1
|
Wang S, Wang P, Wang D, Shen S, Wang S, Li Y, Chen H. Postbiotics in inflammatory bowel disease: efficacy, mechanism, and therapeutic implications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:721-734. [PMID: 39007163 DOI: 10.1002/jsfa.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Inflammatory bowel disease (IBD) is one of the most challenging diseases in the 21st century, and more than 10 million people around the world suffer from IBD. Because of the limitations and adverse effects associated with conventional IBD therapies, there has been increased scientific interest in microbial-derived biomolecules, known as postbiotics. Postbiotics are defined as the preparation of inanimate microorganisms and/or their components that confer a health benefit on the host, comprising inactivated microbial cells, cell fractions, metabolites, etc. Postbiotics have shown potential in enhancing IBD treatment by reducing inflammation, modulating the immune system, stabilizing intestinal flora and maintaining the integrity of intestinal barriers. Consequently, they are considered promising adjunctive therapies for IBD. Recent studies indicate that postbiotics offer distinctive advantages, including spanning clinical (safe origin), technological (easy for storage and transportation) and economic (reduced production costs) dimensions, rendering them suitable for widespread applications in functional food/pharmaceutical. This review offers a comprehensive overview of the definition, classification and applications of postbiotics, with an emphasis on their biological activity in both the prevention and treatment of IBD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuxin Wang
- Marine College, Shandong University, Weihai, China
| | - Pu Wang
- Marine College, Shandong University, Weihai, China
| | - Donghui Wang
- Marine College, Shandong University, Weihai, China
| | | | - Shiqi Wang
- Marine College, Shandong University, Weihai, China
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
2
|
Xia L, Wang J, Chen M, Li G, Wang W, An T. Biofilm formation mechanisms of mixed antibiotic-resistant bacteria in water: Bacterial interactions and horizontal transfer of antibiotic-resistant plasmids. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136554. [PMID: 39566460 DOI: 10.1016/j.jhazmat.2024.136554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Over 95 % of bacteria on water supply pipeline surfaces exist in biofilms, which are hotspots for antibiotic resistance gene (ARG) transmission. This study established mixed biofilm culture systems on a metal iron substrate using Escherichia coli: antibiotic-sensitive bacteria (ASB) and antibiotic-resistant bacteria (ARB). The growth rate and extracellular polymeric substances (EPS) content of mixed biofilm surpassed single-species biofilms due to synergistic interactions among different bacteria. However, the composition of mixed biofilms formed by ASB and ARB became unstable after 72 h, linked to reduced polysaccharide proportions in EPS and inter-bacterial competition. The bacterial composition and conjugative transfer frequency of ARGs in mixed biofilms indicate that biofilm formation significantly enhances horizontal transfer of ARGs. Notably, the conjugative transfer frequency of the mixed biofilm formed by two ARB increased 100-fold within five days. In contrast, the conjugative transfer frequency in the mixed biofilm formed by ASB and ARB was unstable; inter-bacterial competition led to plasmid loss associated with horizontal transfer of ARGs, ultimately resulting in biofilm shedding. Furthermore, genes associated with ARG transfer and biofilm growth up-regulated by 1.5 - 6 and 2 - 7 times, respectively, in mixed biofilm. These findings highlight a mutually reinforcing relationship between biofilm formation and horizontal ARG transmission, with significant environmental implications.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaping Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Yadav MK, Song JH, Vasquez R, Lee JS, Kim IH, Kang DK. Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria-A Systematic Review. Foods 2024; 13:3687. [PMID: 39594102 PMCID: PMC11594216 DOI: 10.3390/foods13223687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Exopolysaccharides (EPSs) are large-molecular-weight, complex carbohydrate molecules and extracellularly secreted bio-polymers released by many microorganisms, including lactic acid bacteria (LAB). LAB are well known for their ability to produce a wide range of EPSs, which has received major attention. LAB-EPSs have the potential to improve health, and their applications are in the food and pharmaceutical industries. Several methods have been developed and optimized in recent years for producing, extracting, purifying, and characterizing LAB-produced EPSs. The simplest method of evaluating the production of EPSs is to observe morphological features, such as ropy and mucoid appearances of colonies. Ethanol precipitation is widely used to extract the EPSs from the cell-free supernatant and is generally purified using dialysis. The most commonly used method to quantify the carbohydrate content is phenol-sulfuric acid. The structural characteristics of EPSs are identified via Fourier transform infrared, nuclear magnetic resonance, and X-ray diffraction spectroscopy. The molecular weight and composition of monosaccharides are determined through size-exclusion chromatography, thin-layer chromatography, gas chromatography, and high-performance liquid chromatography. The surface morphology of EPSs is observed via scanning electron microscopy and atomic force microscopy, whereas thermal characteristics are determined through thermogravimetry analysis, derivative thermogravimetry, and differential scanning calorimetry. In the present review, we discuss the different existing methods used for the detailed study of LAB-produced EPSs, which provide a comprehensive guide on LAB-EPS preparation, critically evaluating methods, addressing knowledge gaps and key challenges, and offering solutions to enhance reproducibility, scalability, and support for both research and industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (M.K.Y.); (J.H.S.); (R.V.); (J.S.L.); (I.H.K.)
| |
Collapse
|
4
|
Parlindungan E, Sadovskaya I, Vinogradov E, Lugli GA, Ventura M, van Sinderen D, Mahony J. Novel cell wall polysaccharide genotypes and structures of lactococcal strains isolated from milk and fermented foods. Int J Food Microbiol 2024; 424:110840. [PMID: 39126753 DOI: 10.1016/j.ijfoodmicro.2024.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The biosynthetic machinery for cell wall polysaccharide (CWPS) formation in Lactococcus lactis and Lactococcus cremoris is encoded by the cwps locus. The CWPS of lactococci typically consists of a neutral rhamnan component, which is embedded in the peptidoglycan, and to which a surface-exposed side chain oligosaccharide or polysaccharide pellicle (PSP) component is attached. The rhamnan component has been shown for several lactococcal strains to consist of a repeating rhamnose trisaccharide subunit, while the side chain is diverse in glycan content, polymeric status and glycosidic linkage architecture. The observed structural diversity of the CWPS side chain among lactococcal strains is reflected in the genetic diversity within the variable 3' region of the corresponding cwps loci. To date, four distinct cwps genotypes (A, B, C, D) have been identified, while eight subtypes (C1 through to C8) have been recognized among C-genotype strains. In the present study, we report the identification of three novel subtypes of the lactococcal cwps C genotypes, named C9, C10 and C11. The CWPS of four isolates representing C7, C9, C10 and C11 genotypes were analysed using 2D NMR to reveal their unique CWPS structures. Through this analysis, the structure of one novel rhamnan, three distinct PSPs and three exopolysaccharides were elucidated. Results obtained in this study provide further insights into the complex nature and fascinating diversity of lactococcal CWPSs. This highlights the need for a holistic view of cell wall-associated glycan structures which may contribute to robustness of certain strains against infecting bacteriophages. This has clear implications for the fermented food industry that relies on the consistent application of lactococcal strains in mesophilic production systems.
Collapse
Affiliation(s)
- Elvina Parlindungan
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Irina Sadovskaya
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France
| | - Evgeny Vinogradov
- National Research Council Canada, Institute for Biological Sciences, Ottawa, ON, Canada
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| |
Collapse
|
5
|
Sharma P, Sharma A, Lee HJ. Antioxidant potential of exopolysaccharides from lactic acid bacteria: A comprehensive review. Int J Biol Macromol 2024; 281:135536. [PMID: 39349319 DOI: 10.1016/j.ijbiomac.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria (LAB) have multifunctional capabilities owing to their diverse structural conformations, monosaccharide compositions, functional groups, and molecular weights. A review paper on EPS production and antioxidant potential of different LAB genera has not been thoroughly reviewed. Therefore, the current review provides comprehensive information on the biosynthesis of EPSs, including the isolation source, type, characterization techniques, and application, with a primary focus on their antioxidant potential. According to this review, 17 species of Lactobacillus, five species of Bifidobacterium, four species of Leuconostoc, three species of Weissella, Enterococcus, and Lactococcus, two species of Pediococcus, and one Streptococcus species have been documented to exhibit antioxidant activity. Of the 111 studies comprehensively reviewed, 98 evaluated the radical scavenging activity of EPSs through chemical-based assays, whereas the remaining studies documented the antioxidant activity using cell and animal models. Studies have shown that different LAB genera have a unique capacity to produce homo- (HoPs) and heteropolysaccharides (HePs), with varied carbohydrate compositions, linkages, and molecular weights. Leuconostoc, Weissella, and Pediococcus were the main HoPs producers, whereas the remaining genera were the main HePs producers. Recent trends in EPSs production and blending to improve their properties have also been discussed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
6
|
Mikshina P, Kharina M, Sungatullina A, Petrova T, Sibgatullin T, Nikitina E. Influence of flaxseed mucilage on the formation, composition, and properties of exopolysaccharides produced by different strains of lactic acid bacteria. Int J Biol Macromol 2024; 281:136092. [PMID: 39349088 DOI: 10.1016/j.ijbiomac.2024.136092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Microorganisms produce a wide variety of polysaccharides. Due to biosafety considerations, lactic acid bacteria (LAB) are popular producers of exopolysaccharides (EPS) for various applications. In this study, we analyzed the composition and properties of EPS produced by L. delbrueckii ssp. bulgaricus and LAB from clover silage (L. fermentum AG8, L. plantarum AG9) after growth on Man, Rogosa, and Sharpe broth (MRS) and with the addition of flaxseed mucilage (FSM) using chromatography, microscopy, and biochemical methods. We found that adding 0.4 % FSM does not drastically alter the medium's rheology but substantially increases EPS yield (by 3.1 to 3.8 times) and modifies the composition and macrostructure of EPS, as well as changes the spatial organization of LAB cells. The presence of FSM led to the production of xylose- and glucose-enriched EPS, which also contained varying proportions of fucose, rhamnose, arabinose, mannose, glycosamines, and uronic acids, depending on the strain. Most EPS had a low molecular weight (up to 32 kDa), except for EPS produced by L. fermentum AG8 in FSM-containing medium, which had molecular weight of 163 kDa. All EPS exhibited a porous microstructure and demonstrated scavenging capacity for OH- and DPPH-radicals, as well as high levels of α-glucosidase and lipase inhibitory activities, even at low concentrations (<1 g·L-1 of EPS). These characteristics make them promising for use in functional food production and medicine.
Collapse
Affiliation(s)
- Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky Str., 2/31, Kazan, Russia; Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia; Kazan (Volga Region) Federal University, 420008, Kremlevskaya, 18, Kazan, Russia.
| | - Maria Kharina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky Str., 2/31, Kazan, Russia; Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| | - Alya Sungatullina
- Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| | - Tatyana Petrova
- Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| | - Timur Sibgatullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky Str., 2/31, Kazan, Russia
| | - Elena Nikitina
- Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| |
Collapse
|
7
|
Du R, Yimuran Z, Cai H, Zhou B, Ning Y, Ping W, Jiang B, Ge J. Characterization of exopolysaccharide/potato starch nanocomposite films loading g-C 3N 4 and Ag and their potential applications in food packaging. Int J Biol Macromol 2024; 281:136574. [PMID: 39406319 DOI: 10.1016/j.ijbiomac.2024.136574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/20/2024]
Abstract
The interest in nanocomposite films incorporating edible ingredients and active nanoparticles has surged due to their potential to enhance food quality and prolong shelf-life. This research focused on developing innovative exopolysaccharides (EPS)/potato starch (PS) nanocomposite films integrated with g-C3N4 and AgNO3. Extensive analysis was conducted to assess the microstructure, physical attributes and antimicrobial properties of these films. Fourier transform infrared (FT-IR) analysis revealed electrostatic and hydrogen bonding interactions within the film components. X-ray diffraction (XRD) and X-ray photoelectron spectrometer (XPS) data indicated a high level of compatibility among EPS, PS, g-C3N4, and AgNO3, with no new absorption peaks or characteristic signals of C3N4 and Ag appearing in the nanocomposite films patterns. The thickness, water solubility and water vapor permeability (WVP) of the EPS-PS-C3N4-Ag nanocomposite film increased due to the addition of g-C3N4, reached 0.31 ± 0.03 nm, 36.61 ± 1.76 % and 1.42 ± 0.34 × 10-10 g-1 s-1 Pa-1, respectively. While transparency, swelling degree, and oxygen permeability (OP) significantly decreased, reached 26.18 ± 2.38 %, 63.01 ± 2.51 % and 41.98 ± 1.28 %, respectively. Scanning electron microscopy (SEM) and atomic force microscope (AFM) images depicted an augmented roughness and porosity on the film surface upon integration of g-C3N4 and AgNO3. Moreover, the EPS-PS-C3N4-Ag nanocomposite film displayed enhanced mechanical strength due to the presence of g-C3N4. The melting temperature (Tm) of EPS-PS-C3N4-Ag nanocomposite film was 313.3 °C, the removal rates of DPPH and ABTS was 66.11 ± 2.87 % and 45.09 ± 1.23 % respectively. Significant inhibition of microbial growth was observed in film containing g-C3N4 and AgNO3, which demonstrated no toxicity towards NIH-33 cells, suggesting their potential application as promising active packaging material for food preservation.
Collapse
Affiliation(s)
- Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Zimuran Yimuran
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Huayang Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yingying Ning
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
8
|
de Brito LP, da Silva EC, Lins LF, Severo de Medeiros R, Silva FCO, Pastrana L, Cavalcanti IDL, de Britto Lira-Nogueira MC, Cavalcanti MTH, Porto ALF. Optimization, structural characterization, and biological applications of exopolysaccharide produced by Enterococcus faecium KT990028. Int J Biol Macromol 2024; 282:136926. [PMID: 39486715 DOI: 10.1016/j.ijbiomac.2024.136926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The aim of this study was to select the best exopolysaccharide (EPS) producer among the Enterococcus strains to optimize, characterize, and evaluate its biological properties. Among the eleven strains, Enterococcus faecium KT990028 was selected, and the production conditions were optimized: 16.3 % (w/v) sucrose, 0.70 % (w/v) yeast extract, 8.3 % (w/v) reconstituted skimmed milk, at 38 °C in 15 h of incubation, producing 2.880 g/L of EPS. High performance anion exchange chromatography (HPAEC) analysis revealed that the molecular weight was 166.98 kDa. HPAEC, spectroscopy (FTIR), and nuclear magnetic resonance (1H NMR) analyses revealed that the EPS was a heteropolysaccharide composed of galactose (37.74 %), rhamnose (19.79 %), arabinose (17.71 %), glucose (9.50 %), fucose (7.93 %), and mannose (7.33 %). Scanning electron microscopy showed a three-dimensional microstructure in the form of decompressed plates, with wrinkles, and pores. By means of dynamic light scattering (DLS), the EPS showed an average size varying from 135.25 ± 10.56 nm and 410.60 ± 45.20 nm, as the concentration was increased from 0.5 mg/mL to 2.0 mg/mL, respectively. X-ray diffraction revealed that the EPS has an amorphous and crystalline nature, while thermogravimetric analysis indicated stability up to 400 °C. The antioxidant effect (5 mg/mL) against DPPH, ABTS, OH, and O2 was 64.50 ± 0.71 %, 47.50 ± 0.10 %, 68.36 ± 0.59 %, and 44.83 ± 0.86 %, respectively. It was also able to inhibit and biofilm disruption of Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 6057 and had an antimicrobial effect from 50 mg/mL for the strains of against Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Listeria monocytogenes ATCC 19117, Staphylococcus aureus ATCC 6538, and Enterococcus faecalis ATCC 6057. Cell cytotoxicity carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the EPS was safe and promoted the proliferation of Vero cells. Thus, the results indicated that the EPS from E. faecium KT990028 is a promising functional biopolymer for possible applications in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Leandro Paes de Brito
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil.
| | - Elaine Cristina da Silva
- Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Leandro Fragoso Lins
- Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Rosália Severo de Medeiros
- Federal University of Campina Grande, Av. Universitária, s/n - Santa Cecilia, 58708-110, Patos, Paraíba, Brazil
| | | | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mte. José Veiga s/n, 4715-330, Braga, Portugal
| | - Iago Dillion Lima Cavalcanti
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | | | | | - Ana Lúcia Figueiredo Porto
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil; Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil.
| |
Collapse
|
9
|
Jamdar SN, Krishnan R, Rather SA, Sudesh, N M, Dhotare B. Identification and characterisation of dextran produced by a novel high yielding Weissella cibaria Fiplydextran strain. Int J Biol Macromol 2024; 282:136658. [PMID: 39442848 DOI: 10.1016/j.ijbiomac.2024.136658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
An exopolysaccharide (EPS)-producing bacterial strain was isolated from fermented soy milk and identified as Weissella cibaria strain Fiplydextran through morphological, biochemical and 16S rDNA sequence analysis. Here, we report the optimisation of cultural conditions for the organism to achieve maximum EPS production, along with its molecular characterisation, functional properties, and prebiotic potential. The exceptionally high EPS yield (0.61 g per g of sucrose) was obtained from the optimised medium (200 g/L of sucrose, 15 g/L of yeast extract) at 30 °C after 48 h. HPAEC-PAD analysis revealed that the EPS is homopolymer of glucose having Mw as 3.23 × 107 Da determined using viscosity method. Methylation analysis and NMR results confirmed the EPS as dextran with α (1 → 6)-linkage (96.5 %) as main chain and α (1 → 3)- as branch chain linkage (3.5 %). Thermogravimetric analysis exhibited higher thermal stability of EPS. The EPS was observed to support the growth of Bacteroides spp. in pure culture form but not that of Lactobacillus or Bifidobacterium spp. However, a low level of bifidogenic activity was observed upon use of mixed culture of B. fragilis and B. longum. The research implies industrial applications of W. cibaria Fiplydextran for the production of high molecular weight dextran with better yield.
Collapse
Affiliation(s)
- Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India.
| | - Rateesh Krishnan
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sarver Ahmed Rather
- ApSD, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
| | - Sudesh
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
| | - Mallikarjunan N
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
| | - Bhaskar Dhotare
- Bio-organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
10
|
Jo YM, Son YJ, Kim SA, Lee GM, Ahn CW, Park HO, Yun JH. Lactobacillus gasseri BNR17 and Limosilactobacillus fermentum ABF21069 Ameliorate High Sucrose-Induced Obesity and Fatty Liver via Exopolysaccharide Production and β-oxidation. J Microbiol 2024; 62:907-918. [PMID: 39417925 DOI: 10.1007/s12275-024-00173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Obesity and metabolic dysfunction-associated fatty liver disease (MAFLD) are prevalent metabolic disorders with substantial global health implications that are often inadequately addressed by current treatments and may have side effects. Probiotics have emerged as promising therapeutic agents owing to their beneficial effects on gut health and metabolism. This study investigated the synergistic effects of a probiotic combination of BNR17 and ABF21069 on obesity and MAFLD in C57BL/6 mice fed a high-sucrose diet. The probiotic combination significantly reduced body weight and fat accumulation compared with the high-sucrose diet. It also alleviated elevated serum leptin levels induced by a high-sucrose diet. Histological analysis revealed a significant reduction in white adipose tissue and fatty liver in the mice treated with the probiotic combination. Furthermore, increased expression of genes related to β-oxidation, thermogenesis, and lipolysis suggested enhanced metabolic activity. The probiotic groups, particularly the BNR17 group, showed an increase in fecal exopolysaccharides, along with a tendency toward a lower expression of intestinal sugar transport genes, indicating reduced sugar absorption. Additionally, inflammatory markers in the liver tissue exhibited lower expression in the ABF21069 group than in the HSD group. Despite each strain in the combination group having distinct characteristics and functions, their combined effect demonstrated synergy in mitigating obesity and MAFLD, likely through the modulation of fecal exopolysaccharides content and improvement in lipid metabolism. These findings underscore the potential of probiotic supplementation as a promising assistant therapy for managing obesity and MAFLD and provide valuable insights into its therapeutic mechanisms in metabolic disorders.
Collapse
Affiliation(s)
- Yu Mi Jo
- AceBiome Inc, Seoul, 06164, Republic of Korea
- R&D Center, AceBiome Inc, Daejeon, 34013, Republic of Korea
| | - Yoon Ji Son
- AceBiome Inc, Seoul, 06164, Republic of Korea
- R&D Center, AceBiome Inc, Daejeon, 34013, Republic of Korea
| | - Seul-Ah Kim
- AceBiome Inc, Seoul, 06164, Republic of Korea
- R&D Center, AceBiome Inc, Daejeon, 34013, Republic of Korea
| | - Gyu Min Lee
- AceBiome Inc, Seoul, 06164, Republic of Korea
- R&D Center, AceBiome Inc, Daejeon, 34013, Republic of Korea
| | - Chang Won Ahn
- AceBiome Inc, Seoul, 06164, Republic of Korea
- R&D Center, AceBiome Inc, Daejeon, 34013, Republic of Korea
| | - Han-Oh Park
- AceBiome Inc, Seoul, 06164, Republic of Korea
- R&D Center, AceBiome Inc, Daejeon, 34013, Republic of Korea
- Bioneer Corporation, Daejeon, 34302, Republic of Korea
- siRNAgen Therapeutics, Daejeon, 34302, Republic of Korea
| | - Ji-Hyun Yun
- AceBiome Inc, Seoul, 06164, Republic of Korea.
- R&D Center, AceBiome Inc, Daejeon, 34013, Republic of Korea.
| |
Collapse
|
11
|
Khrundin DV, Nikitina EV. Chemical, Textural and Antioxidant Properties of Oat-Fermented Beverages with Different Starter Lactic Acid Bacteria and Pectin. BIOTECH 2024; 13:38. [PMID: 39449368 PMCID: PMC11503288 DOI: 10.3390/biotech13040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Currently, starter cultures for fermenting plant-based beverages are not widely available commercially, but producers can use starter cultures for dairy products. Therefore, the aim of this study was to determine the physicochemical, rheological, antioxidant and sensory properties of oat beverages with/without pectin fermented by four different dairy starter cultures. The use of a mono-starter with Lactobacillus bulgaricus or Sreptococcus thermophilus allows for the efficient use of glucose, and more lactic acid is accumulated. The beverage with L. bulgaricus is characterised by high adhesion, syneresis and low cohesiveness, and it has high antioxidant activity and a low sensory profile. Using starter with L. bulgaricus, S. thermophilus and some Lactococcus for fermentation yields a product with high sensory capacity, forming a high-viscosity beverage matrix with low syneresis, high water retention, chewy texture and stickiness. It has been observed that the absence of lactococci and the presence of Lactobacillus casei, L. Rhamnosus and L. paracasei in the starter yields a product with high antioxidant activity, especially in the presence of pectin. The use of pectin significantly improves the viscosity and textural properties of oat yoghurt, enhancing the drink's flavour and giving it body. For many reasons, the use of different commercial starters in the dairy industry results in different viscosities of oat fermented beverages, forming a matrix with different textural, sensory and antioxidant properties.
Collapse
Affiliation(s)
| | - Elena V. Nikitina
- Department of Meat and Milk Technology, Kazan National Research Technological University, 420015 Kazan, Russia;
| |
Collapse
|
12
|
Sudaarsan ASK, Ghosh AR. Appraisal of postbiotics in cancer therapy. Front Pharmacol 2024; 15:1436021. [PMID: 39372197 PMCID: PMC11449718 DOI: 10.3389/fphar.2024.1436021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a multifactorial disease with an increased mortality rate around the world for the past several decades. Despite advancements in treatment strategies, lower survival rates, drug-associated side effects, and drug resistance create a need for novel anticancer agents. Ample evidence shows that imbalances in the gut microbiota are associated with the formation of cancer and its progression. Altering the gut microbiota via probiotics and their metabolites has gained attention among the research community as an alternative therapy to treat cancer. Probiotics exhibit health benefits as well as modulate the immunological and cellular responses in the host. Apart from probiotics, their secreted products like bacteriocins, exopolysaccharides, short-chain fatty acids, conjugated linoleic acid, peptidoglycan, and other metabolites are found to possess anticancer activity. The beneficiary role of these postbiotic compounds is widely studied for characterizing their mechanism and mode of action that reduces cancer growth. The present review mainly focuses on the postbiotic components that are employed against cancer with their reported mechanism of action. It also describes recent research works carried out so far with specific strain and anticancer activity of derived compounds both in vitro and in vivo, validating that the probiotic approach would pave an alternative way to reduce the burden of cancer.
Collapse
|
13
|
Gaur SS, Annapure US. Optimization of exopolysaccharide production from the novel Enterococcus species, using statistical design of experiment. Prep Biochem Biotechnol 2024:1-12. [PMID: 39302656 DOI: 10.1080/10826068.2024.2402337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Exopolysaccharide (EPS) producing novel strains of Enterococcus previously isolated from the vaginal source of pregnant women were selected based on ropy structure formation. The two selected strains, E.villorum SB-2 and E.rivorum S22-3, were found to be producing 2.87 g/l and 3.14 g/l EPS, respectively, in the minimal media (M17 media) after 24-hour fermentation under anaerobic condition. Both the strains have probiotic properties and have the potential to be used for industrial applications. The production media and fermentation conditions were optimized to enhance the EPS production using the one-factor method, Placket-Burman factorial designing and Central composite design (CCD) of Response surface methodology (RSM). The most relevant factors affecting the EPS yield were sucrose, yeast extract and pH for E.villorum SB2 and sucrose, yeast extract and magnesium sulfate for the E.rivorum S22-3 as determined by Placket-Burman design, whose concentrations were further optimized using CCD. The optimized fermentation conditions gave the total EPS of 9.76 g/l (4 times the initial production) from E.villorum SB-2 and 7.74 g/l (2.5 times the initial production) from E.rivorum S22-3, respectively, after 36-hour incubation at 37 °C. These optimization studies might be helpful during scale-up process for the industrial scale production of these exopolysaccharide.
Collapse
Affiliation(s)
- Shivani Singh Gaur
- Department of Food and Engineering Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S Annapure
- Department of Food and Engineering Technology, Institute of Chemical Technology, Mumbai, India
- Institute of Chemical Technology, Jalna, India
| |
Collapse
|
14
|
Pavalakumar D, Undugoda LJS, Gunathunga CJ, Manage PM, Nugara RN, Kannangara S, Lankasena BNS, Patabendige CNK. Evaluating the Probiotic Profile, Antioxidant Properties, and Safety of Indigenous Lactobacillus spp. Inhabiting Fermented Green Tender Coconut Water. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10352-x. [PMID: 39300004 DOI: 10.1007/s12602-024-10352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
This study isolated and characterized four indigenous lactic acid bacterial strains from naturally fermented green tender coconut water: Lactiplantibacillus plantarum CWJ3, Lacticaseibacillus casei CWM15, Lacticaseibacillus paracasei CWKu14, and Lacticaseibacillus rhamnosus CWKu-12. Notably, among the isolates, Lact. plantarum CWJ3 showed exceptional acid tolerance, with the highest survival rate of 37.34% at pH 2.0 after 1 h, indicating its higher resistance against acidic gastric conditions. However, all strains exhibited robust resistance to bile salts, phenols, and NaCl, with survival rates exceeding 80% at given concentrations. Their optimal growth at 37 °C and survival at 20 °C and 45 °C underscored adaptability to diverse environmental conditions. Additionally, all strains showed sustainable survival rates in artificial saliva and simulated gastrointestinal juices, with Lact. plantarum CWJ3 exhibiting significantly higher survival rate (70.66%) in simulated gastric juice compared to other strains. Adherence properties were particularly noteworthy, especially in Lact. rhamnosus CWKu-12, which demonstrated the highest hydrophobicity, coaggregation with pathogens and autoaggregation, among the strains. The production of exopolysaccharides, particularly by Lact. plantarum CWJ3, enhanced their potential for gut colonization and biofilm formation. Various in vitro antioxidative assays using spectrophotometric methods revealed the significant activity of Lact. plantarum CWJ3, while antimicrobial testing highlighted its efficacy against selected foodborne pathogens. Safety assessments confirmed the absence of biogenic amine production, hemolytic, DNase, and gelatinase activities, as well as the ability to hydrolase the bile salt. Furthermore, these non-dairy probiotics exhibited characteristics comparable to dairy derived probiotics, demonstrating their potential suitability in developing novel probiotic-rich foods and functional products.
Collapse
Affiliation(s)
- Dayani Pavalakumar
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Chathuri Jayamalie Gunathunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Pathmalal Marakkale Manage
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Ruwani Nilushi Nugara
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Sagarika Kannangara
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya, 11600, Sri Lanka
| | - Bentotage Nalaka Samantha Lankasena
- Department of Information and Communication Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | | |
Collapse
|
15
|
Cao L, Wan M, Xian Z, Zhou Y, Dong L, Huang F, Su D. Lacticaseibacillus casei- and Bifidobacterium breve-fermented red pitaya promotes beneficial microbial proliferation in the colon. Food Funct 2024; 15:9434-9445. [PMID: 39189643 DOI: 10.1039/d4fo02352h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Red pitaya has been demonstrated to strongly inhibit α-glucosidase activity; however, the impact of red pitaya fermentation by probiotic bacteria on α-glucosidase inhibition remains unclear. In this study, six strains of lactic acid bacteria (Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, Lactobacillus bulgaricus, Lacticaseibacillus casei, Lactobacillus acidophilus and Streptococcus thermophilus) and one strain of Bifidobacterium breve were utilized for the fermentation of red pitaya pulp. The α-glucosidase and α-amylase inhibition rates of red pitaya pulp were significantly greater after fermentation by Bifidobacterium breve and Lacticaseibacillus casei than by the other abovementioned strains. The LC group exhibited an α-glucosidase inhibition rate of 99%, with an α-amylase inhibition rate of 89.91%. In contrast, the BB group exhibited an α-glucosidase inhibition rate of 95.28%, accompanied by an α-amylase inhibition rate of 95.28%. Moreover, red pitaya pulp fermented with Bifidobacterium breve and Lacticaseibacillus casei produced a notable quantity of oligosaccharides, which was more than three times greater than that in the other groups. Furthermore, 16S rRNA high-throughput sequencing analysis was conducted to assess alterations in the composition of the gut microbiota. This revealed an increase in the abundance of Lactobacillus and Faecalibacterium in the pulp fermented by Bifidobacterium breve and Lacticaseibacillus casei, whereas the abundance of Sutterella decreased. Further analysis at the species level revealed that Bifidobacterium longum, Faecalibacterium prausnitzii, and Lactobacillus zeae were the dominant strains present during colonic fermentation. These results indicate a beneficial health trend associated with probiotic bacterial fermentation of red pitaya pulp, which is highly important for the development of functional products.
Collapse
Affiliation(s)
- Li Cao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Mengxi Wan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zhixing Xian
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Yongqiang Zhou
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510006, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510006, China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Nguyen HT, Pham TT, Nguyen PT, Le-Buanec H, Rabetafika HN, Razafindralambo HL. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024; 14:1162. [PMID: 39334928 PMCID: PMC11430787 DOI: 10.3390/biom14091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) are receiving growing interest today, owing to their diversity in chemical structure and source, multiple functions, and immense potential applications in many food and non-food industries. Their health-promoting benefits for humans deserve particular attention because of their various biological activities and physiological functions. The aim of this paper is to provide a comprehensive review of microbial EPSs, covering (1) their chemical and biochemical diversity, including composition, biosynthesis, and bacterial sources belonging mainly to lactic acid bacteria (LAB) or probiotics; (2) their technological and analytical aspects, especially their production mode and characterization; (3) their biological and physiological aspects based on their activities and functions; and (4) their current and future uses in medical and pharmaceutical fields, particularly for their prebiotic, anticancer, and immunobiotic properties, as well as their applications in other industrial and agricultural sectors.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Thuy-Trang Pham
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Phu-Tho Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Hélène Le-Buanec
- INSERM U976-HIPI Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hary L Razafindralambo
- ProBioLab, 5004 Namur, Belgium
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, 5030 Gembloux, Belgium
| |
Collapse
|
17
|
Khiabani A, Xiao H, Wätjen AP, Tovar M, Poulsen VK, Hansen EB, Bang-Berthelsen CH. Exploring the Diversity and Potential Use of Flower-Derived Lactic Acid Bacteria in Plant-Based Fermentation: Insights into Exo-Cellular Polysaccharide Production. Foods 2024; 13:2907. [PMID: 39335836 PMCID: PMC11430985 DOI: 10.3390/foods13182907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Isolation of new plant-derived lactic acid bacteria (LAB) is highly prioritized in developing novel starter cultures for plant-based fermentation. This study explores the diversity of LAB in Danish flowers and their potential use for plant-based food fermentation. A total of 46 flower samples under 34 genera were collected for LAB isolation. By introducing an enrichment step, a total of 61 LAB strains were isolated and identified using MALDI-TOF and 16S rRNA sequencing. These strains represent 24 species across 9 genera, predominantly Leuconostoc mesenteroides, Fructobacillus fructosus, Apilactobacillus ozensis, and Apilactobacillus kunkeei. Phenotypic screening for exo-cellular polysaccharide production revealed that 40 strains exhibited sliminess or ropiness on sucrose-containing agar plates. HPLC analysis confirmed that all isolates produced exo-cellular polysaccharides containing glucose, fructose, or galactose as sugar monomers. Therefore, the strains were glucan, fructan, and galactan producers. The suitability of these strains for plant-based fermentation was characterized by using almond, oat, and soy milk. The results showed successful acidification in all three types of plant-based matrices but only observed texture development in soy by Leuconostoc, Weissella, Lactococcus, Apilactobacillus, and Fructobacillus. The findings highlight the potential of flower-derived LAB strains for texture development in soy-based dairy alternatives.
Collapse
Affiliation(s)
- Azadeh Khiabani
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Hang Xiao
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Anders Peter Wätjen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Miguel Tovar
- Microbe & Culture Research, Novonesis A/S, Gammel Venlighedsvej 14, 2970 Hørsholm, Denmark
| | - Vera Kuzina Poulsen
- Microbe & Culture Research, Novonesis A/S, Gammel Venlighedsvej 14, 2970 Hørsholm, Denmark
| | - Egon Bech Hansen
- Research Group for Gut, Microbes and Health, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Papadopoulou D, Chrysikopoulou V, Rampaouni A, Tsoupras A. Antioxidant and anti-inflammatory properties of water kefir microbiota and its bioactive metabolites for health promoting bio-functional products and applications. AIMS Microbiol 2024; 10:756-811. [PMID: 39628717 PMCID: PMC11609422 DOI: 10.3934/microbiol.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
Inflammation and oxidative stress are implicated in several chronic disorders, while healthy foods and especially fermented beverages and those containing probiotics can provide anti-inflammatory and antioxidant protection against such manifestations and the associated disorders. Water kefir is such a beverage that is rich in both probiotic microbiota and anti-inflammatory bioactives, with an increasing demand as an alternative to a fermented product based on non-dairy matrix with potential health properties. Within this study, the health-promoting properties of the most representative species and strains of microorganisms present in water kefir grains, as well as the health benefits attributed to the bioactive metabolites produced by each individual strain in a series of their cultures, were thoroughly reviewed. Emphasis was given to the antioxidant, antithrombotic, and anti-inflammatory bio-functionalities of both the cultured microorganisms and the bioactive metabolites produced in each case. Moreover, an extensive presentation of the antioxidant and anti-inflammatory health benefits observed from the overall water kefir cultures and classic water kefir beverages obtained were also conducted. Finally, the use of water kefir for the production of several other bio-functional products, including fermented functional foods, supplements, nutraceuticals, nutricosmetics, cosmeceuticals, and cosmetic applications with anti-inflammatory and antioxidant health promoting potential was also thoroughly discussed. Limitations and future perspectives on the use of water kefir, its microorganisms, and their bioactive metabolites are also outlined.
Collapse
Affiliation(s)
| | | | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404, Kavala, Greece
| |
Collapse
|
19
|
Adebayo-Tayo BC, Ogundele BR, Ajani OA, Olaniyi OA. Characterization of Lactic Acid Bacterium Exopolysaccharide, Biological, and Nutritional Evaluation of Probiotic Formulated Fermented Coconut Beverage. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8923217. [PMID: 39257841 PMCID: PMC11383652 DOI: 10.1155/2024/8923217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024]
Abstract
Exopolysaccharides (EPSs), produced by lactic acid bacteria (LAB), play a crucial role in enhancing the texture and stability of yoghurt by forming a protective matrix that helps to maintain its rheological and sensory characteristics. The search for a dairy alternative for the lactose-intolerant populace is a necessity, and the use of probiotic LAB and their EPS to formulate fermented coconut beverage (FFCB) will be of added advantage. The production and characterization of EPS from a LAB strain isolated from yoghurt, its probiotic and antioxidant potential, and its application in the production of probiotic FFCB were investigated. The EPS produced by the isolate was characterized using a scanning electron microscope (SEM), high-performance liquid chromatography, Fourier transform infrared (FT-IR) spectroscopy, and energy-dispersive X-ray. The antioxidant potential of the EPS was determined. The isolate probiotic potential, such as tolerance to low pH, bile salts, gastric pH, autoaggregation, coaggregation, antimicrobial potential, and antibacterial activity, was evaluated, and the isolate was identified using 16S rRNA. The LAB strain and the EPS were used for the formulation of probiotic FFCB, and the proximate mineral composition of the enriched yoghurt was determined. Isolate W3 produced 6204.50 mg/L EPS. The EPS produced by the LAB was spherical with a coarse surface. Hydroxyl, carboxyl, and α-pyranose were the major functional groups present in the EPS. Eight monosaccharides were present in glucose, which has the highest molar ratio. The EDX spectra ascertain the presence of carbon, oxygen (carbohydrate), and other elements. The purified EPS exhibited antioxidant activity in a dose-dependent manner. DPPH, FRAP, TAC, and TPC of the EPS ranged from 42.36% to 75.88%, 2.48 to 5.31 μg/mL, 1.66 to 3.57 μg/mL, and 1.42 to 2.03 μg/mL, respectively. The LAB strain exhibited moderate tolerance to low pH, bile salts, gastric juice, good autoaggregation (13.33%), coaggregation (0%-59.09%) with E. coli, and varied sensitivity to different antibiotics used. The isolate is hemolysis, deoxyribonuclease (DNase), and lecithinase negative, possesses characteristics of probiotics, and could have the ability to confer health benefits. The LAB strain has a 100.0% pairwise identity to Pediococcus acidilactici. The FFCB has pH, lactic acid, specific gravity, total soluble solids (TSSs), and vitamin C content ranging from 5.81 to 6.8, 10.8 to 55.8 mg/L, 0.910 to 1.394 kg/m3, 0.136 to 0.196 °Bx, and 0.26% to 0.66%. The formulated beverage fermented with a commercial starter had the highest lactic acid at Day 7 of storage. The FFCB sample with the commercial starter and the probiotic strain had the highest ash and crude fiber content (1.3%, 0.68%). The FFCB fortified with EPS showed the highest protein content (4.6%). The formulated yogurt samples fortified with the highest concentration of EPS had the highest calcium content after 7 days of storage (162.31 ± 0.01a). In conclusion, EPS produced by Pediococcus acidilactici was a heteropolymeric EPS with good antioxidant activity, and the LAB strain exhibited a good starter for producing FFCB enriched with EPS. The FFCB has good nutritional characteristics and could serve as a functional and natural nutraceutical food for the lactose intolerance population.
Collapse
Affiliation(s)
| | | | - Oladeji Aderibigbe Ajani
- Federal Bureau of Prisons United States Department of Justice Federal Medical Center, Old N. North Carolina HWY 75, Butner, North Carolina 27509, USA
| | - Olusola Ademola Olaniyi
- Department of Mathematics and Computer Science University of North Carolina, Pembroke, North Carolina, USA
| |
Collapse
|
20
|
Węgrzyn K, Jasińska A, Janeczek K, Feleszko W. The Role of Postbiotics in Asthma Treatment. Microorganisms 2024; 12:1642. [PMID: 39203484 PMCID: PMC11356534 DOI: 10.3390/microorganisms12081642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, there has been abundant research concerning human microbiome and its impact on the host's health. Studies have shown that not only the commensal bacteria itself, but also postbiotics, understood as inanimate microorganisms, possibly with the presence of their components, may themselves have an effect on various elements of human physiology. In this review, we take a closer look at the specific ways in which postbiotics can alter immune response in allergic asthma, which is one of the most prevalent allergic diseases in today's world and a serious subject of concern. Through altering patients' immune response, not only to allergens but also to pathogens, postbiotics could have a significant role in lowering the number of asthma exacerbations. We suggest that more profound research should be undertaken in order to launch postbiotics into clinical standards of asthma treatment, given the greatly promising findings in terms of their immunomodulating potential.
Collapse
Affiliation(s)
- Konstancja Węgrzyn
- Central Clinical Hospital, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Agnieszka Jasińska
- Department of Pediatric Pneumonology and Allergy, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Kamil Janeczek
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
21
|
Isaac-Bamgboye FJ, Mgbechidinma CL, Onyeaka H, Isaac-Bamgboye IT, Chukwugozie DC. Exploring the Potential of Postbiotics for Food Safety and Human Health Improvement. J Nutr Metab 2024; 2024:1868161. [PMID: 39139215 PMCID: PMC11321893 DOI: 10.1155/2024/1868161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Food safety is a global concern, with millions suffering from foodborne diseases annually. The World Health Organization (WHO) reports significant morbidity and mortality associated with contaminated food consumption, and this emphasizes the critical need for comprehensive food safety measures. Recent attention has turned to postbiotics, metabolic byproducts of probiotics, as potential agents for enhancing food safety. Postbiotics, including organic acids, enzymes, and bacteriocins, exhibit antimicrobial and antioxidant properties that do not require live organisms, and this offers advantages over probiotics. This literature review critically examines the role of postbiotics in gut microbiome modulation and applications in the food industry. Through an extensive review of existing literature, this study evaluates the impact of postbiotics on gut microbiome composition and their potential as functional food ingredients. Research indicates that postbiotics are effective in inhibiting food pathogens such as Staphylococcus aureus, Salmonella enterica, and Escherichia coli, as well as their ability to prevent oxidative stress-related diseases, and they also show promise as alternatives to conventional food preservatives that can extend food shelf life by inhibiting harmful bacterial growth. Their application in functional foods contributes to improved gut health and reduced risk of foodborne illnesses. Findings suggest that postbiotics hold promise for improving health and preservation by inhibiting pathogenic bacteria growth and modulating immune responses.
Collapse
Affiliation(s)
- Folayemi Janet Isaac-Bamgboye
- Department of Chemical EngineeringUniversity of Birmingham, Birmingham, UK
- Department of Food Science and TechnologyFederal University of Technology, Akure, Ondo State, Nigeria
| | - Chiamaka Linda Mgbechidinma
- Centre for Cell and Development Biology and State Key Laboratory of AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Ocean CollegeZhejiang University, Zhoushan 316021, Zhejiang, China
- Department of MicrobiologyUniversity of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Helen Onyeaka
- Department of Chemical EngineeringUniversity of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
22
|
Thant EP, Surachat K, Chusri S, Romyasamit C, Pomwised R, Wonglapsuwan M, Yaikhan T, Suwannasin S, Singkhamanan K. Exploring Weissella confusa W1 and W2 Strains Isolated from Khao-Mahk as Probiotic Candidates: From Phenotypic Traits to Genomic Insights. Antibiotics (Basel) 2024; 13:604. [PMID: 39061286 PMCID: PMC11273482 DOI: 10.3390/antibiotics13070604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Growing interest in probiotics has spurred research into their health benefits for hosts. This study aimed to evaluate the probiotic properties, especially antibacterial activities and the safety of two Weissella confusa strains, W1 and W2, isolated from Khao-Mahk by describing their phenotypes and genotypes through phenotypic assays and whole genome sequencing. In vitro experiments demonstrated that both strains exhibited robust survival under gastric and intestinal conditions, such as in the presence of low pH, bile salt, pepsin, and pancreatin, indicating their favorable gut colonization traits. Additionally, both strains showed auto-aggregation and strong adherence to Caco2 cells, with adhesion rates of 86.86 ± 1.94% for W1 and 94.74 ± 2.29% for W2. These high adherence rates may be attributed to the significant exopolysaccharide (EPS) production observed in both strains. Moreover, they exerted remarkable antimicrobial activities against Stenotrophomonas maltophilia, Salmonella enterica serotype Typhi, Vibrio cholerae, and Acinetobacter baumannii, along with an absence of hemolytic activities and antibiotic resistance, underscoring their safety for probiotic application. Genomic analysis corroborated these findings, revealing genes related to probiotic traits, including EPS clusters, stress responses, adaptive immunity, and antimicrobial activity. Importantly, no transferable antibiotic-resistance genes or virulence genes were detected. This comprehensive characterization supports the candidacy of W1 and W2 as probiotics, offering substantial potential for promoting health and combating bacterial infections.
Collapse
Affiliation(s)
- Ei Phway Thant
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80161, Thailand;
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| |
Collapse
|
23
|
Chang YW, Sun YL, Chu E, Hung YY, Liao WC, Tsai SM, Lu TH, Huang PC, Yu CH, Lee SY, Chang HH, Lin DPC. Streptococcus thermophilus iHA318 Improves Dry Eye Symptoms by Mitigating Ocular Surface Damage in a Mouse Model. Microorganisms 2024; 12:1306. [PMID: 39065074 PMCID: PMC11279365 DOI: 10.3390/microorganisms12071306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Dry eye is a complicated ocular surface disease that causes discomfort, visual disturbance, and frequently observed ocular surface damage. Emerging hypotheses suggest probiotics may help relieve dry eye symptoms by modulating inflammation and oxidative stress. This study aimed to investigate the therapeutic effects of Streptococcus thermophilus iHA318 probiotics on dry eye using in vitro assays and an in vivo murine model of ultraviolet B (UVB) radiation-induced dry eye. In vitro analyses revealed that S. thermophilus iHA318® exhibited antioxidant activity and anti-inflammatory effects by inhibiting reactive oxygen species production and suppressing inflammatory cytokines. For the in vivo study, female ICR mice were assigned to normal control, UVB-induced dry eye, and UVB+iHA318 treatment groups. UVB exposure significantly decreased tear volume and tear film breakup time (TBUT) compared to normal controls. Supplementation with S. thermophilus iHA318® via oral gavage markedly improved tear production and TBUT on day 7 post-UVB exposure. Ocular surface photography demonstrated improved gradings of corneal opacity, smoothness, and lissamine green staining in the iHA318 group versus the UVB group. Topographical analysis further revealed improvement in the UVB-induced corneal irregularities by iHA318 treatment. Collectively, these results indicate that S. thermophilus iHA318 exerts a protective effect against dry eye symptoms by mitigating oxidative stress and inflammation, thereby preserving tear film stability and ocular surface integrity. This probiotic strain represents a promising therapeutic approach for managing dry eye syndrome.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Yen-Ling Sun
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Evelyn Chu
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Yi-Yun Hung
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Wei-Chieh Liao
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Su-Min Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Tsung-Han Lu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Pin-Chao Huang
- Percheron Bioceutical Co., Ltd., Taichung 40201, Taiwan; (P.-C.H.); (C.-H.Y.); (S.-Y.L.)
| | - Chin-Hsiu Yu
- Percheron Bioceutical Co., Ltd., Taichung 40201, Taiwan; (P.-C.H.); (C.-H.Y.); (S.-Y.L.)
| | - Shao-Yu Lee
- Percheron Bioceutical Co., Ltd., Taichung 40201, Taiwan; (P.-C.H.); (C.-H.Y.); (S.-Y.L.)
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
24
|
Minari GD, Piazza RD, Sass DC, Contiero J. EPS Production by Lacticaseibacillus casei Using Glycerol, Glucose, and Molasses as Carbon Sources. Microorganisms 2024; 12:1159. [PMID: 38930541 PMCID: PMC11205391 DOI: 10.3390/microorganisms12061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
This study demonstrates that Lactobacillus can produce exopolysaccharides (EPSs) using alternative carbon sources, such as sugarcane molasses and glycerol. After screening 22 strains of Lactobacillus to determine which achieved the highest production of EPS based on dry weight at 37 °C, the strain Ke8 (L. casei) was selected for new experiments. The EPS obtained using glycerol and glucose as carbon sources was classified as a heteropolysaccharide composed of glucose and mannose, containing 1730 g.mol-1, consisting of 39.4% carbohydrates and 18% proteins. The EPS obtained using molasses as the carbon source was characterized as a heteropolysaccharide composed of glucose, galactose, and arabinose, containing 1182 g.mol-1, consisting of 52.9% carbohydrates and 11.69% proteins. This molecule was characterized using Size Exclusion Chromatography (HPLC), Gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). The existence of polysaccharides was confirmed via FT-IR and NMR analyses. The results obtained suggest that Lacticaseibacillus casei can grow in media that use alternative carbon sources such as glycerol and molasses. These agro-industry residues are inexpensive, and their use contributes to sustainability. The lack of studies regarding the use of Lacticaseibacillus casei for the production of EPS using renewable carbon sources from agroindustry should be noted.
Collapse
Affiliation(s)
- Guilherme Deomedesse Minari
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Rodolfo Debone Piazza
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara 14800-903, Brazil;
| | - Daiane Cristina Sass
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Jonas Contiero
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
- Institute on Research in Bioenergy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| |
Collapse
|
25
|
Nieto JA, Rosés C, Viadel B, Gallego E, Romo-Hualde A, Milagro FI, Barceló A, Virto R, Saldaña G, Luengo E. Sourdough bread enriched with exopolysaccharides and gazpacho by-products modulates in vitro the microbiota dysbiosis. Int J Biol Macromol 2024; 272:132906. [PMID: 38851991 DOI: 10.1016/j.ijbiomac.2024.132906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Sourdough bread enriched with soluble fiber (by in-situ exopolysaccharides production) and insoluble fiber (by gazpacho by-products addition) showed prebiotic effects an in vitro dynamic colonic fermentation performance with obese volunteer's microbiota. Bifidobacterium population was maintained whereas Lactobacillus increased throughout the colonic sections. Conversely, Enterobacteriaceae and Clostridium groups clearly decreased. Specific bacteria associated with beneficial effects increased in the ascending colon (Lactobacillus fermentum, Lactobacillus paracasei, Bifidobacterium longum and Bifidobacterium adolescentis) whereas Eubacterium eligens, Alistipes senegalensis, Prevotella copri and Eubacterium desmolans increased in the transversal and descending colon. Additionally, Blautia faecis and Ruminococcus albus increased in the transversal colon, and Bifidobacterium longum, Roseburia faecis and Victivallis vadensis in the descending colon. Bifidobacterium and Lactobacillus fermented the in-situ exopolysaccharides and released pectins from gazpacho by-products, as well as cellulosic degraded bacteria. This increased the short and medium chain fatty acids. Acetic acid, as well as butyric acid, increased throughout the colonic tract, which showed greater increases only in the transversal and descending colonic segments. Conversely, propionic acid was slightly affected by the colonic fermentation. These results show that sourdough bread is a useful food matrix for the enrichment of vegetable by-products (or other fibers) in order to formulate products with microbiota modulatory capacities.
Collapse
Affiliation(s)
- Juan Antonio Nieto
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain; Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002 Valencia, Spain.
| | - Carles Rosés
- Servei de Genòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallés, Spain
| | - Blanca Viadel
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain
| | - Elisa Gallego
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain
| | - Ana Romo-Hualde
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Barceló
- Servei de Genòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallés, Spain
| | - Raquel Virto
- Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Carretera-Na134-km 53, San Adrian 31570, Navarra, Spain
| | - Guillermo Saldaña
- NOVAPAN S.L., Research & Development Department, 50014 Zaragoza, Spain
| | - Elisa Luengo
- NOVAPAN S.L., Research & Development Department, 50014 Zaragoza, Spain
| |
Collapse
|
26
|
Zanzan M, Ezzaky Y, Hamadi F, Achemchem F. Enterococcus mundtii A2 biofilm and its anti-adherence potential against pathogenic microorganisms on stainless steel 316L. Braz J Microbiol 2024; 55:1131-1138. [PMID: 38319530 PMCID: PMC11153378 DOI: 10.1007/s42770-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Pathogenic bacterial biofilms present significant challenges, particularly in food safety and material deterioration. Therefore, using Enterococcus mundtii A2, known for its antagonistic activity against pathogen adhesion, could serve as a novel strategy to reduce pathogenic colonization within the food sector. This study aimed to investigate the biofilm-forming ability of E. mundtii A2, isolated from camel milk, on two widely used stainless steels within the agri-food domain and to assess its anti-adhesive properties against various pathogens, especially on stainless steel 316L. Additionally, investigations into auto-aggregation and co-aggregation were also conducted. Plate count methodologies revealed increased biofilm formation by E. mundtii A2 on 316L, followed by 304L. Scanning electron microscopy (SEM) analysis revealed a dense yet thin biofilm layer, playing a critical role in reducing the adhesion of L. monocytogenes CECT 4032 and Staphylococcus aureus CECT 976, with a significant reduction of ≈ 2 Log CFU/cm2. However, Gram-negative strains, P. aeruginosa ATCC 27853 and E. coli ATCC 25922, exhibit modest adhesion reduction (~ 0.7 Log CFU/cm2). The findings demonstrate the potential of applying E. mundtii A2 biofilms as an effective strategy to reduce the adhesion and propagation of potentially pathogenic bacterial species on stainless steel 316L.
Collapse
Affiliation(s)
- Mariem Zanzan
- Bioprocess and Environment Team, LASIME Research Laboratory, Agadir Superior School of Technology, Ibn Zohr University, 33/S, 80150, Agadir, BP, Morocco
- Laboratory of Microbial Biotechnology and Vegetal Protection, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Research Laboratory, Agadir Superior School of Technology, Ibn Zohr University, 33/S, 80150, Agadir, BP, Morocco
| | - Fatima Hamadi
- Laboratory of Microbial Biotechnology and Vegetal Protection, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Research Laboratory, Agadir Superior School of Technology, Ibn Zohr University, 33/S, 80150, Agadir, BP, Morocco.
| |
Collapse
|
27
|
Liang S, Wang X, Li C, Liu L. Biological Activity of Lactic Acid Bacteria Exopolysaccharides and Their Applications in the Food and Pharmaceutical Industries. Foods 2024; 13:1621. [PMID: 38890849 PMCID: PMC11172363 DOI: 10.3390/foods13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Exopolysaccharides are natural macromolecular bioactive substances produced by lactic acid bacteria. With their unique physiological activity and structural characteristics, they are gradually showing broad application prospects in the food and pharmaceutical industries. Exopolysaccharides have various biological functions, such as exerting antioxidant and anti-tumor activities and regulating gut microbiota. Meanwhile, as a food additive, exopolysaccharides can significantly enhance the taste and quality of food, bringing consumers a better eating experience. In the field of medicine, exopolysaccharides have been widely used as drug carriers due to their non-toxic properties and good biocompatibility. This article summarizes the biological activities of exopolysaccharides produced by lactic acid bacteria, their synthesis, and their applications in food and pharmaceutical industries, aiming to promote further research and development in this field.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
28
|
Ayed L, M’hir S, Nuzzolese D, Di Cagno R, Filannino P. Harnessing the Health and Techno-Functional Potential of Lactic Acid Bacteria: A Comprehensive Review. Foods 2024; 13:1538. [PMID: 38790838 PMCID: PMC11120132 DOI: 10.3390/foods13101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
This review examines the techno-functional properties of lactic acid bacteria (LABs) in the food industry, focusing on their potential health benefits. We discuss current findings related to the techno-functionality of LAB, which includes acidification, proteolytic and lipolytic features, and a variety of other biochemical activities. These activities include the production of antimicrobial compounds and the synthesis of exopolysaccharides that improve food safety and consumer sensory experience. LABs are also known for their antioxidant abilities, which help reduce oxidative reactions in foods and improve their functional properties. In addition, LABs' role as probiotics is known for their promising effects on gut health, immune system modulation, cholesterol control, and general wellbeing. Despite these advantages, several challenges hinder the effective production and use of probiotic LABs, such as maintaining strain viability during storage and transport as well as ensuring their efficacy in the gastrointestinal tract. Our review identifies these critical barriers and suggests avenues for future research.
Collapse
Affiliation(s)
- Lamia Ayed
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
| | - Sana M’hir
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
- Department of Animal Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, BP 382, Beja 9000, Tunisia
| | - Domenico Nuzzolese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, 39100 Bolzano, Italy;
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| |
Collapse
|
29
|
Sadeghi M, Haghshenas B, Nami Y. Bifidobacterium exopolysaccharides: new insights into engineering strategies, physicochemical functions, and immunomodulatory effects on host health. Front Microbiol 2024; 15:1396308. [PMID: 38770019 PMCID: PMC11103016 DOI: 10.3389/fmicb.2024.1396308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Bifidobacteria are a prominent type of bacteria that have garnered significant research attention for their exceptional probiotic properties and capacity to produce exopolysaccharides (EPSs). These compounds exhibit diverse physical, chemical, and biological characteristics, prompting numerous investigations into their potential applications. Researchers have noted their beneficial effects as immune modulators within the host's body across various industries. Extensive research has been conducted on the immunomodulatory effects of bifidobacteria-derived EPSs, with emerging engineering strategies aimed at enhancing their immune-modulating capabilities. Understanding the structure, physicochemical properties, and biological activities of these compounds is crucial for their effective utilization across different industries. Our review encompassed numerous studies exploring Bifidobacterium and its metabolites, including EPSs, across various sectors, drawing from diverse databases. The distinctive properties of EPSs have spurred investigations into their applications, revealing their potential to bolster the immune system, combat inflammation, and treat various ailments. Additionally, these compounds possess antioxidant and antimicrobial properties, making them suitable for incorporation into a range of products spanning food, health, and medicine.
Collapse
Affiliation(s)
- Mahsa Sadeghi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
30
|
Zeber-Lubecka N, Kulecka M, Dabrowska M, Baginska-Drabiuk K, Glowienka-Stodolak M, Nowakowski A, Slabuszewska-Jozwiak A, Bednorz B, Jędrzejewska I, Piasecka M, Pawelec J, Wojciechowska-Lampka E, Ostrowski J. Cervical microbiota dysbiosis associated with high-risk Human Papillomavirus infection. PLoS One 2024; 19:e0302270. [PMID: 38669258 PMCID: PMC11051640 DOI: 10.1371/journal.pone.0302270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
High-risk Human Papillomavirus (HR-HPV) genotypes, specifically HPV16 and HPV18, pose a significant risk for the development of cervical intraepithelial neoplasia and cervical cancer. In the multifaceted cervical microenvironment, consisting of immune cells and diverse microbiota, Lactobacillus emerges as a pivotal factor, wielding significant influence in both stabilizing and disrupting the microbiome of the reproductive tract. To analyze the distinction between the cervical microbiota and Lactobacillus-dominant/non-dominant status of HR-HPV and non-infected healthy women, sixty-nine cervical swab samples were analyzed, included 44 with HR-HPV infection and healthy controls. All samples were recruited from Human Papillomavirus-based cervical cancer screening program and subjected to 16s rRNA sequencing analysis. Alpha and beta diversity analyses reveal no significant differences in the cervical microbiota of HR-HPV-infected women, including 16 and 18 HPV genotypes, and those with squamous intraepithelial lesion (SIL), compared to a control group. In this study we identified significantly lower abundance of Lactobacillus mucosae in women with HR-HPV infection compared to the control group. Furthermore, changes in bacterial diversity were noted in Lactobacillus non-dominant (LND) samples compared to Lactobacillus-dominant (LD) in both HR-HPV-infected and control groups. LND samples in HR-HPV-infected women exhibited a cervical dysbiotic state, characterized by Lactobacillus deficiency. In turn, the LD HR-HPV group showed an overrepresentation of Lactobacillus helveticus. In summary, our study highlighted the distinctive roles of L. mucosae and L. helveticus in HR-HPV infections, signaling a need for further research to demonstrate potential clinical implications of cervical microbiota dysbiosis.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Maria Glowienka-Stodolak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrzej Nowakowski
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Bożena Bednorz
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ilona Jędrzejewska
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piasecka
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Pawelec
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
31
|
Narayanan R, T R K. In vitro analysis on the adhesion potential of Lactiplantibacillus plantarum from infant faeces and its gastrointestinal localization, growth promotion, and immunomodulation in Wistar rats: a preliminary study. Lett Appl Microbiol 2024; 77:ovae034. [PMID: 38565315 DOI: 10.1093/lambio/ovae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Lactic acid bacteria, found in heterogenous niches, are known for their health-endorsing properties and are in demand as prospective probiotics. Hence, the scientific community around the globe is in continuous search for novel and new potential strains with extensive applicability and minimum risk. In this context, the present study evaluated the efficiency of Lactiplantibacillus plantarum (P2F2) of human origin, a highly autoaggregating and coaggregating (with pathogens) strain, for its colonization, growth promotion, and immunomodulation. Results indicated moderate hydrophobicity on adhesion to xylene and n-hexadecane and weak electron-donating properties with chloroform. The biofilm of P2F2 formed on polystyrene was strong and highly correlated to exopolysaccharide production. The autoaggregation was moderately correlated with hydrophobicity and biofilm production. It was noted that the P2F2 strain modulated the gut microbiota and increased intestinal villi length in Wistar rats. The lipid and glucose profiles remained intact. P2F2 treatment increased the activity of reactive oxygen species-generating cells in the peritoneal cavity, besides augmenting the mitogen-induced splenocyte proliferation and maintained the immunoglobulins at the normal level. Results from this study conclusively suggest that the strain P2F2 adheres to the intestine and modulates the gut ecosystem besides enhancing cell-mediated immunity without altering the serological parameters tested.
Collapse
Affiliation(s)
- Rakhie Narayanan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Keerthi T R
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
32
|
Shojaeimeher S, Babashahi M, Shokri S, Mirlohi M, Zeinali T. Optimizing the Production of Probiotic Yogurt as a New Functional Food for Diabetics with Favorable Sensory Properties Using the Response Surface Methodology. Probiotics Antimicrob Proteins 2024; 16:413-425. [PMID: 36928935 DOI: 10.1007/s12602-023-10051-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Abstract
This study aimed to optimize the processing of probiotic yogurt supplemented with cumin essential oil (CEO), vitamin C, D3 (Vit D), and reduction of fermentation time using response surface methodology as a new functional food for diabetics with desirable sensory properties. The central composite design (CCD) was used to analyze the effect of these independent variables on the growth of the Lactobacillus plantarum A7 (LA7), starter culture, and overall acceptability. Differences between treatments were analyzed. The data were evaluated by analysis of variance at the significance level of 0.05. The effective concentration of CEO and fermentation time had the significant effect on the Lactobacillus plantarum A7 (LA7) number. Variance analysis and three-dimensional graphs show that almost the only effective factor on the overall acceptability of probiotic yogurt containing essential oil and vitamin D3 was CEO. According to the obtained data from the analysis, the optimal amount of independent variables for probiotic yogurt formulation such as CEO, D3, and fermentation time was 0.02% (v/v), 400 IU, and 9 h, respectively. This functional product can be considered an efficient food to reduce or eliminate the complications of diabetes.
Collapse
Affiliation(s)
- Samaneh Shojaeimeher
- Department of Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Babashahi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Shokri
- Department of Environmental Health Engineering, Division of Food Safety & Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirlohi
- Food Security Research Center, Department of Food Technology, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Tayebeh Zeinali
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
33
|
Kiran NS, Yashaswini C, Singh S, Prajapati BG. Revisiting microbial exopolysaccharides: a biocompatible and sustainable polymeric material for multifaceted biomedical applications. 3 Biotech 2024; 14:95. [PMID: 38449708 PMCID: PMC10912413 DOI: 10.1007/s13205-024-03946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024] Open
Abstract
Microbial exopolysaccharides (EPS) have gained significant attention as versatile biomolecules with multifarious applications across various sectors. This review explores the valorisation of EPS and its potential impact on diverse sectors, including food, pharmaceuticals, cosmetics, and biotechnology. EPS, secreted by microorganisms, possess unique physicochemical properties, such as high molecular weight, water solubility, and biocompatibility, making them attractive for numerous functional roles. Additionally, EPS exhibit significant bioactivity, contributing to their potential use in pharmaceuticals for drug delivery and tissue engineering applications. Moreover, the eco-friendly and sustainable nature of microbial EPS production aligns with the growing demand for environmentally conscious processes. However, challenges still exist in large-scale production, purification, and regulatory approval for commercial use. Advances in bioprocessing and microbial engineering offer promising solutions to overcome these hurdles. Stringent investigations have concluded EPS as novel sources for sustainable applications that are likely to emerge and develop, further reinforcing the significance of these biopolymers in addressing contemporary societal needs and driving innovation in various industrial sectors. Overall, the microbial EPS represents a thriving field with immense potential for meeting diverse industrial demands and advancing sustainable technologies.
Collapse
Affiliation(s)
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
34
|
Varvara RA, Vodnar DC. Probiotic-driven advancement: Exploring the intricacies of mineral absorption in the human body. Food Chem X 2024; 21:101067. [PMID: 38187950 PMCID: PMC10767166 DOI: 10.1016/j.fochx.2023.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
The interplay between probiotics and mineral absorption is a topic of growing interest due to its great potential for human well-being. Minerals are vital in various physiological processes, and deficiencies can lead to significant health problems. Probiotics, beneficial microorganisms residing in the gut, have recently gained attention for their ability to modulate mineral absorption and mitigate deficiencies. The aim of the present review is to investigate the intricate connection between probiotics and the absorption of key minerals such as calcium, selenium, zinc, magnesium, and potassium. However, variability in probiotic strains, and dosages, alongside the unique composition of individuals in gut microbiota, pose challenges in establishing universal guidelines. An improved understanding of these mechanisms will enable the development of targeted probiotic interventions to optimize mineral absorption and promote human health.
Collapse
Affiliation(s)
- Rodica-Anita Varvara
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| |
Collapse
|
35
|
Yi EJ, Nguyen TTM, Jin X, Bellere AD, Kim MJ, Yi TH. Human Milk-Derived Enterococcus faecalis HM20: A Potential Alternative Agent of Antimicrobial Effect against Methicillin-Resistant Staphylococcus aureus (MRSA). Microorganisms 2024; 12:306. [PMID: 38399710 PMCID: PMC10892211 DOI: 10.3390/microorganisms12020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The increasing global impact of skin diseases, fueled by methicillin-resistant Staphylococcus aureus (MRSA), emphasizes the necessity for alternative therapies with lower toxicity, such as lactic acid bacteria (LAB). This study aims to isolate potential LAB from human milk and evaluate their efficacy against MRSA using various methods, including well diffusion, microdilution, crystal violet assay, enzymatic characterization, SDS-PAGE, and scanning electron microscopy (SEM). Among the 26 LAB screened, the human milk-derived strain HM20 exhibited significant antimicrobial activity against S. aureus CCARM 3089 (MRSA), which is a highly resistant skin pathogen. Through 16S rRNA sequencing, strain HM20 was identified as closely related to Enterococcus faecalis ATCC 19433T, which was subsequently designated as Enterococcus faecalis HM20. The minimum inhibitory concentration (MIC) of the cell-free supernatant (CFS) of HM20 against S. aureus KCTC 3881 and S. aureus CCARM 3089 was determined to be 6.25% and 12.5%, respectively. Furthermore, the effective inhibition of biofilm formation in S. aureus KCTC 3881 and S. aureus CCARM 3089 was observed at concentrations of 12.5% and 25% or higher, respectively. The antibacterial effect of the CFS was attributed to the presence of organic acids, hydrogen peroxide, and bacteriocins. Additionally, the antimicrobial peptides produced by HM20 were found to be stable under heat treatment and analyzed to have a size below 5 kDa. SEM image observations confirmed that the CFS of HM20 caused damage to the cell wall, forming pores and wrinkles on S. aureus KCTC 3881 and S. aureus CCARM 3089. This comprehensive investigation on strain HM20 conducted in this study provides foundational data for potential developments in functional materials aimed at addressing skin infections and antibiotic-resistant strains in the future.
Collapse
Affiliation(s)
- Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (E.-J.Y.); (T.T.M.N.); (A.D.B.)
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (E.-J.Y.); (T.T.M.N.); (A.D.B.)
| | - Xiangji Jin
- Department of Dermatology, School of Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dong-daemun, Seoul 02447, Republic of Korea;
| | - Arce Defeo Bellere
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (E.-J.Y.); (T.T.M.N.); (A.D.B.)
| | - Mi-Ju Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (E.-J.Y.); (T.T.M.N.); (A.D.B.)
| |
Collapse
|
36
|
Mefleh M, Omri G, Limongelli R, Minervini F, Santamaria M, Faccia M. Enhancing nutritional and sensory properties of plant-based beverages: a study on chickpea and Kamut® flours fermentation using Lactococcus lactis. Front Nutr 2024; 11:1269154. [PMID: 38328482 PMCID: PMC10847596 DOI: 10.3389/fnut.2024.1269154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
The study aimed to set up a protocol for the production of a clean-label plant-based beverage (PBB), obtained by mixing chickpeas and Kamut® flours and using a commercial Lactococcus lactis (LL) as fermentation starter, and to characterize it, from nutritional, microbiological, textural, shelf-life, and sensory points of view. The effect of using the starter was evaluated comparing the LL-PBB with a spontaneously fermented beverage (CTRL-PBB). Both PBBs were high in proteins (3.89/100 g) and could be considered as sources of fiber (2.06/100 g). Notably, L. lactis fermentation enhanced the phosphorus (478 vs. 331 mg/kg) and calcium (165 vs. 117 mg/kg) concentrations while lowering the raffinose content (5.51 vs. 5.08 g/100 g) compared to spontaneous fermentation. Cell density of lactic acid bacteria increased by ca. two log cycle during fermentation of LL-PBB, whereas undesirable microbial groups were not detected. Furthermore, L. lactis significantly improved the beverage's viscosity (0.473 vs. 0.231 Pa s), at least for 10 days, and lightness. To assess market potential, we conducted a consumer test, presenting the LL-PBB in "plain" and "sweet" (chocolate paste-added) variants. The "sweet" LL-PBB demonstrated a higher acceptability score than its "plain" counterpart, with 88 and 78% of participants expressing acceptability and a strong purchase intent, respectively. This positive consumer response positions the sweet LL-PBB as a valuable, appealing alternative to traditional flavored yogurts, highlighting its potential in the growing plant-based food market.
Collapse
Affiliation(s)
| | | | | | - Fabio Minervini
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | | |
Collapse
|
37
|
Kamarinou CS, Kiousi DE, Repanas P, Argyri AA, Chorianopoulos NG, Galanis A. Dissecting the Genetic Basis of the Technological, Functional, and Safety Characteristics of Lacticaseibacillus paracasei SRX10. Microorganisms 2024; 12:93. [PMID: 38257920 PMCID: PMC10820299 DOI: 10.3390/microorganisms12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Nonstarter lactic acid bacteria (NSLAB) are major contributors to the unique characteristics (e.g., aroma, flavor, texture) of dairy and nondairy fermented products. Lc. paracasei SRX10 is an NSLAB strain originally isolated from a traditional Greek cheese and previously shown to exhibit favorable biotechnological characteristics. More specifically, the strain showed tolerance to simulated gastrointestinal conditions, exopolysaccharide (EPS) biosynthetic capacity, and lack of hemolytic activity and was used in the production of yoghurt and feta cheese with distinct organoleptic characteristics. The aim of the present study was to investigate these traits at the genome level through whole-genome sequencing (WGS), annotation, and comparative genomics. Functional annotation of the genome revealed that Lc. paracasei SRX10 can utilize different carbon sources, leading to the generation of flavor compounds, including lactic acid, acetate, ethanol, and acetoin. Similarly, full clusters for fatty acid biosynthesis, protein and peptide degradation, as well as genes related to survival under extreme temperatures, osmotic shock, and oxidative stress were annotated. Importantly, no transferable antibiotic resistance genes or virulence factors were identified. Finally, strain-specific primers based on genome-wide polymorphisms were designed for the efficient and rapid identification of Lc. paracasei SRX10 via multiplex PCR in fermented products.
Collapse
Affiliation(s)
- Christina S. Kamarinou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.S.K.); (D.E.K.); (P.R.)
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, 14123 Lycovrissi, Greece;
| | - Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.S.K.); (D.E.K.); (P.R.)
| | - Panagiotis Repanas
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.S.K.); (D.E.K.); (P.R.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, 14123 Lycovrissi, Greece;
| | - Nikos G. Chorianopoulos
- Laboratory of Microbiology and Biotechnology of Foods, School of Food and Nutritional Sciences, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.S.K.); (D.E.K.); (P.R.)
| |
Collapse
|
38
|
Gurunathan S, Thangaraj P, Kim JH. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023; 13:89. [PMID: 38201117 PMCID: PMC10778838 DOI: 10.3390/foods13010089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Postbiotics are (i) "soluble factors secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell-surface proteins and organic acids"; (ii) "non-viable metabolites produced by microorganisms that exert biological effects on the hosts"; and (iii) "compounds produced by microorganisms, released from food components or microbial constituents, including non-viable cells that, when administered in adequate amounts, promote health and wellbeing". A probiotic- and prebiotic-rich diet ensures an adequate supply of these vital nutrients. During the anaerobic fermentation of organic nutrients, such as prebiotics, postbiotics act as a benevolent bioactive molecule matrix. Postbiotics can be used as functional components in the food industry by offering a number of advantages, such as being added to foods that are harmful to probiotic survival. Postbiotic supplements have grown in popularity in the food, cosmetic, and healthcare industries because of their numerous health advantages. Their classification depends on various factors, including the type of microorganism, structural composition, and physiological functions. This review offers a succinct introduction to postbiotics while discussing their salient features and classification, production, purification, characterization, biological functions, and applications in the food industry. Furthermore, their therapeutic mechanisms as antibacterial, antiviral, antioxidant, anticancer, anti-diabetic, and anti-inflammatory agents are elucidated.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
39
|
Elcheninov AG, Zayulina KS, Klyukina AA, Kremneva MK, Kublanov IV, Kochetkova TV. Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Microorganisms 2023; 12:16. [PMID: 38276185 PMCID: PMC10819033 DOI: 10.3390/microorganisms12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like β-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries.
Collapse
Affiliation(s)
- Alexander G. Elcheninov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Kseniya S. Zayulina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Mariia K. Kremneva
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia;
| | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Tatiana V. Kochetkova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| |
Collapse
|
40
|
Khedr M, Youssef FS, El-Kattan N, Abozahra MS, Selim MN, Yousef A, Khalil KMA, Mekky AE. FolE gene expression for folic acid productivity from optimized and characterized probiotic Lactobacillus delbrueckii. J Genet Eng Biotechnol 2023; 21:169. [PMID: 38108957 PMCID: PMC10728034 DOI: 10.1186/s43141-023-00603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Lactobacillus delbrueckii was one of the most common milk lactic acid bacterial strains (LAB) which characterized as probiotic with many health influencing properties. RESULTS Among seven isolates, KH1 isolate was the best producer of folic acid with 100 µg/ml after 48 h of incubation; FolE gene expression after 24 h of incubation was in the highest value in case of KH1 with three folds. Lactose was the best carbon source for this KH1, besides the best next isolates KH80 and KH98. The selected three LAB isolates were identified through 16S rDNA as Lactobacillus delbrueckii. These three isolates have high tolerance against acidic pH 2-3; they give 45, 10, and 22 CFUs at pH 3, besides 9, 6, and 4 CFUs at pH2, respectively. They also have resistance against elevated bile salt range 0.1-0.4%. KH1 recorded 99% scavenging against 97.3% 1000 µg/ml ascorbic acid. Docking study exhibits the binding mode of folic acid which exhibited an energy binding of - 8.65 kcal/mol against DHFR. Folic acid formed four Pi-alkyl, Pi-Pi, and Pi-sigma interactions with Ala9, Ile7, Phe34, and Ile60. Additionally, folic acid interacted with Glu30 and Asn64 by three hydrogen bonds with 1.77, 1.76, and 1.96 Å. CONCLUSION LAB isolates have probiotic properties, antioxidant activity, and desired organic natural source for folic acid supplementation that improve hemoglobin that indicated by docking study interaction.
Collapse
Affiliation(s)
- Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, 11884, Cairo, Egypt.
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University, Giza, 1221, Egypt
| | - Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Giza, Egypt
| | - Mahmoud S Abozahra
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, 11884, Cairo, Egypt
| | - Mohammed N Selim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33433, USA
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, 12622, Cairo, Egypt
| | - Abdullah Yousef
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Al ryada, Egypt
| | - Kamal M A Khalil
- Genetic Engineering and Biotechnology Division, Genetics and Cytology Department, National Research Centre, 33 El-Buhouth Street, Dokki, 12622, Cairo, Egypt
| | - Alsayed E Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, 11884, Cairo, Egypt
| |
Collapse
|
41
|
Kim B, Yang AI, Joe HI, Kim KH, Choe H, Joe SH, Jun MO, Shin NR. Genomic attributes and characterization of novel exopolysaccharide-producing bacterium Halomonas piscis sp. nov. isolated from jeotgal. Front Microbiol 2023; 14:1303039. [PMID: 38156007 PMCID: PMC10752968 DOI: 10.3389/fmicb.2023.1303039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
Halophilic bacterial strains, designated SG2L-4T, SB1M4, and SB2L-5, were isolated from jeotgal, a traditional Korean fermented food. Cells are Gram-stain-negative, aerobic, non-motile, rod-shaped, catalase-positive, and oxidase-negative. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain SG2L-4T is closely related to Halomonas garicola KACC 18117T with a similarity of 96.2%. The complete genome sequence of strain SG2L-4T was 3,227,066 bp in size, with a genomic G + C content of 63.3 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain SG2L-4T and H. garicola KACC 18117T were 90.5 and 40.7%, respectively. The optimal growth conditions for strain SG2L-4T were temperatures between 30 and 37°C, a pH value of 7, and the presence of 10% (w/v) NaCl. The polar lipids identified included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid, an unknown glycolipid, and an unknown polar lipid. The major cellular fatty acids were C16:0, summed features 8 (C18:1ω6c and/or C18:1ω7c), C19:0 cyclo ω8c, and summed features 3 (C16:1ω6c and/or C16:1ω7c). The predominant respiratory quinone was ubiquinone with nine isoprene units (Q-9). Based on the phenotypic, genotypic, and chemotaxonomic results, strain SG2L-4T represents a novel species within the genus Halomonas, for which the name Halomonas piscis sp. nov. is proposed. The type strain is SG2L-4T (=KCTC 92842T = JCM 35929T). Functional annotation of the genome of strain SG2L-4T confirmed the presence of exopolysaccharide synthesis protein (ExoD) and capsular polysaccharide-related genes. Strain SG2L-4T also exhibited positive results in Molisch's test, indicating the presence of extracellular carbohydrates and exopolysaccharides (EPS) production. These findings provide valuable insights into the EPS-producing capabilities of H. piscis sp. nov. isolated from jeotgal, contributing to understanding its potential roles in food and biotechnological applications.
Collapse
Affiliation(s)
- Bora Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Ah-In Yang
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-In Joe
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Hyun Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Hanna Choe
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Sung-Hong Joe
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Min Ok Jun
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Na-Ri Shin
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
42
|
Kampff Z, van Sinderen D, Mahony J. Cell wall polysaccharides of streptococci: A genetic and structural perspective. Biotechnol Adv 2023; 69:108279. [PMID: 37913948 DOI: 10.1016/j.biotechadv.2023.108279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The Streptococcus genus comprises both commensal and pathogenic species. Additionally, Streptococcus thermophilus is exploited in fermented foods and in probiotic preparations. The ecological and metabolic diversity of members of this genus is matched by the complex range of cell wall polysaccharides that they present on their cell surfaces. These glycopolymers facilitate their interactions and environmental adaptation. Here, current knowledge on the genetic and compositional diversity of streptococcal cell wall polysaccharides including rhamnose-glucose polysaccharides, exopolysaccharides and teichoic acids is discussed. Furthermore, the species-specific cell wall polysaccharide combinations and specifically highlighting the presence of rhamnose-glucose polysaccharides in certain species, which are replaced by teichoic acids in other species. This review highlights model pathogenic and non-pathogenic species for which there is considerable information regarding cell wall polysaccharide composition, structure and genetic information. These serve as foundations to predict and focus research efforts in other streptococcal species for which such data currently does not exist.
Collapse
Affiliation(s)
- Zoe Kampff
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| |
Collapse
|
43
|
Carbonne C, Chadi S, Kropp C, Molimard L, Chain F, Langella P, Martin R. Ligilactobacillus salivarius CNCM I-4866, a potential probiotic candidate, shows anti-inflammatory properties in vitro and in vivo. Front Microbiol 2023; 14:1270974. [PMID: 38094624 PMCID: PMC10716304 DOI: 10.3389/fmicb.2023.1270974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION The aim of this work was to characterize a new strain of Ligilactobacillus salivarius (CNCM I-4866) (CNCM I-4866) to address its potential as probiotic with a special focus on intestinal inflammation. Potential anti-inflammatory abilities of this strain were evaluated through in vivo and in vitro experiments. METHODS Firstly, the strain was tested in a murine acute inflammation colitis model induced by DNBS. In vitro characterization was then performed with diverse tests: modulation capability of intestinal permeability; study of the impact on immunity profile through cytokines dosage; capacity to inhibit pathogens and adhere to intestinal cells lines. Production of metabolites, antibiotic resistance and survival to gastro-intestinal tract conditions were also tested. RESULTS In vitro assay has shown a reduction of colonic damage and markers of inflammation after treatment with CNCM I-4866. Transcriptomic analysis performed on colons showed the capacity of the strain to down-regulate pro-inflammatory cytokines. L. salivarius CNCM I-4866 exerted anti-inflammatory profile by reducing IL-8 production by TNF-α stimulated cell and modulated cytokines profile on peripheral blood mononuclear cells (PBMC). It protected intestinal integrity by increasing trans-epithelial electrical resistance (TEER) on Caco-2 TNF-α inflamed cells. Additionally, L. salivarius CNCM I-4866 displayed inhibition capacity on several intestinal pathogens and adhered to eukaryotic cells. Regarding safety and technical concerns, CNCM I-4866 was highly resistant to 0.3% of bile salts and produced mainly L-lactate. Finally, strain genomic characterization allowed us to confirm safety aspect of our strain, with no antibiotic gene resistance found. DISCUSSION Taken together, these results indicate that L. salivarius CNCM I-4866 could be a good probiotic candidate for intestinal inflammation, especially with its steady anti-inflammatory profile.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rebeca Martin
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
44
|
Zanotti A, Baldino L, Reverchon E. Production of Exopolysaccharide-Based Porous Structures for Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2920. [PMID: 37999274 PMCID: PMC10675614 DOI: 10.3390/nano13222920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Exopolysaccharides, obtained from microorganisms as fermentation products, are interesting candidates for biomedical applications as scaffolds: they are biocompatible, nontoxic, antimicrobial, antitumor materials. To produce exopolysaccharide-based scaffolds, sol-gel technology could be used, which ends with the removal of the liquid phase from the polymeric network (i.e., the drying step). The aim of this review is to point out the most relevant strengths and weaknesses of the different drying techniques, focusing attention on the production of exopolysaccharide-based porous structures. Among these drying processes, supercritical carbon dioxide-assisted drying is the most promising strategy to obtain dried gels to use in the biomedical field: it produces highly porous and lightweight devices with outstanding surface areas and regular microstructure and nanostructure (i.e., aerogels). As a result of the analysis carried out in the present work, it emerged that supercritical technologies should be further explored and applied to the production of exopolysaccharide-based nanostructured scaffolds. Moving research towards this direction, exopolysaccharide utilization could be intensified and extended to the production of high added-value devices.
Collapse
Affiliation(s)
| | - Lucia Baldino
- Departement of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.Z.); (E.R.)
| | | |
Collapse
|
45
|
Bamigbade G, Ali AH, Subhash A, Tamiello-Rosa C, Al Qudsi FR, Esposito G, Hamed F, Liu SQ, Gan RY, Abu-Jdayil B, Ayyash M. Structural characterization, biofunctionality, and environmental factors impacting rheological properties of exopolysaccharide produced by probiotic Lactococcus lactis C15. Sci Rep 2023; 13:17888. [PMID: 37857676 PMCID: PMC10587178 DOI: 10.1038/s41598-023-44728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Exopolysaccharides (EPSs) possess distinctive rheological and physicochemical properties and innovative functionality. This study aimed to investigate the physicochemical, bioactive, and rheological properties of an EPS secreted by Lactococcus lactis subsp. lactis C15. EPS-C15 was found to have an average molecular weight of 8.8 × 105 Da and was identified as a hetero-EPS composed of arabinose, xylose, mannose, and glucose with a molar ratio of 2.0:2.7:1.0:21.3, respectively. The particle size and zeta potential represented 311.2 nm and - 12.44 mV, respectively. FITR exhibited that EPS-C15 possessed a typical polysaccharide structure. NMR displayed that EPS-C15 structure is → 3)α-d-Glcvi (1 → 3)α-d-Xylv (1 → 6)α-d-Glciv(1 → 4)α-d-Glc(1 → 3)β-d-Man(1 → 2)α-d-Glci(1 → . EPS-C15 scavenged DPPH and ABTS free radicals with 50.3% and 46.4% capacities, respectively. Results show that the antiproliferative activities of EPS-C15 revealed inhibitions of 49.7% and 88.1% against MCF-7 and Caco-2 cells, respectively. EPS-C15 has antibacterial properties that inhibited Staphylococcus aureus (29.45%), Salmonella typhimurium (29.83%), Listeria monocytogenes (30.33%), and E. coli O157:H7 (33.57%). The viscosity of EPS-C15 decreased as the shear rate increased. The rheological properties of the EPS-C15 were affected by changes in pH levels and the addition of salts. EPS-C15 is a promising biomaterial that has potential applications in various industries, such as food, pharmaceuticals, and healthcare.
Collapse
Affiliation(s)
- Gafar Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Athira Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Camila Tamiello-Rosa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Farah R Al Qudsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 21121, Jordan
| | - Gennaro Esposito
- Science Division - New York University Abu Dhabi, NYUAD Campus, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University (UAEU), PO Box 1555, Al Ain, UAE
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore, 117542, Singapore
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, UAE.
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE.
| |
Collapse
|
46
|
Liu C, Liu X, Sun Y, Qi X, Ma Y, Wang R. Anti-inflammatory probiotic Lactiplantibacillus plantarum HF05 screening from Qula: Genomic analysis and alleviating effect on intestinal inflammation. FOOD BIOSCI 2023; 55:103002. [DOI: 10.1016/j.fbio.2023.103002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Shangpliang HNJ, Tamang JP. Metagenomics and metagenome-assembled genomes mining of health benefits in jalebi batter, a naturally fermented cereal-based food of India. Food Res Int 2023; 172:113130. [PMID: 37689895 DOI: 10.1016/j.foodres.2023.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Jalebi is one of the oldest Indian traditional fermented wheat-based confectioneries. Since jalebi is prepared by natural fermentation, diverse microbial community is expected to play bio-functional activities. Due to limited studies, information on microbial community structure in jalebi is unknown. Hence, the present study is aimed to profile the microbial community in jalebi by shotgun metagenomics and also to predict putative probiotic and functional genes by metagenome-assembled genome (MAG). Bacteria were the most abundant domain (91.91%) under which Bacillota was the most abundant phylum (82%). The most abundant species was Lapidilactobacillus dextrinicus followed by several species of lactic acid bacteria, acetic acid bacteria including few yeasts. Lap. dextrinicus was also significantly abundant in jalebi when compared to similar fermented wheat-based sourdough. Additionally, Lap. bayanensis, Pediococcus stilesii, and yeast- Candida glabrata, Gluconobacter japonicus, Pichia kudriavzevii, Wickerhamomyces anomalus were only detected in jalebi, which are not detected in sourdough. Few viruses and archaea were detected with < 1 % abundance. In silico screening of genes from the abundant species was mined using both KEGG and EggNOG database for putative health beneficial attributes. Circular genomes of five high-quality MAGs, identified as Lapidilactobacillus dextrinicus, Enterococcus hirae, Pediococcus stilesii, Acetobacter indonesiensis and Acetobacter cibinongensis, were constructed separately and putative genes were mapped and annotated. The CRISPR/Cas gene clusters in the genomes of four MAGs except Acetobacter cibinongensis were detected. MAGs also showed several secondary metabolites. Since, the identified MAGs have different putative genes for bio-functional properties, this may pave the way to selectively culture the uncultivated putative microbes for jalebi production. We believe this is the first report on metagenomic and MAGs of jalebi.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|
48
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
49
|
Cui Y, Dong S, Qu X. New progress in the identifying regulatory factors of exopolysaccharide synthesis in lactic acid bacteria. World J Microbiol Biotechnol 2023; 39:301. [PMID: 37688654 DOI: 10.1007/s11274-023-03756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The exopolysaccharides (EPSs) of lactic acid bacteria (LAB) have presented various bioactivities and beneficial characteristics, rendering their vast commercial value and attracting a broad interest of researchers. The diversity of EPS structures contributes to the changes of EPS functions. However, the low yield of EPS of LAB has severely limited these biopolymers' comprehensive studies and applications in different areas, such as functional food, health and medicine fields. The clarification of biosynthesis mechanism of EPS will accelerate the synthesis and reconstruction of EPS. In recent years, with the development of new genetic manipulation techniques, there has been significant progress in the EPS biosynthesis mechanisms in LAB. In this review, the structure of LAB-derived EPSs, the EPS biosynthesis basic pathways in LAB, the EPS biosynthetic gene cluster, and the regulation mechanism of EPS biosynthesis will be summarized. It will focus on the latest progress in EPS biosynthesis regulation of LAB and provide prospects for future related developments.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shiyuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
50
|
Angelov A, Georgieva A, Petkova M, Bartkiene E, Rocha JM, Ognyanov M, Gotcheva V. On the Molecular Selection of Exopolysaccharide-Producing Lactic Acid Bacteria from Indigenous Fermented Plant-Based Foods and Further Fine Chemical Characterization. Foods 2023; 12:3346. [PMID: 37761055 PMCID: PMC10527965 DOI: 10.3390/foods12183346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria present a particular interest for the food industry since they can be incorporated in foods via in situ production by selected starter cultures or applied as natural additives to improve the quality of various food products. In the present study, 43 strains were isolated from different plant-based fermented foods and identified by molecular methods. The species found were distinctively specific according to the food source. Only six Lactiplantibacillus plantarum strains, all isolated from sauerkraut, showed the ability to produce exopolysaccharide (EPS). The utilization of glucose, fructose and sucrose was explored with regard to EPS and biomass accumulation by the tested strains. Sucrose was clearly the best carbon source for EPS production by most of the strains, yielding up to 211.53 mg/L by strain Lactiplantibacillus plantarum ZE2, while biomass accumulation reached the highest levels in the glucose-based culture medium. Most strains produced similar levels of EPS with glucose and fructose, while fructose was utilized more poorly for biomass production, yielding about 50% of biomass compared to glucose for most strains. Composition analysis of the EPSs produced by strain Lactiplantibacillus plantarum ZE2 from glucose (EPS-1) and fructose (EPS-2) revealed that glucose (80-83 mol%) and protein (41% w/w) predominated in both analyzed EPSs. However, the yield of EPS-1 was twice higher than that of EPS-2, and differences in the levels of all detected sugars were found, which shows that even for the same strain, EPS yield and composition vary depending on the carbon source. These results may be the basis for the development of tailored EPS-producing starter cultures for food fermentations, as well as technologies for the production of EPS for various applications.
Collapse
Affiliation(s)
- Angel Angelov
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria;
| | - Aneliya Georgieva
- Institute of Food Preservation and Quality, 154 Vasil Aprilov Blvd., 4000 Plovdiv, Bulgaria;
| | - Mariana Petkova
- Department of Microbiology and Ecological Biotechnologies, Agricultural University, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|