023-42418-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/10/2023] [Indexed: 09/14/2023] Open
Abstract
The bioactive compounds and antioxidant activities of propolis extracts were investigated using subcritical water extraction (SWE). SWE was performed by varying temperature (110-200 °C) and time (10-30 min). SWE using only water as solvent successfully to extracted bioactive compounds from propolis using high-purity glass thimbles. The concentrations of galangin (16.37 ± 0.61 mg/g), and chrysin (7.66 ± 0.64 mg/g) were maximal at 200 °C for 20 min, and 170 °C for 20 min, respectively. The antioxidative properties from propolis increased with the increasing extraction temperature and extraction time on SWE. The maximum yields of the total phenolics (226.37 ± 4.37 mg/g), flavonoids (70.28 ± 1.33 mg/g), and antioxidant activities (88.73 ± 0.58%, 98.86 ± 0.69%, and 858.89 ± 11.48 mg/g) were obtained at 200 °C for 20 min. Compared with using ethanol extraction (at 25 °C for 24 h, total phenolics = 176.28 ± 0.35, flavonoids = 56.41 ± 0.65, antioxidant activities = 72.74 ± 0.41%, 95.18 ± 0.11%, 619.51 ± 8.17 mg/g), all yields of SWE extracts obtained at 200 °C for 20 min were higher. SWE is suitable for a much faster and more efficient method extracting bioactive compounds from propolis compared to traditional extraction method.
Collapse
Affiliation(s)
- Su-Bin Shin
- Department of Food Science and Biotechnology, Global K-Food Research Center, Hankyong National University, Anseong-si, 17579, South Korea
| | | | - Min-Jung Ko
- Department of Food Science and Biotechnology, Global K-Food Research Center, Hankyong National University, Anseong-si, 17579, South Korea.
| |
Collapse
|
29
|
Ibáñez B, Melero A, Montoro A, San Onofre N, Soriano JM. Radioprotective Effects from Propolis: A Review. Molecules 2023; 28:5842. [PMID: 37570811 PMCID: PMC10420827 DOI: 10.3390/molecules28155842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Propolis is a natural bee-produced substance with antimicrobial, anti-inflammatory, and wound-healing properties, containing some components from the leaves, buds and resins of plants. It has been used for centuries for various health benefits. In this manuscript, our group reviewed the radioprotective effect of propolis using PubMed and Embase, and our review was conducted according to the PRISMA statement. Finally, 27 articles were included in this review, which includes the radioprotective effect of propolis from cell-based studies (n = 8), animal models (n = 14), and human trials (n = 5). Results reflected that the dosage forms of propolis extracted in the scientific literature were ethanolic extracts of propolis, a water-soluble derivate of propolis, or capsules. The efficacy of the radioprotective properties from propolis is extracted from the bibliography, as several compounds of this resinous mixture individually or synergistically are possible candidates that have the radioprotective effect. In fact, studies prior to 2011 lacked a comprehensive characterization of propolis due to the variability in active compounds among different batches of propolis and were limited to analytical techniques. Furthermore, in this manuscript, we have selected studies to include primarily propolis types from Brazil, Croatia, Egypt, European countries, and those commercialized in Spain. They all contained ethanolic extract of propolis (EEP) and were influenced by different dosage forms. EEP showed a significant presence of lipophilic bioactive compounds like flavones, flavonols, and flavanones.
Collapse
Affiliation(s)
- Blanca Ibáñez
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Nadia San Onofre
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, 03690 Alicante, Spain
| | - Jose M. Soriano
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
| |
Collapse
|
30
|
Vilhelmova-Ilieva NM, Nikolova IN, Nikolova NY, Petrova ZD, Trepechova MS, Holechek DI, Todorova MM, Topuzova MG, Ivanov IG, Tumbarski YD. Antiviral Potential of Specially Selected Bulgarian Propolis Extracts: In Vitro Activity against Structurally Different Viruses. Life (Basel) 2023; 13:1611. [PMID: 37511986 PMCID: PMC10381642 DOI: 10.3390/life13071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Propolis is a natural mixture of resins, wax, and pollen from plant buds and flowers, enriched with enzymes and bee saliva. It also contains various essential oils, vitamins, mineral salts, trace elements, hormones, and ferments. It has been found that propolis possesses antimicrobial, antiviral, and anti-inflammatory properties. We have studied the antiviral activity of six extracts of Bulgarian propolis collected from six districts of Bulgaria. The study was conducted against structurally different viruses: human coronavirus strain OC-43 (HCoV OC-43) and human respiratory syncytial virus type 2 (HRSV-2) (enveloped RNA viruses), human herpes simplex virus type 1 (HSV-1) (enveloped DNA virus), human rhinovirus type 14 (HRV-14) (non-enveloped RNA virus) and human adenovirus type 5 (HadV-5) (non-enveloped DNA virus). The influence of the extracts on the internal replicative cycle of viruses was determined using the cytopathic effect (CPE) inhibition test. The virucidal activity, its impact on the stage of viral adsorption to the host cell, and its protective effect on healthy cells were evaluated using the final dilution method, making them the focal points of interest. The change in viral infectivity under the action of propolis extracts was compared with untreated controls, and Δlgs were determined. Most propolis samples administered during the viral replicative cycle demonstrated the strongest activity against HCoV OC-43 replication. The influence of propolis extracts on the viability of extracellular virions was expressed to a different degree in the various viruses studied, and the effect was significantly stronger in those with an envelope. Almost all extracts significantly inhibited the adsorption step of the herpes virus and, to a less extent, of the coronavirus to the host cell, and some of them applied before viral infection demonstrated a protective effect on healthy cells. Our results enlarge the knowledge about the action of propolis and could open new perspectives for its application in viral infection treatment.
Collapse
Affiliation(s)
- Neli Milenova Vilhelmova-Ilieva
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Ivanka Nikolova Nikolova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Nadya Yordanova Nikolova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Zdravka Dimitrova Petrova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria
- Institute of Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 25 Georgi Bonchev, 1113 Sofia, Bulgaria
| | - Madlena Stephanova Trepechova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Dora Ilieva Holechek
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Mina Mihaylova Todorova
- Department of Organic Chemistry, Paisii Hilendarski University of Plovdiv, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Mariyana Georgieva Topuzova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritsa blvd., 4002 Plovdiv, Bulgaria
| | - Ivan Georgiev Ivanov
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritsa blvd., 4002 Plovdiv, Bulgaria
| | - Yulian Dimitrov Tumbarski
- Department of Microbiology, University of Food Technologies, 26 Maritsa blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
31
|
Stefanowska K, Woźniak M, Sip A, Mrówczyńska L, Majka J, Kozak W, Dobrucka R, Ratajczak I. Characteristics of Chitosan Films with the Bioactive Substances-Caffeine and Propolis. J Funct Biomater 2023; 14:358. [PMID: 37504853 PMCID: PMC10381157 DOI: 10.3390/jfb14070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Chitosan is a natural and biodegradable polymer with promising potential for biomedical applications. This study concerns the production of chitosan-based materials for future use in the medical industry. Bioactive substances-caffeine and ethanolic propolis extract (EEP)-were incorporated into a chitosan matrix to increase the bioactivity of the obtained films and improve their mechanical properties. Acetic and citric acids were used as solvents in the production of the chitosan-based films. The obtained materials were characterized in terms of their antibacterial and antifungal activities, as well as their mechanical properties, including tensile strength and elongation at break. Moreover, the chemical structures and surface morphologies of the films were assessed. The results showed that the solution consisting of chitosan, citric acid, caffeine, and EEP exhibited an excellent antiradical effect. The activity of this solution (99.13%) was comparable to that of the standard antioxidant Trolox (92.82%). In addition, the film obtained from this solution showed good antibacterial activity, mainly against Escherichia coli and Enterococcus faecalis. The results also revealed that the films produced with citric acid exhibited higher activity levels against pathogenic bacteria than the films obtained with acetic acid. The antimicrobial effect of the chitosan-based films could be further enhanced by adding bioactive additives such as caffeine and propolis extract. The mechanical tests showed that the solvents and additives used affected the mechanical properties of the films obtained. The film produced from chitosan and acetic acid was characterized by the highest tensile strength value (46.95 MPa) while the chitosan-based film with citric acid showed the lowest value (2.28 MPa). The addition of caffeine and propolis to the film based on chitosan with acetic acid decreased its tensile strength while in the case of the chitosan-based film with citric acid, an increase in strength was observed. The obtained results suggested that chitosan films with natural bioactive substances can be a promising alternative to the traditional materials used in the medical industry, for example, as including biodegradable wound dressings or probiotic encapsulation materials.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 48, 60627 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61614 Poznań, Poland
| | - Jerzy Majka
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60637 Poznań, Poland
| | - Wojciech Kozak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
32
|
Fathi Hafshejani S, Lotfi S, Rezvannejad E, Mortazavi M, Riahi‐Madvar A. Correlation between total phenolic and flavonoid contents and biological activities of 12 ethanolic extracts of Iranian propolis. Food Sci Nutr 2023; 11:4308-4325. [PMID: 37457164 PMCID: PMC10345684 DOI: 10.1002/fsn3.3356] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Propolis is a resinous substance produced by honey bees that is very popular as a natural remedy in traditional medicine. The current research is the first study on the biological properties of ethanolic extracts of propolis (EEP) from several different regions (12) of Iran. Total phenolic and flavonoid contents (TPC and TFC) of Iranian EEPs were variable between 26.59-221.38 mg GAE/g EEP and 4.8-100.03 mg QE/g EEP. The DPPH scavenging assay showed all the studied EEP samples, except for the sample with the lowest TPC and TFC (P6), have suitable antioxidant activity. All the EEPs inhibited both cholinesterase enzymes (acetylcholinesterase: AChE, butyrylcholinesterase: BuChE) but most of them exhibited a distinct selectivity over BuChE. Evaluation of the antibacterial activity of the EEP samples using four pathogenic bacteria (B. cereus, S. aureus, A. baumannii, and P. aeruginosa) demonstrated that the antibacterial properties of propolis are more effective on the gram-positive bacterium. Spearman correlation analysis showed a strong positive correlation between TPC and TFC of the Iranian EEPs and their antioxidant, anticholinesterase, and antibacterial activities. Considering that there is ample evidence of anticholinesterase activity of flavonoids and a significant correlation between the anticholinesterase activity of the studied Iranian EEPs and their total flavonoid content was observed, the interaction of 17 well-known propolis flavonoids with AChE and BuChE was explored using molecular docking. The results indicated that all the flavonoids interact with the active site gorge of both enzymes with high affinity. Summing up, the obtained results suggest that Iranian propolis possesses great potential for further studies.
Collapse
Affiliation(s)
- Shahnaz Fathi Hafshejani
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
| | - Elham Rezvannejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
| | - Ali Riahi‐Madvar
- Department of Molecular and Cell Biology, Faculty of Basic SciencesKosar University of BojnordBojnordIran
| |
Collapse
|
33
|
Sadat Mirbagheri M, Akhavan-Mahdavi S, Hasan A, Saeed Kharazmi M, Mahdi Jafari S. Propolis-loaded nanofiber scaffolds based on polyvinyl alcohol and polycaprolactone. Int J Pharm 2023:123186. [PMID: 37385356 DOI: 10.1016/j.ijpharm.2023.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Propolis-loaded electrospun nanofibers (PENs) have been regarded as promising candidates for biomedical purposes such as wound healing/dressing owing to their outstanding pharmacological and biological properties. This paper focuses on the development of electrospun nanofibers with optimum levels of propolis (PRP) and two polymer types (polycaprolactone (PCL) and polyvinyl alcohol (PVA)). Hence, response surface methodology (RSM) was employed to investigate the variation of the scaffold characteristics including porosity, average diameter, wettability, release, and tensile strength. For each response, a second-order polynomial model with a high coefficient of determination (R2) values ranging from 0.95 to 0.989 was developed using multiple linear regression analysis. The overall optimum region with the best characteristics was found to be at PCL/6% PRP and PVA/5% PRP. After selecting the optimal samples, the cytotoxicity assay showed no toxicity for the optimal concentrations of PRP. Furthermore, Fourier transform infrared (FTIR) spectra revealed that no new chemical functional groups were introduced in the PENs. Uniform fibers were found in the optimum samples without the appearance of a bead-like structure in the fibers. In conclusion, nanofibers containing the optimal concentration of PRP with suitable properties can be used in biomedical and tissue engineering.
Collapse
Affiliation(s)
- Mahnaz Sadat Mirbagheri
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sahar Akhavan-Mahdavi
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Qatar
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
34
|
Hochheim S, Sampaio NMFM, da Cruz AF, Del Mercato LL, D'Amone E, da Silva BJG, Saul CK, de Oliveira CC, Riegel-Vidotti I. Preparation and Investigation of Thermally Annealed Zein-Propolis Electrospun Nanofibers for Biomedical Applications. Macromol Biosci 2023; 23:e2200524. [PMID: 36852933 DOI: 10.1002/mabi.202200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Zein, a corn-derived protein, has a variety of applications ranging from drug delivery to tissue engineering and wound healing. This work aims to develop a biocompatible scaffold for dermal applications based on thermally annealed electrospun propolis-loaded zein nanofibers. Pristine fibers' biocompatibility is determined in vitro. Next, propolis from Melipona quadrifasciata is added to the fibers at different concentrations (5% to 25%), and the scaffolds are studied. The physicochemical properties of zein/propolis precursor dispersions are evaluated and the results are correlated to the fibers' properties. Due to zein's and propolis' very favorable interactions, which are responsible for the increase in the dispersions surface tension, nanometric size ribbon-like fibers ranging from 420 to 575 nm are obtained. The fiber's hydrophobicity is not dependent on propolis concentration and increases with the annealing procedure. Propolis inhibitory concentration (IC50 ) is determined as 61.78 µg mL-1 . When loaded into fibers, propolis is gradually delivered to cells as Balb/3T3 fibroblasts and are able to adhere, grow, and interact with pristine and propolis-loaded fibers, and cytotoxicity is not observed. Therefore, the zein-propolis nanofibers are considered biocompatible and safe. The results are promising and provide prospects for the development of wound-healing nanofiber patches-one of propolis' main applications.
Collapse
Affiliation(s)
- Sabrina Hochheim
- Macromolecules and Interfaces Research Group, Department of Chemistry, Universidade Federal do Parana, Av Cel Francisco H dos Santos, s/n, Curitiba, PR, 81530, Brazil
| | - Naiara M F M Sampaio
- Macromolecules and Interfaces Research Group, Department of Chemistry, Universidade Federal do Parana, Av Cel Francisco H dos Santos, s/n, Curitiba, PR, 81530, Brazil
| | - Anderson Fraga da Cruz
- Laboratory of Inflammatory and Neoplastic Cells, Department of Cell Biology, Section of Biological Sciences, Universidade Federal do Parana, Curitiba, 81530, Brazil
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Bruno José Gonçalves da Silva
- Macromolecules and Interfaces Research Group, Department of Chemistry, Universidade Federal do Parana, Av Cel Francisco H dos Santos, s/n, Curitiba, PR, 81530, Brazil
| | - Cyro Ketzer Saul
- Department of Physics, Universidade Federal do Parana, Curitiba, 81530, Brazil
| | - Carolina Camargo de Oliveira
- Laboratory of Inflammatory and Neoplastic Cells, Department of Cell Biology, Section of Biological Sciences, Universidade Federal do Parana, Curitiba, 81530, Brazil
| | - Izabel Riegel-Vidotti
- Macromolecules and Interfaces Research Group, Department of Chemistry, Universidade Federal do Parana, Av Cel Francisco H dos Santos, s/n, Curitiba, PR, 81530, Brazil
| |
Collapse
|
35
|
Goh LPW, Jawan R, Faik AAM, Gansau JA. A review of stingless bees' bioactivity in different parts of the world. J Med Life 2023; 16:16-21. [PMID: 36873121 PMCID: PMC9979177 DOI: 10.25122/jml-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/30/2022] [Indexed: 03/07/2023] Open
Abstract
Stingless bees, also known as meliponines, live in beehives. However, reports on the distribution of stingless bees are scattered, resulting in a lack of precision. Honey and propolis are the main components that can be harvested from their beehive, with a great commercial value of up to 610 million USD. Despite the enormous potential profits, discrepancies in their bioactivities have been observed worldwide, leading to a lack of confidence. Therefore, this review provided oversight on the potential of stingless bee products and highlighted the differences between stingless bees in Asia, Australia, Africa, and America. The bioactivity of stingless bee products is diverse and exhibits great potential as an antimicrobial agent or in various diseases such as diabetes, cardiovascular disease, cancers, and oral problems.
Collapse
Affiliation(s)
- Lucky Poh Wah Goh
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Roslina Jawan
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ainol Azifa Mohd Faik
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jualang Azlan Gansau
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
36
|
Woźniak-Budych M, Bajek A, Kowalczyk O, Giamberini M, Montornes JM, Staszak K, Tylkowski B. The Pragmatism of Polyphenols and Flavonoids Application as Drugs, from an Academic Lab to a Pharmacy Shelf. Curr Pharm Des 2023; 29:3421-3427. [PMID: 38083888 DOI: 10.2174/0113816128273103231204064507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/26/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols and flavonoids, naturally occurring compounds found abundantly in plants, have gained considerable attention in recent years due to their potential health benefits. Research exploring their bioactive properties has revealed promising therapeutic applications in various diseases. This article aims to provide a comprehensive overview of the intricate journey from academic laboratory discoveries to the availability of polyphenols and flavonoids as drugs on pharmacy shelves. It was shown that the transformation of these natural compounds into effective therapies is a promising avenue for enhancing human health. Yet, fully realizing this potential necessitates sustained scientific exploration, cross-disciplinary collaboration, and continued investment in research and development. This article underscores the importance of sustained collaboration and investment as key pillars of progress towards innovative and effective therapies.
Collapse
Affiliation(s)
| | - Anna Bajek
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Oliwia Kowalczyk
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marta Giamberini
- Departament d' Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep M Montornes
- Unitat de Tecnologia Química, Eurecat - Centre Tecnològic de Catalunya, Tarragona, Spain
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Poznan, Poland
| | - Bartosz Tylkowski
- Unitat de Tecnologia Química, Eurecat - Centre Tecnològic de Catalunya, Tarragona, Spain
| |
Collapse
|
37
|
Ożarowski M, Karpiński TM. The Effects of Propolis on Viral Respiratory Diseases. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010359. [PMID: 36615554 PMCID: PMC9824023 DOI: 10.3390/molecules28010359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Propolis remains an interesting source of natural chemical compounds that show, among others, antibacterial, antifungal, antiviral, antioxidative and anti-inflammatory activities. Due to the growing incidence of respiratory tract infections caused by various pathogenic viruses, complementary methods of prevention and therapy supporting pharmacotherapy are constantly being sought out. The properties of propolis may be important in the prevention and treatment of respiratory tract diseases caused by viruses such as severe acute respiratory syndrome coronavirus 2, influenza viruses, the parainfluenza virus and rhinoviruses. One of the main challenges in recent years has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing COVID-19. Recently, an increasing number of studies are focusing on the activity of various propolis preparations against SARS-CoV-2 as an adjuvant treatment for this infection. Propolis has shown a few key mechanisms of anti-SARS-CoV-2 action such as: the inhibition of the interaction of the S1 spike protein and ACE-2 protein; decreasing the replication of viruses by diminishing the synthesis of RNA transcripts in cells; decreasing the particles of coronaviruses. The anti-viral effect is observed not only with extracts but also with the single biologically active compounds found in propolis (e.g., apigenin, caffeic acid, chrysin, kaempferol, quercetin). Moreover, propolis is effective in the treatment of hyperglycemia, which increases the risk of SARS-CoV-2 infections. The aim of the literature review was to summarize recent studies from the PubMed database evaluating the antiviral activity of propolis extracts in terms of prevention and the therapy of respiratory tract diseases (in vitro, in vivo, clinical trials). Based upon this review, it was found that in recent years studies have focused mainly on the assessment of the effectiveness of propolis and its chemical components against COVID-19. Propolis exerts wide-spectrum antimicrobial activities; thus, propolis extracts can be an effective option in the prevention and treatment of co-infections associated with diseases of the respiratory tract.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
- Correspondence:
| |
Collapse
|
38
|
Zhong H, Han L, Lu RY, Wang Y. Antifungal and Immunomodulatory Ingredients from Traditional Chinese Medicine. Antibiotics (Basel) 2022; 12:antibiotics12010048. [PMID: 36671249 PMCID: PMC9855100 DOI: 10.3390/antibiotics12010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Fungal infections have become a growing public health challenge due to the clinical transmission of pathogenic fungi. The currently available antifungal drugs leave very limited choices for clinical physicians to deal with such situation, not to mention the long-standing problems of emerging drug resistance, side effects and heavy economic burdens imposed to patients. Therefore, new antifungal drugs are urgently needed. Screening drugs from natural products and using synthetic biology strategies are very promising for antifungal drug development. Chinese medicine is a vast library of natural products of biologically active molecules. According to traditional Chinese medicine (TCM) theory, preparations used to treat fungal diseases usually have antifungal and immunomodulatory functions. This suggests that if antifungal drugs are used in combination with immunomodulatory drugs, better results may be achieved. Studies have shown that the active components of TCM have strong antifungal or immunomodulatory effects and have broad application prospects. In this paper, the latest research progress of antifungal and immunomodulatory components of TCM is reviewed and discussed, hoping to provide inspiration for the design of novel antifungal compounds and to open up new horizons for antifungal treatment strategies.
Collapse
Affiliation(s)
- Hua Zhong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Han
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ren-Yi Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Correspondence:
| |
Collapse
|
39
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Kokorina PI, Khlebnikov AI, Quinn MT. Neutrophil Immunomodulatory Activity of Nerolidol, a Major Component of Essential Oils from Populus balsamifera Buds and Propolis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3399. [PMID: 36501438 PMCID: PMC9739404 DOI: 10.3390/plants11233399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Propolis is a resinous mixture of substances collected and processed from various botanical sources by honeybees. Black poplar (Populus balsamifera L.) buds are one of the primary sources of propolis. Despite their reported therapeutic properties, little is known about the innate immunomodulatory activity of essential oils from P. balsamifera and propolis. In the present studies, essential oils were isolated from the buds of P. balsamifera and propolis collected in Montana. The main components of the essential oil from P. balsamifera were E-nerolidol (64.0%), 1,8-cineole (10.8%), benzyl benzoate (3.7%), α-terpinyl acetate (2.7%), α-pinene (1.8%), o-methyl anisol (1.8%), salicylaldehyde (1.8%), and benzyl salicylate (1.6%). Likewise, the essential oil from propolis was enriched with E-nerolidol (14.4%), cabreuva oxide-VI (7.9%), α-bisabolol (7.1%), benzyl benzoate (6.1%), β-eudesmol (3.6%), T-cadinol (3.1%), 2-methyl-3-buten-2-ol (3.1%), α-eudesmol (3.0%), fokienol (2.2%), nerolidol oxide derivative (1.9%), decanal (1.8%), 3-butenyl benzene (1.5%), 1,4-dihydronaphthalene (1.5%), selina-4,11-diene (1.5%), α-cadinol (1.5%), linalool (1.4%), γ-cadinene (1.4%), 2-phenylethyl-2-methyl butyrate (1.4%), 2-methyl-2-butenol (1.3%), octanal (1.1%), benzylacetone (1.1%), and eremoligenol (1.1%). A comparison between P. balsamifera and propolis essential oils demonstrated that 22 compounds were found in both essential oil samples. Both were enriched in E-nerolidol and its derivatives, including cabreuva oxide VI and nerolidol oxides. P. balsamifera and propolis essential oils and pure nerolidol activated Ca2+ influx in human neutrophils. Since these treatments activated neutrophils, the essential oil samples were also evaluated for their ability to down-regulate the neutrophil responses to subsequent agonist activation. Indeed, treatment with P. balsamifera and propolis essential oils inhibited subsequent activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, nerolidol inhibited human neutrophil activation induced by fMLF (IC50 = 4.0 μM) and WKYMVM (IC50 = 3.7 μM). Pretreatment with the essential oils and nerolidol also inhibited human neutrophil chemotaxis induced by fMLF, again suggesting that these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Finally, reverse pharmacophore mapping predicted several potential kinase targets for nerolidol. Thus, our studies have identified nerolidol as a potential anti-inflammatory modulator of human neutrophils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Polina I. Kokorina
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia
| | | | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
40
|
Dequenne I, Philippart de Foy JM, Cani PD. Developing Strategies to Help Bee Colony Resilience in Changing Environments. Animals (Basel) 2022; 12:ani12233396. [PMID: 36496917 PMCID: PMC9737243 DOI: 10.3390/ani12233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
Climate change, loss of plant biodiversity, burdens caused by new pathogens, predators, and toxins due to human disturbance and activity are significant causes of the loss of bee colonies and wild bees. The aim of this review is to highlight some possible strategies that could help develop bee resilience in facing their changing environments. Scientists underline the importance of the links between nutrition, microbiota, and immune and neuroendocrine stress resistance of bees. Nutrition with special care for plant-derived molecules may play a major role in bee colony health. Studies have highlighted the importance of pollen, essential oils, plant resins, and leaves or fungi as sources of fundamental nutrients for the development and longevity of a honeybee colony. The microbiota is also considered as a key factor in bee physiology and a cornerstone between nutrition, metabolism, growth, health, and pathogen resistance. Another stressor is the varroa mite parasite. This parasite is a major concern for beekeepers and needs specific strategies to reduce its severe impact on honeybees. Here we discuss how helping bees to thrive, especially through changing environments, is of great concern for beekeepers and scientists.
Collapse
Affiliation(s)
- Isabelle Dequenne
- J-M Philippart de Foy & I Dequenne Consultation, Avenue Orban, 127, 1150 Brussels, Belgium
| | | | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Avenue Pasteur, 6, 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|
41
|
Novel insights on the potential activity of propolis and wheat germ oil against chronic toxoplasmosis in experimentally infected mice. Biomed Pharmacother 2022; 156:113811. [DOI: 10.1016/j.biopha.2022.113811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/20/2022] Open
|
42
|
Efficacy of Propolis Gel on Mature Biofilm Formed by Neocosmospora keratoplastica Isolated from Onychomycosis. J Fungi (Basel) 2022; 8:jof8111216. [DOI: 10.3390/jof8111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
This article describes Neocosmospora keratoplastica as an etiological onychomycosis agent. Ex vivo studies were initially performed to demonstrate the ability of this species to grow and form a well-organized characteristic biofilm on sterilized healthy nails. Based on the history of excellent results, both for antifungal and antibiofilm, of propolis resin gum, we evaluated its activity using artificially formed biofilm. In vitro, the minimal biofilm eradication concentration of the propolis extract (PE) was 375 µg of total polyphenol content (TPC) per mL, while for the propolis gel (PG) it was 450 µg of TPC per mL. In biofilm exposed to the propolis products, a decrease in hyphae and conidia was evident, accompanied by a disorganization of the extracellular matrix. Additionally, this low concentration of PE was able to significantly reduce the number of colony-forming units and the metabolic activity. Furthermore, the treatment of a 15-year nail infection due to N. keratoplastica was carried out exclusively using a topical treatment with a gel containing propolis (30%) with a daily dosage. This treatment achieved complete remission of the onychomycosis in 12 months. It is important to point out that some inconveniences previously reported by other patients treated with propolis extract were eliminated, increasing adherence to treatment.
Collapse
|
43
|
Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals (Basel) 2022; 15:1419. [PMID: 36422549 PMCID: PMC9696375 DOI: 10.3390/ph15111419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/01/2023] Open
Abstract
Honey and propolis have recently become the key target of attention for treating certain diseases and promoting overall health and well-being. A high content of flavonoids and phenolic acids found in both honey and propolis contributes to the antioxidant properties to scavenge free radicals. Honey and propolis also exhibited antibacterial effects where they act in two ways, namely the production of hydrogen peroxide (H2O2) and gluconic acids following the enzymatic activities of glucose oxidase, which exerts oxidative damage on the bacteria. Additionally, the anti-inflammatory effects of honey and propolis are mainly by reducing proinflammatory factors such as interleukins and tumor necrosis factor alpha (TNF-α). Their effects on pain were discovered through modulation at a peripheral nociceptive neuron or binding to an opioid receptor in the higher center. The aforementioned properties of honey have been reported to possess potential therapeutic topical application on the exterior parts of the eyes, particularly in treating conjunctivitis, keratitis, blepharitis, and corneal injury. In contrast, most of the medicinal values of propolis are beneficial in the internal ocular area, such as the retina, optic nerve, and uvea. This review aims to update the current discoveries of honey and propolis in treating various ocular diseases, including their antioxidant, anti-inflammatory, antibacterial, and anti-nociceptive properties. In conclusion, research has shown that propolis and honey have considerable therapeutic promise for treating various eye illnesses, although the present study designs are primarily animal and in vitro studies. Therefore, there is an urgent need to translate this finding into a clinical setting.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Siti Nur Farhana Mohammed
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
44
|
Barakat AM, Fadaly HAME, Gareh A, Abd El-Razik KA, Ali FAZ, Saleh AA, Sadek SAS, Dahran N, El-Gendy AENG, El-Khadragy MF, Elmahallawy EK. Wheat Germ Oil and Propolis Decrease Parasite Burden and Restore Marked Histopathological Changes in Liver and Lung in Mice with Chronic Toxoplasmosis. Animals (Basel) 2022; 12:ani12223069. [PMID: 36428297 PMCID: PMC9686545 DOI: 10.3390/ani12223069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Toxoplasmosis is a parasitic zoonotic disease with a worldwide distribution. Its effects can be critical in immunocompromised patients. However, there is a limited availability of effective, low-toxicity drugs against this disease, particularly in its chronic form. The present study evaluated the effect of propolis and wheat germ oil (WGO) as safe, natural products to reduce Toxoplasma cysts in experimentally infected mice. For the experiment, five groups (10 mice per group) were examined: Group 1: negative control (noninfected, nontreated); Group 2: positive control (infected, nontreated); Group 3: infected and treated with WGO at a dose of 0.2 mg/1.5 mL per kg body weight/day; Group 4: infected and treated with 0.1 mL propolis extract/day; and Group 5: infected and treated with a combination of WGO and propolis at the same doses as Group 3 and 4. After the mice were sacrificed, liver and lung specimens underwent histopathological examination, and the parasite burden was investigated by parasitological methods and quantified using real-time polymerase chain reaction. Notably, the results showed a substantial decrease in parasitic burden in Group 5 compared to the control group. These results were further confirmed by molecular analysis and quantification of the DNA concentration of the Toxoplasma P29 gene after treatment in all tested samples. Furthermore, the combination of propolis and WGO restored all histopathological changes in the liver and lungs. Taken together, these findings provide remarkably promising evidence of the effects of the combination of WGO and propolis against chronic toxoplasmosis in mice.
Collapse
Affiliation(s)
- Ashraf Mohamed Barakat
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | | | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan 24101, Egypt
| | - Khaled A. Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Amira A. Saleh
- Department of Human Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Abd El-Nasser G. El-Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Manal F. El-Khadragy
- Department of biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence:
| |
Collapse
|
45
|
Oliveira GDS, McManus C, Dos Santos VM. Essential oils and propolis as additives in egg coatings. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- G. D. S. Oliveira
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - C. McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - V. M. Dos Santos
- Laboratory of Poultry Science, Federal Institute of Brasília, Brasília, Brazil
| |
Collapse
|
46
|
Dankwa B, Broni E, Enninful KS, Kwofie SK, Wilson MD. Consensus docking and MM-PBSA computations identify putative furin protease inhibitors for developing potential therapeutics against COVID-19. Struct Chem 2022; 33:2221-2241. [PMID: 36118173 PMCID: PMC9470509 DOI: 10.1007/s11224-022-02056-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/05/2022] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is a pandemic that has severely posed substantial health challenges and claimed millions of lives. Though vaccines have been produced to stem the spread of this disease, the death rate remains high since drugs used for treatment have therapeutic challenges. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the disease, has a slew of potential therapeutic targets. Among them is the furin protease, which has a cleavage site on the virus’s spike protein. The cleavage site facilitates the entry of the virus into human cells via cell–cell fusion. This critical involvement of furin in the disease pathogenicity has made it a viable therapeutic strategy against the virus. This study employs the consensus docking approach using HYBRID and AutoDock Vina to virtually screen a pre-filtered library of 3942 natural product compounds of African origin against the human furin protease (PDB: 4RYD). Twenty of these compounds were selected as hits after meeting molecular docking cut-off of − 7 kcal.mol−1, pose alignment inspection, and having favorable furin-ligand interactions. An area under the curve (AUC) value of 0.72 was computed from the receiver operator characteristic (ROC) curve, and Boltzmann-enhanced discrimination of the ROC curve (BEDROC) value of 0.65 showed that AutoDock Vina was a reasonable tool for selecting actives for this target. Seven of these hits were proposed as potential leads having had bonding interactions with catalytic triad residues Ser368, His194, and Asp153, and other essential residues in the active site with plausible binding free energies between − 189 and − 95 kJ/mol from the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations as well as favorable ADME/Tox properties. The molecules were also predicted as antiviral, anti-inflammatory, membrane permeability inhibitors, RNA synthesis inhibitors, cytoprotective, and hepatoprotective with probable activity (Pa) above 0.5 and probable inactivity values below 0.1. Some of them also have anti-influenza activity. Influenza virus has many similarities with SARS-CoV-2 in their mode of entry into human cells as both are facilitated by the furin protease. Pinobanksin 3-(E)-caffeate, one of the potential leads is a propolis compound. Propolis compounds have shown inhibitory effects against ACE2, TMPRSS2, and PAK1 signaling pathways of SARS-CoV-2 in previous studies. Likewise, quercitrin is structurally similar to isoquercetin, which is currently in clinical trials as possible medication for COVID-19.
Collapse
Affiliation(s)
- Bismark Dankwa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Computer Science, School of Physical & Mathematical Science, College of Basic & Applied Sciences, University of Ghana, LG 163 Legon, Accra Ghana
| | - Emmanuel Broni
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
| | - Kweku S. Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
| |
Collapse
|
47
|
Healing Potential of Propolis in Skin Wounds Evidenced by Clinical Studies. Pharmaceuticals (Basel) 2022; 15:ph15091143. [PMID: 36145364 PMCID: PMC9504298 DOI: 10.3390/ph15091143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/02/2023] Open
Abstract
Propolis has been used since ancient times for the treatment of skin diseases and, currently, its pharmacological potential for healing and repairing various types of wounds is widely cited in the literature. The healing properties of propolis are mainly attributed to its composition which is rich in phenolic compounds, and propolis has aroused the interest of the pharmaceutical industry as a low-cost product as compared with other treatments and medications; however, most of the published data refer to its effects in vitro and in vivo and, so far, few clinical studies have been carried out proving its therapeutic efficacy. In this article, we aimed to review clinical trail data published in Portuguese, Spanish, and English, in Scielo, PubMed, Google Scholar, Medline, and Lilacs between 1990 and 2021 on the clinical use of propolis for skin ulcers. The potential of propolis as an alternative healing treatment for skin wounds such as diabetic, venous, and surgical wounds, as well as wounds caused by burns, etc., is mainly due to its evidenced properties such as antimicrobial, anti-inflammatory, analgesic, and angiogenesis promoter effects. However, there is a need to standardize the type of administration and the concentration of propolis for each type of wound. Furthermore, further clinical studies are essential to add information about propolis safety and for obtaining the best possible therapeutic benefits from its use.
Collapse
|
48
|
Rivera-Yañez CR, Ruiz-Hurtado PA, Reyes-Reali J, Mendoza-Ramos MI, Vargas-Díaz ME, Hernández-Sánchez KM, Pozo-Molina G, Méndez-Catalá CF, García-Romo GS, Pedroza-González A, Méndez-Cruz AR, Nieto-Yañez O, Rivera-Yañez N. Antifungal Activity of Mexican Propolis on Clinical Isolates of Candida Species. Molecules 2022; 27:molecules27175651. [PMID: 36080417 PMCID: PMC9457601 DOI: 10.3390/molecules27175651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Infections caused by micro-organisms of the genus Candida are becoming a growing health problem worldwide. These fungi are opportunistic commensals that can produce infections—clinically known as candidiasis—in immunocompromised individuals. The indiscriminate use of different anti-fungal treatments has triggered the resistance of Candida species to currently used therapies. In this sense, propolis has been shown to have potent antimicrobial properties and thus can be used as an approach for the inhibition of Candida species. Therefore, this work aims to evaluate the anti-Candida effects of a propolis extract obtained from the north of Mexico on clinical isolates of Candida species. Candida species were specifically identified from oral lesions, and both the qualitative and quantitative anti-Candida effects of the Mexican propolis were evaluated, as well as its inhibitory effect on C. albicans isolate’s germ tube growth and chemical composition. Three Candida species were identified, and our results indicated that the inhibition halos of the propolis ranged from 7.6 to 21.43 mm, while that of the MFC and FC50 ranged from 0.312 to 1.25 and 0.014 to 0.244 mg/mL, respectively. Moreover, the propolis was found to inhibit germ tube formation (IC50 ranging from 0.030 to 1.291 mg/mL). Chemical composition analysis indicated the presence of flavonoids, including pinocembrin, baicalein, pinobanksin chalcone, rhamnetin, and biochanin A, in the Mexican propolis extract. In summary, our work shows that Mexican propolis presents significant anti-Candida effects related to its chemical composition, and also inhibits germ tube growth. Other Candida species virulence factors should be investigated in future research in order to determine the mechanisms associated with antifungal effects against them.
Collapse
Affiliation(s)
- Claudia Rebeca Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero 07738, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - María Isabel Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - María Elena Vargas-Díaz
- Laboratorio de Química de Productos Naturales, Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Ciudad de México 11340, Mexico
| | - Karla Mariela Hernández-Sánchez
- Laboratorio de Química de Productos Naturales, Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Ciudad de México 11340, Mexico
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Gina Stella García-Romo
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Alexander Pedroza-González
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Adolfo René Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Unidad de Morfofisiología y Función, Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (O.N.-Y.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| | - Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (O.N.-Y.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| |
Collapse
|
49
|
Mixing Propolis from Different Apiaries and Harvesting Years: Towards Propolis Standardization? Antibiotics (Basel) 2022; 11:antibiotics11091181. [PMID: 36139960 PMCID: PMC9495078 DOI: 10.3390/antibiotics11091181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/05/2023] Open
Abstract
Global demand for safe, effective and natural products has been increasing in parallel with consumers’ concerns about personal and environmental health. Propolis, a traditional and potentially medicinal product with several health benefits, is a beehive product with a worldwide reputation. However, despite the bioactivities reported, the low productivity and high chemical heterogeneity have been extensively hampering broader industrial uses. To assist in overcoming some of these problems, we prepared and characterized mixtures of ethanol extracts of a heterogeneous propolis sample (Pereiro) collected over a five-year period (2011–2015) and, additionally, we mixed two different propolis samples from distinct regions of Portugal (Pereiro and Gerês), also harvested at different times. An investigation of the antimicrobial and antioxidant properties, as well as characterization of the chemical composition of the eleven propolis blends were performed in this work. The antioxidant and antimicrobial activities of such blends of propolis samples, either from different localities and/or different years, were maintained, or even enhanced, when a comparison of the individual extracts was conducted. The differences in the chemical composition of the original propolis samples were also diluted in the mixtures. The results reemphasize the great potential of propolis and suggest that mixing different samples, regardless of provenance or harvesting date, can contribute to propolis standardization while simultaneously increasing its availability and adding value to this beehive byproduct.
Collapse
|
50
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|