1
|
Liu WK, Ren XX, Xu L, Lin J. Modular cascade with engineered HpaB for efficient synthesis of hydroxytyrosol. Bioorg Chem 2025; 155:108125. [PMID: 39764921 DOI: 10.1016/j.bioorg.2025.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025]
Abstract
Hydroxytyrosol, a naturally occurring chemical with antioxidant and antiviral properties, is widely used in the nutrition, pharmaceutical, and cosmetic industries. In the present study, a modularized cascade composed of Modules 1 and 2 was designed and implemented to convert l-tyrosine to hydroxytyrosol. Module 1 was a four-enzymatic cascade for converting l-tyrosine to tyrosol. Engineering Module 1 by fine-tuning the expression of the desired enzymes resulted in a robust whole-cell catalyst, BL21 (M1-13), which converted l-tyrosine to tyrosol at high substrate loading. Module 2 involved a 4-hydroxyphenylacetate 3-monooxygenase (HpaBC)-catalyzed reaction to hydroxylate tyrosol to form hydroxytyrosol. The rational design of the HpaB subunit led to a positive variant, HpaB-Mu (T292S/R474A), which was subsequently applied to Module 2 for tyrosol hydroxylation, yielding a robust whole-cell catalyst, BL21 (M2-05). The two designed modules were merged for one-pot conversion of l-tyrosine to hydroxytyrosol by adjusting the ratio and total amount of whole-cell catalyst loading, capable of converting 40 mM of l-tyrosine to 35.8 mM of hydroxytyrosol with a high space-time yield (1.38 g/L/h). The current study proved that engineering HpaB at the substrate tunnel was a feasible way to boost its activity and proposed an effective method for synthesizing hydroxytyrosol from low-cost substrates, which has great economic potential.
Collapse
Affiliation(s)
- Wen-Kai Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108 China
| | - Xiu-Xin Ren
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108 China
| | - Lian Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108 China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108 China.
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108 China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108 China.
| |
Collapse
|
2
|
Razola-Díaz MDC, Sevenich R, Schlüter OK, Verardo V, Gómez-Caravaca AM. Improving Olive Leaf Phenolic Extraction with Pulsed Electric Field Technology Pre-Treatment. Foods 2025; 14:368. [PMID: 39941961 PMCID: PMC11816887 DOI: 10.3390/foods14030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
The olive leaf is one of the main by-products from the olive oil industry. This by-product is a rich source of phenolic compounds that have been shown to possess beneficial health activities, which are due in part to their antioxidant activities. Therefore, the revaluation of this by-product would be of great importance for the food industry. For this reason, this study focuses on the pretreatment of olive leaves with a technology based on the use of pulsed electric fields (PEF) and their following extraction by ultrasounds in order to obtain an extract enriched in phenolic compounds. A Box-Behnken design of 15 experiments with three independent factors has been carried out: electric field strength (kV/cm), frequency (Hz) and total treatment time (s). The response variables were the sum of phenolic compounds, hydroxytyrosol and oleuropein measured by HPLC-MS-ESI-TOF and the antioxidant activity measured by DPPH. The validity of the experimental design was confirmed by ANOVA and the optimal conditions were established by using the response surface methodology in combination with a desirability function. The PEF optimal conditions were 0.6 kV/cm at 90 Hz for 11 s, which allowed for obtaining an olive leaf extract with 26.8, 21.7 and 15.6% higher contents of hydroxytyrosol, oleuropein and total phenolic compounds, respectively, compared to the non-treated sample with PEF. The antioxidant activity measured by DPPH was increased significantly by 32.3%. The data confirmed that the pre-treatment with PEF under these optimal conditions has proven to be effective in improving the extraction of phenolic compounds in olive leaves.
Collapse
Affiliation(s)
- María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (M.d.C.R.-D.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento s/n., 18100 Granada, Spain
| | - Robert Sevenich
- Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Alle 100, D-14469 Potsdam, Germany
| | - Oliver K. Schlüter
- Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Alle 100, D-14469 Potsdam, Germany
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (M.d.C.R.-D.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento s/n., 18100 Granada, Spain
| | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento s/n., 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
3
|
Gómez HAG, Niederauer GF, Minatel IO, Antunes ERM, Carneiro MJ, Sawaya ACHF, Zanus MC, Ritschel PS, Quecini V, Pereira Lima GP, Marques MOM. Wine metabolome and sensory analyses demonstrate the oenological potential of novel grapevine genotypes for sustainable viticulture in warm climates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:329-341. [PMID: 39171419 DOI: 10.1002/jsfa.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Genetic breeding is essential to develop grapevine genotypes adapted to warm climates and resistant to pathogens. Traditionally cultivated Vitis vinifera is susceptible to biotic and abiotic stresses. Winemakers and consumers, however, perceive wines from non-vinifera or hybrid cultivars as inferior. In this study, sensory analyses and comprehensive metabolite profiling by targeted and untargeted approaches were used to investigate the oenological potential of wines from grapes of genotypes developed throughout four breeding cycles to improve climate adaptation, sugar contents and berry color. RESULTS Novel genotypes had higher yields and the wines exhibited increased contents of polyphenols, including anthocyanins. Volatile monoterpenes in the wines decreased throughout breeding cycles in the absence of selective pressure. Polyphenol contents were higher in intermediate wines, with hydroxytyrosol contents reaching up to three times reported values. Mouthfeel attributes astringency, leafy taste, flavor and body, and persistency showed significant correlation with untargeted features. Supervised model-based analyses of the metabolome effectively discriminate wines from distinct genetic origins. CONCLUSION Taken together, the results demonstrate the potential of novel grapevine genotypes to a more sustainable viticulture and quality wine production in warm climates. Comprehensive metabolite profiling of the wines reveals that genotype clustering is dependent on the chemical class and that traits not submitted to selective pressure are also altered by breeding. Supervised multivariate models were effective to predict the genetic origin of the wines based on the metabolic profile, indicating the potential of the technique to identify biomarkers for wines from sustainable genotypes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Héctor Alonzo Gómez Gómez
- School of Agriculture, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Plant Genetic Resources Center, Agronomic Institute (IAC), Campinas, São Paulo, Brazil
- Academic Department of Food, Faculty of Technological Sciences, National University of Agriculture, Catacamas, Honduras
| | | | - Igor Otavio Minatel
- Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | | | | | | | | | | | - Vera Quecini
- Embrapa Uva e Vinho, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
4
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
5
|
Gonzalez-Ramirez M, Cerezo AB, Valero E, Troncoso AM, Garcia-Parrilla MC. From tyrosine to hydroxytyrosol: a pathway involving biologically active compounds and their determination in wines by ultra performance liquid chromatography with mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9399-9409. [PMID: 39041432 DOI: 10.1002/jsfa.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Hydroxytyrosol (HT) is a bioactive compound present in a limited number of foods such as wines, olives, and olive oils. During alcoholic fermentation, yeast converts aromatic amino acids into higher alcohols such as tyrosol, which can undergo hydroxylation into HT. The aim of this study was to validate an analytical method using ultra performance liquid chromatography coupled with mass spectrometry (UPLC/MS-MS) to quantify HT and its precursors (tyrosine, hydroxyphenylpyruvic acid, hydroxyphenylacetaldehyde, 4-hydroxyphenylacetic acid, and tyrosol) in wines. Their occurrence was evaluated in a total of 108 commercial Spanish wine samples. RESULTS The validated method simultaneously determined both HT and its precursors, with adequate limits of detection between 0.065 and 21.86 ng mL-1 and quantification limits between 0.199 and 66.27 ng mL-1 in a 5 min run. The concentration of HT in red wines was significantly higher (0.12-2.24 mg L-1) than in white wines (0.01-1.27 mg L-1). The higher the alcoholic degree, the higher was the content of HT. The bioactive 4-hydroxyphenylacetic acid was identified in Spanish wines for the first time at 3.90-127.47 mg L-1, being present in all the samples. CONCLUSION The highest HT concentrations were found in red wines and in wines with higher ethanol content. These data are useful for a further estimation of the intake of these bioactive compounds and to enlarge knowledge on chemical composition of wines. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marina Gonzalez-Ramirez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Ana B Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Batarfi WA, Yunus MHM, Hamid AA, Lee YT, Maarof M. Hydroxytyrosol: A Promising Therapeutic Agent for Mitigating Inflammation and Apoptosis. Pharmaceutics 2024; 16:1504. [PMID: 39771483 PMCID: PMC11728517 DOI: 10.3390/pharmaceutics16121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammation and apoptosis are interrelated biological processes that have a significant impact on the advancement and growth of certain chronic diseases, such as cardiovascular problems, neurological conditions, and osteoarthritis. Recent research has emphasized that focusing on these mechanisms could result in novel therapeutic approaches that aim to decrease the severity of diseases and enhance patient outcomes. Hydroxytyrosol (HT), which is well-known for its ability to prevent oxidation, has been identified as a possible candidate for regulating both inflammation and apoptosis. In this review, we will highlight the multifaceted benefits of HT as a therapeutic agent in mitigating inflammation, apoptosis, and associated conditions. This review provides a comprehensive overview of the latest in vitro and in vivo research on the anti-inflammatory and antiapoptotic effects of HT and the mechanisms by which it works. Based on these studies, it is strongly advised to use HT as a bioactive ingredient in pharmaceutical products intended for mitigating inflammation, as well as those with apoptosis applications.
Collapse
Affiliation(s)
- Wafa Ali Batarfi
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
- Department of Basic Medical Sciences, Hadhramout University College of Medicine, Al-Mukalla, Yemen
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
| | - Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (W.A.B.); (A.A.H.); (Y.T.L.)
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
7
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
8
|
Wang E, Jiang Y, Zhao C. Hydroxytyrosol isolation, comparison of synthetic routes and potential biological activities. Food Sci Nutr 2024; 12:6899-6912. [PMID: 39479663 PMCID: PMC11521723 DOI: 10.1002/fsn3.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 11/02/2024] Open
Abstract
Hydroxytyrosol (HT) is a polyphenol found in the olive plant (Olea europaea) that has garnered attention from the food, feed, supplement, and pharmaceutical industries. HT has evolved from basic separation and extraction to chemical and biocatalytic synthesis. The yield of HT can reach 1.93 g/L/h through chemical synthesis and 7.7 g/L/h through biocatalysis; however, both methods are subject to inherent limitations. Furthermore, the potential health benefits associated with HT have been highlighted, including its ability to act as an antioxidant, reduce inflammation, combat cancer and obesity, and exert antibacterial and antiviral effects. Its neuroprotective effects, skin protection, and wound healing capabilities are also discussed. Given these remarkable biological properties, HT stands out as one of the most extensively investigated natural phenols. This review highlights future methods and pathways for the synthesis of HT, providing insights based on its bioactivity characteristics, health benefits, and potential future applications.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| |
Collapse
|
9
|
Miraldi E, Baini G, Biagi M, Cappellucci G, Giordano A, Vaccaro F, Bertelli AAE. Wine, Polyphenols, and the Matrix Effect: Is Alcohol Always the Same? Int J Mol Sci 2024; 25:9796. [PMID: 39337284 PMCID: PMC11432751 DOI: 10.3390/ijms25189796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
While the number of publications on wine and health is steadily increasing, ranging from a molecular level to epidemiological studies, often with contradictory results, little attention has been given to a holistic approach to research, starting from the molecular level to arrive at pharmacological and medical conclusions. In this review, some unusual concepts are considered, such as the phytocomplex, the vehicle, and the Matrix effect. The concept of the phytocomplex is discussed, specifically the biological activities of Tyrosol, Hydroxytyrosol, and Resveratrol; indeed, the interactions among different molecules in herbal matrices provide a specific response. This is often markedly different from the response evoked by single constituents in the modulation of microbial populations in the gut, in intestinal stability and bioaccessibility, and, obviously, in inducing biological responses. Among the many alcoholic beverages which contain these molecules, wine has the most peculiar Matrix effect, which can heavily influence the bioavailability of the phytocomplex obtained by the fermentation processes that produce this beverage. Wine's Matrix effect plays an instrumental role in improving the beneficial compounds' bioavailability and/or in inhibiting alcohol metabolites' carcinogenicity. Underestimation of the wine Matrix effect could lead to deceiving results, as in the case of dealcoholized wine or wine-compound-based nutritional supplements; alternatively, this can occur in the emphasis of a single component's toxic activity, in this case, alcohol, ignoring the specific molecular-level protective action of other compounds (polyphenols) that are present in the same matrix. The dark side of the Matrix effect is also discussed. This review confirms the research recommendations made by the WHO Scientific Group, which suggests it is important "to investigate the possible protective effects of ingredients other than alcohol in alcoholic beverages", considering that most recent studies seem not only relevant but also capable of directing future research towards innovative points of view that have so far been too neglected.
Collapse
Affiliation(s)
- Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Marco Biagi
- Department of Food and Drug, University of Parma, 43121 Parma, Italy
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alessandro Giordano
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alberto A E Bertelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
10
|
Gonzalez-Ramirez M, Kazakova J, Garcia-Serrano P, Ubeda C, Valero E, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. Commercial wine yeast nitrogen requirement influences the production of secondary metabolites (aroma, hydroxytyrosol, melatonin and other bioactives) during alcoholic fermentation. Int J Food Microbiol 2024; 421:110788. [PMID: 38905810 DOI: 10.1016/j.ijfoodmicro.2024.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
During alcoholic fermentation, Saccharomyces cerevisiae synthesizes different compounds, which are crucial for product quality: volatile compounds with sensory impact, and bioactive compounds such as melatonin (MEL) and hydroxytyrosol (HT), linked to health benefits. As many of these compounds are related with yeast's nitrogen metabolism, their production have been studied in four different commercial strains with different nitrogen requirement (Red Fruit, Uvaferm VRB, Lalvin Rhone 2323 and Lalvin QA23) being, Uvaferm UVR the higher nitrogen demander strain. All strains produced the secondary metabolites, notably Uvaferm UVR produced the highest HT concentration, despite its low growth. Uvaferm UVR emerged also as a significant producer of MEL, indicating a potential role in fermentation related stress. Moreover, Uvaferm UVR shows the highest total concentrations of volatile compounds. Multivariate analysis revealed distinct clustering based on nitrogen requirements of the strains, highlighting the strain-dependent metabolic responses.
Collapse
Affiliation(s)
- Marina Gonzalez-Ramirez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Julia Kazakova
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Pedro Garcia-Serrano
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Cristina Ubeda
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, Sevilla 41013, Spain
| | - Ana B Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
11
|
Borrmann K, Troschel FM, Brücksken KA, Espinoza-Sánchez NA, Rezaei M, Eder KM, Kemper B, Eich HT, Greve B. Antioxidants Hydroxytyrosol and Thioredoxin-Mimetic Peptide CB3 Protect Irradiated Normal Tissue Cells. Antioxidants (Basel) 2024; 13:961. [PMID: 39199207 PMCID: PMC11351936 DOI: 10.3390/antiox13080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Reducing side effects in non-cancerous tissue is a key aim of modern radiotherapy. Here, we assessed whether the use of the antioxidants hydroxytyrosol (HT) and thioredoxin-mimetic peptide CB3 (TMP) attenuated radiation-induced normal tissue toxicity in vitro. We used primary human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (HaCaT) as normal tissue models. Cells were treated with HT and TMP 24 h or immediately prior to irradiation. Reactive oxygen species (ROS) were assessed via luminescent- and fluorescence-based assays, migration was investigated using digital holographic microscopy, and clonogenic survival was quantified by colony formation assays. Angiogenesis and wound healing were evaluated via time-dependent microscopy. Secreted cytokines were validated in quantitative polymerase chain reaction (qPCR) studies. Treatment with HT or TMP was well tolerated by cells. The application of either antioxidant before irradiation resulted in reduced ROS formation and a distinct decrease in cytokines compared to similarly irradiated, but otherwise untreated, controls. Antioxidant treatment also increased post-radiogenic migration and angiogenesis while accelerating wound healing. HT or TMP treatment immediately before radiotherapy increased clonogenic survival after radiotherapy, while treatment 24 h before radiotherapy enhanced baseline proliferation. Both antioxidants may decrease radiation-induced normal tissue toxicity and deserve further pre-clinical investigation.
Collapse
Affiliation(s)
- Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | | | | | - Nancy Adriana Espinoza-Sánchez
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149 Münster, Germany
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Kai Moritz Eder
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
12
|
Gu M, Shi J, Zhang B, Wang X, Wang X, Tian B. Interaction of soy protein isolate with hydroxytyrosol based on an alkaline method: Implications for structural and functional properties. Food Chem 2024; 446:138813. [PMID: 38402770 DOI: 10.1016/j.foodchem.2024.138813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
This study investigated the effect of different concentrations of hydroxytyrosol (HT) covalently bound to soy protein isolate (SPI) by the alkaline method on the structure and function of the adducts. The amount of polyphenol bound to SPI first increased to a maximum of 42.83 % ± 1.08 % and then decreased. After the covalent binding of HT to SPI, turbidity and in vitro protein digestibility increased and decreased significantly with increasing concentrations of HT added, respectively, and the structure of SPI was changed. The adducts had a maximum solubility of 52.52 % ± 0.33 %, and their water holding capacity reached a maximum of 8.22 ± 0.11 g/g at a concentration of 50 μmol/g of HT. Covalent modification with HT significantly increased the emulsifying and foaming properties and antioxidant activity of SPI; the DPPH and ABTS radical scavenging rates increased by 296.89 % and 33.80 %, respectively, at a concentration of 70 μmol/g of HT.
Collapse
Affiliation(s)
- Meiyu Gu
- Food College, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Jiahui Shi
- Food College, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Boya Zhang
- Food College, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Xu Wang
- Food College, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Xibo Wang
- Food College, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Bo Tian
- Food College, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
13
|
Liu WK, Su BM, Xu XQ, Xu L, Lin J. Multienzymatic Cascade for Synthesis of Hydroxytyrosol via Two-Stage Biocatalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15293-15300. [PMID: 38940657 DOI: 10.1021/acs.jafc.4c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Hydroxytyrosol, a naturally occurring compound with antioxidant and antiviral activity, is widely applied in the cosmetic, food, and nutraceutical industries. The development of a biocatalytic approach for producing hydroxytyrosol from simple and readily accessible substrates remains a challenge. Here, we designed and implemented an effective biocatalytic cascade to obtain hydroxytyrosol from 3,4-dihydroxybenzaldehyde and l-threonine via a four-step enzymatic cascade composed of seven enzymes. To prevent cross-reactions and protein expression burden caused by multiple enzymes expressed in a single cell, the designed enzymatic cascade was divided into two modules and catalyzed in a stepwise manner. The first module (FM) assisted the assembly of 3,4-dihydroxybenzaldehyde and l-threonine into (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid, and the second module (SM) entailed converting (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid into hydroxytyrosol. Each module was cloned into Escherichia coli BL21 (DE3) and engineered in parallel by fine-tuning enzyme expression, resulting in two engineered whole-cell catalyst modules, BL21(FM01) and BL21(SM13), capable of converting 30 mM 3,4-dihydroxybenzaldehyde to 28.7 mM hydroxytyrosol with a high space-time yield (0.88 g/L/h). To summarize, the current study proposes a simple and effective approach for biosynthesizing hydroxytyrosol from low-cost substrates and thus has great potential for industrial applications.
Collapse
Affiliation(s)
- Wen-Kai Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Bing-Mei Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Xin-Qi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Lian Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
14
|
Hernández-García S, García-Cano B, Martínez-Rodríguez P, Henarejos-Escudero P, Gandía-Herrero F. Olive oil tyrosols reduce α-synuclein aggregation in vitro and in vivo after ingestion in a Caenorhabditis elegans Parkinson's model. Food Funct 2024; 15:7214-7223. [PMID: 38817211 DOI: 10.1039/d4fo01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Parkinson's disease is the neurodegenerative motor disorder with the highest incidence worldwide. Among other factors, Parkinson's disease is caused by the accumulation of α-synuclein aggregates in a patient's brain. In this work, five molecules present in the diet are proposed as possible nutraceuticals to prevent and/or reduce the formation of α-synuclein oligomers that lead to Parkinson's disease. The olive oil polyphenols tyrosol, hydroxytyrosol (HT), hydroxytyrosol acetate (HTA) and dihydroxyphenyl acetic acid (DOPAC) besides vitamin C were tested using a cellular model of α-synuclein aggregation and a Caenorhabditis elegans Parkinson's disease animal model. Levodopa was included in the assays as the main drug prescribed to treat the disease as well as dopamine, its direct metabolite. HTA and DOPAC completely hindered α-synuclein aggregation in vitro, while dopamine reduced the aggregation by 28.7%. The Parallel Artificial Membrane Permeability Assay (PAMPA) showed that HTA had the highest permeability through brain lipids among the compounds tested. Furthermore, the C. elegans Parkinson's disease model made it possible to assess the chosen compounds in vivo. The more effective substances in vivo were DOPAC and HTA which reduced the αS aggregation inside the animals by 79.2% and 76.2%, respectively. Moreover, dopamine also reduced the aggregates by 67.4% in the in vivo experiment. Thus, the results reveal the potential of olive oil tyrosols as nutraceuticals against α-synuclein aggregation.
Collapse
Affiliation(s)
- Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Beatriz García-Cano
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
15
|
Vural N, Algan-Cavuldak Ö, Akay MA. Desirability Function Approach for the Optimization of Hydroalcoholic Solvent Extraction Conditions for Antioxidant Compounds from Olive Leaves. AN ACAD BRAS CIENC 2024; 96:e20230602. [PMID: 38808814 DOI: 10.1590/0001-37652024202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 05/30/2024] Open
Affiliation(s)
- Nilüfer Vural
- Department of Food Processing-Food Technology, Health Services Vocational School, University of Ankara Yıldırım Beyazıt, 06760, Çubuk, Ankara, Türkiye
- Institute of Public Health, Department of Traditional, Complementary and Integrative Medicine Practice and Research Center, University of Ankara Yıldırım Beyazıt, 06010, Etlik, Ankara, Türkiye
| | - Özge Algan-Cavuldak
- Department of Food Engineering, Faculty of Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Türkiye
| | - M Abdülkadir Akay
- Department of Chemistry, Faculty of Sciences, Ankara University, 06100, Ankara, Türkiye
| |
Collapse
|
16
|
Gallardo-Fernandez M, Garcia AR, Hornedo-Ortega R, Troncoso AM, Garcia-Parrilla MC, Brito MA. In vitro study of the blood-brain barrier transport of bioactives from Mediterranean foods. Food Funct 2024; 15:3420-3432. [PMID: 38497922 DOI: 10.1039/d3fo04760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The Mediterranean diet (MD), characterized by olive oil, olives, fruits, vegetables, and wine intake, is associated with a reduced risk of dementia. These foods are rich in bioactives with neuroprotective and antioxidant properties, including hydroxytyrosol (HT), tyrosol (TYRS), serotonin (SER) and protocatechuic acid (PCA), a phenolic acid metabolite of anthocyanins. It remains to be established if these molecules cross the blood-brain barrier (BBB), a complex interface that strictly controls the entrance of molecules into the brain. We aimed to assess the ability of tyrosine (TYR), HT, TYRS, PCA and SER to pass through the BBB without disrupting its properties. Using Human Brain Microvascular Endothelial Cells as an in vitro model of the BBB, we assessed its integrity by transendothelial electrical resistance, paracellular permeability and immunocytochemical assays of the adherens junction protein β-catenin. The transport across the BBB was evaluated by ultra-high-performance liquid chromatography high resolution mass spectrometry. Results show that tested bioactives did not impair BBB integrity regardless of the concentration evaluated. Additionally, all of them cross the BBB, with the following percentages: HT (∼70%), TYR (∼50%), TYRS (∼30%), SER (∼30%) and PCA (∼9%). These results provide a basis for the MD neuroprotective role.
Collapse
Affiliation(s)
- Marta Gallardo-Fernandez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana Rita Garcia
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Alexandra Brito
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
17
|
Kundisová I, Colom H, Juan ME, Planas JM. Pharmacokinetics of Hydroxytyrosol and Its Sulfate and Glucuronide Metabolites after the Oral Administration of Table Olives to Sprague-Dawley Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2154-2164. [PMID: 38232316 PMCID: PMC10835732 DOI: 10.1021/acs.jafc.3c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The pharmacokinetics (PK) of hydroxytyrosol and its metabolites were characterized following oral administration to Sprague-Dawley rats of 3.85 and 7.70 g of destoned Arbequina table olives/kg. Plasma samples were analyzed using a fully validated method consisting of liquid extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Noncompartmental PK analysis of hydroxytyrosol demonstrated linear PK between doses of 2.95 and 5.85 mg hydroxytyrosol/kg. Half-life was approximately 2.5 h, while mean residence time was around 4 h. Clearance occurred by conversion to two sulfate and two glucuronide conjugates. The area under the plasma concentration-time curve (AUC) ratios of metabolites versus parent hydroxytyrosol was approximately 7-9-fold for the sulfate and below 0.25 for the glucuronide, indicating sulfation as the predominant metabolic pathway. Despite extensive metabolism, hydroxytyrosol remained in plasma for up to 8 h with AUCs of 4293 and 8919 min·nmol/L for the doses of 3.85 and 7.70 g/kg, respectively. Therefore, table olives provide a more sustained plasma profile than other foods containing hydroxytyrosol, which may enhance its health-protecting activities.
Collapse
Affiliation(s)
- Ivana Kundisová
- Grup
de Fisiologia i Nutrició Experimental, Departament de Bioquímica
i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació
and Institut de Recerca en Nutrició i Seguretat Alimentària
(INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB) and Food Innovation
Network (XIA), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Helena Colom
- Grup
de Farmacocinètica, Famacodinàmia i Farmacogenòmica
Poblacional, Departament de Farmàcia i Tecnologia Farmacèutica,
i Fisicoquímica, Facultat de Farmàcia i Ciències
de l’Alimentació, Universitat
de Barcelona (UB), Av.
Joan XXIII 27-31, 08028 Barcelona, Spain
| | - M. Emília Juan
- Grup
de Fisiologia i Nutrició Experimental, Departament de Bioquímica
i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació
and Institut de Recerca en Nutrició i Seguretat Alimentària
(INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB) and Food Innovation
Network (XIA), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Joana M. Planas
- Grup
de Fisiologia i Nutrició Experimental, Departament de Bioquímica
i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació
and Institut de Recerca en Nutrició i Seguretat Alimentària
(INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB) and Food Innovation
Network (XIA), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Kourti M, Skaperda Z, Tekos F, Stathopoulos P, Koutra C, Skaltsounis AL, Kouretas D. The Bioactivity of a Hydroxytyrosol-Enriched Extract Originated after Direct Hydrolysis of Olive Leaves from Greek Cultivars. Molecules 2024; 29:299. [PMID: 38257212 PMCID: PMC10818913 DOI: 10.3390/molecules29020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, olive leaf polyphenols have been at the center of scientific interest due to their beneficial effects on human health. The most abundant polyphenol in olive leaves is oleuropein. The biological properties of oleuropein are mainly due to the hydroxytyrosol moiety, a drastic catechol group, whose biological activity has been mentioned many times in the literature. Hence, in recent years, many nutritional supplements, food products, and cosmetics enriched in hydroxytyrosol have been developed and marketed, with unexpectedly positive results. However, the concentration levels of hydroxytyrosol in olive leaves are low, as it depends on several agricultural factors. In this study, a rapid and easy methodology for the production of hydroxytyrosol-enriched extracts from olive leaves was described. The proposed method is based on the direct acidic hydrolysis of olive leaves, where the extraction procedure and the hydrolysis of oleuropein are carried out in one step. Furthermore, we tested the in vitro bioactivity of this extract using cell-free and cell-based methods, evaluating its antioxidant and DNA-protective properties. Our results showed that the hydroxytyrosol-enriched extract produced after direct hydrolysis of olive leaves exerted significant in vitro antioxidant and geno-protective activity, and potentially these extracts could have various applications in the pharmaceutical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Maria Kourti
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| | - Zoi Skaperda
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| | - Fotios Tekos
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| | - Panagiotis Stathopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (P.S.); (C.K.); (A.L.S.)
| | - Christina Koutra
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (P.S.); (C.K.); (A.L.S.)
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (P.S.); (C.K.); (A.L.S.)
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| |
Collapse
|
19
|
Freiría-Gándara J, Martínez-Senra T, Bravo-Díaz C. Exploring the Use of Hydroxytyrosol and Some of Its Esters in Food-Grade Nanoemulsions: Establishing Connection between Structure and Efficiency. Antioxidants (Basel) 2023; 12:2002. [PMID: 38001855 PMCID: PMC10669426 DOI: 10.3390/antiox12112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The efficiency of HT and that of some of its hydrophobic derivatives and their distribution and effective concentrations were investigated in fish oil-in-water nanoemulsions. For this purpose, we carried out two sets of independent, but complementary, kinetic experiments in the same intact fish nanoemulsions. In one of them, we monitored the progress of lipid oxidation in intact nanoemulsions by monitoring the formation of conjugated dienes with time. In the second set of experiments, we determined the distributions and effective concentrations of HT and its derivatives in the same intact nanoemulsions as those employed in the oxidation experiments. Results show that the antioxidant efficiency is consistent with the "cut-off" effect-the efficiency of HT derivatives increases upon increasing their hydrophobicity up to the octyl derivative after which a further increase in the hydrophobicity decreases their efficiency. Results indicate that the effective interfacial concentration is the main factor controlling the efficiency of the antioxidants and that such efficiency strongly depends on the surfactant concentration and on the oil-to-water (o/w) ratio employed to prepare the nanoemulsions.
Collapse
Affiliation(s)
- Josefa Freiría-Gándara
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Tamara Martínez-Senra
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Carlos Bravo-Díaz
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
20
|
Boronat A, Serreli G, Rodríguez-Morató J, Deiana M, de la Torre R. Olive Oil Phenolic Compounds' Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants (Basel) 2023; 12:1472. [PMID: 37508010 PMCID: PMC10376491 DOI: 10.3390/antiox12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Epidemiological studies have shown that consuming olive oil rich in phenolic bioactive compounds is associated with a lower risk of neurodegenerative diseases and better cognitive performance in aged populations. Since oxidative stress is a common hallmark of age-related cognitive decline, incorporating exogenous antioxidants could have beneficial effects on brain aging. In this review, we firstly summarize and critically discuss the current preclinical evidence and the potential neuroprotective mechanisms. Existing studies indicate that olive oil phenolic compounds can modulate and counteract oxidative stress and neuroinflammation, two relevant pathways linked to the onset and progression of neurodegenerative processes. Secondly, we summarize the current clinical evidence. In contrast to preclinical studies, there is no direct evidence in humans of the bioactivity of olive oil phenolic compounds. Instead, we have summarized current findings regarding nutritional interventions supplemented with olive oil on cognition. A growing body of research indicates that high consumption of olive oil phenolic compounds is associated with better preservation of cognitive performance, conferring an additional benefit, independent of the dietary pattern. In conclusion, the consumption of olive oil rich in phenolic bioactive compounds has potential neuroprotective effects. Further research is needed to understand the underlying mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), 28029 Madrid, Spain
| |
Collapse
|
21
|
Yoon J, Sasaki K, Nishimura I, Hashimoto H, Okura T, Isoda H. Effects of Desert Olive Tree Pearls Containing High Hydroxytyrosol Concentrations on the Cognitive Functions of Middle-Aged and Older Adults. Nutrients 2023; 15:3234. [PMID: 37513652 PMCID: PMC10383185 DOI: 10.3390/nu15143234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The Japanese population has the world's longest life expectancy but faces the challenge of extending the healthy life expectancy without developing chronic diseases. Therefore, the effectiveness of products derived from olives used in the Mediterranean diet as a potential dietary solution has attracted attention. This study examined the effects of desert olive tree pearls (DOTPs), which contain 162 times more polyphenol hydroxytyrosol than olive oil, on the cognitive function of middle-aged and older adults using the Cognitrax test. Participants (aged 51-82 years) were assigned to the DOTP intake (n = 36) or placebo group (n = 36) in a randomized, double-blind, placebo-controlled, parallel-group study. The participants received 3 g of DOTPs or placebo in olive oil twice daily for 12 weeks. Among cognitive domains, complex attention had a significant time × group interaction effect (p = 0.049) between the DOTP and placebo groups. The simple main effect for this item was significantly different (p < 0.001 and p = 0.572, respectively). Time effects were significant (p < 0.05) for the psychomotor speed, reaction time, cognitive flexibility, processing speed, and executive function domains. Therefore, DOTPs have the potential to alleviate cognitive problems faced by middle-aged and older adults in Japan.
Collapse
Affiliation(s)
- Jieun Yoon
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Kazunori Sasaki
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Tennodai, Tsukuba 305-8572, Japan
- R&D Center for Tailor-Made QOL, University of Tsukuba, 1-2 Kasuga, Tsukuba 305-0821, Japan
| | - Iku Nishimura
- Doctor Program in Physical Education Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Haruna Hashimoto
- R&D Center for Tailor-Made QOL, University of Tsukuba, 1-2 Kasuga, Tsukuba 305-0821, Japan
| | - Tomohiro Okura
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
- R&D Center for Tailor-Made QOL, University of Tsukuba, 1-2 Kasuga, Tsukuba 305-0821, Japan
| | - Hiroko Isoda
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Tennodai, Tsukuba 305-8572, Japan
- R&D Center for Tailor-Made QOL, University of Tsukuba, 1-2 Kasuga, Tsukuba 305-0821, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| |
Collapse
|
22
|
Farhan M, Rizvi A, Aatif M, Ahmad A. Current Understanding of Flavonoids in Cancer Therapy and Prevention. Metabolites 2023; 13:metabo13040481. [PMID: 37110140 PMCID: PMC10142845 DOI: 10.3390/metabo13040481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is a major cause of death worldwide, with multiple pathophysiological manifestations. In particular, genetic abnormalities, inflammation, bad eating habits, radiation exposure, work stress, and toxin consumption have been linked to cancer disease development and progression. Recently, natural bioactive chemicals known as polyphenols found in plants were shown to have anticancer capabilities, destroying altered or malignant cells without harming normal cells. Flavonoids have demonstrated antioxidant, antiviral, anticancer, and anti-inflammatory effects. Flavonoid type, bioavailability, and possible method of action determine these biological actions. These low-cost pharmaceutical components have significant biological activities and are beneficial for several chronic disorders, including cancer. Recent research has focused primarily on isolating, synthesizing, and studying the effects of flavonoids on human health. Here we have attempted to summarize our current knowledge of flavonoids, focusing on their mode of action to better understand their effects on cancer.
Collapse
|
23
|
Simos YV, Zerikiotis S, Lekkas P, Athinodorou AM, Zachariou C, Tzima C, Assariotakis A, Peschos D, Tsamis K, Halabalaki M, Ververidis F, Trantas EA, Economou G, Tarantilis P, Vontzalidou A, Vallianatou I, Angelidis C, Vezyraki P. Oral Supplementation with Hydroxytyrosol Synthesized Using Genetically Modified Escherichia coli Strains and Essential Oils Mixture: A Pilot Study on the Safety and Biological Activity. Microorganisms 2023; 11:microorganisms11030770. [PMID: 36985343 PMCID: PMC10051181 DOI: 10.3390/microorganisms11030770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Several natural compounds have been explored as immune-boosting, antioxidant and anti-inflammatory dietary supplements. Amongst them, hydroxytyrosol, a natural antioxidant found in olive products, and endemic medicinal plants have attracted the scientific community’s and industry’s interest. We investigated the safety and biological activity of a standardised supplement containing 10 mg of hydroxytyrosol synthesized using genetically modified Escherichia coli strains and equal amounts (8.33 μL) of essential oils from Origanum vulgare subsp. hirtum, Salvia fruticosa and Crithmum maritimum in an open-label, single-arm, prospective clinical study. The supplement was given to 12 healthy subjects, aged 26–52, once a day for 8 weeks. Fasting blood was collected at three-time points (weeks 0, 8 and follow-up at 12) for analysis, which included full blood count and biochemical determination of lipid profile, glucose homeostasis and liver function panel. Specific biomarkers, namely homocysteine, oxLDL, catalase and total glutathione (GSH) were also studied. The supplement induced a significant reduction in glucose, homocysteine and oxLDL levels and was tolerated by the subjects who reported no side effects. Cholesterol, triglyceride levels and liver enzymes remained unaffected except for LDH. These data indicate the supplement’s safety and its potential health-beneficial effects against pathologic conditions linked to cardiovascular disease.
Collapse
Affiliation(s)
- Yannis V. Simos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: (Y.V.S.); (P.V.); Tel.: +30-2651-007-602 (Y.V.S.); +30-2651-007-575 (P.V.)
| | - Stelios Zerikiotis
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Lekkas
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Antrea-Maria Athinodorou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Christianna Zachariou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Christina Tzima
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros Assariotakis
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Tsamis
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Maria Halabalaki
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 11527 Athens, Greece
| | - Filippos Ververidis
- Laboratory of Biological & Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
- Institute of Agri-Food and Life Sciences, Research Center of the Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Emmanouil A. Trantas
- Laboratory of Biological & Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
- Institute of Agri-Food and Life Sciences, Research Center of the Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Garyfalia Economou
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Petros Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | | | | | - Charalambos Angelidis
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Patra Vezyraki
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: (Y.V.S.); (P.V.); Tel.: +30-2651-007-602 (Y.V.S.); +30-2651-007-575 (P.V.)
| |
Collapse
|
24
|
Almanza-Aguilera E, Davila-Cordova E, Guiñón-Fort D, Farràs M, Masala G, Santucci de Magistris M, Baldassari I, Tumino R, Padroni L, Katzke VA, Schulze MB, Scalbert A, Zamora-Ros R. Correlation Analysis between Dietary Intake of Tyrosols and Their Food Sources and Urinary Excretion of Tyrosol and Hydroxytyrosol in a European Population. Antioxidants (Basel) 2023; 12:715. [PMID: 36978963 PMCID: PMC10044744 DOI: 10.3390/antiox12030715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
This study analyzed the correlations between the acute and habitual intake of dietary tyrosols, their main food sources, and 24 h urine excretions of tyrosol (Tyr) and hydroxytyrosol (OHTyr) in participants from the European Prospective Investigation into Cancer and Nutrition study (EPIC). Participants (n = 419) were healthy men and women aged from 34 to 73 years from 8 EPIC centers belonging to France, Italy, and Germany. Acute and habitual dietary data were collected using a standardized 24 h dietary recall software and validated country-specific dietary questionnaires, respectively. The intake of 13 dietary tyrosols was estimated using the Phenol-Explorer database. Excretions of Tyr and OHTyr in a single 24 h urine sample were analyzed using tandem mass spectrometry. Urinary excretions of Tyr, OHTyr, and their sum (Tyr + OHTyr) correlated more strongly with their corresponding acute (rhopartial~0.63) rather than habitual intakes (rhopartial~0.47). In addition, individual and combined urinary excretions of Tyr and OHTyr were weakly to moderately correlated with the acute and habitual intake of other individual tyrosol precursors (rhopartial = 0.10-0.44) and especially with major food sources, such as wine (rhopartial = 0.41-0.58), olive oil (rhopartial = 0.25-0.44), and beer (rhopartial = 0.14-0.23). Urinary Tyr + OHTyr excretions were similarly correlated with the acute intake of total tyrosols but differently correlated with food sources among countries. Based on these results, we conclude that 24 h urinary excretions of Tyr + OHTyr could be proposed as biomarkers of total tyrosol intake, preferably for acute intakes.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Estefanía Davila-Cordova
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Daniel Guiñón-Fort
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Marta Farràs
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | | | - Ivan Baldassari
- Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), 97100 Ragusa, Italy
| | - Lisa Padroni
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University, Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy
| | - Verena A Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| |
Collapse
|
25
|
Arangia A, Marino Y, Impellizzeri D, D’Amico R, Cuzzocrea S, Di Paola R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int J Mol Sci 2023; 24:ijms24043111. [PMID: 36834520 PMCID: PMC9964144 DOI: 10.3390/ijms24043111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the phytoconstituents of foods in the Mediterranean diet (MD) have been the subject of several studies for their beneficial effects on human health. The traditional MD is described as a diet heavy in vegetable oils, fruits, nuts, and fish. The most studied element of MD is undoubtedly olive oil due precisely to its beneficial properties that make it an object of interest. Several studies have attributed these protective effects to hydroxytyrosol (HT), the main polyphenol contained in olive oil and leaves. HT has been shown to be able to modulate the oxidative and inflammatory process in numerous chronic disorders, including intestinal and gastrointestinal pathologies. To date, there is no paper that summarizes the role of HT in these disorders. This review provides an overview of the anti-inflammatory and antioxidant proprieties of HT against intestinal and gastrointestinal diseases.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
26
|
Farhan N, Al-Maleki AR, Sarih NM, Yahya R, Shebl M. Therapeutic importance of chemical compounds in extra virgin olive oil and their relationship to biological indicators: A narrative review and literature update. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|