1
|
Liu Z, Zhou S, Yuan F, Zhao Y, Zhou N, Zhang W, Li J, Zhao Y, Gao J, Yi S, Hou L. A novel fluorescence platform for portable and visual monitoring of meat freshness. Biosens Bioelectron 2025; 267:116746. [PMID: 39255674 DOI: 10.1016/j.bios.2024.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Biogenic amines (BAs) are crucial markers of meat spoilage. Developing practical and effective BAs detection methods is essential for monitoring meat freshness and ensuring daily consumption safety. This study prepared several naphthalene-based fluorescent compounds to visually monitor meat freshness in real-time. These probes show a colorimetric fluorescence response to putrescine and cadaverine (typical spoilage indicators) through nucleophilic addition/elimination reaction. The detectability of these probes can be optimized by altering the electronegativity and substitution position of the recognition group. Among these compounds, 2-((6-(4-(diphenylamino)phenyl)naphthalen-2-yl)methylene)malono nitrile (TNMA) demonstrated exceptional sensing performance toward putrescine and cadaverine, including high-contrast fluorescence color transition (red to blue), rapid response times (∼30 s), high selectivity and sensitivity (detection limit for putrescine: 2.69 ppm, cadaverine: 6.11 ppm). Furthermore, the B/R values of TNMA test strips output by RGB analysis presented a linear correlation with total volatile basic nitrogen (TVBN, an international standard for evaluating food spoilage) values in pork. Based on this correlation, we utilized smartphone applications to construct an intelligent evaluation system, enabling visual monitoring of pork, chicken, and shrimp freshness under various storage conditions. The TNMA-based system offers a reliable platform for real-time, portable and visual monitoring of meat freshness for consumers and suppliers in the food industry.
Collapse
Affiliation(s)
- Ziyi Liu
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China
| | - Sitian Zhou
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China
| | - Feipeng Yuan
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China
| | - Yaying Zhao
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China
| | - Nonglin Zhou
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China
| | - Wenbo Zhang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China
| | - Jingjing Li
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China
| | - Yang Zhao
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China
| | - Junke Gao
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China
| | - Sili Yi
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, 418000, PR China.
| | - Linxi Hou
- College of Chemical Engineering, Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals. Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
2
|
Gu M, Zhang D, Li C, Ren Y, Song G, Chen L, Li S, Zheng X. In-depth metaproteomics analysis reveals the protein profile and metabolism characteristics in pork during refrigerated storage. Food Chem 2024; 459:140149. [PMID: 39002337 DOI: 10.1016/j.foodchem.2024.140149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 07/15/2024]
Abstract
Alterations in microbiotas and endogenous enzymes have been implicated in meat deterioration. However, the factors that mediate the interactions between meat quality and microbiome profile were inadequately investigated. In this study, we collected pork samples throughout the refrigeration period and employed metaproteomics to characterize both the pork and microbial proteins. Our findings demonstrated that pork proteins associated with the catabolic process are upregulated during storage compared to the initial stage. Pseudomonas, Clostridium, Goodfellowiella, and Gonapodya contribute to the spoilage process. Notably, we observed an elevated abundance of microbial proteins related to glycolytic enzymes in refrigerated pork, identifying numerous proteins linked to biogenic amine production, thus highlighting their essential role in microbial decay. Further, we reveal that many of these microbial proteins from Pseudomonas are ribosomal proteins, promoting enzyme synthesis by enhancing transcription and translation. This study provides intrinsic insights into the underlying mechanisms by which microorganisms contribute to meat spoilage.
Collapse
Affiliation(s)
- Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuqing Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guangchun Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
3
|
Uhlig E, Bucher M, Strenger M, Kloß S, Schmid M. Towards Reducing Food Wastage: Analysis of Degradation Products Formed during Meat Spoilage under Different Conditions. Foods 2024; 13:2751. [PMID: 39272516 PMCID: PMC11394942 DOI: 10.3390/foods13172751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Foodstuffs, particularly perishable ones such as meat, are frequently discarded once the best-before date has been reached, despite the possibility of their continued suitability for human consumption. The implementation of intelligent packaging has the potential to contribute to a reduction in food wastage by enabling the monitoring of meat freshness during storage time independently of the best-before date. The process of meat spoilage is associated with the formation of specific degradation products, some of which can be potentially utilized as spoilage indicators in intelligent packaging. The aim of the review is to identify degradation products whose concentration correlates with meat shelf life and to evaluate their potential use as spoilage indicators in intelligent packaging. To this end, a comprehensive literature research was conducted to identify the factors influencing meat spoilage and the eight key degradation products (carboxylic acids, biogenic amines, total volatile basic nitrogen, aldehydes, alcohols, ketones, sulfur compounds, and esters) associated with this process. These degradation products were analyzed for their correlation with meat shelf life at different temperatures, atmospheres, and meat types and for their applicability in intelligent packaging. The review provides an overview of these degradation products, comparing their potential to indicate spoilage across different meat types and storage conditions. The findings suggest that while no single degradation product universally indicates spoilage across all meat types and conditions, compounds like carboxylic acids, biogenic amines, and volatile basic nitrogen warrant further investigation. The review elucidates the intricacies inherent in identifying a singular spoilage indicator but underscores the potential of combining specific degradation products to expand the scope of applications in intelligent packaging. Further research (e.g., storage tests in which the concentrations of these substances are specifically examined or research on which indicator substance responds to these degradation products) is recommended to explore these combinations with a view to broadening their applicability.
Collapse
Affiliation(s)
- Elisa Uhlig
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Matthias Bucher
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Mara Strenger
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Svenja Kloß
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| |
Collapse
|
4
|
Chen J, Zhang J, Wang N, Xiao B, Sun X, Li J, Zhong K, Yang L, Pang X, Huang F, Chen A. Critical review and recent advances of emerging real-time and non-destructive strategies for meat spoilage monitoring. Food Chem 2024; 445:138755. [PMID: 38387318 DOI: 10.1016/j.foodchem.2024.138755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Monitoring and evaluating food quality, especially meat quality, has received a growing interest to ensure human health and decrease waste of raw materials. Standard analytical approaches used for meat spoilage assessment suffer from time consumption, being labor-intensive, operation complexity, and destructiveness. To overcome shortfalls of these traditional methods and monitor spoilage microorganisms or related metabolites of meat products across the supply chain, emerging analysis devices/systems with higher sensitivity, better portability, on-line/in-line, non-destructive and cost-effective property are urgently needed. Herein, we first overview the basic concepts, causes, and critical monitoring indicators associated with meat spoilage. Then, the conventional detection methods for meat spoilage are outlined objectively in their strengths and weaknesses. In addition, we place the focus on the recent research advances of emerging non-destructive devices and systems for assessing meat spoilage. These novel strategies demonstrate their powerful potential in the real-time evaluation of meat spoilage.
Collapse
Affiliation(s)
- Jiaci Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Nan Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Bin Xiao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiaoyun Sun
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jiapeng Li
- China Meat Research Center, Beijing, China.
| | - Ke Zhong
- Shandong Academy of Grape, Jinan, China.
| | - Longrui Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiangyi Pang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Fengchun Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Osaili TM, Al-Nabulsi AA, Hasan F, Dhanasekaran DK, Cheikh Ismail L, Naja F, Radwan H, Olaimat AN, Ayyash M, Ali A, Obaid RS, Holley R. Role of marination, natural antimicrobial compounds, and packaging on microbiota during storage of chicken tawook. Poult Sci 2024; 103:103687. [PMID: 38593547 PMCID: PMC11016785 DOI: 10.1016/j.psj.2024.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
The aim of this study was to investigate the antimicrobial effect of marination, natural antimicrobials, and packaging on the microbial population of chicken tawook during storage at 4°C. Chicken meat was cut into 10 g cubes and marinated. The chicken was then mixed individually with 0.5% or 1% (w/v) vanillin (VA), β-resorcylic acid (BR), or eugenol (EU), and stored under aerobic (AP) or vacuum (VP) packing at 4°C for 7 d. The marinade decreased microbial growth as monitored by total plate count, yeast and mold, lactic acid bacteria, and Pseudomonas spp. by about 1 log cfu/g under AP. The combination of marinade and antimicrobials under AP and VP decreased growth of spoilage-causing microorganisms by 1.5 to 4.8 and 2.3 to 4.6 log cfu/g, respectively. Change in pH in VP meat was less than 0.5 in all treated samples including the control. Marination decreased the lightness of the meat (L*) and significantly (p < 0.05) increased the redness (A*) and yellowness (B*). Overall acceptability was highest for marinated samples with 0.5% BR.
Collapse
Affiliation(s)
- Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Fayeza Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dinesh K Dhanasekaran
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Farah Naja
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13115, Jordan
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture & Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Arisha Ali
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Reyad S Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Richard Holley
- Department of Food Science and Human Nutrition, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada
| |
Collapse
|
6
|
Dong F, Bi Y, Hao J, Liu S, Yi W, Yu W, Lv Y, Cui J, Li H, Xian J, Chen S, Wang S. A new comprehensive quantitative index for the assessment of essential amino acid quality in beef using Vis-NIR hyperspectral imaging combined with LSTM. Food Chem 2024; 440:138040. [PMID: 38103505 DOI: 10.1016/j.foodchem.2023.138040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
The quality of beef is usually predicted by measuring a single index rather than a comprehensive index. To precisely determine the essential amino acid (EAA) contents in 360 beef samples, the feasibility of optimized spectral detection techniques based on the comprehensive EAA index (CEI) and comprehensive weight index (CWI) constructed by factor analysis was explored. Two-dimensional correlation spectroscopy (2D-COS) was used to analyse the mechanisms of spectral peak shifts in complex disturbance systems with CEI and CWI contents, and 15 sensitive feature variables were extracted to establish a quantitative analysis model of a long short-term memory network (LSTM). The results indicated that 2D-COS had good predictive performance in both CEI-LSTM (R2P of 0.9095 and RPD of 2.76) and CWI-LSTM (R2P of 0.8449 and RPD of 2.45), which reduced data information by 88%. This indicates that utilizing 2D-COS can eliminate collinearity and redundant information among variables while achieving data dimensionality reduction and simplification of calibration models. Furthermore, a spatial distribution map of the comprehensive EAA content was generated by combining the optimal prediction model. This study demonstrated that the comprehensive index method furnishes a new approach to rapidly evaluate EAA content.
Collapse
Affiliation(s)
- Fujia Dong
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yongzhao Bi
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jie Hao
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Sijia Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Weiguo Yi
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Wenjie Yu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu Lv
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiarui Cui
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Li
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Jinhua Xian
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Sichun Chen
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
7
|
Jastrzębska A, Kmieciak A, Gralak Z, Brzuzy K, Krzemiński M, Gorczyca D, Szłyk E. A new approach for analysing biogenic amines in meat samples: Microwave-assisted derivatisation using 2-chloro-3-nitropyridine. Food Chem 2024; 436:137686. [PMID: 37839119 DOI: 10.1016/j.foodchem.2023.137686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Biogenic amines are compounds whose occurrence in meat is linked to the presence of undesirable microorganisms. They can be utilised as a means to assess the quality and purity of the raw material. Therefore, the methods used to determine their levels are crucial in ensuring meat safety. We propose 2-chloro-3-nitropyridine as a new reagent for microwave-assisted synthesis of biogenic amine derivatives. The obtained products were synthesised with high purity and yield and characterised using 1H and 13C NMR as well as high-resolution mass spectrometry. The proposed derivatisation procedure, coupled with the HPLC method, was applied to determine the levels of biogenic amines in sirloin, ham, and chicken breast samples. Furthermore, differences in the content of the aforementioned compounds in the meat samples were analysed after storage for 24 and 72 h. The results suggest that cadaverine can be considered the primary indicator of meat changes, regardless of its type.
Collapse
Affiliation(s)
- Aneta Jastrzębska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland.
| | - Anna Kmieciak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| | - Zuzanna Gralak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| | - Kamil Brzuzy
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| | - Marek Krzemiński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| | - Damian Gorczyca
- Lazarski University, 43 Świeradowska Str., 02-662 Warsaw, Poland; LymeLab Pharma, Kochanowskiego 49A Str., 01-864 Warsaw, Poland
| | - Edward Szłyk
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., 87-100 Toruń, Poland
| |
Collapse
|
8
|
Tidim G, Guzel M, Soyer Y, Erel-Goktepe I. Layer-by-layer assembly of chitosan/alginate thin films containing Salmonella enterica bacteriophages for antibacterial applications. Carbohydr Polym 2024; 328:121710. [PMID: 38220322 DOI: 10.1016/j.carbpol.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
The emergence of antibiotic resistant bacteria and the ineffectiveness of routine treatments inspired development of alternatives to biocides for antibacterial applications. Bacteriophages are natural predators of bacteria and are promising alternatives to antibiotics. This study presents fabrication of a Salmonella enterica bacteriophage containing ultra-thin multilayer film composed of chitosan and alginate and demonstrates its potential as an antibacterial coating for food packaging applications. Chitosan/alginate film was prepared through layer-by-layer (LbL) self-assembly technique. A bacteriophage, which belongs to Siphoviridae morphotype (MET P1-001_43) and infects Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis), was post-loaded into chitosan/alginate film. The LbL growth, stability, and surface morphology of chitosan/alginate film as well as phage deposition into multilayers were analysed through ellipsometry, QCM-D and AFM techniques. The bacteriophage containing multilayers showed antibacterial activity at pH 7.0. In contrast, anti-bacterial activity was not observed at acidic conditions. We showed that wrapping a Salmonella Enteritidis contaminated chicken piece with aluminium foil whose surface was modified with phage loaded chitosan/alginate multilayers decreased the number of colonies on the chicken meat, and it was as effective as treating the meat directly with phage solution.
Collapse
Affiliation(s)
- Gökçe Tidim
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Hitit University, 19030, Corum, Turkey
| | - Yesim Soyer
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Irem Erel-Goktepe
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Center of Excellence in Biomaterials and Tissue Eng. Middle East Technical University, 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Andre RS, Schneider R, DeLima GR, Fugikawa-Santos L, Correa DS. Wireless Sensor for Meat Freshness Assessment Based on Radio Frequency Communication. ACS Sens 2024; 9:631-637. [PMID: 38323985 PMCID: PMC11264315 DOI: 10.1021/acssensors.3c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Wireless communication technologies, particularly radio frequency (RF), have been widely explored for wearable electronics with secure and user-friendly information transmission. By exploiting the operational principle of chemically actuated resonant devices (CARDs) and the electrical response observed in chemiresistive materials, we propose a simple and hands-on alternative to design and manufacture RF tags that function as CARDs for wireless sensing of meat freshness. Specifically, the RF antennas were meticulously designed and fabricated by lithography onto a flexible substrate with conductive tape, and the RF signal was characterized in terms of amplitude and peak resonant frequency. Subsequently, a single-walled carbon nanotube (SWCNT)/MoS2/In2O3 chemiresistive composite was incorporated into the RF tag to convey it as CARDs. The RF signal was then utilized to establish a correlation between the sensor's electrical response and the RF attenuation signal (reflection coefficient) in the presence of volatile amines and seafood (shrimp) samples. The freshness of the seafood samples was systematically assessed throughout the storage time by utilizing the CARDs, thereby underscoring their effective potential for monitoring food quality. Specifically, the developed wireless tags provide cumulative amine exposure data within the food package, demonstrating a gradual decrease in radio frequency signals. This study illustrates the versatility of RF tags integrated with chemiresistors as a promising pathway toward scalable, affordable, and portable wireless chemical sensors.
Collapse
Affiliation(s)
- Rafaela S. Andre
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
| | - Rodrigo Schneider
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
- PPGQ,
Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, SP, Brazil
| | - Guilherme R. DeLima
- Institute
of Biosciences, Letters and Exact Sciences, São Paulo State University – UNESP, 15054-000 São José
do Rio Preto, SP, Brazil
| | - Lucas Fugikawa-Santos
- Institute
of Biosciences, Letters and Exact Sciences, São Paulo State University – UNESP, 15054-000 São José
do Rio Preto, SP, Brazil
- Institute
of Geosciences and Exact Sciences, São
Paulo State University – UNESP, 13506-900 Rio Claro, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
- PPGQ,
Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, SP, Brazil
| |
Collapse
|
10
|
Wójcik W, Świder O, Łukasiewicz-Mierzejewska M, Damaziak K, Riedel J, Marzec A, Wójcicki M, Roszko M, Niemiec J. Content of amino acids and biogenic amines in stored meat as a result of a broiler diet supplemented with β-alanine and garlic extract. Poult Sci 2024; 103:103319. [PMID: 38141274 PMCID: PMC10874766 DOI: 10.1016/j.psj.2023.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Poultry meat is a highly esteemed product among consumers. However, the emphasis on increasing body weight has led to a rise in the proportion of rapidly shrinking fibers, adversely affecting the quality and shelf life of poultry meat. With a growing awareness of dietetics among consumers, there is an increasing challenge to produce chicken meat that is not only free of antibiotics but also beneficial for dietary and health reasons. Biogenic amines (BA) can serve as indicators of meat freshness and quality. While they play vital roles in the body, excessive consumption of BA can have toxic and carcinogenic effects. The objective of this study was to examine the impact of supplementing feed with garlic extract and β-alanine (β-Ala) on the formation of BA and amino acid (AA) levels in the breast and leg muscles of chickens stored under aerobic chilling conditions. The muscles were obtained from chickens fed with garlic extract and β-Ala in quantities of 0.5 and 2% for each additive, as well as 0.5 and 2% of their combination. Analyses were conducted on d 1, 3, 5, 7, and 10 of storage. β-Ala supplementation increased the proportion of this AA in breast (P < 0.01) and leg muscles (P < 0.01), along with a rise in the proportion of nonessential AA (NEAA; sum of aspartic, aspartic acid, glutamic, glutamic acid, serine, β-Ala, and proline) (P < 0.01). The levels of BA changed during storage in breast and leg muscles (P < 0.001). The applied diet significantly influenced the formation of putrescine (P = 0.030), phenylethylamine (P = 0.003), agmatine (P = 0.025), and total BA (P < 0.001) in breast muscles. On the 10 d of storage, the breast muscles exhibited the lowest BA index (BAI) in the group, with a diet supplemented with 0.5% garlic extract and 0.5% β-Ala (P < 0.05). The leg muscles showed a similar BA trend as the breast muscles. These supplements may be utilized in production to augment the protein content of chicken muscles and potentially decrease the BAI index during meat storage.
Collapse
Affiliation(s)
- Wojciech Wójcik
- Department of Animal Breeding, Institute of Animal Science, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland.
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 02-532 Warsaw, Poland
| | | | - Krzysztof Damaziak
- Department of Animal Breeding, Institute of Animal Science, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
| | - Julia Riedel
- Department of Animal Breeding, Institute of Animal Science, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 02-532 Warsaw, Poland
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 02-532 Warsaw, Poland
| | - Jan Niemiec
- Department of Animal Breeding, Institute of Animal Science, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
| |
Collapse
|
11
|
Rocchetti G, Rebecchi A, Zhang L, Dallolio M, Del Buono D, Freschi G, Lucini L. The effect of common duckweed ( Lemna minor L.) extract on the shelf-life of beef burgers stored in modified atmosphere packs: A metabolomics approach. Food Chem X 2023; 20:101013. [PMID: 38144798 PMCID: PMC10740134 DOI: 10.1016/j.fochx.2023.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023] Open
Abstract
The impact of duckweed extracts (DEs) on the shelf-life of packaged beef burgers was evaluated through classical assays and untargeted metabolomics. Beef burgers were formulated with an antioxidants-free control (CON), 1 g/kg sodium ascorbate (ASC), and increasing levels of a DEs, namely 1 (DE1), 5 (DE5), and 10 (DE10) g/kg, packaged under modified atmosphere and stored at 4 °C for 19 days. The DEs, abundant in phytochemicals, determined no issues with the hygienic status of the product. DEs modulated the redox status, being ineffective in preserving linolenic acid from peroxidation. However, the oxidation marker 2-nonenoic acid was down-accumulated in the DE10 sample following 19 days of storage, recording a lower glutathione:glutathione disulfide ratio. The accumulation of adipate semialdehyde revealed the inefficiency of DEs in coping with protein oxidation, while DEs prevented the accumulation of biogenic amines. Therefore, this work suggests a potential pro-oxidant role of the formulated DEs.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | | | - Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | | | - Lugi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
12
|
León Madrazo A, Segura Campos MR. Antibacterial properties of peptides from chia (Salvia hispanica L.) applied to pork meat preservation. J Food Sci 2023; 88:4194-4217. [PMID: 37655475 DOI: 10.1111/1750-3841.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Chia-derived peptides might represent a novel alternative to conventional preservatives in food. Despite the antibacterial potential of these molecules, their food application is still limited. This study aimed to evaluate chia-derived peptides' antibacterial and antibiofilm potential in food preservation. The peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were synthesized, and their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Salmonella Enteritidis was evaluated through microdilution tests. A bacterial killing kinetic assay determined bacterial growth over time. The ability to prevent and eradicate S. aureus biofilm was assessed by crystal violet staining. The hemolytic and cytotoxic activities were determined in human red blood cells and fibroblasts using free hemoglobin detection and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays, respectively. Finally, a microbial challenge was performed on meat samples inoculated with L. monocytogenes and S. Enteritidis to determine their inhibitory effects on pork meat. Results showed the potential antibacterial activity of these peptides, with minimum inhibitory concentrations ranging from 0.23 to 5.58 mg/mL. Biofilm inhibition percentages were above 40%, and eradication percentages were lower than 20%. In vitro assays in human red blood cells and fibroblasts demonstrated that peptides are not hemolytic or cytotoxic agents. In microbiological challenge testing, KKLLKI showed the most promising antibacterial effects against S. Enteritidis on refrigerated pork meat samples. These findings suggest that chia-derived peptides have the potential as natural food preservatives due to their antibacterial and antibiofilm properties. Notably, KKLLKI demonstrated promising antibacterial effects against Salmonella spp. on a complex food matrix, such as pork meat. PRACTICAL APPLICATION: Chia-derived peptides can be a safer alternative to synthetic preservatives in the food industry because the latter may be detrimental to human health. Salmonella spp. growth on chilled pork meat was shown to be inhibited by the peptide KKLLKI, indicating that the use of these peptides may offer a more secure and natural alternative to synthetic preservatives.
Collapse
Affiliation(s)
- Anaí León Madrazo
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Merida, Mexico
| | | |
Collapse
|
13
|
Abbasi-Moayed S, Orouji A, Hormozi-Nezhad MR. Multiplex Detection of Biogenic Amines for Meat Freshness Monitoring Using Nanoplasmonic Colorimetric Sensor Array. BIOSENSORS 2023; 13:803. [PMID: 37622889 PMCID: PMC10452313 DOI: 10.3390/bios13080803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Biogenic amines (BAs) were presented as significant markers for the evaluation of the spoilage of meat and meat products. In this work, a colorimetric sensor array was developed for the discrimination and detection of spermine (SP), spermidine (SD), histamine (HS), and tryptamine (TP) as important BAs in food assessment. For this aim, two important spherical plasmonic nanoparticles, namely gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs), were utilized as the sensing elements of the probes. The cross-reactive interaction of the target biogenic amines and the plasmonic nanoparticles caused the aggregation-induced UV-Vis spectra changes, which were accompanied by visual color variation in the solution. The collected responses were analyzed by principal component analysis-linear discrimination analysis (PCA-LDA) to classify the four BAs. This colorimetric sensor array can also discriminate between the individual BAs and their mixture accurately. Partial least squares regression (PLS-R) was also utilized for quantitative analysis of the BAs. The wide linear concentration ranges of 0.1-10.0 µM for the four BAs and desirable figures of merits (FOMs) showed the potential of the developed sensor for quantitative detection of the BAs. Finally, the practical ability of the developed probe was studied by the determination of the BAs in the meat samples, which successfully proved the potential of the colorimetric sensor array in a food sample.
Collapse
Affiliation(s)
- Samira Abbasi-Moayed
- Department of Analytical Chemistry, Faculty of chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Afsaneh Orouji
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran;
| | - Mohammad Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran;
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 11155-9516, Iran
| |
Collapse
|
14
|
Windarsih A, Bakar NKA, Dachriyanus, Yuliana ND, Riswanto FDO, Rohman A. Analysis of Pork in Beef Sausages Using LC-Orbitrap HRMS Untargeted Metabolomics Combined with Chemometrics for Halal Authentication Study. Molecules 2023; 28:5964. [PMID: 37630216 PMCID: PMC10459517 DOI: 10.3390/molecules28165964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Beef sausage (BS) is one of the most favored meat products due to its nutrition and good taste. However, for economic purposes, BS is often adulterated with pork by unethical players. Pork consumption is strictly prohibited for religions including Islam and Judaism. Therefore, advanced detection methods are highly required to warrant the halal authenticity of BS. This research aimed to develop a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method to determine the halal authenticity of BS using an untargeted metabolomics approach. LC-HRMS was capable of detecting various metabolites in BS and BS containing pork. The presence of pork in BS could be differentiated using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) with high accuracy. PLS-DA perfectly classified authentic BS and BS containing pork in all concentration levels of pork with R2X = (0.821), R2Y(= 0.984), and Q2 = (0.795). The level of pork in BS was successfully predicted through partial least squares (PLS) and orthogonal PLS (OPLS) chemometrics. Both models gave high R2 (>0.99) actual and predicted values as well as few errors, indicating good accuracy and precision. Identification of discriminating metabolites' potential as biomarker candidates through variable importance for projections (VIP) value revealed metabolites of 2-arachidonyl-sn-glycero-3-phosphoethanolamine, 3-hydroxyoctanoylcarnitine, 8Z,11Z,14Z-eicosatrienoic acid, D-(+)-galactose, oleamide, 3-hydroxyhexadecanoylcarnitine, arachidonic acid, and α-eleostearic acid as good indicators to detect pork. It can be concluded that LC-HRMS metabolomics combined with PCA, PLS-DA, PLS, and OPLS was successfully used to detect pork adulteration in beef sausages. The results imply that LC-HRMS untargeted metabolomics in combination with chemometrics is a promising alternative as an analytical technique to detect pork in sausage products. Further analysis of larger samples is required to warrant the reproducibility.
Collapse
Affiliation(s)
- Anjar Windarsih
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.W.); (N.K.A.B.)
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.W.); (N.K.A.B.)
| | - Dachriyanus
- Faculty of Pharmacy, Andalas University, Padang 25175, Indonesia;
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia;
- Halal Science Center, IPB University, Bogor 16129, Indonesia
| | - Florentinus Dika Octa Riswanto
- Division of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Campus III Paingan, Universitas Sanata Dharma, Yogyakarta 55282, Indonesia;
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center of Excellence, Institute for Halal Industry and Systems (PUIPT-IHIS), Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
15
|
Gu M, Li C, Chen L, Li S, Xiao N, Zhang D, Zheng X. Insight from untargeted metabolomics: Revealing the potential marker compounds changes in refrigerated pork based on random forests machine learning algorithm. Food Chem 2023; 424:136341. [PMID: 37216778 DOI: 10.1016/j.foodchem.2023.136341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Data on changes in non-volatile components and metabolic pathways during pork storage were inadequately investigated. Herein, an untargeted metabolomics coupled with random forests machine learning algorithm was proposed to identify the potential marker compounds and their effects on non-volatile production during pork storage by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS). A total of 873 differential metabolites were identified based on analysis of variance (ANOVA). Bioinformatics analysis shows that the key metabolic pathways for protein degradation and amino acid transport are amino acid metabolism and nucleotide metabolism. Finally, 40 potential marker compounds were screened using the random forest regression model, innovatively proposing the key role of pentose-related metabolism in pork spoilage. Multiple linear regression analysis revealed that d-xylose, xanthine, and pyruvaldehyde could be key marker compounds related to the freshness of refrigerated pork. Therefore, this study could provide new ideas for the identification of marker compounds in refrigerated pork.
Collapse
Affiliation(s)
- Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Naiyu Xiao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
16
|
Tan C, Selamat J, Jambari NN, Sukor R, Murugesu S, Muhamad A, Khatib A. 1H nuclear magnetic resonance-based metabolomics study of serum and pectoralis major for different commercial chicken breeds. Food Sci Nutr 2023; 11:2106-2117. [PMID: 37181311 PMCID: PMC10171504 DOI: 10.1002/fsn3.2968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 05/16/2023] Open
Abstract
This study aimed to characterize the metabolic composition of four types of commercially available chicken breeds [village chicken, colored broiler (Hubbard), broiler (Cobb), and spent layers (Dekalb)] by 1H NMR coupling and discriminate them using multivariate analysis. Five chickens were collected for each chicken breed based on the marketing age from the respective commercial farms. The orthogonal partial least squares discriminant analysis (OPLS-DA) results showed an obvious separation of local village chickens from the other breeds based on the metabolites present in their serum and meat (pectoralis major). The cumulative values of Q 2, R 2 X, and R 2 Y of the OPLS-DA model for chicken serum were 0.722, 0.877, and 0.841. For the pectoralis major muscle, the cumulative values of Q 2, R 2 X, and R 2 Y of the OPLS-DA model were reported as 0.684, 0.781, and 0.786, respectively. The quality of both OPLS-DA models was accepted by the cumulative values of Q 2 ≥ 0.5 and R 2 ≥ 0.65. The 1H NMR result with multivariate analysis has successfully distinguished local village chicken from the other three commercial chicken breeds based on serum and pectoralis major muscle. Nonetheless, colored broiler (Hubbard) was not distinguished from broiler (Cobb) and spent layers (Dekalb) in serum and pectoralis major, respectively. The OPLS-DA assessment in this study identified 19 and 15 potential metabolites for discriminating different chicken breeds in serum and pectoralis major muscle, respectively. Some of the prominent metabolites identified include amino acids (betaine, glycine, glutamine, guanidoacetate, phenylalanine, and valine), nucleotides (IMP and NAD+), organic acids (lactate, malate, and succinate), peptide (anserine), and sugar alcohol (myo-inositol).
Collapse
Affiliation(s)
- Chengkeng Tan
- Laboratory of Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food SecurityUniversiti Putra Malaysia (UPM)SerdangMalaysia
- National Public Health LaboratoryMinistry of Health MalaysiaSungai BulohMalaysia
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food SecurityUniversiti Putra Malaysia (UPM)SerdangMalaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia (UPM)SerdangMalaysia
| | - Nuzul Noorahya Jambari
- Laboratory of Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food SecurityUniversiti Putra Malaysia (UPM)SerdangMalaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia (UPM)SerdangMalaysia
| | - Rashidah Sukor
- Laboratory of Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food SecurityUniversiti Putra Malaysia (UPM)SerdangMalaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia (UPM)SerdangMalaysia
| | - Suganya Murugesu
- Laboratory of Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food SecurityUniversiti Putra Malaysia (UPM)SerdangMalaysia
| | - Azira Muhamad
- Malaysia Genome InstituteNational Institutes of Biotechnology Malaysia (NIBM)KajangMalaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Faculty of PharmacyInternational Islamic University MalaysiaKuantanMalaysia
- Faculty of PharmacyAirlangga UniversitySurabayaIndonesia
| |
Collapse
|
17
|
Abril AG, Calo-Mata P, Böhme K, Villa TG, Barros-Velázquez J, Pazos M, Carrera M. Shotgun Proteomics Analysis, Functional Networks, and Peptide Biomarkers for Seafood-Originating Biogenic-Amine-Producing Bacteria. Int J Mol Sci 2023; 24:ijms24097704. [PMID: 37175409 PMCID: PMC10178689 DOI: 10.3390/ijms24097704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Biogenic amine-producing bacteria are responsible for the production of basic nitrogenous compounds (histamine, cadaverine, tyramine, and putrescine) following the spoilage of food due to microorganisms. In this study, we adopted a shotgun proteomics strategy to characterize 15 foodborne strains of biogenic-amine-producing bacteria. A total of 10,673 peptide spectrum matches belonging to 4081 peptides and corresponding to 1811 proteins were identified. Relevant functional pathways were determined, and strains were differentiated into hierarchical clusters. An expected protein-protein interaction network was created (260 nodes/1973 interactions). Most of the determined proteins were associated with networks/pathways of energy, putrescine metabolism, and host-virus interaction. Additionally, 556 peptides were identified as virulence factors. Moreover, 77 species-specific peptide biomarkers corresponding to 64 different proteins were proposed to identify 10 bacterial species. This represents a major proteomic dataset of biogenic-amine-producing strains. These results may also be suitable for new treatments for food intoxication and for tracking microbial sources in foodstuffs.
Collapse
Affiliation(s)
- Ana González Abril
- Department of Food Technology, Spanish National Research Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Manuel Pazos
- Department of Food Technology, Spanish National Research Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
| |
Collapse
|
18
|
Nabi L, Nourani M. Biodegradable form stable phase change material for cold storage packaging of meat. Meat Sci 2023; 201:109188. [PMID: 37084550 DOI: 10.1016/j.meatsci.2023.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
In this study, tetradecane was selected as a phase change material (PCM) to provide a thermal buffering system for meat packaging. Firstly, tetradecane was capsulated within a calcium alginate shell; then the conditions for achieving the highest efficiency were obtained. The capsules were characterized using Scanning electron microscopy, Thermo-gravimetric analysis and Differential scanning calorimetry. The results revealed the stability of the thermal properties of the encapsulated PCMs and the efficient capsulation of tetradecane in the capsules. Next, the alginate films were prepared using various concentrations of sodium alginate (SA) and CaCl2 incorporated with capsulated tetradecane. Observations indicated that the film prepared with 5% SA and 12% CaCl2 had the least leakage and the best structural integration during phase change cycles and storage at 25 °C. The use of PCM-incorporated packages could successfully delay the meat temperature elevation during phase change cycles and incubation at 25 °C. After 7.5 h incubation at 25 °C and 15 phase change cycles, PCM-incorporated samples had lower weight loss and higher hardness, gumminess and chewiness as compared to the control. Further, the physicochemical parameters of the meat in PCM-incorporated package were less changed, as compared to the fresh sample. So, the prepared package could be effectively used in meat packaging.
Collapse
Affiliation(s)
- Leila Nabi
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Moloud Nourani
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran.
| |
Collapse
|
19
|
Zavistanaviciute P, Klementaviciute J, Klupsaite D, Zokaityte E, Ruzauskas M, Buckiuniene V, Viskelis P, Bartkiene E. Effects of Marinades Prepared from Food Industry By-Products on Quality and Biosafety Parameters of Lamb Meat. Foods 2023; 12:foods12071391. [PMID: 37048209 PMCID: PMC10093910 DOI: 10.3390/foods12071391] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
This study aimed to develop marinade formulas based on by-products from the dairy, berry, and fruit industries and apply them to lamb meat (LM) treatments to improve the safety and quality characteristics of the meat. To fulfil this aim, six marinade (M) formulations were created based on acid whey (AW) fermented with Lacticaseibacillus casei (Lc) and Liquorilactobacillus uvarum (Lu), either alone or combined with freeze-dried apple (AP) or blackcurrant (BC) pomace. The most appropriate fermentation times for the marinades were selected according to the lower pH values and higher viable LAB counts in the samples. Additionally, the antimicrobial activity of the selected marinades against pathogenic and opportunistic bacterial strains was tested. The characteristics of the LM were analysed after 24 and 48 h of treatment, including physicochemical, technological, and microbiological parameters, as well as overall acceptability. It was established that, after 48 h of fermentation, all of the tested marinades, except M-AWLuBC, had lactic acid bacterial counts > 8.0 log10 CFU·mL−1 and pH values < 3.74. The broadest spectra of pathogen inhibition were observed in the M-AWLuAP and M-AWLuBC marinades. The latter formulations improved the water holding capacity (WHC) and overall acceptability of the LM, while, in the LM-AWLcAP samples, histamine, cadaverine, putrescine, tryptamine, and phenylethylamine were not formed. Lastly, LM treatment with the M-AWLcAP and M-AWLuAP formulas for 48 h achieved the highest overall acceptability (9.04 and 9.43), tenderness (1.53 and 1.47 kg·cm−2) and WHC (2.95% and 3.5%) compared to the control samples.
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-655-06461
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Vilija Buckiuniene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
20
|
Xu Y, Lu Y, Yu J, Liu W, Jing G, Li W, Liu W. Determination of Seven Biogenic Amines in Tuna with High-Performance Liquid Chromatography Coupled to Electrospray Ionization Ion Mobility Spectrometry. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
21
|
Kalinowska K, Wojnowski W, Tobiszewski M. Simple analytical method for total biogenic amines content determination in wine using a smartphone. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1395-1401. [PMID: 36866655 DOI: 10.1039/d2ay02035a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A simple, fast, and green smartphone-based procedure for total biogenic amines content determination in wine was developed and validated. Sample preparation and analysis were simplified to make the method suitable for routine analyses even in resource-scarce settings. The commercially available S0378 dye and smartphone-based detection were used for this purpose. The developed method has satisfactory figures of merit for putrescine equivalent determination with R2 of 0.9981. The method's greenness was also assessed using the Analytical Greenness Calculator. Samples of Polish wine were analysed to demonstrate the applicability of the developed method. Finally, results obtained with the developed procedure were compared with those previously obtained with GC-MS in order to evaluate the equivalence of the methods.
Collapse
Affiliation(s)
- Kaja Kalinowska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Wojciech Wojnowski
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
- University of Oslo, Department of Chemistry, P.O. Box 1033-Blindern, 0315 Oslo, Norway
| | - Marek Tobiszewski
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| |
Collapse
|
22
|
Choi I, Choi H, Lee JS, Han J. Novel color stability and colorimetry-enhanced intelligent CO 2 indicators by metal complexation of anthocyanins for monitoring chicken freshness. Food Chem 2023; 404:134534. [PMID: 36242957 DOI: 10.1016/j.foodchem.2022.134534] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
Abstract
This study aims to improve the color stability of anthocyanins and develop a CO2-sensitive indicator based on black goji anthocyanin (BGA) extract. Although the BGA extracts showed distinct color changes, such as red-purple-blue, their intrinsic color diminished after 24 h. A metal complexation method was used for the high color stability of BGA. BGA extracts were chelated with various concentrations of Al3+ [0 - 20% (w/w)]. It showed high color stability and strong intensity in a dose-dependent manner. A CO2-sensitive indicator sachet was developed using hydroxypropyl methylcellulose hydrogel, based on 5% (w/w) Al3+-BGA complexes. The indicator was applied to the chicken breast and detected its spoilage after 3 days with its changing color to greyish blue, due to the microbial growth to 7.00 log CFU/g. These results demonstrated the possibility of chelated anthocyanin complexes as indicating dyes and the ability to monitor the food quality changes through noticeable color changes.
Collapse
Affiliation(s)
- Inyoung Choi
- Institute of Control Agents for Microorganisms, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyelin Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jung-Soo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Food Biosciences and Technology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
23
|
Gu M, Li C, Su Y, Chen L, Li S, Li X, Zheng X, Zhang D. Novel insights from protein degradation: deciphering the dynamic evolution of biogenic amines as a quality indicator in pork during storage. Food Res Int 2023; 167:112684. [PMID: 37087256 DOI: 10.1016/j.foodres.2023.112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
Biogenic amines (BAs) have drawn great attention as important markers for monitoring food quality. However, the BAs content in protein degradation profiles during pork storage was inadequately investigated. In this work, the Longissimus lumborum and Breast and flank of pork were collected, and their peptides contents, free amino acids (FAAs) contents, BAs contents, and several characteristic physicochemical indexes were monitored during storage at 4 °C. As a result, the differences of nutritional components in the Longissimus lumborum and Breast and flank could not affect the shelf life of refrigerated pork. There are 161 small peptides in the Longissimus lumborum of pork identified by LC-MS. As verified, arginine, glutamic acid, valine, and alanine could serve as four indicative amino acids during protein degradation in pork, and the arginine degradation pathway is more complex. Redundancy analysis confirmed that putrescine and cadaverine were significantly related to the precursor FAAs content, and their sum value could be used as a novel quality indicator instead of the biogenic amine index (BAI). Finally, the above prediction was also verified by the other species (beef, mutton and chicken) to improve the index system of meat quality evaluation in cold chain logistics.
Collapse
|
24
|
Ferrante MC, Mercogliano R. Focus on Histamine Production During Cheese Manufacture and Processing: A Review. Food Chem 2023; 419:136046. [PMID: 37058863 DOI: 10.1016/j.foodchem.2023.136046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Histamine (HIS) intoxication is a poisoning caused by histamine in food. Cheese is one of the most common dairy products associated with histamine levels which vary depending on the processing methods. The final content of histamine in cheese is influenced by intrinsic and extrinsic factors, their interactions, and contamination stemming from food processing. The application of control measures may be useful to inhibit/reduce production during cheese manufacture and processing but have a limited effect. To reduce histamine intoxication outbreaks from cheese consumption the introduction of quality control programs and appropriate risk mitigation options should be applied along the dairy chain from an overall perspective of food safety based on individual susceptibility and consumer sensitivity. As key food safety, this topic should be considered in future regulations in dairy products because the lack of a clear law on HIS limits in cheese may result in a significant potential deviation from the EU food safety strategy.
Collapse
|
25
|
Kiprotich S, Altom E, Mason R, Trinetta V, Aldrich G. Application of encapsulated and dry-plated food acidulants to control Salmonella enterica in raw meat-based diets for dogs. J Food Prot 2023; 86:100077. [PMID: 37003096 DOI: 10.1016/j.jfp.2023.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/24/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
There is an increasing demand for raw meat-based diets (RMBDs) for dogs, but these foods cannot be heat-pasteurized. Thus, the objective of this study was to evaluate the antimicrobial efficacy of encapsulated and dry-plated glucono delta lactone (GDL), citric acid (CA), and lactic acid (LA) when challenged against Salmonella enterica inoculated in a model raw meat-based diet (RMBDs) for dogs. Nutritionally complete, raw diets were formulated with different levels (1.0, 2.0 and 3.0% (w/w)) of both encapsulated and dry-plated GDL, CA, and LA with both the positive (PC) and the negative controls (NC) without acidulants. The diets were formed into patties of ∼100 g and inoculated with 3-cocktail mixtures of Salmonella enterica serovars, excluding the NC to achieve a final concentration of ∼6.0 Log CFU/patty. Microbial analyses were performed on the inoculated diets and survivors of S. enterica enumerated. Both encapsulated and dry-plated CA and LA had higher log reductions compared to GDL (P < 0.05). However, encapsulated CA and LA at 1.0% (w/w) exhibited higher log reductions (P > 0.05) and preserved product quality compared to the dry-plated acidulants at 1.0%. We concluded that 1.0% (w/w) of encapsulated citric or lactic acids could be successfully applied as an antimicrobial intervention in raw diets for dogs.
Collapse
|
26
|
Toomik E, Rood L, Bowman JP, Kocharunchitt C. Microbial spoilage mechanisms of vacuum-packed lamb meat: A review. Int J Food Microbiol 2023; 387:110056. [PMID: 36563532 DOI: 10.1016/j.ijfoodmicro.2022.110056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Lamb meat is an important export commodity, however chilled vacuum-packed (VP) lamb has approximately half the shelf-life of beef under the same storage conditions. This makes the industry more vulnerable to financial losses due to long shipping times and unexpected spoilage. Understanding the spoilage mechanisms of chilled VP lamb in relation to VP beef is important for developing effective strategies to extend the shelf-life of lamb. This review has discussed various key factors (i.e., pH, fat, and presence of bone) that have effects on microbial spoilage of VP lamb contributing to its shorter shelf-life relative to VP beef. A range of bacterial organisms and their metabolisms in relevance to lamb spoilage are also discussed. The data gap in the literature regarding the potential mechanisms of spoilage in VP red meat is highlighted. This review has provided the current understanding of key factors affecting the shelf-life of VP lamb relative to VP beef. It has also identified key areas of research to further understand the spoilage mechanisms of VP lamb. These include investigating the potential influence of fat and bone (including bone marrow) on the shelf-life, as well as assessing changes in the meat metabolome as the spoilage microbial community is developing using an integrated approach. Such new knowledge would aid the development of effective approaches to extend the shelf-life of VP lamb.
Collapse
Affiliation(s)
- Elerin Toomik
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia.
| | - Laura Rood
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Chawalit Kocharunchitt
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| |
Collapse
|
27
|
Yue CS, Lim AK, Chia ML, Wong PY, Chin JSR, Wong WH. Determination of biogenic amines in chicken, beef, and mutton by dansyl chloride microwave derivatization in Malaysia. J Food Sci 2023; 88:650-665. [PMID: 36624628 DOI: 10.1111/1750-3841.16404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 01/11/2023]
Abstract
In this study, an improved dansyl-chloride derivatization technique using a microwave synthesizer was used for the qualitative and quantitative analyses of biogenic amine in the fresh meat samples. The derivatization technique was optimized in terms of temperature, reaction time, and spinning speed. The derivatization method together with a validated reversed-phase HPLC-DAD method was used for the determination of biogenic amines in chicken, beef, and mutton sold in the wet market. The results of the analyses showed that tryptamine, putrescine, and histamine were generally detected in all the three types of meat. Higher levels of histamine were found in chicken and beef. However, low levels of histamine were observed in mutton. Tyramine was either detected low or moderate in all the three types of meat. The biogenic amines of the fresh meat sold in the wet market is generally higher than the reported values. The mechanisms of biogenic amines-dansyl-chloride formation were investigated and proposed. PRACTICAL APPLICATION: The biogenic amine derivatization method was improved. The improved derivatization method can be potentially used for various food products beside meats for routine biogenic amine analyses due to its fast analysis time and simplicity. High levels of biogenic amines were generally found in the meat sold in the wet markets. However, proper handling of the raw meat can reduce the risk of infection.
Collapse
Affiliation(s)
- Chen Son Yue
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Ah Kee Lim
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Meow Lin Chia
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Pei Yin Wong
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Joey Siew Rey Chin
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Weng Hang Wong
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Min H, An F, Wei T, Wang S, Ma P, Dai Y. Microbial community structure and biogenic amines content variations in chilled chicken during storage. Food Sci Nutr 2023; 11:627-638. [PMID: 36789075 PMCID: PMC9922133 DOI: 10.1002/fsn3.3122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to investigate the sensory indicators, biogenic amine contents, and bacterial community structure and diversity of chilled chicken stored at 4°C under aerobic conditions. Bacterial diversity and dominant bacteria were analyzed using high-throughput sequencing technique (HTS). The relationship between biogenic amine contents and microbial community structure was studied. The results showed that contents of putrescine and cadaverine increased significantly with storage time. Proteobacteria was absolutely dominant flora at the phylum level. The predominant spoilage bacteria found in chicken thighs were Pseudomonas, Acinetobacter, Aeromonas, Shewanella, and Yersinia, and the difference with chicken breasts was related to the presence of Myroides and absence of Yersinia. Myroides, Yersinia, and Shewanella were reported for the first time as an important contributor to the spoilage-related microflora. Bacterial diversity and richness indices showed fluctuating and decreasing trend with storage time. The redundancy analysis showed that the relative abundance of Pseudomonas, Yersinia, and Janthinobacterium was positively related to the contents of putrescine, cadaverine, and tyramine, while Shewanella and Aeromonas showed positive relationship with putrescine content. Furthermore, positive relationship of Myroides and Desulfovibrio with the contents of cadaverine and tyramine was proposed for the first time. The key findings of this study can provide experimental data for food safety monitoring during refrigerated storage and preservation for poultry meat products.
Collapse
Affiliation(s)
- Hong Min
- NMPA Key Laboratory for Testing Technology of Pharmaceutical MicrobiologyShaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| | - Fengqiu An
- School of Environmental and Chemical EngineeringXi'an Polytechnic UniversityXi'anPeople's Republic of China
| | - Ting Wei
- School of Environmental and Chemical EngineeringXi'an Polytechnic UniversityXi'anPeople's Republic of China
| | - Song Wang
- Shaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| | - Pengfei Ma
- Shaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| | - Yong Dai
- Shaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| |
Collapse
|
29
|
Antibacterial Activity of Selected Essential Oils against Foodborne Pathogens and Their Application in Fresh Turkey Sausages. Antibiotics (Basel) 2023; 12:antibiotics12010182. [PMID: 36671383 PMCID: PMC9855142 DOI: 10.3390/antibiotics12010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Essential oils (EOs) isolated from different plant materials, namely Origanum majorana L., Satureja hortensis L., and Satureja montana L. (OMEO, SHEO, and SMEO, respectively), were used in fresh turkey sausage processing. The chemical composition and in vitro antimicrobial potential of selected EOs and their mixture were determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against foodborne pathogens (Escherichia coli, Salmonella Enteritidis, and Listeria monocytogenes) ranged in the interval of 0.44-7.1 µL/mL. Fresh turkey sausages were produced with EOs addition and marked as follows: TOMEO-0.150 µL/g OMEO; TSHEO-0.150 µL/g SHEO; TSMEO-0.150 µL/g SMEO; TEOM-0.050 µL/g OMEO, 0.050 µL/g SHEO and 0.050 µL/g SMEO, and control (C) (without EOs). Microbiological profile and biogenic amines content in fresh turkey sausages were recorded during storage. The selected EOs and their mixture efficiently reduced bacterial growth and biogenic amines formation and accumulation. The lowest Enterobacteriaceae count and total biogenic amine (BA) concentration were determined through treatment TSHEO. The results of this study show that selected EOs could be useful in fresh turkey sausage processing in order to improve safety and shelf-life.
Collapse
|
30
|
McGrane SJ, Gibbs M, Hernangomez de Alvaro C, Dunlop N, Winnig M, Klebansky B, Waller D. Umami taste perception and preferences of the domestic cat (Felis catus), an obligate carnivore. Chem Senses 2023; 48:bjad026. [PMID: 37551788 PMCID: PMC10468298 DOI: 10.1093/chemse/bjad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 08/09/2023] Open
Abstract
The domestic cat (Felis catus) is an obligate carnivore, and as such has a meat-based diet. Several studies on the taste perception of cats have been reported, indicating that their sense of taste has evolved based on their carnivorous diet. Here, we propose that umami (mediated by Tas1r1-Tas1r3) is the main appetitive taste modality for the domestic cat by characterizing the umami taste of a range of nucleotides, amino acids, and their mixtures for cats obtained using complementary methods. We show for the first time that cats express Tas1r1 in taste papillae. The cat umami receptor responds to a range of nucleotides as agonists, with the purine nucleotides having the highest activity. Their umami receptor does not respond to any amino acids alone; however, 11 l-amino acids with a range of chemical characteristics act as enhancers in combination with a nucleotide. l-Glutamic acid and l-Aspartic acid are not active as either agonists or enhancers of the cat umami receptor due to changes in key binding residues at positions 170 and 302. Overall, cats have an appetitive behavioral response for nucleotides, l-amino acids, and their mixtures. We postulate that the renowned palatability of tuna for cats may be due, at least in part, to its specific combination of high levels of inosine monophosphate and free l-Histidine that produces a strong synergistic umami taste enhancement. These results demonstrate the critical role that the umami receptor plays in enabling cats to detect key taste compounds present in meat.
Collapse
Affiliation(s)
- Scott J McGrane
- Waltham Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire LE14 4RT, United Kingdom
| | - Matthew Gibbs
- Waltham Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire LE14 4RT, United Kingdom
| | - Carlos Hernangomez de Alvaro
- Waltham Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire LE14 4RT, United Kingdom
| | - Nicola Dunlop
- Waltham Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire LE14 4RT, United Kingdom
| | - Marcel Winnig
- AXXAM GmbH, Byk-Gulden Str.2, 78467 Constance, Germany
| | - Boris Klebansky
- BioPredict, Inc., 4 Adele Avenue, Demarest, NJ 07627, United States
| | - Daniel Waller
- Waltham Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire LE14 4RT, United Kingdom
| |
Collapse
|
31
|
Effect of high pressure processing on biogenic amines content in skin-packed beef during storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Ikonić P, Jokanović M, Ćućević N, Peulić T, Šarić L, Tomičić Z, Škaljac S, Delić J, Lakićević B, Tomašević I. Effect of different ripening conditions on amino acids and biogenic amines evolution in Sjenički sudžuk. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Cho J, Barido FH, Kim HJ, Kim HJ, Kim D, Shin DJ, Jang A. Effect of Calamansi Pulp Ethanol Extracts on the Meat Quality and Biogenic Amine Formation of Pork Patty during Refrigerated Storage. Food Sci Anim Resour 2023; 43:25-45. [PMID: 36789197 PMCID: PMC9890367 DOI: 10.5851/kosfa.2022.e53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
This study evaluated the antibacterial and antioxidant activities of ethanol extract of calamansi pulp (CPE) and its effect on quality and biogenic amine (BAs) formation in pork patties during storage. The CPE were prepared in various conditions (ethanol concentrations of 50%, 70%, and 90% with extraction periods of 3 and 6 days). The extract with potent antibacterial and antioxidant activities (90%, 6 days) was selected for addition to pork patties. Three groups were tested: Control (without extract addition), CPE addition at 0.2% w/w (0.2PCPE), and 0.4% w/w (0.4PCPE). The addition of CPE inhibited the formation of BAs, mainly cadaverine, histamine, and tyramine, in pork patties during storage. The pH and bacterial count of pork patties decreased significantly in a concentration-dependent manner following the addition of CPE. The instrumental color (CIE L*, CIE a*, and CIE b*) tended to be higher in 0.4PCPE than in the control during storage. The thiobarbituric acid reactive substances and volatile basic nitrogen (VBN) values of pork patties were affected by CPE, showing a reduction toward lipid oxidation at any storage period, and maintaining the lowest VBN value in 0.4PCPE at the final storage day. Similarly, the reduction of total BAs in pork patties was observed ranged between 3.4%-38.1% under treatment with 0.2% CPE, whereas 18.4%-51.4% under 0.4% CPE addition, suggesting significant effect of CPE to improve meat quality. These novel findings demonstrate the efficacy of 0.4% CPE as a natural compound to preserve the quality and reduce BAs formation in pork patties during storage.
Collapse
Affiliation(s)
- Jinwoo Cho
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Department of Research and Development,
Shinsegae Food, Seoul 04793, Korea
| | - Farouq Heidar Barido
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Department of Animal Science, Faculty of
Agriculture, Universitas Sebelas Maret, Surakarta 57126,
Indonesia
| | - Hye-Jin Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Hee-Jin Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Poultry Research Institute, National
Institute of Animal Science, Pyeongchang 25342, Korea
| | - Dongwook Kim
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Dong-Jin Shin
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Aera Jang
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea,Corresponding author: Aera
Jang, Department of Applied Animal Science, College of Animal Life Sciences,
Kangwon National University, Chuncheon 24341, Korea, Tel: +82-33-250-8643, Fax:
+82-33-251-7719, E-mail:
| |
Collapse
|
34
|
Effect of chitosan coating incorporated with oregano essential oil on microbial inactivation and quality properties of refrigerated chicken breasts. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
LIU X, WANG J, XU Z, SUN J, LIU Y, XI X, MA Y. Quality assessment of fermented soybeans: physicochemical, bioactive compounds and biogenic amines. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Xu LIU
- Hebei Agricultural University, China
| | - Jun WANG
- Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| | - Zihan XU
- Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| | | | | | - Xiaoli XI
- Hebei Agricultural University, China
| | - Yanli MA
- Hebei Agricultural University, China; Nanyang Institute of Technology, China; Nanyang Institute of Technology, China
| |
Collapse
|
36
|
Park G, Jin SG, Choi J. Effects of Physicochemical Characteristics and Storage Stability of Porcine Albumin Protein Hydrolysates in Pork Sausage. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, the physicochemical characteristics and storage stability of porcine albumin protein hydrolysates (PAPH) in sausage were evaluated. Four concentrations of PAPH were added to pork emulsion sausage (T1, 0.3%; T2, 0.6%; T3, 0.9%; T4, 1.2%) and compared to the control (CON, 0%). On day 0, proximate composition, cooking loss, and sensory evaluation were compared. Purge loss, color, texture profile analysis, shear force, free amino acids, lipid oxidation, microbial counts, and volatile basic nitrogen (VBN) were compared on day 0 and after 4 weeks of refrigeration. The content of essential amino acids and redness(a*) increased as the level of PAPH added increased (p<0.05). Also, the cooking loss was improved (p<0.05). However, lipid oxidation, microbial counts, and VBN were increased significantly during storage for 4 weeks (p<0.05). The findings indicated that the addition of PAPH improved cooking loss and the protein composition of sausages, but negatively affected storage stability.
Collapse
Affiliation(s)
- Gyutae Park
- 1Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-geun Jin
- 2Department of Animal Resources Technology, Gyeongsang National University, Jinju, Republic of Korea
| | - Jungseok Choi
- 1Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
37
|
Characterization and difference of lipids and metabolites from Jianhe White Xiang and Large White pork by high-performance liquid chromatography–tandem mass spectrometry. Food Res Int 2022; 162:111946. [DOI: 10.1016/j.foodres.2022.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
|
38
|
Akpomie OO, Ejechi BO, Banach AM, Adewuyi I, Ayobola ED, Akpomie KG, Ghosh S, Ahmadi S. Biogenic amine production from processed animal and plant protein-based foods contaminated with Escherichia coli and Enterococcus feacalis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4880-4888. [PMID: 36276543 PMCID: PMC9579252 DOI: 10.1007/s13197-022-05576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the study was to investigate biogenic amine production in different types of cooked protein foods. The food samples were incubated at varying temperatures (4, 37 and 55 °C) on different microbiological media for 48, 72 and 180 h. Resulting bacteria were isolated and characterized using cultural, biochemical and molecular methods, further screened for production of biogenic amines in decarboxylase broth media supplemented with 0.4% of histidine, tyrosine, lysine and ornithine. The samples were incubated at 25 °C for 48 h and the biogenic amine concentration in each food sample determined by means of HPLC. There was a high prevalence of the isolates among the food samples. All the isolates except Klebsiella sp. and Pseudomonas sp. were positive for decarboxylase activity indicating 84.6% of the isolates capable of biogenic amine production. The amine concentration varied among the types of food and methods of cooking. Histamine was detected in 41.67% of the inoculated food samples (9.2 ± 1.2-100.95 ± 0.1 µg/g) while putrescine was the least detected (41.67%) in the inoculated food sample (7.7 ± 0.1-8.8 ± 0.2 µg/g). Cadaverine and histamine were detected in 16.4% (2.6 ± 0.2-49.9 ± 0.9 µg/g) and 7.5% (1.4 ± 0.1-20.4 ± 0.3 µg/g) of the foods, respectively. Microbial contamination of the cooked protein foods led to high levels of biogenic amines irrespective of the cooking methodology adopted and type of foods investigated. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05576-0.
Collapse
Affiliation(s)
| | | | - Artur M. Banach
- Department of Biology and Biotechnology of Microorganisms, The John Paul II Catholic University of Lublin, Konstantynów 1I Str, Lublin, Poland
| | - Isaiah Adewuyi
- Department of Microbiology, Delta State University, Abraka, Nigeria
| | | | - Kovo G. Akpomie
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301 South Africa
| | - Shabnam Ahmadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
39
|
Talens C, Ibargüen M, Murgui X, García-Muñoz S, Peral I. Texture‐modified meat for senior consumers varying meat type and mincing speed: effect of gender, age and nutritional information on sensory perception and preferences. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
40
|
Khalid W, Arshad MS, Nayik GA, Alfarraj S, Ansari MJ, Guiné RPF. Impact of Gamma Irradiation and Kale Leaf Powder on Amino Acid and Fatty Acid Profiles of Chicken Meat under Different Storage Intervals. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238201. [PMID: 36500295 PMCID: PMC9737944 DOI: 10.3390/molecules27238201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
The present study was planned to determine the effect of kale leaf powder and gamma rays on variations in the pH, amino acid and fatty acid profiles of chicken meat at different storage intervals. Significant changes (p ≤ 0.05) in the pH, amino acid and fatty acid profiles of chicken meat following different treatments (KLP (1% and 2%) and gamma irradiation (3k Gy)) were reported at 0, 7 and 14 days of storage. The pH value of the chicken meat sample decreased with the addition of kale leaf powder, whereas the value increased following a gamma irradiation dose of 3 kGy and with the passage of time. During different storage intervals, the minimum reduction in the amino acid and fatty acid quantities in the chicken meat samples was reported after gamma irradiation treatment. However, with the addition of KLP, the amount of amino acids and fatty acids in the chicken meat samples increased. Conclusively, the pH was observed to be reduced in the meat following combined treatment (irradiation + KLP), whereas the 2% KLP treatment improved the amino acid and fatty acid profiles of the chicken samples.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.S.A.); (G.A.N.)
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Government Degree College Shopian, Srinagar 192303, India
- Correspondence: (M.S.A.); (G.A.N.)
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Moradabad 244001, India
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
41
|
Ye H, Koo S, Beitong Zhu, Ke Y, Sheng R, Duan T, Zeng L, Kim JS. Real-Time Fluorescence Screening Platform for Meat Freshness. Anal Chem 2022; 94:15423-15432. [DOI: 10.1021/acs.analchem.2c03326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Huan Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Beitong Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yingjun Ke
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Madeira 9000-390, Portugal
| | - Ting Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
42
|
Amalia L, Yuliana ND, Sugita P, Arofah D, Syafitri UD, Windarsih A, Rohman A, Dachriyanus, Abu Bakar NK, Kusnandar F. Volatile compounds, texture, and color characterization of meatballs made from beef, rat, wild boar, and their mixtures. Heliyon 2022; 8:e10882. [PMID: 36247117 PMCID: PMC9558031 DOI: 10.1016/j.heliyon.2022.e10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/07/2022] [Accepted: 09/28/2022] [Indexed: 10/26/2022] Open
Abstract
The purpose of this research was to characterize the volatile compounds, texture, and color profile of meatballs made from beef, rat, wild boar, and their combinations. Volatile compounds were analyzed using SPME/GC-MS and multivariate data analysis (PCA, PLS-DA). Additionally, several textural features such as hardness, gumminess, chewiness, cohesiveness, and colour (L, a∗, b∗, C, and h) were also analyzed. The findings revealed that texture and color characteristics can only be used to differentiate meatballs based on their raw meat materials when meat adulterants are used in high concentrations (≥50%). PLS-DA analysis of volatile data revealed distinct groupings among various types of meatballs, including meatballs adulterated with rat or wild boar meat at the lowest percentage used in this study (20%). By using VIP and correlation coefficient, the strongest markers in beef, rat, and wild boar meatballs were identified as (Z)-2-amino-5-methyl-benzoic acid, 2-heptenal, and cyclobutanol, respectively. Nonanal was consistently found as a significant marker in the meatballs made from a mixture of beef-rat and beef-wild boar at different ratios. This study demonstrated that the volatile profile of meat is more reliable than physicochemical profiles for developing an analytical tool for quickly identifying undesired meat in meat-derived products.
Collapse
Affiliation(s)
- Lia Amalia
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia,Djuanda University, Faculty of Halal Food Science, Department of Food Technology and Nutrition, Bogor 16720, Indonesia,The Assessment Institute for Foods, Drugs and Cosmetics. Indonesian Council of Ulama, Bogor 16161, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia,Halal Science Center, IPB University, Bogor 16129, Indonesia,Corresponding author.
| | - Purwantiningsih Sugita
- Department of Chemistry, IPB University, Bogor 16680, Indonesia,Halal Science Center, IPB University, Bogor 16129, Indonesia,The Assessment Institute for Foods, Drugs and Cosmetics. Indonesian Council of Ulama, Bogor 16161, Indonesia
| | - Desi Arofah
- Indonesian Center for Rice Research, Sukamandi, Subang 41256, Indonesia
| | | | - Anjar Windarsih
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia,Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Abdul Rohman
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dachriyanus
- Faculty of Pharmacy, Andalas University, Padang 25175, Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Feri Kusnandar
- Department of Food Science and Technology, IPB University, Bogor 16680, Indonesia,Halal Science Center, IPB University, Bogor 16129, Indonesia
| |
Collapse
|
43
|
Liu X, Liang J, Ma Y, Sun J, Liu Y, Gu X, Wang Y. The impact of protein hydrolysis on biogenic amines production during sufu fermentation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Mi T, Wang D, Yao S, Yang H, Che Y, Wu C. Effects of salt concentration on the quality and microbial diversity of spontaneously fermented radish paocai. Food Res Int 2022; 160:111622. [DOI: 10.1016/j.foodres.2022.111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
|
45
|
Tsafack PB, Tsopmo A. Effects of bioactive molecules on the concentration of biogenic amines in foods and biological systems. Heliyon 2022; 8:e10456. [PMID: 36105466 PMCID: PMC9465362 DOI: 10.1016/j.heliyon.2022.e10456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Biogenic amines (BAs) are a group of molecules naturally present in foods that contain amino acids, peptides, and proteins as well as in biological systems. In foods, their concentrations typically increase during processing and storage because of exposure to microorganisms that catalyze their formation by releasing amino acid decarboxylases. The concentrations of BAs above certain values are indicative of unsafe foods due to associate neuronal toxicity, allergenic reactions, and increase risks of cardiovascular diseases. There are therefore various strategies that focus on the control of BAs in foods mostly through elimination, inactivation, or inhibition of the growth of microorganisms. Increasingly, there are works on bioactive compounds that can decrease the concentration of BAs through their antimicrobial activity as well as the inhibition of decarboxylating enzymes that control their formation in foods or amine oxidases and N-acetyltransferase that control the degradation in vivo. This review focusses on the role of food-derived bioactive compounds and the mechanism by which they regulate the concentration of BAs. The findings are that most active molecules belong to polyphenols, one of the largest groups of plant secondary metabolites, additionally other useful +compounds are present in extracts of different herbs and spices. Different mechanisms have been proposed for the effects of polyphenols depending on the model system. Studies on the effects in vivo are limited and there is a lack of bioavailability and transport data which are important to assess the importance of the bioactive molecules.
Collapse
Affiliation(s)
- Patrick Blondin Tsafack
- Nutrition and Functional Food, School of Biosciences and Veterinary Medicine, University of Camerino, Via A. D'Accorso, 16, Camerino, Italy
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| |
Collapse
|
46
|
Esposito L, Mastrocola D, Martuscelli M. Approaching to biogenic amines as quality markers in packaged chicken meat. Front Nutr 2022; 9:966790. [PMID: 36118774 PMCID: PMC9479628 DOI: 10.3389/fnut.2022.966790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Following the chicken meat quality decay remains a tricky procedure. On one hand, food companies need of fast and affordable methods to keep constant higher sensory and safety standards, on the other hand, food scientists and operators find difficult conjugating these exigencies by means of univocal parameters. Food quality definition itself is, in fact, a multi-layered and composite concept in which many features play a part. Thus, here we propose an index that relies on biogenic amines (BAs) evolution. These compounds may indirectly inform about microbial contamination and wrong management, production, and storage conditions of meat and meat products. In this study, three cuts of chicken meat (breast filets, drumsticks, and legs) packed under modified atmosphere, under vacuum, and in air-packaging, stored at +4°C (until to 15 days), were analyzed. Some BAs were combined in an index (BAI) and their evolution was followed. The Thiobarbituric Acid Reactive Species assay (TBARS) was also used as a common reference method. Generally, BAI may better identify the beginning of quality impairment than lipid oxidation spreading. ANOVA statistical analysis has highlighted that the storage time is anyway the most detrimental factor for chicken decay when it is stored in refrigerated rooms (p > 0.01). Despite TBARS still remains a powerful tool for chicken goods, its exclusive use may not be enough to explain quality loss. On the contrary, BAI implementation in fresh meat can give a more complete information combining food safety exigencies with sensory attributes.
Collapse
|
47
|
Andre RS, Mercante LA, Facure MHM, Sanfelice RC, Fugikawa-Santos L, Swager TM, Correa DS. Recent Progress in Amine Gas Sensors for Food Quality Monitoring: Novel Architectures for Sensing Materials and Systems. ACS Sens 2022; 7:2104-2131. [PMID: 35914109 DOI: 10.1021/acssensors.2c00639] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing demand for food production has necessitated the development of sensitive and reliable methods of analysis, which allow for the optimization of storage and distribution while ensuring food safety. Methods to quantify and monitor volatile and biogenic amines are key to minimizing the waste of high-protein foods and to enable the safe consumption of fresh products. Novel materials and device designs have allowed the development of portable and reliable sensors that make use of different transduction methods for amine detection and food quality monitoring. Herein, we review the past decade's advances in volatile amine sensors for food quality monitoring. First, the role of volatile and biogenic amines as a food-quality index is presented. Moreover, a comprehensive overview of the distinct amine gas sensors is provided according to the transduction method, operation strategies, and distinct materials (e.g., metal oxide semiconductors, conjugated polymers, carbon nanotubes, graphene and its derivatives, transition metal dichalcogenides, metal organic frameworks, MXenes, quantum dots, and dyes, among others) employed in each case. These include chemoresistive, fluorometric, colorimetric, and microgravimetric sensors. Emphasis is also given to sensor arrays that record the food quality fingerprints and wireless devices that operate as radiofrequency identification (RFID) tags. Finally, challenges and future opportunities on the development of new amine sensors are presented aiming to encourage further research and technological development of reliable, integrated, and remotely accessible devices for food-quality monitoring.
Collapse
Affiliation(s)
- Rafaela S Andre
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, São Paulo, Brazil
| | - Luiza A Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), 40170-280, Salvador, Bahia, Brazil
| | - Murilo H M Facure
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, São Paulo, Brazil.,PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905, Sao Carlos, São Paulo, Brazil
| | - Rafaela C Sanfelice
- Science and Technology Institute, Federal University of Alfenas, 37715-400, Poços de Caldas, Minas Gerais, Brazil
| | - Lucas Fugikawa-Santos
- São Paulo State University - UNESP, Institute of Geosciences and Exact Sciences, 13506-700, Rio Claro, São Paulo, Brazil
| | - Timothy M Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, São Paulo, Brazil.,PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905, Sao Carlos, São Paulo, Brazil
| |
Collapse
|
48
|
Zhang D, Zhu L, Jiang Q, Ge X, Fang Y, Peng J, Liu Y. Real-time and Rapid Prediction of TVB-N of Livestock and Poultry Meat at Three Depths for Freshness Evaluation using a Portable Fluorescent Film Sensor. Food Chem 2022; 400:134041. [DOI: 10.1016/j.foodchem.2022.134041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
|
49
|
Determination of spermine and spermidine in meat with a ratiometric fluorescence nanoprobe and a combinational logic gate. Food Chem 2022; 384:132459. [DOI: 10.1016/j.foodchem.2022.132459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/28/2023]
|
50
|
Wireless portable bioelectronic nose device for multiplex monitoring toward food freshness/spoilage. Biosens Bioelectron 2022; 215:114551. [PMID: 35839622 DOI: 10.1016/j.bios.2022.114551] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
Monitoring food freshness/spoilage is important to ensure food quality and safety. Current methods of food quality monitoring are mostly time-consuming and labor intensive processes that require massive analytical equipment. In this study, we developed a portable bioelectronic nose (BE-nose) integrated with trace amine-associated receptor (TAAR) nanodiscs (NDs), allowing food quality monitoring via the detection of food spoilage indicators, including the biogenic amines cadaverine (CV) and putrescine (PT). The olfactory receptors TAAR13c and TAAR13d, which have specific affinities for CV and PT, were produced and successfully reconstituted in ND structures. TAAR13 NDs BE-nose-based side-gated field-effect transistor (SG-FET) system was constructed by utilizing a graphene micropattern (GM) into which two types of olfactory NDs (TAAR13c ND and TAAR13d ND) were introduced, and this system showed ultrahigh sensitivity for a limit of detection (LOD) of 1 fM for CV and PT. Moreover, the binding affinities between the TAAR13 NDs and the indicators were confirmed by a tryptophan fluorescence quenching assay and biosimulations, in which the specific binding site was confirmed. Gas-phase indicators were detected by the TAAR13 NDs BE-nose platform, and the LODs for CV and PT were confirmed to be 26.48 and 7.29 ppb, respectively. In addition, TAAR13 NDs BE-nose was fabricated with commercial gas sensors as a portable platform for the measurement of NH3 and H2S, multiplexed monitoring was achieved with similar performance, and the change ratio of the indicators was observed in a real sample. The integration of commercial gas sensors on a BE-nose enhanced the accuracy and reliability for the quality monitoring of real food samples. These results indicate that the portable TAAR13 NDs BE-nose can be used to monitor CV and PT over a wide range of concentrations, therefore, the electronic nose platform can be utilized for monitoring the freshness/spoilage step in various foods.
Collapse
|