1
|
Alsaleem KA, Hamouda MEA. Optimizing Probiotic Low-Fat Yogurt: The Benefits of Incorporating Defatted Rice Bran for Enhanced Quality and Functionality. Food Sci Nutr 2024; 12:10242-10254. [PMID: 39723040 PMCID: PMC11666912 DOI: 10.1002/fsn3.4558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 12/28/2024] Open
Abstract
This study investigated the effects of incorporating defatted rice bran (DRB) at different concentrations (0.5%, 1%, 1.5%, and 2%) on the quality, microbiological, and sensory characteristics of probiotic low-fat yogurt (LFY) during a 21-day storage period at 4°C. DRB is rich in dietary fiber, essential amino acids, vitamins, and bioactive compounds, and its addition aimed to enhance the nutritional and functional properties of LFY. LFY samples were evaluated for proximate composition, hardness, viscosity, syneresis, color characteristics, rheology, and sensory evaluation. Also, microbiological analysis includes total bacterial counts (TBC), Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Bifidobacterium bifidum counts. Results indicated that DRB addition significantly (p < 0.05) increased probiotic counts, especially at 1% and 1.5% concentrations, with these samples maintaining higher bacterial stability over the storage period. DRB-added LFY also showed improved nutritional profiles, with increased TS, protein, ash, fiber, and antioxidant activity. Additionally, hardness, viscosity, and rheology (G' and G″) values significantly (p < 0.05) increased with the addition of DRB, while syneresis significantly (p < 0.05) decreased. However, higher DRB concentrations negatively affected the color, with lightness decreasing and the browning index increasing. This also impacted sensory characteristics, resulting in lower scores for color, flavor, and overall acceptability, particularly in LFY with 2% DRB. To conclude, moderate DRB addition (up to 1.5%) optimally balances the enhancement of probiotic and nutritional properties with acceptable sensory quality offering a viable strategy for producing functional low-fat yogurt.
Collapse
Affiliation(s)
- Khalid A. Alsaleem
- Department of Food Science and Human NutritionCollege of Agriculture and Food, Qassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
2
|
Sánchez-Ortiz LK, Sánchez-Quezada V, Gaytán-Martínez M, Cuellar-Nuñez ML, Loarca-Piña G. Influence in physicochemical, nutritional, and antioxidant properties by addition Moringa oleifera leaves in Avena sativa bread. Food Chem 2024; 460:140743. [PMID: 39116777 DOI: 10.1016/j.foodchem.2024.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Moringa oleifera leaves have high nutrient valor, physicochemical, and nutraceutical properties and can be used as ingredients to develop wheat-free enrich. The aim was to evaluate nutritional, chemical, and nutraceutical characterization, antioxidant capacity, along physicochemical parameters to develop four oat bread using yeast (PL), xanthan gum (PG), and 2.5% (M2) or 5.0% (M5) of moringa leaves. Morinaga leaves were a source of 23.19% protein, 12.43% ash, and 30.36% dietary fiber. The bread formulations increased the protein content by 25-50%, and decreased lipid in 52.14% compared with commercial bread. For antioxidant capacity, PLM5 had the highest with values of 11.97 mMTE/g (DPPH), 16.06 mMTE/g (ABTS), and 16.38 mMTE/g (FRAP). In the bread with MOLP were identified Epicatechin, rutin, and dihydroxybenzoic acid by HPLC. The bread with a better texture profile was PLM2. The results suggested that moringa leaves used as an oat bread ingredient can enhance the nutritional and nutraceutical content.
Collapse
Affiliation(s)
- L K Sánchez-Ortiz
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico
| | - V Sánchez-Quezada
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico
| | - M Gaytán-Martínez
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico
| | - M L Cuellar-Nuñez
- Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel 200, Prados de la Capilla, Santiago de Querétaro, Querétaro, 76176, Mexico
| | - G Loarca-Piña
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico..
| |
Collapse
|
3
|
Chowdhury MAH, Sarkar F, Reem CSA, Rahman SM, Mahamud AGMSU, Rahman MA, Md Ashrafudoulla. Enzyme applications in baking: From dough development to shelf-life extension. Int J Biol Macromol 2024; 282:137020. [PMID: 39489247 DOI: 10.1016/j.ijbiomac.2024.137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Enzymes play a vital role in baking, providing significant benefits from dough development to extending shelf life, which enhances product quality and consistency. Acting as biological catalysts, enzymes such as proteases and amylases break down proteins and starches, modifying dough rheology and improving fermentation. Lipases and oxidases further refine dough texture through emulsification and oxidation, while lipases also produce fatty acid derivatives during fermentation, contributing to the flavor and aroma of baked goods. Xylanases and cellulases optimize dough handling by altering fiber structure, and amylases help maintain moisture and texture, extending the shelf life of baked products. Ensuring regulatory compliance is essential when incorporating enzymes into baking processes, as bakers must address enzyme stability and determine appropriate dosages for reliable outcomes. Ongoing research is exploring innovative enzyme applications, including customized enzyme blends that target specific product qualities, offering new possibilities for product differentiation and innovation. In summary, enzyme-driven advancements present bakers with opportunities to improve product quality, shelf life, and consistency, while meeting industry regulations. This review emphasizes the critical impact enzymes have on dough properties and finished product characteristics, highlighting their role in driving future innovations within the baking industry.
Collapse
Affiliation(s)
- Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Feroj Sarkar
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chowdhury Sanat Anjum Reem
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Sk Mustafizur Rahman
- Department of Nutrition and Food Engineering, Daffodil International University, Birulia 1216, Bangladesh
| | - A G M Sofi Uddin Mahamud
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | | |
Collapse
|
4
|
Kolotylo V, Piwowarek K, Synowiec A, Kieliszek M. Optimization of fermentation conditions for microbial transglutaminase production by Streptoverticillium cinnamoneum KKP 1658 using response surface methodology (RSM). Folia Microbiol (Praha) 2024:10.1007/s12223-024-01223-7. [PMID: 39578338 DOI: 10.1007/s12223-024-01223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Microbial transglutaminase (MTG) is an enzyme widely used in the food industry because it creates cross-links between proteins, enhancing the texture and stability of food products. Its unique properties make it a valuable tool for modifying the functional characteristics of proteins, significantly impacting the quality and innovation of food products. In this study, response surface methodology was employed to optimize the fermentation conditions for microbial transglutaminase production by the strain Streptoverticillium cinnamoneum KKP 1658. The effects of nitrogen dose, cultivation time, and initial pH on the activity of the produced transglutaminase were investigated. The significance of the examined factors was determined as follows: cultivation time > nitrogen dose > pH. The interaction between nitrogen dose and cultivation time was found to be crucial, having the second most significant impact on transglutaminase activity. Optimal conditions were identified as 48 h of cultivation with a 2% nitrogen source dose and an initial medium pH of approximately 6.0. Under these conditions, transglutaminase activity ranged from 4.5 to 5.5 U/mL. The results of this study demonstrated that response surface methodology is a promising approach for optimizing microbial transglutaminase production. Future applications of transglutaminase include the development of modern food products with improved texture and nutritional value, as well as its potential use in regenerative medicine for creating biomaterials and tissue scaffolds. This topic is particularly important and timely as it addresses the growing demand for innovative and sustainable solutions in the food and biomedical industries, contributing to an improved quality of life.
Collapse
Affiliation(s)
- Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| |
Collapse
|
5
|
Mohammed S, Dubey PK, Mishra AA, Rahman S. Valorisation of jackfruit seed flour in extrusion and bakery products: a review. Food Sci Biotechnol 2024; 33:3167-3180. [PMID: 39328228 PMCID: PMC11422402 DOI: 10.1007/s10068-024-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024] Open
Abstract
Jackfruit seeds are a highly nutritious, underutilized byproduct that can combat malnutrition and promote a healthy diet. This review evaluates the effects of jackfruit seed flour (JSF) on extrusion and bakery processing, examining its nutritional, functional, and physical properties. Comprehensive analysis showed that JSF in extruded and bakery products improves their nutritional properties and increases functional properties such as bulk density and water holding capacity, whereas it decreases oil holding capacity and expansion ratio. Furthermore, the textural and colour properties became poorer with the higher concentration of JSF due to the absence of gluten. Consumer studies revealed that the overall acceptability of extruded products containing JSF was higher than that of bakery products with similar substitutions. However, optimal formulations are needed to balance nutritional enhancement with desirable textural properties, and the sustainable utilization of this byproduct can lead to the development of a variety of nutritious food products. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01665-2.
Collapse
Affiliation(s)
- Shibil Mohammed
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Praveen Kumar Dubey
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| | - Atul Anand Mishra
- Department of Processing & Food Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Allahabad, Uttar Pradesh India
| | - Shamsad Rahman
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab India
| |
Collapse
|
6
|
Miah MK, Alim MA, Haque MA, Begum R. Quantitative analysis of β-ODAP neurotoxin among different varieties of grass pea ( Lathyrus sativus L.) flour: A comparative study. Heliyon 2024; 10:e37746. [PMID: 39315242 PMCID: PMC11417204 DOI: 10.1016/j.heliyon.2024.e37746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Grass pea (Lathyrus sativus L.), a protein-rich pulse crop, is often overlooked due to its association with neurolathyrism and its neurotoxin, β-ODAP. The study aims to compare the β-ODAP content, chemical, and functional properties of four BARI varieties and two local varieties of grass pea seed flour. The findings presented that the β-ODAP content of BARI varieties grass pea flour was significantly (p < 0.05) lower than local varieties, and the least amount of β-ODAP was found in BARI-3 varieties (0.086 %), which is below the safe level (0.15 %) for consumption. The safe level of neurotoxin was also found in the BARI-1 variety (0.13 %), but local varieties grass pea flour of Pabna and Tangail showed a significantly higher (p < 0.05) value of 0.39 and 0.49 % β-ODAP content, respectively. There were no significant differences in protein content among BARI and local varieties, with the highest value of 26.58 % protein content found in the BARI-2 variety. In terms of functional properties, the BARI-5 variety had the highest water absorption capacity (2.92 ml/g) and oil absorption capacity (1.48 ml/g). The grass pea BARI variety, with its high oil absorption capacity and low β-ODAP content, can be utilized in food formulations for bakery products, sausages, and functional ingredients.
Collapse
Affiliation(s)
- Md Kawsar Miah
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Abdul Alim
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Azizul Haque
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Rokeya Begum
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
7
|
Peng Y, Wu Y, Shan Z, Li M, Wen X, Ni Y. Effects of zein extractions on the structural properties of SPI-zein composite gels: Implications for gluten-free plant-based products. Food Chem 2024; 452:139562. [PMID: 38749140 DOI: 10.1016/j.foodchem.2024.139562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
The growing global interest in physical and environmental health has led to the development of plant-based products. Although soy protein and wheat gluten are commonly utilized, concerns regarding gluten-related health issues have driven exploration into alternative proteins. Zein has emerged as a promising option. This research investigated the impact of extraction methods on zein characteristics and the structures of SPI-zein composite gels. Different extraction methods yielded zein with protein contents ranging from 48.12 % to 64.34 %. Ethanol-extracted Z1 and Z3, obtained at different pH conditions, exhibited zeta potential of -3.25 and 5.43 mV, respectively. They displayed similar characteristics to commercial zein and interacted comparably in composite gels. Conversely, alkaline-extracted Z2 had a zeta potential of -2.37 mV and formed distinct gels when combined with SPI. These results indicated that extraction methods influence zein behaviour in composite gels, offering possibilities for tailored formulations and expanding zein's applications, particularly in gluten-free plant-based products.
Collapse
Affiliation(s)
- Yu Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Beijing 100083, China.
| | - Yuqing Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Beijing 100083, China.
| | - Ziming Shan
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Beijing 100083, China.
| | - Mo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Beijing 100083, China.
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Beijing 100083, China.
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Beijing 100083, China.
| |
Collapse
|
8
|
Caponio GR, Annunziato A, Vacca M, Difonzo G, Celano G, Minervini F, Ranieri M, Valenti G, Tamma G, De Angelis M. Nutritional, antioxidant and biological activity characterization of orange peel flour to produce nutraceutical gluten-free muffins. Food Funct 2024; 15:8459-8476. [PMID: 39052071 DOI: 10.1039/d4fo01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Celiac disease - a prevalent food intolerance - requires strict adherence to a lifelong gluten-free (GF) diet as the only effective treatment. However, GF products often lack soluble fibre and have a high glycaemic index. Consequently, there is a pressing need in the food industry to develop GF products with improved nutritional profiles. In this context, the impact of incorporating orange peel flour (OPF) into muffins undergoing sourdough fermentation was examined, focusing on their technological, antioxidant, and nutritional characteristics. The functional properties of OPF were investigated using human colon carcinoma HCT8 cells as a model system. Treatment with OPF extract demonstrated a notable reduction in malignant cell viability and intracellular ROS levels, indicating potent antioxidant capabilities. Western blot analysis revealed significant alterations in key signalling pathways, including increased phosphorylation of NF-kB at serine 536 and reduced intracellular levels of caspase-3, alongside increased phosphorylation of RIPK3 and MLKL, suggesting potential involvement in necroptosis. OPF incorporation in muffins with sourdough increased antioxidant activity, reduced glycaemic index, and affected the volatile profile. Furthermore, based on simulated colonic fermentation, muffins with OPF showed a slight prebiotic effect, supported by the significant increase in bacillus-shaped lactic acid bacteria and Clostridia population. Overall, OPF-enriched muffins demonstrated considerable antioxidant effects and impacts on cell viability, underscoring their potential as functional ingredients in GF products. These findings signify the prospect of OPF enhancing the nutritional profiles and conferring health benefits of GF muffins.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Marianna Ranieri
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Giovanna Valenti
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
9
|
Tanyitiku MN, Bessem P, Petcheu ICN. Gluten-Free Corn Cookies Incorporated With Stinging Nettle Leaf Flour: Effect on Physical Properties, Storage Stability, and Health Benefits. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8864560. [PMID: 39135739 PMCID: PMC11319057 DOI: 10.1155/2024/8864560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
The consumption of gluten-free corn cookies is becoming very popular among nonceliac and celiac individuals. However, the absence of gluten and other nutrients in corn generally leads to cookies of lower quality in terms of nutritional value, texture, colour, and shelf life. To improve the quality characteristics of corn cookies, this study investigated the effect of incorporating an underutilised herb (Urtica dioica L. leaves) on its nutritional and physical properties. Stinging nettle leaf flour was incorporated at different levels (5%, 10%, 15%, and 20%) and compared with a control (100% corn cookies). The storage stability of the formulated corn cookies was also investigated at room and frozen (-18 ± 2°C) temperature. The incorporation of stinging nettle leaf flour increased (p < 0.05) the ash and protein content of corn cookies from 0.32% (control) to 2.56% (20% stinging nettle leaf flour incorporation) and 6.44% (control) to 21.52% (20% stinging nettle leaf flour incorporation), respectively. After in vitro starch digestion, the total phenolic content (TPC) and antioxidant activity (AA) also increased approximately 27 and seven times, respectively, and the estimated glycaemic index (GI) (eGI) decreased (p < 0.05) from 48.60% (control) to 33.18% (20% stinging nettle incorporated). Shelf life characteristics (water activity, peroxide value (PV), and microbial count) of formulated corn cookies were within acceptable limits for human consumption upon storage for 6 months. The findings indicated that stinging nettle leaves could serve as a potential food ingredient in gluten-free bakery products, particularly where low GI foods are desirable.
Collapse
Affiliation(s)
| | - Prisca Bessem
- Department of Veterinary MedicineFaculty of Agriculture and Veterinary MedicineUniversity of Buea, Buea, Cameroon
| | | |
Collapse
|
10
|
Colautti A, Orecchia E, Coppola F, Iacumin L, Comi G. Cyberlindnera fabianii, an Uncommon Yeast Responsible for Gluten Bread Spoilage. Foods 2024; 13:2381. [PMID: 39123571 PMCID: PMC11311480 DOI: 10.3390/foods13152381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
A single strain of yeast was isolated from industrial gluten bread (GB) purchased from a local supermarket. This strain is responsible for spoilage consisting of white powdery and filamentous colonies due to the fragmentation of hyphae into short lengths (dust-type spots), similar to the spoilage produced by chalk yeasts such as Hyphopichia burtonii, Wickerhamomyces anomalus and Saccharomycopsis fibuligera. The isolated strains were identified initially by traditional methods as Wickerhamomyces anomalus, but with genomic analysis, they were definitively identified as Cyberlindnera fabianii, a rare ascomycetous opportunistic yeast species with low virulence attributes, uncommonly implicated in bread spoilage. However, these results demonstrate that this strain is phenotypically similar to Wi. anomalus. Cy. fabianii grew in GB because of its physicochemical characteristics which included pH 5.34, Aw 0.97 and a moisture of about 50.36. This spoilage was also confirmed by the presence of various compounds typical of yeasts, derived from sugar fermentation and amino acid degradation. These compounds included alcohols (ethanol, 1-propanol, isobutyl alcohol, isoamyl alcohol and n-amyl alcohol), organic acids (acetic and pentanoic acids) and esters (Ethylacetate, n-propil acetate, Ethylbutirrate, Isoamylacetate and Ethylpentanoate), identified in higher concentrations in the spoiled samples than in the unspoiled samples. The concentration of acetic acid was lower only in the spoiled samples, but this effect may be due to the consumption of this compound to produce acetate esters, which predominate in the spoiled samples.
Collapse
Affiliation(s)
- Andrea Colautti
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| | - Elisabetta Orecchia
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| | - Francesca Coppola
- Food Sciences Institute, National Research Council, Via Roma, 64, 83100 Avellino, Italy;
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| | - Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| |
Collapse
|
11
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10327-y. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Cera S, Tuccillo F, Knaapila A, Sim F, Manngård J, Niklander K, Verni M, Rizzello CG, Katina K, Coda R. Role of tailored sourdough fermentation in the flavor of wholegrain-oat bread. Curr Res Food Sci 2024; 8:100697. [PMID: 38487179 PMCID: PMC10937307 DOI: 10.1016/j.crfs.2024.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Sourdough technology has been known for its role in the improvement of texture, flavor, and quality of mainly wheat and rye-based breads for decades. However, little is reported about its use in the improvement of whole-grain oat bread, especially concerning flavor formation, which is one major consumer drivers. This study investigated the effects of sourdough obtained by different lactic acid bacteria and yeast starters consortia on the texture and flavor of 100% oat bread. Four different consortia were selected to obtain four oat sourdoughs, which were analyzed to assess the main features due to the different starter fermentation metabolism. Sourdoughs were added to breads as 30% dough weight. Bread quality was technologically monitored via hardness and volume measurements. Sourdough breads were softer and had higher specific volume. The sensory profile of sourdoughs and breads was assessed by a trained panel in sensory laboratory conditions, and the volatile profile was analyzed by HS-SPME-GC-MS. Sourdoughs were rated with higher intensities than untreated control for most of attributes, especially concerning sour aroma and flavor attributes. Sourdough breads were rated with higher intensities than control bread for sour vinegar flavor and total odor intensity, in addition they had richer volatile profile. Our results confirmed that sourdough addition can lead to an enhanced flavor, moreover, it demonstrated that the use of different consortia of lactic acid bacteria and yeast strains leads to the improvement of texture and altered sensory profile of whole-oat bread.
Collapse
Affiliation(s)
- Silvia Cera
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Fabio Tuccillo
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Antti Knaapila
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Finlay Sim
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jessica Manngård
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Katariina Niklander
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Michela Verni
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Kati Katina
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Sustainability Science, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Bojňanská T, Kolesárová A, Čech M, Tančinová D, Urminská D. Extracts with Nutritional Potential and Their Influence on the Rheological Properties of Dough and Quality Parameters of Bread. Foods 2024; 13:382. [PMID: 38338518 PMCID: PMC10855696 DOI: 10.3390/foods13030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Formulating basic food to improve its nutritional profile is one potential method for food innovation. One option in formulating basic food such as bread is to supplement flours with specified amounts of non-bakery raw materials with high nutritional benefits. In the research presented here, we studied the influence of the addition of curcumin and quercetin extracts in amounts of 2.5% and 5% to wheat flour (2.5:97.5; 5:95). The analysis of the rheological properties of dough was carried out using a Mixolab 2. A Rheofermentometer F4 was used to assess the dough's fermentation, and a Volscan was used to evaluate the baking trials. The effect of the extracts on the rheological properties of dough was measured and found to be statistically significant, with curcumin shortening both dough development time and dough stability. Doughs made with greater quantities of extract had a greater tendency to early starch retrogradation, which negatively affects the shelf life of the end products. The addition of extracts did not significantly affect either the ability to form gas during fermentation or its retention, which is important because this gas is prerequisite to forming a final product with the required volume and porosity of crumb. Less favourable results were found on sensory evaluation, wherein the trial bread was significantly worse than the control wheat bread. The panel's decision-making might have been influenced by the atypical colour of the bread made with additives, and in case of a trial bread made with quercetin, by a bitter taste. From the technological point of view, the results confirmed that the composite flours prepared with the addition of extracts of curcumin and quercetin in amounts of 2.5% and 5% can be processed according to standard procedures. The final product will be bread with improved nutritional profile and specific sensory properties, specifically an unconventional and attractive colour.
Collapse
Affiliation(s)
- Tatiana Bojňanská
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Anna Kolesárová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Matej Čech
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| |
Collapse
|
14
|
Utarova N, Kakimov M, Gajdzik B, Wolniak R, Nurtayeva A, Yeraliyeva S, Bembenek M. Development of Gluten-Free Bread Production Technology with Enhanced Nutritional Value in the Context of Kazakhstan. Foods 2024; 13:271. [PMID: 38254572 PMCID: PMC10815016 DOI: 10.3390/foods13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This research aims to enhance the nutritional value of gluten-free bread by incorporating a diverse range of components, including additives with beneficial effects on human health, e.g., dietary fibers. The research was focused on improving the texture, taste, and nutritional content of gluten-free products by creating new recipes and including novel biological additives. The goal was to develop gluten-free bread with less than 3 ppm gluten content that can be eaten by people suffering from gluten sensitivity. The physical and chemical properties of gluten-free rice, corn, green buckwheat, chickpea, amaranth, and plantain flours were examined to understand their unique characteristics and the possibility of their mixing combination to achieve the desired results. Initially, nine recipes were prepared, and in survey research, four baking recipes were selected and tested. The composition of amino acids in the prepared gluten-free bread was determined. The variant made of corn, green buckwheat flour with plantain was found to be top-rated. Changes in the nutritional content of the new product were analyzed, and general regulations and nutritional values were identified. Experimental baking processes were carried out, leading to the successful formulation of gluten-free bread containing corn, green buckwheat, and plantain flour in a ratio of 40:40:20, meeting gluten-free requirements and demonstrating improved nutritional properties, as well as consumption properties, confirmed by surveys conducted on a group of consumers.
Collapse
Affiliation(s)
- Nazira Utarova
- The Department of Food Technology and Processing Products, S.Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan; (N.U.); (A.N.)
| | - Mukhtarbek Kakimov
- The Department of Food Technology and Processing Products, S.Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan; (N.U.); (A.N.)
| | - Bożena Gajdzik
- Department of Industrial Informatics, Silesian University of Technology, 40-019 Katowice, Poland;
| | - Radosław Wolniak
- Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Ainur Nurtayeva
- The Department of Food Technology and Processing Products, S.Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan; (N.U.); (A.N.)
| | - Saule Yeraliyeva
- The Department of Design and Technology, Korkyt Ata Kyzylorda University, 29A Aiteke Bi Str., Kyzylorda 120014, Kazakhstan;
| | - Michał Bembenek
- Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
15
|
Gigante V, Aliotta L, Ascrizzi R, Pistelli L, Zinnai A, Batoni G, Coltelli MB, Lazzeri A. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers (Basel) 2023; 15:4700. [PMID: 38139951 PMCID: PMC10747240 DOI: 10.3390/polym15244700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Sustainable packaging has been steadily gaining prominence within the food industry, with biobased materials emerging as a promising substitute for conventional petroleum-derived plastics. This review is dedicated to the examination of innovative biobased materials in the context of bread packaging. It aims to furnish a comprehensive survey of recent discoveries, fundamental properties, and potential applications. Commencing with an examination of the challenges posed by various bread types and the imperative of extending shelf life, the review underscores the beneficial role of biopolymers as internal coatings or external layers in preserving product freshness while upholding structural integrity. Furthermore, the introduction of biocomposites, resulting from the amalgamation of biopolymers with active biomolecules, fortifies barrier properties, thus shielding bread from moisture, oxygen, and external influences. The review also addresses the associated challenges and opportunities in utilizing biobased materials for bread packaging, accentuating the ongoing requirement for research and innovation to create advanced materials that ensure product integrity while diminishing the environmental footprint.
Collapse
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
| | - Laura Pistelli
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy;
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| |
Collapse
|
16
|
Vijayendra SVN, Sreedhar R. Production of buns, the bakery-based snack food, with reduced refined wheat flour content: Recent developments. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2907-2915. [PMID: 37786593 PMCID: PMC10542072 DOI: 10.1007/s13197-023-05696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 03/02/2023]
Abstract
Buns are very soft puffed bakery snack items, popular in many countries, especially low- and middle-income nations. Buns are either eaten directly or used in the preparation of culinary items. Buns are mainly prepared using refined wheat flour rich in gluten protein and devoid of husk. Consuming gluten-containing foods is leading to several health complications among consumers worldwide. Hence, several researchers have tried to reduce the gluten content in the dough by incorporating cereals flours, protein-rich sources like soy, cheese whey, etc., hydrocolloids, millets, pomace, and seed flour of vegetables and fruits, etc. These additives not only reduce gluten content in the buns to a certain extent but also enhance the fibre content and nutritional profile of the buns. This mini-review summarizes the recent developments in the production of buns using these additives to improve their nutritional quality.
Collapse
Affiliation(s)
- S. V. N. Vijayendra
- CSIR - Central Food Technological Research Institute, Resource Centre-Hyderabad, Uppal Road, Habsiguda, Hyderabad, 500007 India
| | - R. Sreedhar
- CSIR - Central Food Technological Research Institute, Resource Centre-Hyderabad, Uppal Road, Habsiguda, Hyderabad, 500007 India
| |
Collapse
|
17
|
Park J, Kim HS. Rice-Based Gluten-Free Foods and Technologies: A Review. Foods 2023; 12:4110. [PMID: 38002168 PMCID: PMC10670158 DOI: 10.3390/foods12224110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Rice, one of the most widely consumed staples worldwide, serves as a versatile gluten-free substitute. However, review articles on technological developments in grain-free production focusing on rice are scarce. This review assesses various research results concerning the quality attributes of rice-based gluten-free foods, including bread, pasta, and beer. To optimize the key attributes in processed products, such as dough leavening in bread and the physical and cooking properties of noodles and pasta, research has focused on blending different gluten-free grains and incorporating additives that mimic the gluten function. Additionally, various processing technologies, such as starch preprocessing and extrusion puffing processes, have been employed to boost the quality of rice-based gluten-free products. Today, a variety of products, including bread, noodles, and beer, use rice as a partial replacement for barley or wheat. With rapid advancements in technology, a noticeable portion of consumers now shows a preference for products containing rice as a substitute. This trend indicates that rice-based gluten-free foods can be enhanced by leveraging the latest developments in gluten-free product technologies, particularly in countries where rice is a staple or is predominantly cultivated.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon 16429, Gyeonggi, Republic of Korea
| | | |
Collapse
|
18
|
Mba JC, Paes LT, Viana LM, Ferreira AJC, Queiroz VAV, Martino HSD, Azevedo L, de Carvalho CWP, Felisberto MHF, de Barros FAR. Evaluation of the Physical, Chemical, Technological, and Sensorial Properties of Extrudates and Cookies from Composite Sorghum and Cowpea Flours. Foods 2023; 12:3261. [PMID: 37685193 PMCID: PMC10486629 DOI: 10.3390/foods12173261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, there has been a growing demand for gluten-free and functional products, driven by consumer preferences for healthier and more diverse food choices. Therefore, there is a need to explore new ingredients that can be used as alternatives to traditional gluten-containing grains. Thus, this work evaluated the physical, chemical, technological, and sensorial properties of extrudates and cookies from composite tannin sorghum (rich in resistant starch) and white cowpea flours. Extrudates and cookies were produced from a composite flour made of sorghum and cowpea, at a sorghum:cowpea flour ratio of 70:30, 50:50, and 30:70. Then, raw flours, cookies, and extrudates were characterized (dietary fiber, resistant starch, proteins, antioxidant capacity, pasting properties, etc.). Results obtained for particle size distribution and bulk density indicated that the particles increased and the color changed with the addition of cowpea flour. The raw tannin sorghum flour had a higher resistant starch concentration (36.3%) and antioxidant capacity (211.2 µmolTE/g), whereas cowpea flour had higher levels of proteins (18.7%) and dietary fiber (20.1%). This difference in the raw flour composition contributed to the nutritional value of the extrudates and cookies, especially the cookies which undergo dry heat and had higher retention of resistant starch and antioxidants. Moreover, sorghum flour presented a higher tendency to retrograde (high setback), which was decreased by the addition of cowpea flour. Overall acceptance and intention to purchase were higher for extrudates with 100% sorghum flour (6.52 and 68.3%, respectively) and cookies with 70% cowpea flour (7.03 and 76.7%, respectively). Therefore, nutritious and functional gluten-free extrudates and cookies, of good acceptability, can be produced from composite tannin sorghum and white cowpea flours.
Collapse
Affiliation(s)
- Joy Chinenye Mba
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-000, MG, Brazil (M.H.F.F.)
- Department of Food Science and Technology, Nnamdi Azikiwe University, Awka 420007, Nigeria
| | - Laise Trindade Paes
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-000, MG, Brazil (M.H.F.F.)
| | - Leonara Martins Viana
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-000, MG, Brazil (M.H.F.F.)
| | | | | | | | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | | | | | | |
Collapse
|
19
|
Curti MI, Palavecino PM, Savio M, Baroni MV, Ribotta PD. Sorghum ( Sorghum bicolor L. Moench) Gluten-Free Bread: The Effect of Milling Conditions on the Technological Properties and In Vitro Bioaccessibility of Polyphenols and Minerals. Foods 2023; 12:3030. [PMID: 37628029 PMCID: PMC10453239 DOI: 10.3390/foods12163030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The absence of gluten proteins in sorghum allows for the production of baked goods that are suitable for celiacs. Previous studies have shown that the milling process affects the performance of sorghum flour in baked products, especially those that are gluten-free (GF). This study aimed to explore the effects of mill type (impact and roller) on flour properties and GF bread quality by assessing the technological quality, antioxidant activity, and mineral content of the bread. All particle populations of flour obtained via both millings presented a bimodal distribution, and the volume mean diameter (D 4,3) ranged from 431.6 µm to 561.6 µm. The partially refined milled flour obtained via polishing and impact milling produced bread with a soft crumb, fewer but larger alveoli in the crumb, and a structure that did not collapse during baking, showing the best performance in bread quality. In the in vitro bread digestibility assay, the total polyphenol content and antioxidant activity decreased during the digestion steps. High mineral (Cu, Fe, Mn, and Zn) contents were also found in a portion of the bread (120 g) made with whole sorghum flour; however, their potential bioavailability was reduced in the presence of a higher amount of bran.
Collapse
Affiliation(s)
- María Isabel Curti
- Facultad Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa 6300, Argentina; (M.I.C.); (M.S.)
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP, CONICET-UNLPAM), Santa Rosa 6300, Argentina
| | - Pablo Martín Palavecino
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC, CONICET-UNC), Córdoba 5000, Argentina; (P.M.P.); (M.V.B.)
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Marianela Savio
- Facultad Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa 6300, Argentina; (M.I.C.); (M.S.)
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP, CONICET-UNLPAM), Santa Rosa 6300, Argentina
| | - María Verónica Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC, CONICET-UNC), Córdoba 5000, Argentina; (P.M.P.); (M.V.B.)
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Pablo Daniel Ribotta
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC, CONICET-UNC), Córdoba 5000, Argentina; (P.M.P.); (M.V.B.)
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
20
|
Komeroski MR, Oliveira VRD. Influence of the Amount and Type of Whey Protein on the Chemical, Technological, and Sensory Quality of Pasta and Bakery Products. Foods 2023; 12:2801. [PMID: 37509893 PMCID: PMC10379415 DOI: 10.3390/foods12142801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
In addition to being an important source of nutrients, pasta and bakery products are consumed globally and so there is a growing need to study them in addition to other ingredients such as whey proteins. These dairy proteins are intended to improve the quality of these foods, as they have important nutritional, technological, and sensory properties that can be exploited. The importance of new formulations in the quality features of pasta and bakery products and gaining an understanding of how the ingredients can interfere with these foods are described. A summary of the latest progress in the application of whey protein in bakery products, as well as their types and quantities from a physicochemical and sensory point of view, is presented. This review was reported following PRISMA recommendations and included articles (n = 32) from scientific journals that evaluated the use of whey protein in bakery products over the past ten years. More than half of the authors (n = 20) used WPC, likely due to its nutritional composition, cost, and easy access. Cake formulations were those with the highest amounts of whey protein, unlike researchers who made bread and pasta, possibly due to the fragility of these preparations. The addition of whey proteins modified the physical characteristics and improved the chemical composition of the bread. However, at higher concentrations (≥30%), they caused damage to the texture characteristics.
Collapse
Affiliation(s)
- Marina Rocha Komeroski
- Postgraduate Program in Food Science, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Viviani Ruffo de Oliveira
- Postgraduate Program in Food, Nutrition and Health, Department of Nutrition, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
21
|
Macciò C, Melis A, Lodi MB, Garau E, Desogus F, Loddo A, Di Napoli F, Mazzarella G, Fanti A. Microwave Spectroscopy Investigation of Carasau Bread Doughs: Effects of Composition up to 8.5 GHz. Foods 2023; 12:2396. [PMID: 37372607 DOI: 10.3390/foods12122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Carasau bread is a flat bread, typical of Sardinia (Italy). The market of this food product has a large growth potential, and its industry is experiencing a revolution, characterized by digitalization and automation. To monitor the quality of this food product at different manufacturing stages, microwave sensors and devices could be a cost-effective solution. In this framework, knowledge of the microwave response of Carasau dough is required. Thus far, the analysis of the microwave response of Carasau doughs through dielectric spectroscopy has been limited to the dynamics of fermentation. In this work, we aim to perform complex dielectric permittivity measurements up to 8.5 GHz, investigating and modeling the role of water amount, salt and yeast concentrations on the spectra of this food product. A third-order Cole-Cole model was used to interpret the microwave response of the different samples, resulting in a maximum error of 1.58% and 1.60% for the real and imaginary parts of permittivity, respectively. Thermogravimetric analysis was also performed to support the microwave spectroscopy investigation. We found that dielectric properties of Carasau bread doughs strongly depend on the water content. The analysis highlighted that an increase in water quantity tends to increase the bounded water fraction at the expense of the free water fraction. In particular, the free water amount in the dough is not related to the broadening parameter γ2 of the second pole, whereas the bound water weight fraction is more evident in the γ2 and σdc parameters. An increase in electrical conductivity was observed for increasing water content. The microwave spectrum of the real part of the complex permittivity is slightly affected by composition, while large variation in the imaginary part of the complex dielectric permittivity can be identified, especially for frequencies below 4 GHz. The methodology and data proposed and reported in this work can be used to design a microwave sensor for retrieving the composition of Carasau bread doughs through their dielectric signature.
Collapse
Affiliation(s)
- Claudia Macciò
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Andrea Melis
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Matteo Bruno Lodi
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Emanuele Garau
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Francesco Desogus
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Antonio Loddo
- Il Vecchio Forno SUNALLE, Via Ogliastra, 10, 08023 Fonni, Italy
| | | | - Giuseppe Mazzarella
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Alessandro Fanti
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| |
Collapse
|
22
|
Delarca Ruiz F, Aleman RS, Kazemzadeh Pournaki S, Sarmiento Madrid M, Muela A, Mendoza Y, Marcia Fuentes J, Prinyawiwatkul W, King JM. Development of Gluten-Free Bread Using Teosinte ( Dioon mejiae) Flour in Combination with High-Protein Brown Rice Flour and High-Protein White Rice Flour. Foods 2023; 12:foods12112132. [PMID: 37297377 DOI: 10.3390/foods12112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Gluten-free bread is an important product that is under development using different sources, such as rice and starchy plants. Teosinte seeds are utilized by ethnic groups in Honduras to produce gluten-free flour to prepare traditional baked goods and beverages. The quality of gluten-free products could vary depending on flour properties, such as amylose content, particle size, and water absorption capacity. A good strategy for developing baked goods is to mix different cereal grain sources to optimize their physicochemical properties. As a result, the current study aimed to develop bread from novel flours including teosinte (TF), high-protein brown rice (BRF), and high-protein white rice (WRF). Breads were analyzed for hardness, specific volume, and color utilizing a Simplex-Centroid mixture design coupled with the desirability function. Pasting, and rheological characteristics of the flours, were also analyzed. For flour characteristics, TF addition to BRF or WRF decreased the peak, trough, breakdown, setback, and final viscosities, which would result in a more stable bread and decrease the flow index of rice flour dispersions. BRF and WRF had similar pasting properties, except that BRF had a lower breakdown viscosity. For bread characteristics, TF addition to BRF or WRF increased the specific volume and hardness of the bread compared to rice flour alone. L* of the crust and crumb a* values were increased with greater TF in the mixture, whereas TF decreased the crust a*and b* values and crumb L* values when mixed with BRF or WRF compared to rice flours alone. WRF and BRF were similar in crumb color (L* and a*), except that BRF had greater crumb yellowness (b*). Teosinte flour can be used in combination with rice flour to produce bread with good quality.
Collapse
Affiliation(s)
- Franklin Delarca Ruiz
- Faculty of Technological Sciences, Universidad Nacional de Agricultura, Catacamas 16201, Honduras
| | - Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | | - Andrea Muela
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Yeimi Mendoza
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Jhunior Marcia Fuentes
- Faculty of Technological Sciences, Universidad Nacional de Agricultura, Catacamas 16201, Honduras
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Joan M King
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
23
|
Úbeda N, González MP, Achón M, García-González Á, Ballestero-Fernández C, Fajardo V, Alonso-Aperte E. Nutritional Composition of Breakfast in Children and Adolescents with and without Celiac Disease in Spain-Role of Gluten-Free Commercial Products. Nutrients 2023; 15:nu15102368. [PMID: 37242250 DOI: 10.3390/nu15102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Eating a nutritionally balanced breakfast can be a challenge when following a gluten-free diet (GFD). We assessed the ingredients and nutrient composition of 364 gluten-free breakfast products (GFPs) and 348 gluten-containing counterparts (GCCs), and we analysed the nutritional quality of breakfast in a group of Spanish children and adolescents with celiac disease (CD) (n = 70), as compared to controls (n = 67). Food intakes were estimated using three 24 h dietary records. The composition of GFPs and GCCs was retrieved from the package labels of commercially available products. Most participants (98.5%) ate breakfast daily, and only one person in each group skipped breakfast once. The breakfast contribution of the total daily energy was 19% in participants with CD and 20% in controls. CD patients managed a balanced breakfast in terms of energy (54% from carbohydrates; 12% from proteins; 34% from lipids) and key food groups (cereals, dairy, fruits), but their intake of fruits needs improvement. Compared to controls, breakfast in the CD group provided less protein and saturated fat, a similar amount of carbohydrates and fibre, and more salt. Fibre is frequently added to GFPs, but these contain less protein because of the flours used in formulation. Gluten-free bread contains more fat and is more saturated than is GCC. Sugars, sweets, and confectionery contribute more to energy and nutrient intakes in participants with CD, while grain products do so in controls. Overall, breakfast on a GFD can be adequate, but can be improved by GFPs reformulation and a lower consumption of processed foods.
Collapse
Affiliation(s)
- Natalia Úbeda
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - María Purificación González
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - María Achón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Ángela García-González
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Catalina Ballestero-Fernández
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Violeta Fajardo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Elena Alonso-Aperte
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| |
Collapse
|
24
|
Pešić MB, Pešić MM, Bezbradica J, Stanojević AB, Ivković P, Milinčić DD, Demin M, Kostić AŽ, Dojčinović B, Stanojević SP. Okara-Enriched Gluten-Free Bread: Nutritional, Antioxidant and Sensory Properties. Molecules 2023; 28:molecules28104098. [PMID: 37241841 DOI: 10.3390/molecules28104098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to produce an eco-innovative gluten-free bread with a pleasant taste and a unique formulation that includes the highest quality grains and pseudocereals (buckwheat; rice; and millet); and okara; a by-product of soy milk production. The mixture of pseudocereal and cereal flour contained buckwheat flour 45%, rice flour 33%, and millet flour 22%. Three gluten-free breads; each containing different contents of gluten-free flour (90%, 80%, and 70%, respectively); okara (10%, 20%, and 30%, respectively); and a control sample (without okara); were prepared and subjected to sensory evaluation. The okara-enriched gluten-free bread with the highest sensory score was selected for further analysis of physico-chemical (total proteins; total carbohydrates; insoluble fiber; soluble fiber; sugars; total lipids; saturated fatty acids; and salt) and functional properties (total phenolic content and antioxidant properties). The highest sensory scores were obtained for 30% okara-enriched gluten-free bread including taste; shape; odor; chewiness; and cross-section properties; classifying this bread in the category of very good quality and excellent quality (mean score 4.30 by trained evaluators and 4.59 by consumers). This bread was characterized by a high content of dietary fiber (14%), the absence of sugar; low content of saturated fatty acids (0.8%), rich source of proteins (8.8%) and certain minerals (e.g.,; iron; zinc); and low energy value (136.37 kcal/100g DW). Total phenolic content was 133.75 mgGAE/100g FW; whereas ferric reducing power; ABTS radical cation; and DPPH radical scavenging activity were 119.25 mgAA/100g FW; 86.80 mgTrolox/100g FW; and 49.92 mgTrolox/100g FW; respectively. Okara addition in gluten-free bread production enables the formulation of high-nutritive; good antioxidative; low-energy bread; and better soy milk waste management.
Collapse
Affiliation(s)
- Mirjana B Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| | - Milica M Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| | - Jelena Bezbradica
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| | - Anđela B Stanojević
- Lund University Center for Sustainable Studies (LUCSUS), Faculty of Social Sciences, 223 62 Lund, Sweden
| | - Petra Ivković
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| | - Danijel D Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| | - Mirjana Demin
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Sladjana P Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
25
|
Nicolosi A, Laganà VR, Di Gregorio D. Habits, Health and Environment in the Purchase of Bakery Products: Consumption Preferences and Sustainable Inclinations before and during COVID-19. Foods 2023; 12:foods12081661. [PMID: 37107456 PMCID: PMC10138246 DOI: 10.3390/foods12081661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of the research is to investigate whether purchasing decisions about bakery products (bread, snacks and biscuits) are influenced by concerns about health, climate change, biodiversity loss and food waste. The exploratory survey was carried out in two successive moments before and during the health emergency from COVID-19. Before the health emergency, face-to-face interviews were carried out using a structured questionnaire. Data were analyzed by factor analysis, reliability tests and descriptive analysis. Structural equation modeling (SEM) was employed to test the research hypotheses. The results of the modeling analysis of the structural equations highlighted that health and the environment represent an important background in the consumer experience of the respondents and influence the attitude and intention to purchase safe and environmentally friendly bakery products. Furthermore, the results suggest that informed, modern and aware consumers have direct and indirect effects on the intentions to adopt sustainable attitudes. On the contrary, the perception relating to the shops where consumers buy bakery products does not always show a significant influence on the propensity for sustainability. During the health emergency, the interviews were conducted online. Families confined to their homes, buying less in stores, have prepared many baked goods manually at home. The descriptive analysis of this group of consumers shows a growing attention to points of sale and the tendency to use online shopping. Furthermore, the changes in the type of purchases and the importance attributed to the need to reduce food waste emerge.
Collapse
Affiliation(s)
- Agata Nicolosi
- Department of Agriculture, Mediterranean University of Reggio Calabria, Feo de Vito, 89122 Reggio Calabria, Italy
| | - Valentina Rosa Laganà
- Department of Agriculture, Mediterranean University of Reggio Calabria, Feo de Vito, 89122 Reggio Calabria, Italy
| | - Donatella Di Gregorio
- Department of Agriculture, Mediterranean University of Reggio Calabria, Feo de Vito, 89122 Reggio Calabria, Italy
| |
Collapse
|
26
|
Schmidt M, Raczyk M. FODMAP reduction strategies for nutritionally valuable baking products: current state and future challenges. Crit Rev Food Sci Nutr 2023; 64:8036-8053. [PMID: 37000015 DOI: 10.1080/10408398.2023.2195026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Fermentable oligo-, di- and monosaccharides and polyols (FODMAP) comprise several previously unrelated carbohydrates, such as fructans, fructo-oligosaccharides, galacto-oligosaccharides, fructose (in excess of glucose), mannitol and sorbitol, and among others. For many patients with gastro-intestinal disorders, such as irritable bowel syndrome, the ingestion of FODMAP triggers symptoms and causes discomfort. Among the main contributors to the dietary FODMAP intake are baking products, in particular bread as a major global staple food. This is primarily due to the fructan content of the cereal flours, but also process induced accumulation of FODMAP is possible. To provide low-FODMAP baking products, researchers have investigated various approaches, such as bio-process reduction by yeast, lactic acid bacteria, germination of the raw material or the use of exogenous enzymes. In addition, the selection of appropriate ingredients, which are either naturally or after pretreatment suitable for low-FODMAP products, is discussed. The sensory and nutritional quality of low-FODMAP baking products is another issue, that is addressed, with particular focus on providing sufficient dietary fiber intake. Based on this information, the current state of low-FODMAP baking and future research necessities, to establish practical strategies for low-FODMAP products, are evaluated in this article.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany
| | - Marianna Raczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
27
|
Alkhiari R, Adler JR. Psychiatric and Neurological Manifestations of Celiac Disease in Adults. Cureus 2023; 15:e35712. [PMID: 36875248 PMCID: PMC9984242 DOI: 10.7759/cureus.35712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/06/2023] Open
Abstract
Celiac disease (CD), a chronic inflammatory disorder of the intestines, affects 0.7% to 1.4% of the world's population. CD causes diarrhea, abdominal discomfort, bloating, flatulence, and, in rare cases, constipation in the digestive tract. Since the identification of gluten as the disease-causing antigen, CD patients have been treated with a gluten-free diet, which is advantageous but has limitations for certain patient groups. CD is associated with mood disorders, such as manic-depressive disease, schizophrenia, and bipolar disorder, as well as other disorders such as depression and anxiety. The relationship between CD and psychological issues is not entirely understood. Here, we look at the most recent psychiatric data as they pertain to CD, as well as the relevant psychiatric manifestations that have been associated with this condition. Clinicians should examine mental health factors when a CD diagnosis is established. More research is needed to understand the pathophysiology of CD's psychiatric manifestations.
Collapse
Affiliation(s)
| | - John R Adler
- Department of Medicine, Qassim University, Qassim, SAU
| |
Collapse
|
28
|
Egea MB, De Sousa TL, Dos Santos DC, De Oliveira Filho JG, Guimarães RM, Yoshiara LY, Lemes AC. Application of Soy, Corn, and Bean By-products in the Gluten-free Baking Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Scientific Insights and Technological Advances in Gluten-Free Product Development. Foods 2023; 12:foods12020250. [PMID: 36673342 PMCID: PMC9858308 DOI: 10.3390/foods12020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
This Special Issue addresses new scientific insights and technological advances in the area of gluten-free product development with the aim of controlling gluten intolerance and autoimmune diseases [...].
Collapse
|
30
|
Megusar P, Stopar D, Poklar Ulrih N, Dogsa I, Prislan I. Thermal and Rheological Properties of Gluten-Free, Starch-Based Model Systems Modified by Hydrocolloids. Polymers (Basel) 2022; 14:3242. [PMID: 36015498 PMCID: PMC9415605 DOI: 10.3390/polym14163242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
Obtaining good-quality gluten-free products represents a technological challenge; thus, it is important to understand how and why the addition of hydrocolloids influences the properties of starch-based products. To obtain insight into the physicochemical changes imparted by hydrocolloids on gluten-free dough, we prepared several suspensions with different corn starch/potato starch/hydroxpropyl methyl cellulose/xanthan gum/water ratios. Properties of the prepared samples were determined by differential scanning calorimetry and rheometry. Samples with different corn/potato starch ratios exhibited different thermal properties. Xanthan gum and HPMC (hydroxypropyl methyl cellulose) exhibited a strong influence on the rheological properties of the mixtures since they increased the viscosity and elasticity. HPMC and xanthan gum increased the temperature of starch gelatinization, as well as they increased the viscoelasticity of the starch model system. Although the two hydrocolloids affected the properties of starch mixtures in the same direction, the magnitude of their effects was different. Our results indicate that water availability, which plays a crucial role in the starch gelatinization process, could be modified by adding hydrocolloids such as, hydroxypropyl methyl cellulose and xanthan gum. By adding comparatively small amounts of the studied hydrocolloids to starch, one can achieve similar thermo-mechanical effects by the addition of gluten. Understanding these effects of hydrocolloids could contribute to the development of better quality gluten-free bread with optimized ingredient content.
Collapse
Affiliation(s)
- Polona Megusar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - David Stopar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Natasa Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Iztok Dogsa
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Iztok Prislan
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
31
|
Výrostková J, Regecová I, Zigo F, Marcinčák S, Kožárová I, Kováčová M, Bertová D. Detection of Gluten in Gluten-Free Foods of Plant Origin. Foods 2022; 11:foods11142011. [PMID: 35885254 PMCID: PMC9317630 DOI: 10.3390/foods11142011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
The work deals with the issue of standardization and more accurate methodology for the isolation of gluten DNA in gluten-free products of plant origin, which is more demanding due to the more complex structure of plant cells. Three isolation methods were compared, of which the combination of glass and zirconium beads, Proteinase K and a commercially produced isolation kit was confirmed to be the most effective procedure. The given isolation procedure was more effective in one-component gluten-free foods, where the concentration of the obtained DNA ranged from 80.4 ± 0.7 to 99.0 ± 0.0 ng/µL. The subsequent PCR reaction revealed the presence of gluten not only in guaranteed gluten-free products (40%), but also in naturally gluten-free foods (50%). These were mainly gluten-free sponge cakes, gluten-free biscuits “Cranberries”, cocoa powder, coffee “3in1”, and instant coffee.
Collapse
Affiliation(s)
- Jana Výrostková
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (S.M.); (I.K.); (M.K.); (D.B.)
| | - Ivana Regecová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (S.M.); (I.K.); (M.K.); (D.B.)
- Correspondence: ; Tel.: +421-907-185-658
| | - František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Slavomír Marcinčák
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (S.M.); (I.K.); (M.K.); (D.B.)
| | - Ivona Kožárová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (S.M.); (I.K.); (M.K.); (D.B.)
| | - Mariana Kováčová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (S.M.); (I.K.); (M.K.); (D.B.)
| | - Daniela Bertová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (S.M.); (I.K.); (M.K.); (D.B.)
| |
Collapse
|
32
|
Yano H, Fu W. Effective Use of Plant Proteins for the Development of "New" Foods. Foods 2022; 11:foods11091185. [PMID: 35563905 PMCID: PMC9102783 DOI: 10.3390/foods11091185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diversity in our diet mirrors modern society. Affluent lifestyles and extended longevity have caused the prevalence of diabetes and sarcopenia, which has led to the increased demand of low-carb, high-protein foods. Expansion of the global population and Westernization of Asian diets have surged the number of meat eaters, which has eventually disrupted the supply–demand balance of meat. In contrast, some people do not eat meat for religious reasons or due to veganism. With these multiple circumstances, our society has begun to resort to obtaining protein from plant sources rather than animal origins. This “protein shift” urges food researchers to develop high-quality foods based on plant proteins. Meanwhile, patients with food allergies, especially gluten-related ones, are reported to be increasing. Additionally, growing popularity of the gluten-free diet demands development of foods without using ingredients of wheat origin. Besides, consumers prefer “clean-label” products in which products are expected to contain fewer artificial compounds. These diversified demands on foods have spurred the development of “new” foods in view of food-processing technologies as well as selection of the primary ingredients. In this short review, examples of foodstuffs that have achieved tremendous recent progress are introduced: effective use of plant protein realized low-carb, high protein, gluten-free bread/pasta. Basic manufacturing principles of plant-based vegan cheese have also been established. We will also discuss on the strategy of effective development of new foods in view of the better communication with consumers as well as efficient use of plant proteins.
Collapse
|
33
|
The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli By-Product. SEPARATIONS 2022. [DOI: 10.3390/separations9030081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many gluten-free products are deficient in amino acids, especially in essential amino acids (EAA). Therefore, the incorporation of additives rich in free amino acids (FAA) into gluten-free products can be a promising strategy to alleviate certain symptoms of celiac disease associated with EAA deficiencies. This study aimed to evaluate the effect of the incorporation of broccoli leaf powder (BLP) into gluten-free mini sponge cakes (GFS) on the profile of FFA. BLP replaced an equivalent amount (2.5%, 5%, 7.5%; w/w) of corn and potato starches in GFS formulation, resulting in B1-B3 formulations. The first step was the selection of the most efficient method for extraction of FAA. Extraction based on 50% methanol (method 1) was compared to extraction by 25% of acetonitrile in 0.1 M hydrochloric acid (method 2). In total, 26 and 14 FAA were found in BLP after extraction using methods 1 and 2, respectively. Moreover, considering the total content of FAA, method 1 was more efficient, reaching a 14-fold higher concentration of FFA in BLP compared to method 2. The incorporation of BLP resulted in a significant increase in FAA, irrespective of the applied extraction method. The total concentrations of NEAA and EAA increased significantly in B3 compared to control GFS. In summary, this study showed that 50% methanol was more efficient for the extraction of FFA from plant and bakery matrices. Moreover, BLP was found as a good source of FFA, including EAA, and the obtained experimental GFS could be considered a promising product for individuals on a gluten-free diet.
Collapse
|