1
|
Unis R, Gnaim R, Kashyap M, Shamis O, Gnayem N, Gozin M, Liberzon A, Gnaim J, Golberg A. Bioconversion of bread waste into high-quality proteins and biopolymers by fermentation of archaea Haloferax mediterranei. Front Microbiol 2024; 15:1491333. [PMID: 39777146 PMCID: PMC11703665 DOI: 10.3389/fmicb.2024.1491333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 01/11/2025] Open
Abstract
The valorization of bread waste into high-quality protein and biopolymers using the halophilic microorganism Haloferax mediterranei presents a sustainable approach to food waste management and resource optimization. This study successfully coproduced protein and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biopolymer with a biomass content of 8.0 ± 0.1 g L-1 and a productivity of 11.1 mg L-1 h-1. The fermentation process employed 3.0% w/v of enzymatically hydrolyzed bread waste. The amino acid profile of the cell biomass revealed a total content of 358 g kg-1 of biomass dry weight (DW), including 147 g kg-1 DW of essential amino acids. The protein quality, assessed through in-vitro enzyme digestion, indicated a high-quality protein with a digestibility value of 0.91 and a protein digestibility-corrected amino acid score (PDCAAS) of 0.78. The PHBV biopolymer component (36.0 ± 6.3% w/w) consisted of a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate in a 91:9 mol% ratio. This bioconversion process not only mitigates food waste but also generates valuable biomaterials.
Collapse
Affiliation(s)
- Razan Unis
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Rima Gnaim
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Mrinal Kashyap
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Olga Shamis
- Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Nabeel Gnayem
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Michael Gozin
- Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Combustion Science, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | - Jallal Gnaim
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Alexander Golberg
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Abubaker MA, Zhang D, Liu G, Ma H, He Y, Mala A, Li L, Al-Wraikat M, Liu Y. Polysaccharides as natural enhancers for meat quality, preservation, and protein functionality: A comprehensive review. Food Chem 2024; 468:142428. [PMID: 39693888 DOI: 10.1016/j.foodchem.2024.142428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Recent research focuses on developing meat products with health-promoting properties to reduce disease risk, particularly using natural polysaccharides due to their antioxidant and antibacterial effects. These polysaccharides, sourced from various materials, act through diverse structural mechanisms, inhibiting pathogen growth, enhancing oxidative stability, and improving meat flavor. This study highlights the role of meat proteins in achieving the Sustainable Development Goals (SDGs) and their importance in enhancing processed meat quality. It also examines the application of natural antioxidants and preservatives in meat processing. While some promising results demonstrate the potential of polysaccharides in meat science, their role in improving meat protein functions requires further investigation. Additionally, current solutions for improving meat quality face limitations, necessitating further research to reach industrial-scale applications. Thermal stability of meat proteins remains a critical factor throughout all stages of meat production, from processing and sterilization to consumption and preservation.
Collapse
Affiliation(s)
- Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; Department of Biology, Faculty of Education, University of Khartoum, Khartoum 11111, Sudan
| | - Duoduo Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Haorui Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yu He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Azizza Mala
- Environmental, Natural Resource and Desertification Research Institute, National Center for Research, Ministry of High Education, Khartoum 11111, Sudan
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
3
|
Chen W, Jin W, Ma X, Wen H, Li Y, Xu G, Xu P, Cheng H. A study on the structure-functionality relationship of Solenaia oleivora protein under high-intensity ultrasonication processing. Food Chem 2024; 460:140598. [PMID: 39068791 DOI: 10.1016/j.foodchem.2024.140598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Solenaia oleivora is a valuable freshwater mussel endemic to China with a high content of high-quality proteins, but the lack of structural information and limited functionality of Solenaia oleivora proteins constrained their application in the food industry. This study investigates the changes in structural characteristics and functionality of Solenaia oleivora protein under ultrasound processing at power from 200 to 600 W. The ultrasound treatment caused increased contents of β-turn and α-helix, and the exposure of interior hydrophobic groups, resulting in the increased hydrophobicity by around 3 folds. The ultrasound treatment could significantly decrease particle size and increase surface charges of Solenaia oleivora proteins, facilitating the increase of hydrosolubility from 10.2% to 81.7%. These structural changes and increased hydrosolubility contributed to the enhancement of emulsifying and foaming properties, and in vitro digestibility. The results suggested that the ultrasound-treated Solenaia oleivora proteins possessed the potential as an alternative protein in food applications.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Yanping Li
- Jinghuai Special Aquatic Products Limited Company, Funan, Anhui, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
An J, Shang N, Liu W, Niu Y, Liang Q, Jiang J, Zheng Y. A yeast surface display platform for screening of non-enzymatic protein secretion in Kluyveromyces lactis. Appl Microbiol Biotechnol 2024; 108:503. [PMID: 39500795 PMCID: PMC11538148 DOI: 10.1007/s00253-024-13342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enhancing the secretion of recombinant proteins, particularly non-enzymatic proteins that predominate in food and pharmaceutic protein products, remains a significant challenge due to limitations in high-throughput screening methods. This study addresses this bottleneck by establishing a yeast surface display system in the food-grade microorganism Kluyveromyces lactis, enabling efficient display of model target proteins on the yeast cell surface. To assess its potential as a universal high-throughput screening tool for enhanced non-enzymatic protein secretion, we evaluated the consistency between protein display levels and secretion efficiency under the influence of various genetic factors. Our results revealed a strong correlation between these two properties. Furthermore, screening in a random mutagenesis library successfully identified a mutant with improved secretion. These findings demonstrate the potential of the K. lactis surface display system as a powerful and universal tool for high-throughput screening of strains with superior non-enzymatic protein secretion capacity. We believe this study could pave the way for efficient large-scale production of heterologous food and therapeutic proteins in industries. KEY POINTS: • A YSD (yeast surface display) system was established in Kluyveromyces lactis • This system enables high-throughput screening of non-enzymatic protein secretion • This technology assists industrial production of food and therapeutic proteins.
Collapse
Affiliation(s)
- Jiyi An
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Na Shang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Wenting Liu
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yuanyuan Niu
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qingling Liang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Yingying Zheng
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
5
|
Chin TGJ, Ruethers T, Chan BA, Lopata AL, Du J. Techno-functional properties and allergenicity of mung bean (Vigna radiata) protein isolates from Imara and KPS2 varieties. Food Chem 2024; 457:140069. [PMID: 38936132 DOI: 10.1016/j.foodchem.2024.140069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Mung bean is an increasingly cultivated legume. This study compared mung bean varieties 'KPS2' from Thailand (Th) and 'Imara' from Tanzania (T) with a focus on protein composition, allergenicity, and techno-functional properties. Two rounds alkaline-acid extraction were performed to produce mung bean protein isolate (MBPI - Th1/T1 and Th2/T2), supernatant (S) and protein-poor residue (PPR). Mass spectrometric analysis revealed high abundance of 8 s-vicilin and 11 s-legumin in MBPI and S. Extraction removed considerable amounts of the seed albumin allergen but increased the relative abundance of cupins in MBPI. Higher vicilin levels were found in Th1 samples, contributed to increased protein solubility above pH 6.5. Th formed stronger gels which were more stable at higher frequencies. In contrast, T proteins were structurally more flexible, leading to its improved foaming ability. This study provides the knowledge and methods for appropriate selection of mung bean varieties for various food applications.
Collapse
Affiliation(s)
- Tak Gun Jeremy Chin
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Thimo Ruethers
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Bing Aleo Chan
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Andreas Ludwig Lopata
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN 47907, USA; Sengkang General Hospital, Singapore Health Services, 10 Hospital Boulevard, Singapore 15 168582, Singapore.
| |
Collapse
|
6
|
Ogawa M, Moreno-García J, Barzee TJ. Filamentous fungal pellets as versatile platforms for cell immobilization: developments to date and future perspectives. Microb Cell Fact 2024; 23:280. [PMID: 39415192 PMCID: PMC11484145 DOI: 10.1186/s12934-024-02554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Filamentous fungi are well-known for their efficiency in producing valuable molecules of industrial significance, but applications of fungal biomass remain relatively less explored despite its abundant and diverse opportunities in biotechnology. One promising application of mycelial biomass is as a platform to immobilize different cell types such as animal, plant, and microbial cells. Filamentous fungal biomass with little to no treatment is a sustainable biomaterial which can also be food safe compared to other immobilization supports which may otherwise be synthetic or heavily processed. Because of these features, the fungal-cell combination can be tailored towards the targeted application and be applied in a variety of fields from bioremediation to biomedicine. Optimization efforts to improve cell loading on the mycelium has led to advancements both in the applied and basic sciences to understand the inter- and intra-kingdom interactions. This comprehensive review compiles for the first time the current state of the art of the immobilization of animal, yeast, microalgae, bacteria, and plant cells in filamentous fungal supports and presents outlook of applications in intensified fermentations, food and biofuel production, and wastewater treatment. Opportunities for further research and development were identified to include elucidation of the physical, chemical, and biological bases of the immobilization mechanisms and co-culture dynamics; expansion of the cell-fungus combinations investigated; exploration of previously unconsidered applications; and demonstration of scaled-up operations. It is concluded that the potential exists to leverage the unique qualities of filamentous fungus as a cellular support in the creation of novel materials and products in support of the circular bioeconomy.
Collapse
Affiliation(s)
- Minami Ogawa
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Jaime Moreno-García
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain.
| | - Tyler J Barzee
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, KY, 40546-0276, USA.
| |
Collapse
|
7
|
Ng CKZ, Leng WQ, Lim CH, Du J. Physicochemical property characterization, amino acid profiling and sensory evaluation of plant-based ice cream incorporated with soy, pea and milk proteins. J Dairy Sci 2024:S0022-0302(24)01081-6. [PMID: 39154724 DOI: 10.3168/jds.2024-25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024]
Abstract
This study examined the effects of incorporating milk protein concentrate (MPC), pea or soy proteins isolates (PPI and SPI) on the physicochemical, sensorial properties, and amino acid composition of ice creams containing 7% protein, in comparison to dairy ice cream as a reference. As protein ingredients, PPI exhibited higher water and oil holding capacity but lower surface hydrophobicity than SPI and MPC. Viscosity of the mixes were proportional to the firmness of ice cream, and both were highest with use of PPI. MPC ice cream had most similar physical and sensory properties to reference. PPI and SPI ice cream mixes showed higher extent of fat coalescence than MPC and reference. PPI and SPI conferred structural stability to ice cream with lower melting rate and better shape retention, and ability to delay ice recrystallization during temperature flocculation as compared with SMP and MPC. Confocal laser scanning microscope images indicated that higher extent of protein aggregation and more air cells were found in PPI ice cream. Sensory and amino acid profile results revealed that PPI and SPI ice creams were inferior in taste, texture, and essential amino acids like methionine. This study offers insights for the development of high protein frozen desserts.
Collapse
Affiliation(s)
- Cheryl Kwoek Zhen Ng
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Wei Qi Leng
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Churn Hian Lim
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore; Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, USA; Sengkang General Hospital, Singapore Health Services, 110 Sengkang E Wy, Singapore, 544886, Singapore.
| |
Collapse
|
8
|
Ajomiwe N, Boland M, Phongthai S, Bagiyal M, Singh J, Kaur L. Protein Nutrition: Understanding Structure, Digestibility, and Bioavailability for Optimal Health. Foods 2024; 13:1771. [PMID: 38890999 PMCID: PMC11171741 DOI: 10.3390/foods13111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
This review discusses different protein sources and their role in human nutrition, focusing on their structure, digestibility, and bioavailability. Plant-based proteins, such as those found in legumes, nuts, and seeds, may contain anti-nutritional factors that impact their bioavailability apart from structural and compositional differences from animal proteins. Animal proteins are generally highly digestible and nutritionally superior to plant proteins, with higher amino acid bioavailability. Alternative protein sources are also processed in different ways, which can alter their structure and nutritional value, which is also discussed.
Collapse
Affiliation(s)
- Nneka Ajomiwe
- School of Food Technology and Natural Sciences, Massey University, 4442 Palmerston North, New Zealand
| | - Mike Boland
- Riddet Institute, Massey University, 4442 Palmerston North, New Zealand
| | - Suphat Phongthai
- Food Science and Technology Division, School of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Manisha Bagiyal
- School of Food Technology and Natural Sciences, Massey University, 4442 Palmerston North, New Zealand
| | - Jaspreet Singh
- School of Food Technology and Natural Sciences, Massey University, 4442 Palmerston North, New Zealand
- Riddet Institute, Massey University, 4442 Palmerston North, New Zealand
| | - Lovedeep Kaur
- School of Food Technology and Natural Sciences, Massey University, 4442 Palmerston North, New Zealand
- Riddet Institute, Massey University, 4442 Palmerston North, New Zealand
| |
Collapse
|
9
|
Karabulut G, Purkiewicz A, Goksen G. Recent developments and challenges in algal protein and peptide extraction strategies, functional and technological properties, bioaccessibility, and commercial applications. Compr Rev Food Sci Food Saf 2024; 23:e13372. [PMID: 38795380 DOI: 10.1111/1541-4337.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 05/27/2024]
Abstract
The burgeoning demand for protein, exacerbated by population growth and recent disruptions in the food supply chain, has prompted a rapid exploration of sustainable protein alternatives. Among these alternatives, algae stand out for their environmental benefits, rapid growth, and rich protein content. However, the widespread adoption of algae-derived proteins faces significant challenges. These include issues related to harvesting, safety, scalability, high cost, standardization, commercialization, and regulatory hurdles. Particularly daunting is the efficient extraction of algal proteins, as their resilient cell walls contain approximately 70% of the protein content, with conventional methods accessing only a fraction of this. Overcoming this challenge necessitates the development of cost-effective, scalable, and environmentally friendly cell disruption techniques capable of breaking down these rigid cell walls, often laden with viscous polysaccharides. Various approaches, including physical, chemical, and enzymatic methods, offer potential solutions, albeit with varying efficacy depending on the specific algal strain and energy transfer efficiency. Moreover, there remains a pressing need for further research to elucidate the functional, technological, and bioaccessible properties of algal proteins and peptides, along with exploring their diverse commercial applications. Despite these obstacles, algae hold considerable promise as a sustainable protein source, offering a pathway to meet the escalating nutritional demands of a growing global population. This review highlights the nutritional, technological, and functional aspects of algal proteins and peptides while underscoring the challenges hindering their widespread adoption. It emphasizes the critical importance of establishing a sustainable trajectory for food production, with algae playing a pivotal role in this endeavor.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya, Türkiye
| | - Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| |
Collapse
|
10
|
Eckhardt L, Bu F, Franczyk A, Michaels T, Ismail BP. Hemp ( Cannabis sativa L.) protein: Impact of extraction method and cultivar on structure, function, and nutritional quality. Curr Res Food Sci 2024; 8:100746. [PMID: 38681526 PMCID: PMC11046069 DOI: 10.1016/j.crfs.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Hemp (Cannabis sativa L.) is increasingly gaining traction as a novel and sustainable source of plant protein. Accordingly, the aim of this study was to investigate the effectiveness of two protein extraction methods, alkaline extraction coupled with isoelectric precipitation (AE-IEP) and salt extraction coupled with ultrafiltration (SE-UF) in producing hemp protein isolates (pH-HPI and salt-HPI) with high purity and yield. Structural characterization as impacted by extraction method and cultivar was performed and related to functional performance and nutritional quality. Both extraction methods, with carefully selected parameters, resulted in HPI with high purity (86.6-88.1% protein) and protein extraction yields (81.6-87.3%). All HPI samples had poor solubility (∼9-20%) at neutral pH compared to commercial soy protein and pea protein isolates (cSPI, cPPI). A relatively high surface hydrophobicity and low surface charge contributed to such poor solubility of HPI. However, HPI demonstrated similar solubility at acidic pH (50-67%) and comparable gel strength (up to 24 N) to cSPI. Comparing experimental amino acid composition to the theoretical amino acid distribution in hemp protein provided insights to the functional performance of the protein isolates. While pH-HPI demonstrated better functionality than salt-HPI, minimal structural, functional, and nutritional differences were noted among the pH-HPI samples extracted from four different cultivars. Overall, results from this work could be used to guide future attempts to further develop successful protein extraction processes, and to provide valuable insights to propel breeding efforts that target enhanced hemp protein characteristics for food applications.
Collapse
Affiliation(s)
- Laura Eckhardt
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Fan Bu
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Adam Franczyk
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Tom Michaels
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Baraem P. Ismail
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
11
|
Toutirais L, Walrand S, Vaysse C. Are oilseeds a new alternative protein source for human nutrition? Food Funct 2024; 15:2366-2380. [PMID: 38372388 DOI: 10.1039/d3fo05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.
Collapse
Affiliation(s)
- Lina Toutirais
- ITERG, Department of Nutritional Health and Lipid Biochemistry, Bordeaux, France
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Stephane Walrand
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| | - Carole Vaysse
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| |
Collapse
|
12
|
Williamson E, Ross IL, Wall BT, Hankamer B. Microalgae: potential novel protein for sustainable human nutrition. TRENDS IN PLANT SCIENCE 2024; 29:370-382. [PMID: 37690907 DOI: 10.1016/j.tplants.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
To support a global population of ~10 billion people in 2050, dietary protein demand is forecast to increase 32-78% compared to 2017, requiring significantly higher planetary resources. Microalgae are an attractive sustainable protein source compared with current plant and animal sources. Benefits include mass scalability, low CO2 emissions, and significantly reduced land and freshwater use per unit protein. Microalgae are already used as food products and numerous species exhibit high total protein contents and well-balanced essential amino acid (EAA) compositions for human dietary requirements. Microalgae proteins are also bioavailable for human digestion, and downstream processing steps are likely to further enhance protein digestibility. Species, cultivation, and process/product optimisation are actively being developed to enhance their nutritional, social, and environmental benefits.
Collapse
Affiliation(s)
- Ellen Williamson
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian L Ross
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin T Wall
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Benjamin Hankamer
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Tong S, Chen W, Hong R, Chai M, Sun Y, Wang Q, Li D. Efficient Mycoprotein Production with Low CO 2 Emissions through Metabolic Engineering and Fermentation Optimization of Fusarium venenatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:604-612. [PMID: 38153978 DOI: 10.1021/acs.jafc.3c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The global protein shortage is intensifying, and promising means to ensure daily protein supply are desperately needed. The mycoprotein produced by Fusarium venenatum is a good alternative to animal/plant-derived protein. To comprehensively improve the mycoprotein synthesis, a stepwise strategy by blocking the byproduct ethanol synthesis and the gluconeogenesis pathway and by optimizing the fermentation medium was herein employed. Ultimately, compared to the wild-type strain, the synthesis rate, carbon conversion ratio, and protein content of mycoprotein produced from the engineered strain were increased by 57% (0.212 vs 0.135 g/L·h), 62% (0.351 vs 0.217 g/g), and 57% (61.9 vs 39.4%), respectively, accompanied by significant reductions in CO2 emissions. These results provide a referential strategy that could be useful for improving mycoprotein synthesis in other fungi; more importantly, the obtained high-mycoprotein-producing strain has the potential to promote the development of the edible protein industry and compensate for the gap in protein resources.
Collapse
Affiliation(s)
- Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Ruru Hong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Mengdan Chai
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
14
|
Li P, Sheng L, Ye Y, Wang JS, Geng S, Ning D, Sun X. Allergenicity of alternative proteins: research hotspots, new findings, evaluation strategies, regulatory status, and future trends: a bibliometric analysis. Crit Rev Food Sci Nutr 2024:1-12. [PMID: 38189352 DOI: 10.1080/10408398.2023.2299748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
As the world population rises, the demand for protein increases, leading to a widening gap in protein supply. There is an unprecedented interest in the development of alternative proteins, but their allergenicity has raised consumer concerns. This review aims to highlight and correlate the current research status of allergenicity studies on alternative proteins based on previously published studies. Current research keywords, hotspots and trends in alternative protein sensitization were analyzed using a mixed-method approach that combined bibliometric analysis and literature review. According to the bibliometric analysis, current research is primarily focused on food science, agriculture, and immunology. There are significant variations in the type and amount of allergens found in alternative proteins. A significant amount of research has been focused on studying plant-based proteins and the cross-reactivity of insect proteins. The allergenicity of alternative proteins has not been studied extensively or in depth. The allergenicity of other alternative proteins and the underlying mechanisms warrant further study. In addition, the lack of a standardized allergy assessment strategy calls for additional efforts by international organizations and collaborations among different countries. This review provides new research and regulatory perspectives for the safe utilization of alternative proteins in human food systems.
Collapse
Affiliation(s)
- Peipei Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming, P.R. China
| | - Deli Ning
- Yunnan Academy of Forestry and Grassland, Kunming, P.R. China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| |
Collapse
|
15
|
Surya Ulhas R, Ravindran R, Malaviya A, Priyadarshini A, Tiwari BK, Rajauria G. A review of alternative proteins for vegan diets: Sources, physico-chemical properties, nutritional equivalency, and consumer acceptance. Food Res Int 2023; 173:113479. [PMID: 37803803 DOI: 10.1016/j.foodres.2023.113479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Alternate proteins are gaining popularity as a more sustainable and environmentally friendly alternative to animal-based proteins. These proteins are often considered healthier and are suitable for people following a vegetarian or vegan diet. Alternative proteins can be recovered from natural sources like legumes, grains, nuts, and seeds, while single cell proteins (mycoproteins), and algal proteins are being developed using cutting-edge technology to grow fungus, yeast and algal cells in a controlled environment, creating a more sustainable source of protein. Although, the demand for alternative protein products is increasing, there still happens to be a large gap in use among the general consumers mainly stemming from its lower bioavailability, lack of nutritional equivalency and reduced digestibility compared to animal proteins. The focus of the review is to emphasize on various sources and technologies for recovering alternative proteins for vegan diets. The review discusses physicochemical properties of alternative proteins and emphasise on the role of various processing technologies that can change the digestibility and bioavailability of these proteins. It further accentuates the nutritional equivalency and environmental sustainability of alternative protein against the conventional proteins from animals. The food laws surrounding alternative proteins as well as the commercial potential and consumer acceptance of alternative protein products are also highlighted. Finally, key challenges to improve the consumer acceptability and market value of plant-based proteins would be in achieving nutrient equivalency and enhance bioavailability and digestibility while maintaining the same physicochemical properties, taste, texture, as animal proteins, has also been highlighted.
Collapse
Affiliation(s)
- Rutwick Surya Ulhas
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Rajeev Ravindran
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technology, Tralee, Ireland.
| | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, Department of Life Sciences, CHRIST (Deemed-to-Be University), Bangalore, Karnataka, India; QuaLife Biotech Private Limited, Hosur Road, Bangalore, Karnataka, India.
| | - Anushree Priyadarshini
- Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland.
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.
| | - Gaurav Rajauria
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technology, Tralee, Ireland; School of Microbiology, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; SUSFERM Centre for Sustainable Fermentation and Bioprocessing Systems for Food and the Bioeconomy, University College Cork, Cork, Ireland.
| |
Collapse
|
16
|
Rodríguez-Martín NM, Córdoba P, Sarriá B, Verardo V, Pedroche J, Alcalá-Santiago Á, García-Villanova B, Molina-Montes E. Characterizing Meat- and Milk/Dairy-like Vegetarian Foods and Their Counterparts Based on Nutrient Profiling and Food Labels. Foods 2023; 12:1151. [PMID: 36981078 PMCID: PMC10048389 DOI: 10.3390/foods12061151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Vegetarian foods are plant-based (PB) foods, often perceived as healthier foods than animal-based (AB) foods. The objective of this study was to analyze the nutritional quality of a set of PB foods (meat, milk and dairy products) marketed in Spain, and to compare their nutrient profiles with respect to some AB counterparts. Nutritional information per 100 g or mL, ingredients, and nutritional declarations, as well as the Nutri-Score, NOVA, and Eco-Score of each food were collected from Open Food Facts. Differences in the nutrient compositions between PB foods and their counterparts, and between the different groups of PB foods, were assessed at a 5% significance level. A total of 544 PB foods and 373 AB foods were identified. Overall, PB foods had a higher median content of fiber and carbohydrates, but a lower amount of proteins (except PB "meat" analogues: 14 g) and saturated fats (except PB "cheese alternatives": 12.5 g), than the AB counterparts (p < 0.05). PB "milk alternatives", particularly oat "milk", showed a higher median content of total carbohydrates (8 g) and sugars (5.5 g) compared to cow milks (4.7 g carbohydrates/sugars, on average; p < 0.001). PB "meat alternatives" also had a significantly higher value of carbohydrates (9 g) than AB meats (2 g, on average; p < 0.001). PB foods were mostly classified as Nutri-Score A and B (86%). However, more than half of them were of NOVA groups 3 and 4. Thus, there is a great diversity of PB meat and milk/dairy product alternatives on the Spanish market. Despite being products of good nutritional quality compared to AB foods, they also carry drawbacks that could have an impact on nutritional health.
Collapse
Affiliation(s)
- Noelia María Rodríguez-Martín
- Group of Plant Protein, Department of Food and Health, Instituto de la Grasa-CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera Km. 1, 41013 Seville, Spain
| | - Patricia Córdoba
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Beatriz Sarriá
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
- Department of Nutrition and Food Science, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, 18071 Granada, Spain
| | - Justo Pedroche
- Group of Plant Protein, Department of Food and Health, Instituto de la Grasa-CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera Km. 1, 41013 Seville, Spain
| | - Ángela Alcalá-Santiago
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Belén García-Villanova
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Esther Molina-Montes
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|