1
|
Hajri L, Ghodbane S, Othman H, Sakly M, Abdelmelek H, Ben Rhouma K, Ammari M. Ameliorative Effects of Pearl Millet ( Pennisetum glaucum L.) Against Hydrogen Peroxide Induced Cognitive Impairment and Oxidative Stress in Rats. J Med Food 2024; 27:1210-1218. [PMID: 39562765 DOI: 10.1089/jmf.2023.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Pearl millet (PM) (Pennisetum glaucum L.) contains a wide variety of bioactive compounds, such as polyphenols, mostly flavonoids and phenolic acids. In the present study, we investigated the effects of PM activity against hydrogen peroxide (H2O2)-induced behavior impairment and oxidative damage in rats. The rats were divided into four groups based on the treatments they received over 30 days: Control, H2O2, PM + H2O2, and PM. The phytochemical screening, total polyphenols content (TFC), and total flavonoid content (TFC) were determined using colorimetric analysis. All animals were subjected to behavioral test (elevated plus maze test). Thereafter, oxidative stress response (malondialdehyde [MDA], H2O2, and Thiol groups [-SH]) contents and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) were estimated in brain, liver, and kidney tissues. We evaluated the levels of liver enzymes, such as alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT). Our investigation showed that PM is rich in total phenolic content and TFC and exhibited an important in vitro antioxidant activity. In vivo, we first found that H2O2-treated rat exhibited anxiogenic behavior in the elevated plus maze test and the genesis of oxidative stress in the brain, liver, and kidney was measured by an increase of MDA and antioxidant enzyme activity depletion, such as SOD and CAT. Moreover, H2O2 increased levels of liver enzymes (ALAT and ASAT). Pearl Mille administration improved emotional behavior impairments and significantly reversed H2O2-induced biochemical alterations. Thus, we suggest that the Pearl Mille may have an anxiolytic-like effect and prevent biochemical disorders associated from the oxidative stress (H2O2), confirming its potential therapeutic capability.
Collapse
Affiliation(s)
- Latifa Hajri
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Soumaya Ghodbane
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Haifa Othman
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Hafedh Abdelmelek
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Khemais Ben Rhouma
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Mohamed Ammari
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
2
|
Bheemaiah Balyatanda S, Gowda NAN, Subbiah J, Chakraborty S, Prasad PVV, Siliveru K. Physiochemical, Bio, Thermal, and Non-Thermal Processing of Major and Minor Millets: A Comprehensive Review on Antinutritional and Antioxidant Properties. Foods 2024; 13:3684. [PMID: 39594099 PMCID: PMC11593511 DOI: 10.3390/foods13223684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Millets are recognized as future foods due to their abundant nutrition and resilience, increasing their value on the global stage. Millets possess a broad spectrum of nutrients, antinutrients, and antioxidants, making it imperative to understand the effects of various processing methods on these components. Antinutritional factors interfere with the digestibility of macro-nutrients and the bioavailability and bio accessibility of minerals. This necessitates methods to reduce or eliminate antinutrients while improving nutritive and antioxidant value in food. This review aims to elucidate the rationale behind processing choices by evaluating the scientific literature and examining the mechanisms of processing methods, categorized as physiochemical, bio, thermal, novel non-thermal, and their combination techniques. Physiochemical and bioprocessing methods alter antinutrients and antioxidant profiles through mass transfer, enzyme activation, product synthesis, microbial activity, and selective removal of grain layers. Thermal methods break functional bonds, modify the chemical or physical structures, enhance kinetics, or degrade heat-labile components. Non-thermal techniques preserve heat-sensitive antioxidants while reducing antinutrients through structural modifications, oxidation by ROS, and break down the covalent and non-covalent bonds, resulting in degradation of compounds. To maximize the trade-off between retention of beneficial components and reducing detrimental ones, exploring the synergy of combination techniques is crucial. Beyond mitigating antinutrients, these processing methods also stimulate the release of bioactive compounds, including phenolics, flavonoids, and peptides, which exhibit potent health-promoting properties. This review underscores the transformative potential of processing technologies in enhancing millets as functional ingredients in modern diets, promoting health and advancing sustainable food practices.
Collapse
Affiliation(s)
| | - N. A. Nanje Gowda
- Department of Food Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72207, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72207, USA
| | - Snehasis Chakraborty
- Department of Grain Science & Industry, Kansas State University, Manhattan, KS 66506, USA (S.C.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| | - Kaliramesh Siliveru
- Department of Grain Science & Industry, Kansas State University, Manhattan, KS 66506, USA (S.C.)
| |
Collapse
|
3
|
Abker AM, Xia Z, Hu G, Fu X, Zhang Y, Jin Y, Ma M, Fu X. Using salted egg white in steamed bread: Impact on functional and structural characteristics. Food Chem 2024; 454:139609. [PMID: 38795615 DOI: 10.1016/j.foodchem.2024.139609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Steamed bread has long been an important part of Chinese cuisine. This study investigated the effects of salted egg white (SEW) (5, 10, 15, and 20% w/w) on the quality of steamed breads. Findings revealed that SEW notably enhanced the bread's volume and texture, with a 20% inclusion significantly boosting water retention and rheological properties, albeit reducing bread's lightness. In addition, the H-bond absorption band intensity in the Fourier transform infrared spectroscopy (FTIR) analysis showed increased peak intensities with higher SEW levels, indicative of protein structure alterations. X-ray diffraction confirmed the presence of an amylose-lipid complex. Scanning electron microscope (SEM) and Confocal laser scanning microscope (CLSM) imaging depicted a smooth, consistent protein network with SEW addition. Consumer sensory evaluation responded favourably to the SEW15 steamed bread, suggesting its potential for food industry application. Overall, the study considers SEW an effective ingredient for improving steamed bread quality.
Collapse
Affiliation(s)
- Adil M Abker
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute for Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, Sudan
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiaowen Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Ribeiro da Silva Lima L, Barros Santos MC, P. Gomes PW, Fernández-Ochoa Á, Simões Larraz Ferreira M. Overview of the Metabolite Composition and Antioxidant Capacity of Seven Major and Minor Cereal Crops and Their Milling Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19197-19218. [PMID: 38803291 PMCID: PMC11363145 DOI: 10.1021/acs.jafc.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Cereal grains play an important role in human health as a source of macro- and micronutrients, besides phytochemicals. The metabolite diversity was investigated in cereal crops and their milling fractions by untargeted metabolomics ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) of 69 samples: 7 species (barley, oat, pearl millet, rye, sorghum, triticale, and wheat), 23 genotypes, and 4 milling fractions (husk, bran, flour, and wholegrain). Samples were also analyzed by in vitro antioxidant activity. UHPLC-MS/MS signals were processed using XCMS, and metabolite annotation was based on SIRIUS and GNPS libraries. Bran and husk showed the highest antioxidant capacity and phenolic content/diversity. The major metabolite classes were phenolic acids, flavonoids, fatty acyls, and organic acids. Sorghum, millet, barley, and oats showed distinct metabolite profiles, especially related to the bran fraction. Molecular networking and chemometrics provided a comprehensive insight into the metabolic profiling of cereal crops, unveiling the potential of coproducts and super cereals such as sorghum and millet as sources of polyphenols.
Collapse
Affiliation(s)
- Luciana Ribeiro da Silva Lima
- Laboratory
of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro
(UNIRIO), Rio de Janeiro 22290-240, Brazil
- Center
of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Rio de
Janeiro 22290-240, Brazil
| | - Millena C. Barros Santos
- Bordeaux
Metabolome-MetaboHUB, INRAE Bordeaux Nouvelle-Aquitaine,
UMR1332 BFP, Villenave
d’Ornon 33882, France
| | - Paulo Wender P. Gomes
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy &
Pharmaceutical Sciences, University of California
San Diego, 9500 Gilman
Drive, La Jolla, San Diego, California 92093-0751, United States
| | - Álvaro Fernández-Ochoa
- Department
of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Mariana Simões Larraz Ferreira
- Laboratory
of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro
(UNIRIO), Rio de Janeiro 22290-240, Brazil
- Center
of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Rio de
Janeiro 22290-240, Brazil
| |
Collapse
|
5
|
Zubair M, Ahmed A, Afzaal M, Saeed F, Faisal Z, Asghar A, Akram N, Manoharadas S, Nawaz A, Asres DT. Effect of pomegranate peel powder-infused multigrain chapatti on diabetes prevention: A randomized clinical trial. Food Sci Nutr 2024; 12:4879-4892. [PMID: 39055198 PMCID: PMC11266937 DOI: 10.1002/fsn3.4134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/07/2024] [Accepted: 03/16/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus is a metabolic and chronic disease linked to lifestyle factors like dietary patterns and physical inactivity. This randomized clinical study aimed to develop a novel dietary intervention using pomegranate peel powder-based multigrain chapatti to prevent diabetes. The product was formulated by incorporating pomegranate peel powder into a mixture of wheat flour, pearl flour, millet flour, and chickpea flour. The study included the formulation of various treatments (Tc, T1, T2, and T3) following product development, and these treatments were subjected to comprehensive assessments. The nutritional composition and antioxidant potential of the pomegranate peel powder-based multigrain chapatti were analyzed. Sensory attributes, including taste, texture, and overall acceptability, were evaluated. Additionally, biochemical analyses, including blood glucose levels and HbA1C, were conducted to assess the impact of the interventions on blood glucose metabolism. The results revealed that the nutritional profile and phytochemical potential of the product improved significantly in treatment T3, which contained 15% pomegranate juice. Overall acceptability was found to be high for T3, indicating that the inclusion of pomegranate peel powder was well received in terms of taste and sensory qualities. Importantly, the clinical trial demonstrated positive outcomes in the intervention group receiving the pomegranate peel powder-based multigrain chapatti. Blood glucose analysis and HbA1C assessments indicated that the consumption of this innovative dietary product contributed to improved blood glucose metabolism, suggesting its potential as a preventive strategy for diabetes.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human Nutrition and DieteticsIqra University KarachiKarchiPakistan
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Noor Akram
- Food Safety & Biotechnology LabDepartment of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Salim Manoharadas
- Department of Botany and MicrobiologyCollege of Science, King Saud UniversityRiyadhSaudi Arabia
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome EngineeringInstitute for Advanced Study, Shenzhen UniversityShenzhenChina
| | - Degnet Teferi Asres
- Bahir Dar Food and Nutrition Research CenterBahir Dar Institute of Technology, Bahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
6
|
Jeong E, Yun D, Baek Y, Kim HJ, Lee HG. Antihypertensive effects of the combined extract of Sorghum bicolor, Vigna angularis, and Eleusine coracana in spontaneously hypertensive rats. Sci Rep 2024; 14:803. [PMID: 38191652 PMCID: PMC10774359 DOI: 10.1038/s41598-024-51364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
This study investigated the antihypertensive effects of the combined extract of sorghum, adzuki bean, and finger millet (SAFE) on spontaneously hypertensive rats. The rats were divided into four groups (n = 8): WKY, SHR, SAFE (500 mg/kg SAFE), and CAP (50 mg/kg captopril). SAFE significantly decreased the lean-to-fat mass ratio with no notable changes in body weight, food intake, or food efficiency ratio, and it effectively lowered both systolic and diastolic blood pressures, comparable to CAP. Moreover, it significantly reduced the cardiac mass index and alleviated cardiac fibrosis. SAFE did not induce hepatotoxicity, as indicated by the maintenance of aspartate aminotransferase and alanine aminotransferase levels in the normal range, confirming its safety. Taken together, these findings suggested that SAFE can be used as a dietary supplement for blood pressure regulation and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Eunwoo Jeong
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Damin Yun
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Hyun-Joo Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Wanju-Gun, 55365, Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
7
|
Yılmaz B, Sırbu A, Altıntaş Başar HB, Goksen G, Chabı IB, Kumagaı H, Ozogul F. Potential roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes: A review of the current knowledge. Crit Rev Food Sci Nutr 2023; 65:1326-1343. [PMID: 38148641 DOI: 10.1080/10408398.2023.2292790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Diabetes is one of the most common non-communicable diseases in both developed and underdeveloped countries with a 9.3% prevalence. Unhealthy diets and sedentary lifestyles are among the most common reasons for type 2 diabetes mellitus (T2DM). Diet plays a crucial role in both the etiology and treatment of T2DM. There are several recommendations regarding the carbohydrate intake of patients with T2DM. One of them is about reducing the total carbohydrate intake and/or changing the type of carbohydrate to reduce the glycaemic index. Cereals are good sources of carbohydrates in the diet with a significant amount of soluble and non-soluble fiber content. Apart from fiber, it has been shown that the bioactive compounds present in cereals such as proteins, phenolic compounds, carotenoids, and tocols have beneficial impacts in the prevention and treatment of T2DM. Moreover, cereal by-products especially the by-products of milling processes, which are bran and germ, have been reported to have anti-diabetic activities mainly because of their fiber and polyphenols content. Considering the potential functions of cereals in patients with T2DM, this review focuses on the roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Birsen Yılmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | - Alexandrina Sırbu
- FMMAE Ramnicu Valcea, Constantin Brancoveanu University of Pitesti, Valcea, Romania
| | | | - Gülden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Ifagbémi Bienvenue Chabı
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Jericho Cotonou, Benin
| | - Hitomi Kumagaı
- Nihon University College of Bioresource Sciences Graduate School of Bioresource Sciences, Fujisawa, Japan
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkiye
| |
Collapse
|
8
|
Damtie D. Review of Medicinal Plants Traditionally Used to Treat Diarrhea by the People in the Amhara Region of Ethiopia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8173543. [PMID: 38044982 PMCID: PMC10693470 DOI: 10.1155/2023/8173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/05/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Background Diarrheal illness is the second-most common cause of death in under-five children. Worldwide, it results in about 1.7 billion illnesses and 525,000 deaths among under-five children annually. It is the leading cause of malnutrition among under-five children. Different people use medicinal plants to treat diarrhea. The present study aimed to review the medicinal plants used to treat diarrhea by the people in the Amhara region and to diagnose whether the antidiarrheal activities of the medicinal plants have been confirmed by studies using animal models. Methods The author searched 21 articles from worldwide databases up to December 2022 using Boolean operators ("AND" and "OR") and the terms "ethnobotanical studies," "ethnobiology," "traditional medicine," "ethnobotanical knowledge," and "Amhara region." Results From the 21 studies reviewed, 50 plant species grouped into 28 families were reported to treat diarrhea by the people in the Amhara region. The top most used families were Lamiaceae (12%), Fabaceae (8%), Asteraceae, Cucurbitaceae, Euphorbiaceae, and Poaceae (6% each). The modes of administration of the plant parts were orally 98.88% and topically 1.12%. The different extracts of 18 (or 36%) of the medicinal plants traditionally used to treat diarrhea by the people in the Amhara region have been proven experimentally in animal models. Conclusions The people in the Amhara region use different medicinal plants to treat diarrhea. Most of them take the medicinal plants orally. The traditional claim that 60% of medicinal plants are antidiarrheal has been confirmed in in vitro studies.
Collapse
Affiliation(s)
- Destaw Damtie
- Department of Biology, College of Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
9
|
Gazza L, Nocente F. The Contribution of Minor Cereals to Sustainable Diets and Agro-Food Biodiversity. Foods 2023; 12:3500. [PMID: 37761208 PMCID: PMC10529951 DOI: 10.3390/foods12183500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Since the second half of the 20th century, the intensification of agriculture by increasing external inputs (fertilizers, pesticides), cropland expansion, and the cultivation of only a few selected cereal species or varieties have caused the loss of biodiversity and ecosystem services on farmland [...].
Collapse
Affiliation(s)
- Laura Gazza
- CREA–Research Centre for Engineering and Agro-Food Processing, Via Manziana, 30-00189 Rome, Italy;
| | | |
Collapse
|
10
|
Dong Y, Wang N, Wang S, Wang J, Peng W. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr 2023; 10:1168361. [PMID: 37476405 PMCID: PMC10355155 DOI: 10.3389/fnut.2023.1168361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Compared with the common grain, Tartary buckwheat enjoys higher nutritional value. Some distinctive nutrition associated with physiological activity of Tartary buckwheat is valuable in medicine. In addition, it's a good feed crop. In the paper, the main components (starch, protein, amino acid, fatty acid and mineral) and polyphenol bioactive components in Tartary buckwheat and its sprouts were reviewed, and the accumulation of flavonoids in sprouts during germination, especially the methods, synthetic pathways and mechanisms of flavonoid accumulation was summarized. The research on bioactive components and health benefits of Tartary buckwheat also were reviewed. Besides, the applications of innovative physical technology including microwave, magnetic, electromagnetic, ultrasonic, and light were also mentioned and highlighted, which could promote the enrichment of some active substances during seeds germination and growth of Tartary buckwheat sprouts. It would give a good support and benefit for the research and processing of Tartary buckwheat and its sprouts in next day.
Collapse
Affiliation(s)
- Yulu Dong
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Nan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shunmin Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Junzhen Wang
- Academy of Agricultural Science Liang Shan, Liangshan, China
| | - Wenping Peng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
11
|
Robles-Plata VT, Serna Saldivar S, de Dios Figueroa-Cárdenas J, Rooney WL, Dávila-Vega JP, Chuck-Hernández C, Escalante-Aburto A. Biophysical, Nutraceutical, and Technofunctional Features of Specialty Cereals: Pigmented Popcorn and Sorghum. Foods 2023; 12:2301. [PMID: 37372516 DOI: 10.3390/foods12122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Different pigmented corn and sorghum types were evaluated to characterize their biophysical, nutraceutical, and technofunctional properties for the first time. Commercially pigmented (blue, purple, red, black, and yellow) popcorn (Zea mays var. everta) and sorghum (Sorghum bicolor L.) of yellow and red colors were analyzed. Biophysical and proximal analyses were performed using official methods. The nutraceutical profile included the total phenolic and anthocyanin content. In addition, rheological, structural, and morphological studies were conducted. The results demonstrated significant differences between the popcorn samples and grain types, especially in terms of their biophysical and proximate features. The nutraceutical profile revealed that these specialty grains contained higher concentrations of antioxidant compounds (up to 3-fold when compared with the other grains). The rheological analysis demonstrated that sorghum grains developed higher peak viscosities than popcorn. According to the structural assessments, the type A pattern displayed peaks at the interplanar spaces corresponding to the crystalline and amorphous regions in all the samples. The data obtained in this study provides a base to further investigate the products obtained using these biomaterials.
Collapse
Affiliation(s)
| | - Sergio Serna Saldivar
- Tecnologico de Monterrey, Centro de Investigación y Desarrollo de Protenas (CIDPRO), Monterrey 64849, Mexico
| | | | - William L Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Juan Pablo Dávila-Vega
- Tecnologico de Monterrey, Centro de Investigación y Desarrollo de Protenas (CIDPRO), Monterrey 64849, Mexico
| | | | | |
Collapse
|
12
|
Nurzyńska-Wierdak R. Phenolic Compounds from New Natural Sources-Plant Genotype and Ontogenetic Variation. Molecules 2023; 28:1731. [PMID: 36838719 PMCID: PMC9959341 DOI: 10.3390/molecules28041731] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Phenolic compounds (PCs) are widespread secondary metabolites with potent biological activity. Their sources are mainly plants from cultivated and natural states, providing valuable protective and health-promoting extracts. The wide biological activity of PCs (antioxidant, anti-inflammatory, antimicrobial, antiatherosclerotic, antidiabetic, antiallergic, prebiotic, antimutagenic) means that new sources of PCs are constantly being sought, as exemplified by extracting these compounds from tissue culture or agricultural by-products. Plant phenols show marked qualitative and quantitative variation not only at different genetic levels (between and within species and clones) but also between different physiological and developmental stages. Assessing genetic and seasonal variations in phenolic content and activity allows for selecting the best time to harvest the plant. Learning about the causes of PCs' variability and putting this knowledge into practice can significantly increase PCs' yields and extract the most valuable compounds. The health-promoting properties resulting from consuming products rich in plant PCs are undeniable, so it is worth promoting high-phenolic products as a regular diet. This paper presents an overview of different sources of PCs for use as potential therapeutic alternatives. Additionally, factors of variation in the phenolic complex at the genome and ontogeny levels, relevant in practical terms and as a basis for further scientific research, are presented.
Collapse
Affiliation(s)
- Renata Nurzyńska-Wierdak
- Department of Vegetable and Herb Crops, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland
| |
Collapse
|
13
|
Food-to-Food Fortification of a Traditional Pearl Millet Gruel with a Natural Source of β-Carotene (Sweet Potato) Improves the Bioaccessibility of Iron and Zinc. J FOOD QUALITY 2023. [DOI: 10.1155/2023/6413244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Iron and zinc deficiencies are still a major public health concern in the Far North Region of Cameroon where staple foods are mainly mineral rich cereals which equally contain inhibitors of their bioaccessibility. The effect of food-to-food fortification of a traditional pearl millet gruel with a natural source of β-carotene on the bioaccessibility of iron and zinc was assessed. A sensory evaluation of gruels fortified at 20, 30, and 40% with mashed sweet potato was carried out. The samples were analysed for carotenoids, phytates, polyphenols, iron, and zinc contents. Bioaccessible iron and zinc were evaluated using in vitro digestion method. The gruel fortified at 20% with mashed sweet potato had better scores (
< 0.05) of taste (3.93), colour (3.36), and overall acceptability (3.80) compared to the control. Carotenoid, polyphenol, and phytate contents were higher in fortified gruels (
< 0.05) compared to the control, while iron and zinc contents were lower. A significant increase (
< 0.05) in bioaccessibility of 8.08% and 26.96% for iron and 53.79% and 62.92% for zinc was observed at 20 and 30% incorporation level, respectively. However, at 40% incorporation level, the increase in bioaccessible iron was less important and bioaccessible zinc decreased. Mashed sweet potato can be used as a fortificant to improve the bioaccessibility of iron and zinc contents of local pearl millet gruel, if added moderately.
Collapse
|
14
|
dos Santos TB, da Silva Freire Neto R, Collantes NF, Chávez DWH, Queiroz VAV, de Carvalho CWP. Exploring starches from varied sorghum genotypes compared to commercial maize starch. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|