1
|
Aggarwal A, Mishra A, Tabassum N, Kim YM, Khan F. Detection of Mycotoxin Contamination in Foods Using Artificial Intelligence: A Review. Foods 2024; 13:3339. [PMID: 39456400 PMCID: PMC11507438 DOI: 10.3390/foods13203339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Mycotoxin contamination of foods is a major concern for food safety and public health worldwide. The contamination of agricultural commodities employed by humankind with mycotoxins (toxic secondary metabolites of fungi) is a major risk to the health of the human population. Common methods for mycotoxin detection include chromatographic separation, often combined with mass spectrometry (accurate but time-consuming to prepare the sample and requiring skilled technicians). Artificial intelligence (AI) has been introduced as a new technique for mycotoxin detection in food, providing high credibility and accuracy. This review article provides an overview of recent studies on the use of AI methods for the discovery of mycotoxins in food. The new approach demonstrated that a variety of AI technologies could be correlated. Deep learning models, machine learning algorithms, and neural networks were implemented to analyze elaborate datasets from different analytical platforms. In addition, this review focuses on the advancement of AI to work concomitantly with smart sensing technologies or other non-conventional techniques such as spectroscopy, biosensors, and imaging techniques for rapid and less damaging mycotoxin detection. We question the requirement for large and diverse datasets to train AI models, discuss the standardization of analytical methodologies, and discuss avenues for regulatory approval of AI-based approaches, among other top-of-mind issues in this domain. In addition, this research provides some interesting use cases and real commercial applications where AI has been able to outperform other traditional methods in terms of sensitivity, specificity, and time required. This review aims to provide insights for future directions in AI-enabled mycotoxin detection by incorporating the latest research results and stressing the necessity of multidisciplinary collaboration among food scientists, engineers, and computer scientists. Ultimately, the use of AI could revolutionize systems monitoring mycotoxins, improving food safety and safeguarding global public health.
Collapse
Affiliation(s)
- Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India; (A.A.); (A.M.)
| | - Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India; (A.A.); (A.M.)
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Ponz-Perelló P, Esteve-Turrillas FA, Cortés MÁ, Herranz J, Pardo O. Development and validation of an analytical method for determination of citrinin in red rice and red yeast rice-based food supplements by ultra-high performance liquid chromatography tandem mass spectrometry. Food Chem 2024; 455:139941. [PMID: 38843711 DOI: 10.1016/j.foodchem.2024.139941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Citrinin is a hepato-nephrotoxic mycotoxin produced by fungal species. The Monascus purpureus fungus plays a crucial role in the fermentation of red rice to produce red yeast rice-based food supplements, which represent the primary source of human exposure to citrinin. In this study, a simple and sensitive analytical method was successfully developed and validated for the citrinin determination in these products. The extraction process involved a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) step and citrinin determination by ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The proposed method provided satisfactory linearity, percentage of recovery from 82 to 104% with relative standard deviations (RSD) lower than 14%, and limits of detection and quantification of 0.07 μg/Kg and 0.24 μg/kg, respectively. Among the 14 samples analyzed, citrinin was found in two red rice samples (0.24 and 0.46 μg/kg) and in six food supplements (from 0.44 to 87 μg/kg).
Collapse
Affiliation(s)
- Paula Ponz-Perelló
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St, 46100 Burjassot, Spain
| | | | - Miguel Ángel Cortés
- Public Health Laboratory of Valencia, Avenida Cataluña, 21, 46020 Valencia, Spain
| | - Julia Herranz
- Public Health Laboratory of Valencia, Avenida Cataluña, 21, 46020 Valencia, Spain
| | - Olga Pardo
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St, 46100 Burjassot, Spain.
| |
Collapse
|
3
|
Xu L, Luo ML, Dai JJ, Zhu H, Li P, Wang D, Yang FQ. Applications of nanomaterials with enzyme-like activity for the detection of phytochemicals and hazardous substances in plant samples. Chin Med 2024; 19:140. [PMID: 39380087 PMCID: PMC11462967 DOI: 10.1186/s13020-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Plants such as herbs, vegetables, fruits, and cereals are closely related to human life. Developing effective testing methods to ensure their safety and quantify their active components are of significant importance. Recently, nanomaterials with enzyme-like activity (known as nanozymes) have been widely developed in various assays, including colorimetric, fluorescence, chemiluminescence, and electrochemical analysis. This review presents the latest advances in analyzing phytochemicals and hazardous substances in plant samples based on nanozymes, including some active ingredients, organophosphorus pesticides, heavy metal ions, and mycotoxins. Additionally, the current shortcomings and challenges of the actual sample analysis were discussed.
Collapse
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Jing-Jing Dai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Huan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
4
|
Palmieri S, Eugelio F, Della Valle F, Fanti F, Buccioni F, Ricci A, Sergi M, Del Carlo M, Compagnone D. Molecularly imprinted polymer coupled to UHPLC-MS/MS for the analysis of phomopsins in lupin samples. Talanta 2024; 278:126508. [PMID: 39002255 DOI: 10.1016/j.talanta.2024.126508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
The demand for plant-based protein sources in the food industry has significantly increased in recent years, leading to the introduction of legume-based products as meat substitutes. However, concerns regarding food quality have emerged, particularly related to the presence of mycotoxins. This study addresses the need for the sensitive detection of phomopsins (PHOs), a class of peptide-based toxins. A selective extraction method using molecularly imprinted polymer (MIP) coupled with ultra-high performance liquid chromatography and tandem mass spectrometry (UHPLC-MS/MS) was focused on the most toxic Phomopsin A (PHO-A). A rapid ultrasonochemical synthesis of MIP (5 min) was proposed and its performance was optimized in response to various factors, including the choice of dummy template and the selection of the monomer. The methacrylic acid-vinyl pyridine (MAA-VP) MIP exhibited high selectivity and affinity for PHO-A. The method was tested in lupin samples and the validation, according to SANTE/11312/2021 international guidelines, gave excellent recovery (80-90 %), low matrix effects, and high accuracy and precision. Real samples analysis confirmed the presence of PHO-A in artificially fungal inoculated lupins, with levels ranging from 0.377 to 0.576 mg kg-1. In order to identify further PHOs, a semi-untargeted approach using multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) was developed. PHO-B, PHO-D, PHO-E and PHO-P, rarely previously reported in lupin matrix, were tentatively identified. This study accounts for the effectiveness of MIP-based extraction coupled with UHPLC-triple quadrupole with linear ionic trap-MS/MS (UHPLC-QqQ-LIT-MS/MS) for quantification of PHO-A and putative detection of other PHOs, offering a promising method for investigating this class of toxins in food.
Collapse
Affiliation(s)
- Sara Palmieri
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Fabiola Eugelio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Francesco Della Valle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Francesco Buccioni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Antonella Ricci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Michele Del Carlo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
5
|
Flores-Ramírez AY, González-Estrada RR, Chacón-López MA, García-Magaña MDL, Montalvo-González E, Álvarez-López A, Rodríguez-López A, López-García UM. Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors. Anal Biochem 2024; 693:115600. [PMID: 38964698 DOI: 10.1016/j.ab.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.
Collapse
Affiliation(s)
- Ana Yareli Flores-Ramírez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Ramsés Ramón González-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Martina Alejandra Chacón-López
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Alejandra Álvarez-López
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Aeropuerto, Centro Universitario, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Querétaro, Mexico
| | - Aarón Rodríguez-López
- Universidad Politécnica de Santa Rosa Jáuregui, Carretera Federal 57, Querétaro-San Luis Potosí km 31-150, Parque Industrial Querétaro, C.P. 76220, Santiago de Querétaro, Querétaro, Mexico.
| | - Ulises Miguel López-García
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico.
| |
Collapse
|
6
|
Wan YC, Kong ZL, Wu YHS, Huang CN, Ogawa T, Lin JT, Yang DJ. Establishment of appropriate conditions for the efficient determination of multiple mycotoxins in tea samples and assessment of their drinking risks. Food Chem 2024; 463:141438. [PMID: 39353305 DOI: 10.1016/j.foodchem.2024.141438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Conditions were determined for rapid, convenient, and efficient determination of 16 common mycotoxins in tea samples. Mycotoxins in tea leaves and tea infusion samples were extracted using solid-liquid extraction/liquid-liquid extraction combined with ultrasonic-assisted extraction. The extraction solvent was 2-butanone/ethyl acetate (9/1 v/v) with 0.1 % formic acid. The established conditions enabled the analysis of these mycotoxins by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) in 5.5 min. In addition, HPLC with a temperature-controlled fluorescence detector was able to simultaneously determine 8 mycotoxins with fluorescent properties in 10 min without derivatization. Aflatoxin M1 (2.15 and 3.01 μg/kg), fumonisin B2 (198.89 μg/kg), and zearalenone (87.54 μg/kg) could be detected in commercially available pu-erh tea, green tea, and black tea products, and their total transfer rates from the products to brewed tea infusions were 64.08-65.13 %, 90.59 %, and 25.99 %, respectively. The risks of drinking mycotoxins from these tea infusions mostly showed low levels of concern.
Collapse
Affiliation(s)
- Ying-Chun Wan
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung 20224, Taiwan, ROC; Testing Laboratory, Creation Food Co. Ltd., 3F No. 9, Ln. 168, Xingshan Road, Taipei 114066, Taiwan, ROC
| | - Zwe-Lin Kong
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung 20224, Taiwan, ROC
| | - Yi-Hsieng Samuel Wu
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Chien-Ni Huang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Tomohisa Ogawa
- Graduate School of Agricultural Science, Tohoku University, 468-1 AzaAoba Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Jau-Tien Lin
- Department of Medical Applied Chemistry, Chung Shan Medical University, and Department of Medical Education, Chung Shan Medical University Hospital, 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Deng-Jye Yang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC; Department of Nutrition and Master Program of Food and Drug Safety, China Medical University, 100, Sec. 1, Economic and Trade Road, Taichung 406040, Taiwan, ROC; Department of Food Nutrition and Health Biotechnology, Asia University, 500, Lioufeng Road., Wufeng, Taichung 41354, Taiwan, ROC.
| |
Collapse
|
7
|
Steiner D, Bartók T, Sulyok M, Szekeres A, Varga M, Horváth L, Rost H. Global Perspectives on Mycotoxin Reference Materials (Part I): Insights from Multi-Supplier Comparison Study Including Aflatoxin B1, Deoxynivalenol and Zearalenone. Toxins (Basel) 2024; 16:397. [PMID: 39330855 PMCID: PMC11435901 DOI: 10.3390/toxins16090397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
We conducted a comprehensive examination of liquid mycotoxin reference standards. A total of 30 different standards were tested, each containing 10 samples of three distinct substances: Aflatoxin B1, Deoxynivalenol, and Zearalenone. The standards were sourced from 10 different global market leading manufacturers. To facilitate comparison, all the standard sets were adjusted to the same concentration level. The standards were analyzed using the techniques LC-MS/MS, HPLC-DAD, and LC-HRMS to assess their quality attributes. Regarding the validation of the reference values, it was observed that 30% of the suppliers provided reference standards that were either below the lower acceptance limit or above the higher acceptance limit, confirmed by both the LC-MS/MS and HPLC-DAD methods. Furthermore, a total of 12 impurities were found in the DON standards, 10 in the AFB1 standards, and 8 in the ZON standards, distributed across all the suppliers. Therefore, this study suggests relevant adjustments to the ISO 17034 standard, proposing that the purity of a raw material should be uniformly based on q-NMR analysis, as most manufacturers state the purity of their certificates is determined using HPLC-UV or LC-MS/MS. Liquid standards with a shelf life of ≤1 year should not exceed an uncertainty of 3%. Standards that have a longer shelf life should not have more than 5% uncertainty. This study also emphasizes the importance of stability. The standards should undergo continuous long-term monitoring; otherwise, products may exhibit a target value of only 80%, as seen in one instance. It is also recommended to include proof of HPLC and LC-MS/MS analyses on the certificate of each released batch of a final product.
Collapse
Affiliation(s)
- David Steiner
- LVA GmbH, Magdeburggasse 10, 3400 Klosterneuburg, Austria;
| | - Tibor Bartók
- Fumizol Ltd., Kisfaludy u. 6/B, H-6725 Szeged, Hungary; (T.B.); (L.H.)
| | - Michael Sulyok
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Strasse 20, 3430 Tulln, Austria;
| | - András Szekeres
- Department of Biotechnology and Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (A.S.); (M.V.)
| | - Mónika Varga
- Department of Biotechnology and Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (A.S.); (M.V.)
| | - Levente Horváth
- Fumizol Ltd., Kisfaludy u. 6/B, H-6725 Szeged, Hungary; (T.B.); (L.H.)
| | - Helmut Rost
- LVA GmbH, Magdeburggasse 10, 3400 Klosterneuburg, Austria;
| |
Collapse
|
8
|
Candido FS, Sartori AV, da Nobrega AW. A miniaturized QuEChERS and UPLC-MS/MS method for the determination of mycotoxins in cashew nuts. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1158-1170. [PMID: 39008629 DOI: 10.1080/19440049.2024.2376156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
This study aimed to develop and validate a multi-mycotoxin analysis method applied to cashew nuts by employing a miniaturized QuEChERS method followed by determination by ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Satisfactory recoveries for the concentrations 1, 10 and 30 ng g-1, ranging from 66% (fumonisin B1) to 110% (ochratoxin A) and relative standard deviations lower than 9% (fumonisin B2) were obtained for the target compounds. Limits of quantification ranged from 0.004 ng g-1 (sterigmatocystin) to 0.59 ng g-1 (alternariol). The applicability of the analytical method was verified by analyzing 30 cashew nut samples from the city of Rio de Janeiro, RJ, southeastern Brazil. Aflatoxins M1, G2, G1, B2, B1, ochratoxin A and sterigmatocystin were detected, respectively, in 27%, 10%, 17%, 30%, 30%, 30% and 50% of the analyzed samples, at maximum concentrations of 0.56, 0.67, 1.43, 2.02, 4.93, 4.81, and 0.35 ng g-1. The maximum limit established by Brazilian legislation for aflatoxins was not exceeded by any of the analyzed samples.
Collapse
Affiliation(s)
- Felipe Stanislau Candido
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Andre Victor Sartori
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | | |
Collapse
|
9
|
He Y, Wang H, Yu Z, Tang X, Zhou M, Guo Y, Xiong B. A disposable immunosensor array using cellulose paper assembled chemiresistive biosensor for simultaneous monitoring of mycotoxins AFB1 and FB1. Talanta 2024; 276:126145. [PMID: 38723473 DOI: 10.1016/j.talanta.2024.126145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/15/2024] [Accepted: 04/20/2024] [Indexed: 06/14/2024]
Abstract
Due to the common contamination of multiple mycotoxins in food, which results in stronger toxicity, it is particularly important to simultaneously test for various mycotoxins for the protection of human health. In this study, a disposable immunosensor array with low-cost was designed and fabricated using cellulose paper, polydimethylsiloxane (PDMS), and semiconducting single-walled carbon nanotubes (s-SWCNTs), which was modified with specific antibodies for mycotoxins AFB1 and FB1 detection. The strategy for fabricating the immunosensor array with two individual channels involved a two-step protocol starting with the form of two kinds of carbon films by depositing single-wall carbon nanotubes (SWCNTs) and s-SWCNTs on the cellulose paper as the conductive wire and sensing element, followed by the assembly of chemiresistive biosensor with SWCNTs strip as the wire and s-SWCNTs as the sensing element. After immobilizing AFB1-bovine serum albumin (AFB1-BSA) and FB1-bovine serum albumin (FB1-BSA) separately on the different sensing regions, the formation of mycotoxin-BSA-antibody immunocomplexes transfers to electrochemical signal, which would change with the different concentrations of free mycotoxins. Under optimal conditions, the immunosensor array achieved a limit of detection (LOD) of 0.46 pg/mL for AFB1 and 0.34 pg/mL for FB1 within a wide dynamic range from 1 pg/mL to 20 ng/mL. Furthermore, the AFB1 and FB1 spiked in the ground corn and wheat extracts were detected with satisfactory recoveries, demonstrating the excellent practicality of this established method for simultaneous detection of mycotoxins.
Collapse
Affiliation(s)
- Yue He
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Zhixue Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Mengting Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
10
|
Wang C, Sha T, Lu J, Guan Y, Geng X. A Miniaturized and Highly Sensitive "Windmill" Three-Channel Fluorescence Detector for Simultaneous Detection of Various Mycotoxins. Anal Chem 2024; 96:10121-10126. [PMID: 38874092 DOI: 10.1021/acs.analchem.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A novel "windmill" three-channel light-emitting diode induced fluorescence detector (LED-IF) was proposed to maximize the excitation efficiency and fluorescence collection efficiency. Compared with the typical collinear arrangement, the fluorescence intensity of the three channels was increased by 7.85, 3.88, and 2.94 times, respectively. The compact shaping optical path was designed to obtain higher excitation efficiency and a lower background stray light effect caused by high divergence angle high-power ultraviolet (UV)-LEDs simultaneously, which increased the sensitivity of three channels by 4.6 to 5.7 times. It was found that using a photodiode (PD) with a flat window and a larger photosensitive surface can collect the Lambertian emission fluorescence in the flow cell more efficiently, increasing the signal-to-noise ratio of each channel 1.3 to 1.8 times. The limits of detection (LODs, 3 times peak-peak noise) of aflatoxin B2 (AFB2), ochratoxin (OTA), and zearalenone (ZEN) were 0.33, 1.80, and 28.2 ng/L, respectively. Finally, six mycotoxins were analyzed simultaneously by the detector coupling with HPLC. The results showed that the sensitivity of the detector was at the best level to date, which was better than that of the top commercial fluorescence detectors (FLDs). The developed detector has the advantages of having small volume, low cost, and long lifetime and being robust, which has wide application and market prospects.
Collapse
Affiliation(s)
- Chuanliang Wang
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Sha
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
- South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Jiashan Lu
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Yafeng Guan
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
- Institute of Deep-Sea Science & Engineering, CAS, 28 Luhuitou Road, Sanya 572000, China
| | - Xuhui Geng
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
11
|
Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F. Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case study. Crit Rev Food Sci Nutr 2024; 64:6318-6360. [PMID: 36688280 DOI: 10.1080/10408398.2023.2168248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Global population growth tremendously impacts the global food industry, endangering food safety and quality. Mycotoxins, particularly Ochratoxin-A (OTA), emerge as a food chain production threat, since it is produced by fungus that contaminates different food species and products. Beyond this, OTA exhibits a possible human toxicological risk that can lead to carcinogenic and neurological diseases. A selective, sensitive, and reliable OTA biodetection approach is essential to ensure food safety. Current detection approaches rely on accurate and time-consuming laboratory techniques performed at the end of the food production process, or lateral-flow technologies that are rapid and on-site, but do not provide quantitative and precise OTA concentration measurements. Nanoengineered optical biosensors arise as an avant-garde solution, providing high sensing performance, and a fast and accurate OTA biodetection screening, which is attractive for the industrial market. This review core presents and discusses the recent advancements in optical OTA biosensing, considering engineered nanomaterials, optical transduction principle and biorecognition methodologies. Finally, the major challenges and future trends are discussed, and current patented OTA optical biosensors are emphasized for a particular promising detection method.
Collapse
Affiliation(s)
- Diana I Meira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
| | - Ana I Barbosa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| |
Collapse
|
12
|
Ning X, Ye Y, Ji J, Hui Y, Li J, Chen P, Jin S, Liu T, Zhang Y, Cao J, Sun X. Restricted-Access Media Column Switching Online Solid-Phase Extraction UHPLC-MS/MS for the Determination of Seven Type B Trichothecenes in Whole-Grain Preprocessed Foods and Human Exposure Risk Assessment. TOXICS 2024; 12:336. [PMID: 38787115 PMCID: PMC11126074 DOI: 10.3390/toxics12050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
With increasing health awareness and the accelerating pace of life, whole-grain prepared foods have gained popularity due to their health benefits and convenience. However, the potential risk of type B trichothecene toxins has also increased, and these mycotoxins in such foods are rarely regulated. In this study, a quantitative method combining a single-valve dual-column automatic online solid-phase extraction system with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the first time using restricted-access media columns. This method can simultaneously determine trace residues of seven type B trichothecenes within 15 min. The method is convenient, sensitive (limit of detection and quantification of 0.05-0.6 μg/kg and 0.15-2 μg/kg, respectively), accurate (recovery rates of 90.3%-106.6%, relative standard deviation < 4.3%), and robust (>1000 times). The established method was applied to 160 prepared food samples of eight categories sold in China. At least one toxin was detected in 70% of the samples. Whole-wheat dumpling wrappers had the highest contamination rate (95%) and the highest total content of type B trichothecenes in a single sample (2077.3 μg/kg). Exposure risk assessment indicated that the contamination of whole-grain prepared foods has been underestimated. The total health risk index of whole-wheat dumpling wrappers, which are susceptible to deoxynivalenol, reached 136.41%, posing a significant threat to human health. Effective measures urgently need to be taken to control this risk.
Collapse
Affiliation(s)
- Xiao Ning
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| | - Yanchun Hui
- Sanyo Fine Trading Co., Ltd., Beijing 100176, China
| | - Jingyun Li
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Po Chen
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Shaoming Jin
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Tongtong Liu
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| | - Jin Cao
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| |
Collapse
|
13
|
Bastidas-Caldes C, Vasco-Julio D, Huilca-Ibarra M, Guerrero-Freire S, Ledesma-Bravo Y, de Waard JH. Addressing the Concern of Orange-Yellow Fungus Growth on Palm Kernel Cake: Safeguarding Dairy Cattle Diets for Mycotoxin-Producing Fungi. Microorganisms 2024; 12:937. [PMID: 38792767 PMCID: PMC11124023 DOI: 10.3390/microorganisms12050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Palm kernel cake (PKC), a byproduct of palm oil extraction, serves an important role in Ecuador's animal feed industry. The emergence of yellow-orange fungal growth in PKC on some cattle farms in Ecuador sparked concerns within the cattle industry regarding a potential mycotoxin-producing fungus on this substrate. Due to the limited availability of analytical chemistry techniques in Ecuador for mycotoxin detection, we chose to isolate and identify the fungus to determine its association with mycotoxin-producing genera. Through molecular identification via ITS region sequencing, we identified the yellow-orange fungus as the yeast Candida ethanolica. Furthermore, we isolated two other fungi-the yeast Pichia kudriavzevii, and the fungus Geotrichum candidum. Molecular identification confirmed that all three species are not classified as mycotoxin-producing fungi but in contrast, the literature indicates that all three have demonstrated antifungal activity against Aspergillus and Penicillium species, genera associated with mycotoxin production. This suggests their potential use in biocontrol to counter the colonization of harmful fungi. We discuss preventive measures against the fungal invasion of PKC and emphasize the importance of promptly identifying fungi on this substrate. Rapid recognition of mycotoxin-producing and pathogenic genera holds the promise of mitigating cattle intoxication and the dissemination of mycotoxins throughout the food chain.
Collapse
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| | - David Vasco-Julio
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México 04510, Mexico;
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62050, Mexico
| | - Maria Huilca-Ibarra
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| | - Salomé Guerrero-Freire
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
- Programa de Doctorado, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1063ACV, Argentina
| | - Yanua Ledesma-Bravo
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| | - Jacobus H. de Waard
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| |
Collapse
|
14
|
Zhang D, Luo T, Cai X, Zhao NN, Zhang CY. Recent advances in nucleic acid signal amplification-based aptasensors for sensing mycotoxins. Chem Commun (Camb) 2024; 60:4745-4764. [PMID: 38647208 DOI: 10.1039/d4cc00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Mycotoxin contamination in food products may cause serious health hazards and economic losses. The effective control and accurate detection of mycotoxins have become a global concern. Even though a variety of methods have been developed for mycotoxin detection, most conventional methods suffer from complicated operation procedures, low sensitivity, high cost, and long assay time. Therefore, the development of simple and sensitive methods for mycotoxin assay is highly needed. The introduction of nucleic acid signal amplification technology (NASAT) into aptasensors significantly improves the sensitivity and facilitates the detection of mycotoxins. Herein, we give a comprehensive review of the recent advances in NASAT-based aptasensors for assaying mycotoxins and summarize the principles, features, and applications of NASAT-based aptasensors. Moreover, we highlight the challenges and prospects in the field, including the simultaneous detection of multiple mycotoxins and the development of portable devices for field detection.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ting Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangyue Cai
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
15
|
Logan N, Cao C, Freitag S, Haughey SA, Krska R, Elliott CT. Advancing Mycotoxin Detection in Food and Feed: Novel Insights from Surface-Enhanced Raman Spectroscopy (SERS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309625. [PMID: 38224595 DOI: 10.1002/adma.202309625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 01/17/2024]
Abstract
The implementation of low-cost and rapid technologies for the on-site detection of mycotoxin-contaminated crops is a promising solution to address the growing concerns of the agri-food industry. Recently, there have been significant developments in surface-enhanced Raman spectroscopy (SERS) for the direct detection of mycotoxins in food and feed. This review provides an overview of the most recent advancements in the utilization of SERS through the successful fabrication of novel nanostructured materials. Various bottom-up and top-down approaches have demonstrated their potential in improving sensitivity, while many applications exploit the immobilization of recognition elements and molecular imprinted polymers (MIPs) to enhance specificity and reproducibility in complex matrices. Therefore, the design and fabrication of nanomaterials is of utmost importance and are presented herein. This paper uncovers that limited studies establish detection limits or conduct validation using naturally contaminated samples. One decade on, SERS is still lacking significant progress and there is a disconnect between the technology, the European regulatory limits, and the intended end-user. Ongoing challenges and potential solutions are discussed including nanofabrication, molecular binders, and data analytics. Recommendations to assay design, portability, and substrate stability are made to help improve the potential and feasibility of SERS for future on-site agri-food applications.
Collapse
Affiliation(s)
- Natasha Logan
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Cuong Cao
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Material and Advanced Technologies for Healthcare, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Stephan Freitag
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 20, Tulln, 3430, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, Austria
| | - Simon A Haughey
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Rudolf Krska
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 20, Tulln, 3430, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, Austria
| | - Christopher T Elliott
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Khong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
16
|
Okechukwu VO, Adelusi OA, Kappo AP, Njobeh PB, Mamo MA. Aflatoxins: Occurrence, biosynthesis, mechanism of action and effects, conventional/emerging detection techniques. Food Chem 2024; 436:137775. [PMID: 37866099 DOI: 10.1016/j.foodchem.2023.137775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Aflatoxins (AFs) are toxic secondary metabolites prevalent in various food and agricultural products, posing significant challenges to global food safety. The detection and quantification of AFs through high-precision analytical techniques are crucial in mitigating AF contamination levels and associated health risks. Variousmethods,including conventional and emerging techniques, have been developed for detecting and quantifyingAFsinfood samples. This review provides an in-depth analysis of the global occurrence of AF in food commodities, covering their biosynthesis, mode of action, and effects on humans and animals. Additionally, the review discusses different conventional strategies, including chromatographic and immunochemical approaches, for AF quantification and identification in food samples. Furthermore, emerging AF detection strategies, such as solid-state gas sensors and electronic nose technologies, along with their applications, limitations, and future perspectives, were reviewed. Sample purification, along with their respective advantages and limitations, are also discussed herein.
Collapse
Affiliation(s)
- Viola O Okechukwu
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Oluwasola A Adelusi
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Messai A Mamo
- Department of Chemical Sciences, PO Box 2028, Doornfontein Campus, University of Johannesburg, South Africa.
| |
Collapse
|
17
|
Pavlenko R, Berzina Z, Reinholds I, Bartkiene E, Bartkevics V. An Occurrence Study of Mycotoxins in Plant-Based Beverages Using Liquid Chromatography-Mass Spectrometry. Toxins (Basel) 2024; 16:53. [PMID: 38251269 PMCID: PMC10821093 DOI: 10.3390/toxins16010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins are toxic mold metabolites that can adversely affect human and animal health. More than 400 mycotoxins have been identified so far. Cereals and nuts are the predominant mycotoxin-contaminated foodstuffs. Plant-based drinks produced from cereals, nuts, and legumes have grown in popularity. The mycotoxins accumulated in these crops may transfer to these beverages. A liquid chromatography-tandem mass spectrometry method was developed and optimized for the assessment of 22 mycotoxins in commercially available plant-based drinks in Latvia and Lithuania. A total of 64% of the seventy-two analyzed beverages were positive for one to sixteen mycotoxins, with deoxynivalenol, beauvericin, and enniatins A, B, B1, T-2, and HT-2 toxins detected most frequently. The European Commission has not yet set guidelines for the maximum mycotoxin concentrations in plant-based beverages, nor has the European Food Safety Authority conducted a risk assessment. Therefore, acute exposure studies were provided for the Latvian population based on the assumed replacement of dairy milk with plant-based beverages to ascertain the safety of plant-based milk substitutes. Based on the observed levels of mycotoxin prevalence and contamination levels and assumed exposure, it can be concluded that tested plant-based beverages may be relatively safe. However, exposure to emerging mycotoxins should be considered.
Collapse
Affiliation(s)
- Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (R.P.); (Z.B.); (V.B.)
| | - Zane Berzina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (R.P.); (Z.B.); (V.B.)
| | - Ingars Reinholds
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (R.P.); (Z.B.); (V.B.)
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania;
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (R.P.); (Z.B.); (V.B.)
| |
Collapse
|
18
|
Cavalera S, Anfossi L, Di Nardo F, Baggiani C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins (Basel) 2024; 16:47. [PMID: 38251263 PMCID: PMC10818578 DOI: 10.3390/toxins16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins are toxic metabolites of molds which can contaminate food and beverages. Because of their acute and chronic toxicity, they can have harmful effects when ingested or inhaled, posing severe risks to human health. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but the direct application of these methods on real samples is not straightforward because of matrix complexity, and clean-up and preconcentration steps are needed, more and more requiring the application of highly selective solid-phase extraction materials. Molecularly imprinted polymers (MIPs) are artificial receptors mimicking the natural antibodies that are increasingly being used as a solid phase in extraction methods where selectivity towards target analytes is mandatory. In this review, the state-of-the-art about molecularly imprinted polymers as solid-phase extraction materials in mycotoxin contamination analysis will be discussed, with particular attention paid to the use of mimic molecules in the synthesis of mycotoxin-imprinted materials, to the application of these materials to food real samples, and to the development of advanced extraction methods involving molecular imprinting technology.
Collapse
Affiliation(s)
| | | | | | - Claudio Baggiani
- Laboratory of Bioanalytical Chemistry, Department of Chemistry, University of Torino, 10125 Torino, Italy; (S.C.); (L.A.); (F.D.N.)
| |
Collapse
|
19
|
Campolina GA, Cardoso MDG, Freire CS, Caetano ARS, Campos ABDS, Ferreira VRF, Alves E, Nelson DL, Batista LR. Essential oils from Cuminum cyminum and Laurus nobilis and their principal constituents: evaluation of antifungal and antimycotoxigenic potential in Aspergillus species. FEMS Microbiol Lett 2024; 371:fnae081. [PMID: 39363191 DOI: 10.1093/femsle/fnae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/18/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
The antifungal and antimycotoxigenic activities of the essential oils (EO) from Cuminum cyminum and Laurus nobilis, and their respective principal compounds, cuminaldehyde and 1,8-cineole, were evaluated against fungi of the genus Aspergillus: A. carbonarius, A. niger, A. ochraceus, and A. westerdijkiae. The antifungal activity was determined by the contact method and the mycelial growth of the fungi was evaluated. Scanning electron microscopic (SEM) images were obtained to suggest modes of action of the compounds analysed. The antimycotoxigenic activity was determined by high-performance liquid chromatograph. Aspergillus carbonarius was completely inhibited by cumin EO (500 µl l-1), by laurel EO and by cuminaldehyde (5000 µl l-1). The cumin EO (500 µl l-1) completely inhibited the growth of A. niger. All the samples inhibited the mycelial growth of A. ochraceus, especially cumin EO and cuminaldehyde (250 µl l-1). Aspergillus westerdijkiae was completely inhibited by cumin EO and cuminaldehyde (1000 µl l-1), by laurel EO and 1,8-cineole (10 000 µl l-1). A decrease in the production of ochratoxin A (OTA) was observed post-treatment, except in A. ochraceus, only inhibited by laurel EO. SEM images showed morphological changes in fungal structures and spore inhibition post-treatment. The results confirmed the antifungal and antimycotoxigenic effect of EO and their principal constituents on fungi evaluated.
Collapse
Affiliation(s)
- Gabriela Aguiar Campolina
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | - Maria das Graças Cardoso
- Chemistry Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | - Carolina Salles Freire
- Chemistry Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | | | | | | | - Eduardo Alves
- Phytopathology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Luis Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-900MG, Brazil
| |
Collapse
|
20
|
Deng H, Xu Z, Luo L, Gao Y, Zhou L, Chen X, Chen C, Li B, Yin Q. High-throughput detection and dietary exposure risk assessment of 44 mycotoxins in Mango, Litchi, Longan, and their products in South China. Food Chem X 2023; 20:101002. [PMID: 38144736 PMCID: PMC10740044 DOI: 10.1016/j.fochx.2023.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/07/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Mycotoxins exposure from food can trigger serious health hazards. This study aimed to establish an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous detection of 44 mycotoxins in fruits and their products, followed by dietary exposure risk assessment. The optimized UPLC-MS/MS method exhibited a good linear relationship with correlation coefficients ≥ 0.99041. The limits of detection (LOD) and the limits of quantification (LOQ) were within the range of 0.003 ∼ 0.700 μg/kg and 0.01 ∼ 2.00 μg/kg, respectively. The three fruits and their corresponding value-added products, with a total sampling size of 42, were subjected to analysis and detected with mycotoxins. Further dietary exposure risk assessment revealed that the hazard quotient (HQ) and hazard index (HI) of mycotoxins were 1.213 ∼ 60.032 % and 5.573 ∼ 93.750 %, indicating a low risk for Chinese consumers. However, we still need be cautious about 15-acetyl-deoxynivalenol (15-ADON), as it had 78.6 % occurrence among all samples. This work provides an accurate analysis strategy for 44 mycotoxins and contributes to mycotoxins supervision.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry of Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510641, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510641, China
| | - Yunkai Gao
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Lingyu Zhou
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Xiaomei Chen
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Chunquan Chen
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Bei Li
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| | - Qingchun Yin
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570311, China
| |
Collapse
|
21
|
Munjanja BK, Nomngongo PN, Mketo N. Mycotoxins in Vegetable Oils: A Review of Recent Developments, Current Challenges and Future Perspectives in Sample Preparation, Chromatographic Determination, and Analysis of Real Samples. Crit Rev Anal Chem 2023:1-14. [PMID: 38133964 DOI: 10.1080/10408347.2023.2286642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Mycotoxins are toxic compounds that are formed as secondary metabolites by some fungal species that contaminate crops during pre- and postharvest stages. Exposure to mycotoxins can lead to adverse health effects in humans, such as carcinogenicity, mutagenicity, and teratogenicity. Hence, there is a need to develop analytical methods for their determination in vegetable oils that possess high sensitivity and selectivity. In the current review (116 references), the recent developments, current challenges, and perspectives in sample preparation techniques and chromatographic determination are summarized. It is impressive that current sample preparation techniques such as dispersive liquid-liquid microextraction (DLLME), quick, easy, cheap, rugged, and safe method (QuEChERS) and solid phase extraction (SPE) have exhibited high extraction recoveries and minimal matrix effects. However, a few studies have reported signal suppression or enhancement. Regarding chromatographic techniques, high sensitivity and selectivity have been reported by liquid chromatography coupled to fluorescence detection, tandem mass spectrometry, or high-resolution mass spectrometry. Furthermore, current challenges and perspectives in this field are tentatively proposed.
Collapse
Affiliation(s)
- Basil K Munjanja
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nomvano Mketo
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
22
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|
23
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
24
|
Ciaccheri L, De Girolamo A, Cervellieri S, Lippolis V, Mencaglia AA, Pascale M, Mignani AG. Low-Cost Pocket Fluorometer and Chemometric Tools for Green and Rapid Screening of Deoxynivalenol in Durum Wheat Bran. Molecules 2023; 28:7808. [PMID: 38067538 PMCID: PMC10708224 DOI: 10.3390/molecules28237808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cereal crops are frequently contaminated by deoxynivalenol (DON), a harmful type of mycotoxin produced by several Fusarium species fungi. The early detection of mycotoxin contamination is crucial for ensuring safety and quality of food and feed products, for preventing health risks and for avoiding economic losses because of product rejection or costly mycotoxin removal. A LED-based pocket-size fluorometer is presented that allows a rapid and low-cost screening of DON-contaminated durum wheat bran samples, without using chemicals or product handling. Forty-two samples with DON contamination in the 40-1650 µg/kg range were considered. A chemometric processing of spectroscopic data allowed distinguishing of samples based on their DON content using a cut-off level set at 400 µg/kg DON. Although much lower than the EU limit of 750 µg/kg for wheat bran, this cut-off limit was considered useful whether accepting the sample as safe or implying further inspection by means of more accurate but also more expensive standard analytical techniques. Chemometric data processing using Principal Component Analysis and Quadratic Discriminant Analysis demonstrated a classification rate of 79% in cross-validation. To the best of our knowledge, this is the first time that a pocket-size fluorometer was used for DON screening of wheat bran.
Collapse
Affiliation(s)
- Leonardo Ciaccheri
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Annalisa De Girolamo
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Salvatore Cervellieri
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Vincenzo Lippolis
- CNR—Istituto di Scienze delle Produzioni Alimentari (ISPA), Via G. Amendola, 122/O, 70126 Bari, Italy; (S.C.); (V.L.)
| | - Andrea Azelio Mencaglia
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| | - Michelangelo Pascale
- CNR—Istituto di Scienze dell’Alimentazione (ISA), Via Roma, 64, 83100 Avellino, Italy;
| | - Anna Grazia Mignani
- CNR—Istituto di Fisica Applicata “Nello Carrara” (IFAC), Via Madonna del Piano, 10, Sesto Fiorentino, 50019 Florence, Italy; (A.A.M.); (A.G.M.)
| |
Collapse
|
25
|
Chen X, He Z, Huang X, Sun Z, Cao H, Wu L, Zhang S, Hammock BD, Liu X. Illuminating the path: aggregation-induced emission for food contaminants detection. Crit Rev Food Sci Nutr 2023:1-28. [PMID: 37983139 DOI: 10.1080/10408398.2023.2282677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Food safety is a global concern that deeply affects human health. To ensure the profitability of the food industry and consumer safety, there is an urgent need to develop rapid, sensitive, accurate, and cost-effective detection methods for food contaminants. Recently, the Aggregation-Induced Emission (AIE) has been successfully used to detect food contaminants. AIEgens, fluorescent dyes that cause AIE, have several valuable properties including high quantum yields, photostability, and large Stokes shifts. This review provides a detailed introduction to the principles and advantages of AIE-triggered detection, followed by a focus on the past five years' applications of AIE in detecting various food contaminants including pesticides, veterinary drugs, mycotoxins, food additives, ions, pathogens, and biogenic amines. Each detection principle and component is comprehensively covered and explained. Moreover, the similarities and differences among different types of food contaminants are summarized, aiming to inspire future researchers. Finally, this review concludes with a discussion of the prospects for incorporating AIEgens more effectively into the detection of food contaminants.
Collapse
Affiliation(s)
- Xincheng Chen
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Zhenyun He
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhichang Sun
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Hongmei Cao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California, USA
| | - Xing Liu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| |
Collapse
|
26
|
Boshra MH, El-Housseiny GS, Farag MMS, Aboshanab KM. Evaluation of ELISA and immunoaffinity fluorometric analytical tools of four mycotoxins in various food categories. AMB Express 2023; 13:123. [PMID: 37922052 PMCID: PMC10624774 DOI: 10.1186/s13568-023-01629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023] Open
Abstract
Mycotoxins (MTs) are secondary toxic metabolites that can contaminate food, impacting quality and safety, leading to various negative health effects and serious pathological consequences conferring urgent need to evaluate and validate the currently standard methods used in their analysis. Therefore, this study was aimed to validate ELISA and VICAM immunoaffinity fluorometric, the two common methods used to monitor the level of MTs according to the Egyptian Organization for Standardization and Quality Control. A total of 246 food samples were collected and tested for Aflatoxins (196 samples), Ochratoxin A (139), Zearalenone (70), and Deoxynivalenol (100) using both analytical methods. Results showed that aflatoxins exceeded limits in 42.9, 100, and 13.3% of oily seeds, dried fruits, and chili and spices, respectively. For ochratoxin A, 3.9% of Gramineae and 8% of spices and chili (locally sourced) exceeded the limits, while 17.6% of imported pasta and noodles exceeded the limits for deoxynivalenol. Significant differences for the aflatoxins and ochratoxin A detection among different categories of chocolate, dried fruits, and oily seeds (p-value < 0.05). No zearalenone contamination was detected in the exported, imported, and locally sourced categories. No deoxynivalenol contamination was detected in the tested Gramineae category. In contrast, for pasta and noodles, the imported samples exhibited the highest contamination rate (above the upper limit of 750 µg/kg) with 17.6% of the samples testing positive for deoxynivalenol with no significant difference among different sample categories of Gramineae, pasta, and noodles (p-value > 0.05). In conclusion, our study found no significant differences between the ELISA and immunoaffinity fluorometric analysis in the detection of the respective MTs in various food categories and therefore, they can substitute each other whenever necessary. However, significant differences were observed among different food categories, particularly the local and imported ones, highlighting the urgent need for strict and appropriate control measures to minimize the risk of MTs adverse effects.
Collapse
Affiliation(s)
- Marina H Boshra
- Department of Mycotoxins, Central Public Health Laboratories (CPHL), Ministry of Health, Cairo, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohammed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
27
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
28
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
29
|
Smaoui S, D’Amore T, Tarapoulouzi M, Agriopoulou S, Varzakas T. Aflatoxins Contamination in Feed Commodities: From Occurrence and Toxicity to Recent Advances in Analytical Methods and Detoxification. Microorganisms 2023; 11:2614. [PMID: 37894272 PMCID: PMC10609407 DOI: 10.3390/microorganisms11102614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Synthesized by the secondary metabolic pathway in Aspergilli, aflatoxins (AFs) cause economic and health issues and are culpable for serious harmful health and economic matters affecting consumers and global farmers. Consequently, the detection and quantification of AFs in foods/feeds are paramount from food safety and security angles. Nowadays, incessant attempts to develop sensitive and rapid approaches for AFs identification and quantification have been investigated, worldwide regulations have been established, and the safety of degrading enzymes and reaction products formed in the AF degradation process has been explored. Here, occurrences in feed commodities, innovative methods advanced for AFs detection, regulations, preventive strategies, biological detoxification, removal, and degradation methods were deeply reviewed and presented. This paper showed a state-of-the-art and comprehensive review of the recent progress on AF contamination in feed matrices with the intention of inspiring interests in both academia and industry.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax 3029, Tunisia
| | - Teresa D’Amore
- IRCCS CROB, Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, Italy;
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus;
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| |
Collapse
|
30
|
da Silva LAGA, Piacentini KC, Caramês ETDS, Silva NCC, Wawroszová S, Běláková S, Rocha LDO. Quantitative PCR (qPCR) for estimating the presence of Fusarium and its mycotoxins in barley grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1369-1387. [PMID: 37640447 DOI: 10.1080/19440049.2023.2250474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Members within the Fusarium sambucinum species complex (FSAMSC) are able to produce mycotoxins, such as deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN) and enniatins (ENNs) in food products. Consequently, alternative methods for assessing the levels of these mycotoxins are relevant for quick decision-making. In this context, qPCR based on key mycotoxin biosynthetic genes could aid in determining the toxigenic fungal biomass, and could therefore infer mycotoxin content. The aim of this study was to verify the use of qPCR as a technique for estimating DON, NIV, ENNs and ZEN, as well as Fusarium graminearum sensu lato (s.l.) and F. poae in barley grains. For this purpose, 53 barley samples were selected for mycobiota, mycotoxin and qPCR analyses. ENNs were the most frequent mycotoxins, followed by DON, ZEN and NIV. 83% of the samples were contaminated by F. graminearum s.l. and 51% by F. poae. Pearson correlation analysis showed significant correlations for TRI12/15-ADON with DON, ESYN1 with ENNs, TRI12/15-ADON and ZEB1 with F. graminearum s.l., as well as ESYN1 and TRI12/NIV with F. poae. Based on the results, qPCR could be useful for the assessment of Fusarium presence, and therefore, provide an estimation of its mycotoxins' levels from the same sample.
Collapse
Affiliation(s)
| | - Karim Cristina Piacentini
- Department of Food Science and Nutrition (DECAN), State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Simona Wawroszová
- Regional Department Brno, Central Institute for Supervising and Testing in Agriculture, National Reference Laboratory, Brno, Czech Republic
| | - Sylvie Běláková
- Malting Institute Brno, Research Institute of Brewing and Malting, Brno, Czech Republic
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition (DECAN), State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
31
|
Nguyen TD, Nguyen TNH, Ly TK, Nguyen QH, Le TT, Chu VH, Nguyen TD, Le DV. A high-performance method for quantitation of aflatoxins B1, B2, G1, G2: Full validation for raisin, peanut matrices, and survey of related products at Ho Chi Minh City. Food Sci Nutr 2023; 11:6509-6521. [PMID: 37823137 PMCID: PMC10563701 DOI: 10.1002/fsn3.3594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 10/13/2023] Open
Abstract
Optimization and validation for simultaneous quantitation of four aflatoxins B1, B2, G1, and G2 in peanuts and raisins were performed on ultra-performance liquid chromatography in a combination of fluorescence detector, without derivatization. The advantages were short analysis time, simple sample handling, and reduced solvent consumption. Instrument detection limits of AFB1, AFB2, AFG1, and AFG2 were 0.07, 0.01, 0.1, and 0.008 μg/kg, respectively, lower than those obtained by LCMSMS and HPLC-FLD with derivatization. Two solvent mixtures were chosen for two different matrices whose matrix effect was not negligible (2.81%-8.04% for peanuts and 5.63%-11.43% for raisins). The linear ranges were from 0.2 to 20 μg/L for AFB1 and AFG1 and from 0.05 to 5 μg/L for AFB2 and AFG2. The limits of detection and quantification were 0.025-0.1 and 0.075-0.3 μg/kg for peanuts and raisins, respectively. Recoveries at three other concentrations from 0.75 to 125 μg/kg of total aflatoxins were obtained between 76.5% and 99.8% (with RSD < 6%) following the SANTE 11312/2021. Validation parameters complied with the requirements of ISO/IEC 17025:2017. The extracts and the sample could be stabilized at 4°C and 20°C for 24 h and at -20°C for up to 21 days, respectively. Thus, the study can be used as a standard method for the analysis of Aflatoxins (AFs) in peanut and raisin matrices. Investigation of 350 peanut samples collected at Markets in the central districts of HCM city showed that 28.6% were contaminated with AFB1 from 0.31 up to 554 μg/kg; 13.4% contained AFB2, and 5.7% of AFG1 in the range of 0.4-53 μg/kg and 0.4-9.57 μg/kg, respectively; AFG2 (about 0.6%) was detected from 0.45 to 0.75 μg/kg. Meanwhile, 12.8% exceeded the total aflatoxins limit, and 13.4% exceeded the AFB1 limit. AFs were almost not found in the 350 raisin samples.
Collapse
Affiliation(s)
- Thanh Duy Nguyen
- Graduate University of Science and Technology, VietNam Academy of Science and Technology (VAST)HanoiVietnam
- Center of Analytical Services and Experimentation HCMcHo Chi MinhVietnam
| | | | - Tuan Kiet Ly
- Center of Analytical Services and Experimentation HCMcHo Chi MinhVietnam
| | - Quoc Hung Nguyen
- Center of Analytical Services and Experimentation HCMcHo Chi MinhVietnam
| | - Thanh Tho Le
- Center of Analytical Services and Experimentation HCMcHo Chi MinhVietnam
| | - Van Hai Chu
- Department of Science and Technology of Ho Chi Minh CityHo Chi MinhVietnam
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, VASTHanoiVietnam
| | - Dinh Vu Le
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh CityHo Chi MinhVietnam
| |
Collapse
|
32
|
González-Curbelo MÁ, Kabak B. Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review. Toxins (Basel) 2023; 15:576. [PMID: 37756002 PMCID: PMC10537527 DOI: 10.3390/toxins15090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Dried fruits are popular and nutritious snacks consumed worldwide due to their long shelf life and concentrated nutrient content. However, fruits can be contaminated with various toxigenic fungal species during different stages, including cultivation, harvesting, processing, drying, and storage. Consequently, these products may contain high levels of mycotoxins. This risk is particularly pronounced in developed countries due to the impact of climate change. Several factors contribute to mycotoxin production, including the type of fruit, geographical location, climate conditions, harvest treatments, and storage management practices. The main mycotoxins in dried fruits are aflatoxins (AFs) and ochratoxin A (OTA), which can induce human health problems and economic losses. Mycotoxin contamination can vary significantly depending on the geographic origin of dried fruits (vine fruits, figs, dates, apricots, prunes, and mulberries). The aim of this review was to fill the knowledge gap by consolidating data from various regions to understand the global picture and identify regions with higher contamination risks. By consolidating research from various origins and stages of the supply chain, the review intends to shed light on potential contamination events during pre-harvest, drying, storage, and trading, while also highlighting the effects of storage conditions and climate change on mycotoxin contamination.
Collapse
Affiliation(s)
- Miguel Ángel González-Curbelo
- Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Calle 79 no 11-45, Bogotá 110221, Colombia
| | - Bulent Kabak
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum 19030, Turkey
- Biotechnology Laboratory, Machinery and Manufacturing Technology Application and Research Center, Hitit University, Corum 19030, Turkey
| |
Collapse
|
33
|
Nešić K, Habschied K, Mastanjević K. Modified Mycotoxins and Multitoxin Contamination of Food and Feed as Major Analytical Challenges. Toxins (Basel) 2023; 15:511. [PMID: 37624268 PMCID: PMC10467123 DOI: 10.3390/toxins15080511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Mycotoxins, as natural products of molds, are often unavoidable contaminants of food and feed, to which the increasingly evident climate changes contribute a large part. The consequences are more or less severe and range from economic losses to worrying health problems to a fatal outcome. One of the best preventive approaches is regular monitoring of food and feed for the presence of mycotoxins. However, even under conditions of frequent, comprehensive, and conscientious controls, the desired protection goal may not be achieved. In fact, it often happens that, despite favorable analytical results that do not indicate high mycotoxin contamination, symptoms of their presence occur in practice. The most common reasons for this are the simultaneous presence of several different mycotoxins whose individual content does not exceed the detectable or prescribed values and/or the alteration of the form of the mycotoxin, which renders it impossible to be analytically determined using routine methods. When such contaminated foods enter a living organism, toxic effects occur. This article aims to shed light on the above problems in order to pay more attention to them, work to reduce their impact, and, eventually, overcome them.
Collapse
Affiliation(s)
- Ksenija Nešić
- Institute of Veterinary Medicine of Serbia, Food and Feed Department, Smolućska 11, 11070 Beograd, Serbia
| | - Kristina Habschied
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| |
Collapse
|
34
|
Mohamed HMA, Haziri I, Saied AA, Dhama K, Al-Said AA, Abdou SE, Kamaly HF, Abd-Elhafeez HH. Molecular characterization of gliotoxin-producing Aspergillus fumigatus in dairy cattle feed. Vet World 2023; 16:1636-1646. [PMID: 37766716 PMCID: PMC10521192 DOI: 10.14202/vetworld.2023.1636-1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/12/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Several strains of Aspergillus fumigatus produce mycotoxins that affect the health and productivity of dairy cattle, and their presence in dairy cattle feed is a serious concern. This study aimed to determine the densities of A. fumigatus and gliotoxin in commercial dairy feed. Materials and Methods More than 60 dairy feed samples were examined for fungal contamination, specifically for A. fumigatus, using phenotypic approaches and DNA sequencing of the internal transcribed spacer (ITS) and β-tubulin regions. Thin-layer chromatography and high-performance liquid chromatography (HPLC) were used to assess gliotoxin production in A. fumigatus. Real-time polymerase chain reaction (RT-PCR) was used to investigate the expression of gliZ, which was responsible for gliotoxin production. High-performance liquid chromatography was used to detect gliotoxin in feed samples. Results Aspergillus was the most commonly identified genus (68.3%). Aspergillus fumigatus was isolated from 18.3% of dairy feed samples. Only four of the 11 A. fumigatus isolates yielded detectable gliotoxins by HPLC. In total, 7/11 (43.7%) feed samples tested had gliotoxin contamination above the threshold known to induce immunosuppressive and apoptotic effects in vitro. The HPLC-based classification of isolates as high, moderate, or non-producers of gliotoxin was confirmed by RT-PCR, and the evaluation of gliZ expression levels corroborated this classification. Conclusion The identification of A. fumigatus from animal feed greatly depended on ITS and β-tubulin sequencing. Significant concentrations of gliotoxin were found in dairy cattle feed, and its presence may affect dairy cow productivity and health. Furthermore, workers face contamination risks when handling and storing animal feed.
Collapse
Affiliation(s)
- Hams M. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Imer Haziri
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, University of Prishtina “Hasan Prishtina”, 10000 Pristina, Kosovo
| | - AbdulRahman A. Saied
- National Food Safety Authority, Aswan Branch, Aswan 81511, Egypt
- Ministry of Tourism and Antiquities, Aswan Office, Aswan 81511, Egypt
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Amal A. Al-Said
- Department of Mycology, Animal Health Research Institute, Agriculture Research Center (ARC), P.O. 12618, Gizza
| | - Suzan E. Abdou
- Biochemistry Unit, Animal Health Research Institute Agriculture Research Center (ARC), P.O. 12618, Gizza
| | - Heba F. Kamaly
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Hanan H. Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
35
|
Yang H, Dai H, Wan X, Shan D, Zhang Q, Li J, Xu Q, Wang C. Simultaneous determination of multiple mycotoxins in corn and wheat by high efficiency extraction and purification based on polydopamine and ionic liquid bifunctional nanofiber mat. Anal Chim Acta 2023; 1267:341361. [PMID: 37257974 DOI: 10.1016/j.aca.2023.341361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Due to the universality and harmfulness of mycotoxin co-contamination in cereals, it is of great significance to simultaneously monitor various mycotoxins co-polluted to ensure food safety and public health. In this work, a nanofiber mat modified by polydopamine and ionic liquid (PDA-IL-NFsM) was prepared and utilized as a solid-phase extraction (SPE) adsorbent for the simultaneous quantitative detection of multiple mycotoxins in corn and wheat. The PDA-IL-NFsM can form multiple retention mechanisms with the targets through hydrogen bond, π-π interaction, electrostatic or hydrophobic interaction, it shows favorable simultaneous adsorption performance (adsorption efficiency mostly higher than 88.27%) for fifteen mycotoxins in seven classes. Moreover, it can significantly reduce the matrix effect (lower than -13.69%), showing a good purification effect on the sample matrix. Based on the superior performance of PDA-IL-NFsM, a simple sample preparation method was established. The sample extract is simply diluted with water for SPE, and the eluent can be directly collected for ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis. The detection limit can reach 0.04-4.21 μg kg-1, the recovery was 80.09%-113.01%, and the relative standard deviations of intra-day and inter-day precision were 2.80%-14.81% and 0.68%-13.80% respectively. The results show that the proposed method has good sensitivity, accuracy and precision, and has practical application potential.
Collapse
Affiliation(s)
- Huan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hairong Dai
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xuerui Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qiuping Zhang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China
| | - Jian Li
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China.
| |
Collapse
|
36
|
Kim JH, Chan KL, Hart-Cooper WM, Palumbo JD, Orts WJ. High-efficiency fungal pathogen intervention for seed protection: new utility of long-chain alkyl gallates as heat-sensitizing agents. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1172893. [PMID: 37746121 PMCID: PMC10512402 DOI: 10.3389/ffunb.2023.1172893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 09/26/2023]
Abstract
Control of food-contaminating fungi, especially pathogens that produce mycotoxins, is problematic since effective method for intervening fungal infection on food crops is often limited. Generally Regarded As Safe (GRAS) chemicals, such as natural compounds or their structural derivatives, can be developed as antimicrobial agents for sustainable food/crop production. This study identified that long-chain alkyl gallates, i.e., octyl-, nonyl-, and decyl gallates (OG (octyl 3,4,5-trihydroxybenzoic acid), NG, DG), can function as heat-sensitizing agents that effectively prevent fungal contamination. Out of twenty-eight candidate compounds and six conventional antifungal agents examined, the heat-sensitizing capacity was unique to the long-chain alkyl gallates, where OG exhibited the highest activity, followed by DG and NG. Since OG is a GRAS compound classified by the United States Food and Drug Administration (FDA), further in vitro antifungal studies were performed using OG. When OG and mild heat (57.5°C) were co-administered for 90 seconds, the treatment achieved > 99.999% fungal death (> 5 log reduction). Application of either treatment alone was significantly less effective at reducing fungal survival. Of note, co-application of OG (3 mM) and mild heat (50°C) for 20 minutes completely prevented the survival of aflatoxigenic Aspergillus flavus contaminating crop seeds (Brassica rapa Pekinensis), while seed germination rate was unaffected. Heat-sensitization was also determined in selected bacterial strains (Escherichia coli, Agrobacterium tumefaciens). Altogether, OG is an effective heat-sensitizing agent for control of microbial pathogens. OG-mediated heat sensitization will improve the efficacy of antimicrobial practices, achieving safe, rapid, and cost-effective pathogen control in agriculture/food industry settings.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - William M. Hart-Cooper
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - Jeffrey D. Palumbo
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| | - William J. Orts
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Albany, CA, United States
| |
Collapse
|
37
|
Zhao C, Penttinen P, Zhang L, Dong L, Zhang F, Li Z, Zhang X. Mechanism of Inhibiting the Growth and Aflatoxin B 1 Biosynthesis of Aspergillus flavus by Phenyllactic Acid. Toxins (Basel) 2023; 15:370. [PMID: 37368671 DOI: 10.3390/toxins15060370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phenyllactic acid (PLA), a promising food preservative, is safe and effective against a broad spectrum of food-borne pathogens. However, its mechanisms against toxigenic fungi are still poorly understood. In this study, we applied physicochemical, morphological, metabolomics, and transcriptomics analyses to investigate the activity and mechanism of PLA inhibition of a typical food-contaminating mold, Aspergillus flavus. The results showed that PLA effectively inhibited the growth of A. flavus spores and reduced aflatoxin B1 (AFB1) production by downregulating key genes associated with AFB1 biosynthesis. Propidium iodide staining and transmission electron microscopy analysis demonstrated a dose-dependent disruption of the integrity and morphology of the A. flavus spore cell membrane by PLA. Multi-omics analyses showed that subinhibitory concentrations of PLA induced significant changes in A. flavus spores at the transcriptional and metabolic levels, as 980 genes and 30 metabolites were differentially expressed. Moreover, KEGG pathway enrichment analysis indicated PLA-induced cell membrane damage, energy-metabolism disruption, and central-dogma abnormality in A. flavus spores. The results provided new insights into the anti-A. flavus and -AFB1 mechanisms of PLA.
Collapse
Affiliation(s)
- Chi Zhao
- College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Rd., Chengdu 610066, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China
- Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China
| | - Ling Dong
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Rd., Chengdu 610066, China
| | - Fengju Zhang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Rd., Chengdu 610066, China
| | - Zhihua Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Rd., Chengdu 610066, China
| | - Xiaoping Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China
| |
Collapse
|
38
|
Zhao Y, Liu T, Gao J, Zhang Q, Liao M, Cheng H, Tian J, Yao Z. Nanoassemblies Based on a Cationic Perylene Diimide Derivative and Sodium Dodecyl Sulfate: A Simple Fluorescent Platform for Efficient Analysis of Aflatoxin B 1. Anal Chem 2023; 95:8250-8257. [PMID: 37186575 DOI: 10.1021/acs.analchem.3c00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a kind of potently carcinogenic fungal metabolite in food threatening human health, and it is crucial and challenging to develop advanced nonimmune approaches for AFB1 determination. Addressing this challenge, we successfully constructed a nanoassembly (PdE-PDI/SDS) by noncovalently coupling a cationic perylene diimide derivative (PdE-PDI) and sodium dodecyl sulfate (SDS), exhibiting high-density charges and a specific surface area for rapid sensing of AFB1. The large electronic conjugate structure and rigid plane of PdE-PDI enable it to form more stable σ-π, π-π coordination, and hydrogen bonds with AFB1. Additionally, the introduction of SDS significantly amplifies noncovalent interactions and enhances the quenching efficiency of PdE-PDI toward AFB1. The proposed PdE-PDI/SDS exhibited excellent specificity to AFB1 and showed dosage-sensitive detection with detection limit as low as 0.74 ng mL-1. Finally, the PdE-PDI/SDS was successfully applied in cereal samples with good recoveries from 94.61 to 109.92%. To our knowledge, this is the first time a fluorescent strategy from the point of self-assembly for AFB1 determination is reported, which holds great promise for wide applications of perylene diimide derivative in food safety.
Collapse
Affiliation(s)
- Yijian Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tianyue Liu
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinghui Gao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Zhang
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengyu Liao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - He Cheng
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingsheng Tian
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyi Yao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
39
|
Aladhadh M. A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms 2023; 11:1111. [PMID: 37317085 DOI: 10.3390/microorganisms11051111] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Despite the recent advances in food preservation techniques and food safety, significant disease outbreaks linked to foodborne pathogens such as bacteria, fungi, and viruses still occur worldwide indicating that these pathogens still constitute significant risks to public health. Although extensive reviews of methods for foodborne pathogens detection exist, most are skewed towards bacteria despite the increasing relevance of other pathogens such as viruses. Therefore, this review of foodborne pathogen detection methods is holistic, focusing on pathogenic bacteria, fungi, and viruses. This review has shown that culture-based methods allied with new approaches are beneficial for the detection of foodborne pathogens. The current application of immunoassay methods, especially for bacterial and fungal toxins detection in foods, are reviewed. The use and benefits of nucleic acid-based PCR methods and next-generation sequencing-based methods for bacterial, fungal, and viral pathogens' detection and their toxins in foods are also reviewed. This review has, therefore, shown that different modern methods exist for the detection of current and emerging foodborne bacterial, fungal, and viral pathogens. It provides further evidence that the full utilization of these tools can lead to early detection and control of foodborne diseases, enhancing public health and reducing the frequency of disease outbreaks.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
40
|
Ong JY, Phang SW, Goh CT, Pike A, Tan LL. Impedimetric Polyaniline-Based Aptasensor for Aflatoxin B 1 Determination in Agricultural Products. Foods 2023; 12:foods12081698. [PMID: 37107493 PMCID: PMC10137590 DOI: 10.3390/foods12081698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
An impedimetric aptasensor based on a polyaniline (PAni) support matrix is developed through the surface modification of a screen-printed carbon electrode (SPE) for aflatoxin B1 (AFB1) detection in foodstuffs and feedstuffs for food safety. The PAni is synthesized with the chemical oxidation method and characterized with potentiostat/galvanostat, FTIR, and UV-vis spectroscopy techniques. The stepwise fabrication procedure of the PAni-based aptasensor is characterized by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. The impedimetric aptasensor is optimized using the EIS technique, and its feasibility of detecting AFB1 in real sample matrices is evaluated via a recovery study in spiked foodstuffs and feedstuffs, such as pistachio nuts, cinnamons, cloves, corn, and soybeans, with a good recovery percentage, ranging from 87.9% to 94.7%. The charge transfer resistance (RCT) at the aptasensor interface increases linearly with the AFB1 concentration in the range of 3 × 10-2 nM to 8 × 10-2 nM, with a regression coefficient (R2) value of 0.9991 and detection limit of 0.01 nM. The proposed aptasensor is highly selective towards AFB1 and partially selective to AFB2 and ochratoxin A (OTA) due to their similar structures that differ only at the carbon-carbon double bond located at C8 and C9 and the large molecule size of OTA.
Collapse
Affiliation(s)
- Jing Yi Ong
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sook-Wai Phang
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia
| | - Choo Ta Goh
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Andrew Pike
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
41
|
Lu L, Yu R, Zhang L. AFB1 colorimetric aptamer sensor for the detection of AFB1 in ten different kinds of miscellaneous beans based on gold nanoparticles and smartphone imaging. Food Chem 2023; 421:136205. [PMID: 37094407 DOI: 10.1016/j.foodchem.2023.136205] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
A simple, rapid, low-cost, sensitive, intuitive, visual, label-free, colorimetric smartphone-assisted assay was developed for the measurement of aflatoxin B1 in miscellaneous beans. Ten different kinds of miscellaneous beans were treated and measured by modified QuEChERS(Quick、Easy、Cheap、Effective、Rugged、Safe) method with aflatoxin B1 nucleic acid aptamer as a recognition element and gold nanoparticles as indicators. Several factors influencing its sensitivity were investigated, including consumes and NaCl concentrations, as well as incubation time and specificity. The results showed a good linear relationship between concentrations of 0.2-8.0 ng/g under optimal conditions. With a detection limit of 0.08 ng/g, the linear regression equation was Y = 0.024X + 0.4615 (R = 0.9989). Sensor specificity is good. The content of aflatoxin B1 in bean samples was determined successfully. The recovery of aflatoxin B1 ranged from 87.18% to 110.24%. The whole thing took 15 min. This smartphone-assisted colorimetric aptamer sensor can be used to detect aflatoxin B1 in beans.
Collapse
Affiliation(s)
- Lifeng Lu
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Runzhong Yu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Liyuan Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China; Chinese National Engineering Research Center, Daqing 163319, PR China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang province, Daqing 163319, PR China.
| |
Collapse
|
42
|
Mycotoxins in Seafood: Occurrence, Recent Development of Analytical Techniques and Future Challenges. SEPARATIONS 2023. [DOI: 10.3390/separations10030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
The co-occurrence of mycotoxigenic fungi and mycotoxins in aquatic food commodities has recently become a source of severe worldwide food insecurity since these toxicants may damage human health. The consumption of aquatic food itself represents a relatively novel and non-negligible source of mycotoxins. Mycotoxins in seafood lead to important human genotoxins, carcinogens, and immunosuppressors. Consequently, it is crucial to quantify and characterize these contaminants in aquatic food products subject to extensive consumption and develop new regulations. The present paper provides an overview of recent advancements in liquid chromatography and mass spectrometry and the coupling of these techniques for identifying and characterizing mycotoxins in various fresh, comestible, and treated marine products. The disposable data display that a multiplicity of fungal species and further mycotoxins have been detected in seafood, comprising aflatoxins, ochratoxins, fumonisins, deoxynivalenol, zearalenone, and trichothecenes. In addition, a wider and up-to-date overview of global occurrence surveys of mycotoxin occurrence in seafood in 2017–2022 is explored. In this regard, the predominant occurrence of enniatins has been documented in seafood products. Likewise, special attention has been given to current EU seafood legal and existing national regulations of mycotoxins in seafood. In this way, rigorous national and international guidelines are needed for palpable and effective measures in the future. Nevertheless, controlling mycotoxins in aquatic foods is an ambitious aim for scientists and industry stakeholders to ensure sustainable global food safety.
Collapse
|
43
|
Feng S, Hua MZ, Roopesh MS, Lu X. Rapid detection of three mycotoxins in animal feed materials using competitive ELISA-based origami microfluidic paper analytical device (μPAD). Anal Bioanal Chem 2023; 415:1943-1951. [PMID: 36847793 DOI: 10.1007/s00216-023-04612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
We report the development of a competitive ELISA-based origami microfluidic paper-based analytical device (μPAD) for the detection of mycotoxins in animal feed material. The μPAD was patterned using the wax printing technique with the design of a testing pad in the middle and two absorption pads at the side. Anti-mycotoxin antibodies were effectively immobilized on chitosan-glutaraldehyde-modified sample reservoirs in the μPAD. The determination of zearalenone, deoxynivalenol, and T-2 toxin in corn flour was successfully achieved by performing competitive ELISA on the μPAD in 20 min. Colorimetric results were easily distinguished by the naked eye with a detection limit of 1 µg/mL for all three mycotoxins. The μPAD integrated with competitive ELISA holds potential for practical applications in the livestock industry for rapid, sensitive, and cost-effective detection of different mycotoxins in animal feed materials.
Collapse
Affiliation(s)
- Shaolong Feng
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Marti Z Hua
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - M S Roopesh
- Department of Agricultural, Food, and Nutrition Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
44
|
Wang J, Zhang F, Yao T, Li Y, Wei N. Risk assessment of mycotoxins, the identification and environmental influence on toxin-producing ability of Alternaria alternate in the main Tibetan Plateau Triticeae crops. Front Microbiol 2023; 13:1115592. [PMID: 36824588 PMCID: PMC9942522 DOI: 10.3389/fmicb.2022.1115592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/30/2022] [Indexed: 02/10/2023] Open
Abstract
In order to find out the contamination of mycotoxins in Triticeae crops of Qinghai-Tibet Plateau, a total of 153 Triticeae crop fruits were collected as target samples, and 22 mycotoxins were tested. High detection rate was found in the Alternaria mycotoxins, including tentoxin (TEN), tenuazonic acid (TEA) and alternariol (AOH) toxins. To further clarify the production rules of Alternaria mycotoxins. A number of 9 high yield toxic strains were selected from 65 bacterial strains and the gene sequences of each were determined. The nine selected Alternaria alternate were cultured under specific pH of the culture medium, temperature and ultraviolet (UV) irradiation, and their growth and toxicity were analyzed. The results showed that the toxic capacity of most A. alternate increased with the increase of culture environment temperature and decreased with the increase of UV irradiation. However, the production of some toxins did not meet this principle, or even met the principle of relativity. In the culture experiments, a total of five Alternaria toxins were detected as positive, which were TEN, AOH, alternariol monomethyl ether (AME), TEA, and Alternaria (ALT). The altenusin (ALS) toxin was not detected in the metabolites of the nine Alternaria strains. It indicated that the TEN, AOH, AME, TEA, and ALT toxins should be particularly valued in the future risk assessments. This finding provided comprehensive information of mycotoxins contamination in the Tibetan Plateau Triticeae crops, it pointed out a direction to the Tibetan Plateau food crops' quality control.
Collapse
Affiliation(s)
- Jun Wang
- Zhang Zhong-jing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
| | - Feilong Zhang
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ting Yao
- Zhang Zhong-jing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
| | - Ying Li
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Na Wei
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China,*Correspondence: Na Wei, ✉
| |
Collapse
|
45
|
Osouli M, Yazdanpanah H, Salamzadeh J, Eslamizad S. Performance Evaluation of Biochip Chemiluminescent Immunoassay for Screening Seven Mycotoxins in Wheat Flour Simultaneously. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e140356. [PMID: 38444708 PMCID: PMC10912911 DOI: 10.5812/ijpr-140356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 03/07/2024]
Abstract
Background Wheat grains are susceptible to mycotoxins, toxic natural secondary metabolites generated by certain fungi on agricultural produce in the field during growth, harvest, transportation, or storage. Therefore, wheat flour can be contaminated with mycotoxins, which seriously threaten human health. Methods A rapid method for screening seven mycotoxins in wheat flour was validated in accordance with Commission Decision 2002/657/EC. With this multi-analytical screening method, 7 prevalent mycotoxins (fumonisin B1, ochratoxin A, aflatoxin G1, deoxynivalenol, T-2 toxin, aflatoxin B1, and zearalenone) can be determined simultaneously. The method's applicability was demonstrated by screening 7 mycotoxins in 39 wheat flour samples collected from different bakeries in Tehran province, Iran. Results The validation results indicated that for all 7 mycotoxins, the positivity threshold (T) was above the cut-off value (Fm), and no false positive results were obtained for any of the mycotoxins. The screening results of 12 packaged and 27 bulk wheat flour samples indicated that the concentrations of all mentioned mycotoxins were higher than the cut-off (in the relative light unit [RLU]), and all the samples were compliant. Conclusions The present study revealed that the biochip-based technique is valid for identifying and assessing the levels of 7 mycotoxins in grain samples, such as wheat flour, at the measured validation concentrations. The method was simple, fast, and able to screen 7 mycotoxins simultaneously. The test process of the kit is easy to conduct, and the results are straightforward to interpret.
Collapse
Affiliation(s)
- Mahraz Osouli
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Yazdanpanah
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamshid Salamzadeh
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Eslamizad
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Grassi S, Tarapoulouzi M, D’Alessandro A, Agriopoulou S, Strani L, Varzakas T. How Chemometrics Can Fight Milk Adulteration. Foods 2022; 12:139. [PMID: 36613355 PMCID: PMC9819000 DOI: 10.3390/foods12010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Adulteration and fraud are amongst the wrong practices followed nowadays due to the attitude of some people to gain more money or their tendency to mislead consumers. Obviously, the industry follows stringent controls and methodologies in order to protect consumers as well as the origin of the food products, and investment in these technologies is highly critical. In this context, chemometric techniques proved to be very efficient in detecting and even quantifying the number of substances used as adulterants. The extraction of relevant information from different kinds of data is a crucial feature to achieve this aim. However, these techniques are not always used properly. In fact, training is important along with investment in these technologies in order to cope effectively and not only reduce fraud but also advertise the geographical origin of the various food and drink products. The aim of this paper is to present an overview of the different chemometric techniques (from clustering to classification and regression applied to several analytical data) along with spectroscopy, chromatography, electrochemical sensors, and other on-site detection devices in the battle against milk adulteration. Moreover, the steps which should be followed to develop a chemometric model to face adulteration issues are carefully presented with the required critical discussion.
Collapse
Affiliation(s)
- Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Alessandro D’Alessandro
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Lorenzo Strani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
47
|
Recent advances in immunoassay-based mycotoxin analysis and toxicogenomic technologies. J Food Drug Anal 2022; 30:549-561. [PMID: 36753365 PMCID: PMC9910299 DOI: 10.38212/2224-6614.3430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
The co-occurrence and accumulation of mycotoxin in food and feed constitutes a major issue to food safety, food security, and public health. Accurate and sensitive mycotoxins analysis can avoid toxin contamination as well as reduce food wastage caused by false positive results. This mini review focuses on the recent advance in detection methods for multiple mycotoxins, which mainly depends on immunoassay technologies. Advance immunoassay technologies integrated in mycotoxin analysis enable simultaneous detection of multiple mycotoxins and enhance the outcomes' quality. It highlights toxicogenomic as novel approach for hazard assessment by utilizing computational methods to map molecular events and biological processes. Indeed, toxicogenomic is a powerful tool to understand health effects from mycotoxin exposure as it offers insight on the mechanisms by which mycotoxins exposures cause diseases.
Collapse
|
48
|
Vujanovic S, Vujanovic J, Vujanovic V. Microbiome-Driven Proline Biogenesis in Plants under Stress: Perspectives for Balanced Diet to Minimize Depression Disorders in Humans. Microorganisms 2022; 10:2264. [PMID: 36422335 PMCID: PMC9693749 DOI: 10.3390/microorganisms10112264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/10/2024] Open
Abstract
According to the World Health Organization (WHO), depression is a leading cause of disability worldwide and a major contributor to the overall global burden of mental disorders. An increasing number of studies have revealed that among 20 different amino acids, high proline consumption is a dietary factor with the strongest impact on depression in humans and animals, including insects. Recent studies acknowledged that gut microbiota play a key role in proline-related pathophysiology of depression. In addition, the multi-omics approach has alleged that a high level of metabolite proline is directly linked to depression severity, while variations in levels of circulating proline are dependent on microbiome composition. The gut-brain axis proline analysis is a gut microbiome model of studying depression, highlighting the critical importance of diet, but nothing is known about the role of the plant microbiome-food axis in determining proline concentration in the diet and thus about preventing excessive proline intake through food consumption. In this paper, we discuss the protocooperative potential of a holistic study approach combining the microbiota-gut-brain axis with the microbiota-plant-food-diet axis, as both are involved in proline biogenesis and metabolism and thus on in its effect on mood and cognitive function. In preharvest agriculture, the main scientific focus must be directed towards plant symbiotic endophytes, as scavengers of abiotic stresses in plants and modulators of high proline concentration in crops/legumes/vegetables under climate change. It is also implied that postharvest agriculture-including industrial food processing-may be critical in designing a proline-balanced diet, especially if corroborated with microbiome-based preharvest agriculture, within a circular agrifood system. The microbiome is suggested as a target for selecting beneficial plant endophytes in aiming for a balanced dietary proline content, as it is involved in the physiology and energy metabolism of eukaryotic plant/human/animal/insect hosts, i.e., in core aspects of this amino acid network, while opening new venues for an efficient treatment of depression that can be adapted to vast groups of consumers and patients. In that regard, the use of artificial intelligence (AI) and molecular biomarkers combined with rapid and non-destructive imaging technologies were also discussed in the scope of enhancing integrative science outcomes, agricultural efficiencies, and diagnostic medical precisions.
Collapse
Affiliation(s)
- Silva Vujanovic
- Hospital Pharmacy, CISSS des Laurentides, Université de Montréal, Montréal, QC J8H 4C7, Canada
| | - Josko Vujanovic
- Medical Imaging, CISSS des Laurentides, Lachute, QC J8H 4C7, Canada
| | - Vladimir Vujanovic
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
49
|
Target controlled alternative hybridization chain reaction for fluorescent detection of dual mycotoxins. Anal Chim Acta 2022; 1237:340595. [DOI: 10.1016/j.aca.2022.340595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
50
|
Not a Mistake but a Feature: Promiscuous Activity of Enzymes Meeting Mycotoxins. Catalysts 2022. [DOI: 10.3390/catal12101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are dangerous compounds and find multiple routes to enter living bodies of humans and animals. To solve the issue and degrade the toxicants, (bio)catalytic processes look very promising. Hexahistidine-tagged organophosphorus hydrolase (His6-OPH) is a well-studied catalyst for degradation of organophosphorus neurotoxins and lactone-containing quorum-sensing signal molecules. Moreover, the catalytic characteristics in hydrolysis of several mycotoxins (patulin, deoxynivalenol, zearalenone, and sterigmatocystin) were studied in this investigation. The best Michaelis constant and catalytic constant were estimated in the case of sterigmatocystin and patulin, respectively. A possible combination of His6-OPH with inorganic sorbents treated by low-temperature plasma was investigated. Further, enzyme–polyelectrolyte complexes of poly(glutamic acid) with His6-OPH and another enzymatic mycotoxin degrader (thermolysin) were successfully used to modify fiber materials. These catalytically active prototypes of protective materials appear to be useful for preventing surface contact and exposure to mycotoxins and other chemicals that are substrates for the enzymes used.
Collapse
|