1
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
2
|
Trudel-Ferland M, Collard MÈ, Goulet-Beaulieu V, Jubinville E, Hamon F, Jean J. Evaluation of a new automated viral RNA extraction platform for hepatitis A virus and human norovirus in testing of berries, lettuce, and oysters. Int J Food Microbiol 2024; 416:110664. [PMID: 38492524 DOI: 10.1016/j.ijfoodmicro.2024.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Fruits, vegetables, and shellfish are often associated with outbreaks of illness caused particularly by human norovirus (HuNoV) and hepatitis A virus (HAV), the leading causative agents of foodborne illness worldwide. The aim of this study was to evaluate a new automated nucleic acid extraction platform (EGENE-UP EASYPREP) for enteric viruses in several at-risk food matrices and to test its limit of detection in comparison to a semi-automated method (EGENE-UP) using Boom methodology for nucleic acid extraction as suggested in the reference method ISO 15216-2:2019. Fresh and frozen raspberries, frozen blackberries, romaine lettuce and oyster digestive glands were artificially contaminated with HAV, HuNoV GII.4 or HuNoV GI.7 at 102, 103 or 104 genome copies/sample. Virus was then recovered from the food matrix using the ISO method. Viral RNA extracted from frozen berry samples by the automated system was purified on a column for additional removal of RT-qPCR inhibitors. For fresh raspberry, oysters, and romaine lettuce, the two extraction platforms were deemed equivalent. For frozen raspberry, the automated platform appeared to be more efficient for viral recovery, particularly for HAV and HuNoV GI at lower concentrations. With frozen blackberries, the two platforms may be considered equivalent for all targeted viruses. However, the automated method led to less sample-associated inhibition of the PCR, 56.5 % of samples versus 95.0 % for the semi-automated. We thus found that the automated extraction can be performed easily by users while obtaining equivalent or even superior results to the ISO 15216-2:2019 method, and therefore appears to be suitable for routine sanitary monitoring in food processing and for tracing outbreaks of illness.
Collapse
Affiliation(s)
- Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Marie-Ève Collard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Valérie Goulet-Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
3
|
Hinrichs JB, Kreitlow A, Siekmann L, Plötz M, Kemper N, Abdulmawjood A. Changes in Hepatitis E Virus Contamination during the Production of Liver Sausage from Naturally Contaminated Pig Liver and the Potential of Individual Production Parameters to Reduce Hepatitis E Virus Contamination in the Processing Chain. Pathogens 2024; 13:274. [PMID: 38668229 PMCID: PMC11053659 DOI: 10.3390/pathogens13040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
In this study, changes in hepatitis E virus (HEV) contamination in the production of liver sausage from naturally contaminated pork liver were investigated. Furthermore, the potential effectiveness of individual production parameters in reducing viral loads was measured. When processing moderately contaminated liver (initial Cq-value 29), HEV RNA persisted in the finished sausages, even after heating for 90 min at 75 °C. A matrix-specific standard curve was created using a spiking experiment to accurately quantify HEV RNA in a particularly challenging matrix like liver sausage. Variations in product-specific production parameters, including mincing and heating times, showed some reduction in contamination levels, but even prolonged heating did not render all finished products HEV negative. The persistence of HEV contamination underscores the importance of ongoing monitoring in the pig population and raw materials to enhance food safety measures and reduce the likelihood of transmission through pork consumption. The detection of HEV RNA within all processing stages of pork liver in the production of liver sausage suggests that further research into the risk of infection posed by this detection and vigilance in managing HEV risks in the food chain, particularly in pork products, are required to protect public health.
Collapse
Affiliation(s)
- Jan Bernd Hinrichs
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (J.B.H.); (A.K.); (L.S.); (M.P.)
| | - Antonia Kreitlow
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (J.B.H.); (A.K.); (L.S.); (M.P.)
| | - Lisa Siekmann
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (J.B.H.); (A.K.); (L.S.); (M.P.)
| | - Madeleine Plötz
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (J.B.H.); (A.K.); (L.S.); (M.P.)
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviors, University of Veterinary Medicine Hannover, 30173 Hannover, Germany;
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (J.B.H.); (A.K.); (L.S.); (M.P.)
| |
Collapse
|
4
|
Ossio A, Flores-Rodríguez F, Heredia N, García S, Merino-Mascorro JA. Foodborne Viruses and Somatic Coliphages Occurrence in Fresh Produce at Retail from Northern Mexico. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:109-119. [PMID: 38198031 DOI: 10.1007/s12560-023-09578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Foodborne disease outbreaks linked to consumption of vegetables have been often attributed to human enteric viruses, such as Norovirus (NoV), Hepatitis A virus (HAV), and Rotavirus (RoV). Information about the occurrence of these viruses is scarce in many fresh-producing countries. Viral contamination detection of indicators, such as somatic coliphages, could indirectly reflect the presence of viral pathogens, being a valuable tool for better viral risk assessment in food industry. This study aimed to establish the occurrence and correlation of foodborne viruses and somatic coliphages in leafy greens in northern Mexico. A total of 320 vegetable samples were collected, resulting in 80 composite rinses, 40 of lettuce and 40 of parsley. Somatic coliphages were determined using the EPA 1602 method, while foodborne viruses (HAV, RoV, NoV GI, and GII) were determined by qPCR. The occurrence of RoV was 22.5% (9/40, mean 2.11 log gc/g) in lettuce and 20% (8/40, mean 1.91 log gc/g) in parsley. NoV and HAV were not detected in any samples. Somatic coliphages were present in all lettuce and parsley samples, with mean levels of 1.85 log PFU/100 ml and 2.28 log PFU/100 ml, respectively. Spearman analysis established the correlation of somatic coliphages and genomic copies of RoV, resulting in an r2 value of - 0.026 in lettuce and 0.349 in parsley. Although NoV or HAV were undetected in the samples, the presence of RoV is a matter of concern as leafy greens are usually eaten raw, which poses a potential risk of infection.
Collapse
Affiliation(s)
- Axel Ossio
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Fernanda Flores-Rodríguez
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Norma Heredia
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Santos García
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Jose Angel Merino-Mascorro
- Laboratorio de Bioquímica y Genética de Microorganismos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66455, San Nicolas de los Garza, N.L., Mexico.
| |
Collapse
|
5
|
Olaimat AN, Taybeh AO, Al-Nabulsi A, Al-Holy M, Hatmal MM, Alzyoud J, Aolymat I, Abughoush MH, Shahbaz H, Alzyoud A, Osaili T, Ayyash M, Coombs KM, Holley R. Common and Potential Emerging Foodborne Viruses: A Comprehensive Review. Life (Basel) 2024; 14:190. [PMID: 38398699 PMCID: PMC10890126 DOI: 10.3390/life14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the recent information available on the general and clinical characteristics of viruses, viral foodborne outbreaks and control strategies to prevent the viral contamination of food products and water. Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk assessment experts regard them as a high food safety priority. This concern is well founded, since a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus, hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common viruses associated with water or foodborne illness outbreaks. It is also suspected that many human viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to be transmitted via food products. It is evident that the adoption of strict hygienic food processing measures from farm to table is required to prevent viruses from contaminating our food.
Collapse
Affiliation(s)
- Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Asma’ O. Taybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Murad Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Jihad Alzyoud
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Mahmoud H. Abughoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates
| | - Hafiz Shahbaz
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Anas Alzyoud
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain 53000, United Arab Emirates;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
6
|
Chen Y, Zhao S, Xu Y, Cai M, Zhang G. SARS-CoV-2 transmission via maritime cold chains: A statistical analysis of nucleic acid detection results of cold chain food imported from Fuzhou ports. Heliyon 2023; 9:e21954. [PMID: 38034616 PMCID: PMC10685251 DOI: 10.1016/j.heliyon.2023.e21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Numerous epidemic outbreaks related to cold chains have occurred since the coronavirus disease 2019 (COVID-19) outbreak, suggesting the potential danger of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission through cold chain foods (CCFs). By analyzing SARS-CoV-2 RNA contamination of CCFs imported from Fuzhou ports, this study evaluated the contamination and transmission of SARS-CoV-2 RNA via maritime cold chains, with the aim of provide suggestions for CCFs supervision and public health management. The statistical analysis included 131,385 samples. The majority of the CCFs imported into Fuzhou ports was aquatic raw food that originated in Southeast Asia (57.08 %), South America (19.87 %), and South Asia (11.22 %). South Asia had the highest positivity rate of 0.37 %, followed by Southeast Asia (0.21 %) and South America (0.08 %). The positivity rate showed that the outer packaging of CCFs was the most easily contaminated, accounting for 81.33 % of all positive samples. This suggested that CCFs storage and loading processes were the weak links vulnerable to SARS-CoV-2 contamination. The positivity rates in outer packaging, inner packaging, and content of raw food were 0.48 %, 0.08 %, and 0.05 %, respectively, which were obviously higher than those of processed and refined food. This indicated that increasing the mechanization of factories and implementing sensible worker management practices may decrease viral contamination. The monthly positivity rates varied widely from 0 % (March 2021) to 0.40 % (January 2021), with an average of 0.19 %. The positivity rates in outer packaging, inner packaging and content of crustaceans from Southeast Asia were 2.47 %, 0.41 %, and 0.69 %, which were approximately 5-14 times higher than those of fish and cephalopods. Meanwhile, the monthly detection number show that SARS-CoV-2 epidemic prevention strategies affected the trade of imported CCFs.
Collapse
Affiliation(s)
- Yuxiang Chen
- Fujian CapitalBio Medical Laboratory, Fuzhou, 350108, China
| | - Shuai Zhao
- Department of Breast Surgery, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Yiyuan Xu
- Fujian CapitalBio Medical Laboratory, Fuzhou, 350108, China
| | - Mingzhi Cai
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, China
| | - Guanbin Zhang
- Fujian CapitalBio Medical Laboratory, Fuzhou, 350108, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
7
|
Han S, Hyun SW, Son JW, Song MS, Lim DJ, Choi C, Park SH, Ha SD. Innovative nonthermal technologies for inactivation of emerging foodborne viruses. Compr Rev Food Sci Food Saf 2023; 22:3395-3421. [PMID: 37288815 DOI: 10.1111/1541-4337.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Various foodborne viruses have been associated with human health during the last decade, causing gastroenteritis and a huge economic burden worldwide. Furthermore, the emergence of new variants of infectious viruses is growing continuously. Inactivation of foodborne viruses in the food industry is a formidable task because although viruses cannot grow in foods, they can survive in the food matrix during food processing and storage environments. Conventional inactivation methods pose various drawbacks, necessitating more effective and environmentally friendly techniques for controlling foodborne viruses during food production and processing. Various inactivation approaches for controlling foodborne viruses have been attempted in the food industry. However, some traditionally used techniques, such as disinfectant-based or heat treatment, are not always efficient. Nonthermal techniques are considered a new platform for effective and safe treatment to inactivate foodborne viruses. This review focuses on foodborne viruses commonly associated with human gastroenteritis, including newly emerged viruses, such as sapovirus and Aichi virus. It also investigates the use of chemical and nonthermal physical treatments as effective technologies to inactivate foodborne viruses.
Collapse
Affiliation(s)
- Sangha Han
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Seok-Woo Hyun
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Jeong Won Son
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Min Su Song
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Dong Jae Lim
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| |
Collapse
|
8
|
Rowan NJ. Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162380. [PMID: 36841407 DOI: 10.1016/j.scitotenv.2023.162380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Safeguarding the seafood industry is important given its contribution to supporting our growing global population. However, shellfish are filter feeders that bioaccumulate microbial contaminants in their tissue from wastewater discharged into the same coastal growing environments leading to significant human disease outbreaks unless appropriately mitigated. Removal or inactivation of enteric viruses is very challenging particularly as human norovirus (hNoV) binds to specific histo-blood ligands in live oyster tissue that are consumed raw or lightly cooked. The regulatory framework that sets out use of clean seawater and UV disinfection is appropriate for bacterial decontamination at the post-harvest land-based depuration (cleaning) stage. However, additional non-thermal technologies are required to eliminate hNoV in live shellfish (particularly oysters) where published genomic studies report that low-pressure UV has limited effectiveness in inactivating hNoV. The use of the standard genomic detection method (ISO 15, 216-1:2017) is not appropriate for assessing the loss of infectious hNoV in treated live shellfish. The use of surrogate viral infectivity methods appear to offer some insight into the loss of hNoV infectiousness in live shellfish during decontamination. This paper reviews the use of existing and potentially other combinational treatment approaches to enhance the removal or inactivation of enteric viruses in live shellfish. The use of alternative and complementary novel diagnostic approaches to discern viable hNoV are discussed. The effectiveness and virological safety of new affordable hNoV intervention(s) require testing and validating at commercial shellfish production in conjunction with laboratory-based research. Appropriate risk management planning should encompass key stakeholders including local government and the wastewater industry. Gaining a mechanistic understanding of the relationship between hNoV response at molecular and structural levels in individually treated oysters as a unit will inform predictive modeling and appropriate treatment technologies. Global warming of coastal growing environments may introduce additional contaminant challenges (such as invasive species); thus, underscoring need to develop real-time ecosystem monitoring of growing environments to alert shellfish producers to appropriately mitigate these threats.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone Campus, Ireland.
| |
Collapse
|
9
|
Aladhadh M. A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms 2023; 11:1111. [PMID: 37317085 DOI: 10.3390/microorganisms11051111] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Despite the recent advances in food preservation techniques and food safety, significant disease outbreaks linked to foodborne pathogens such as bacteria, fungi, and viruses still occur worldwide indicating that these pathogens still constitute significant risks to public health. Although extensive reviews of methods for foodborne pathogens detection exist, most are skewed towards bacteria despite the increasing relevance of other pathogens such as viruses. Therefore, this review of foodborne pathogen detection methods is holistic, focusing on pathogenic bacteria, fungi, and viruses. This review has shown that culture-based methods allied with new approaches are beneficial for the detection of foodborne pathogens. The current application of immunoassay methods, especially for bacterial and fungal toxins detection in foods, are reviewed. The use and benefits of nucleic acid-based PCR methods and next-generation sequencing-based methods for bacterial, fungal, and viral pathogens' detection and their toxins in foods are also reviewed. This review has, therefore, shown that different modern methods exist for the detection of current and emerging foodborne bacterial, fungal, and viral pathogens. It provides further evidence that the full utilization of these tools can lead to early detection and control of foodborne diseases, enhancing public health and reducing the frequency of disease outbreaks.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
10
|
Hassoun A, Prieto MA, Carpena M, Bouzembrak Y, Marvin HJ, Pallarés N, Barba FJ, Punia Bangar S, Chaudhary V, Ibrahim S, Bono G. Exploring the role of green and Industry 4.0 technologies in achieving sustainable development goals in food sectors. Food Res Int 2022; 162:112068. [DOI: 10.1016/j.foodres.2022.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
11
|
Pakbin B, Rossen JWA, Brück WM, Montazeri N, Allahyari S, Dibazar SP, Abdolvahabi R, Mahmoudi R, Peymani A, Samimi R. Prevalence of foodborne and zoonotic viral pathogens in raw cow milk samples. FEMS Microbiol Lett 2022; 369:6815774. [PMID: 36352488 DOI: 10.1093/femsle/fnac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Foodborne and zoonotic viral pathogens are responsible for substantial morbidity and mortality worldwide. These viruses can be transmitted through foods such as dairy products to humans and cause several acute and chronic diseases. This study aimed to investigate the prevalence and profile of different foodborne and zoonotic viruses in raw cow milk samples. We collected 492 raw cow milk samples from local dairy markets in Qazvin, Iran. Then we evaluated the presence of hepatitis A virus, noroviruses, rotavirus, astrovirus, bovine leukaemia virus (BLV) and tick-borne encephalitis virus (TBEV) in samples using conventional and nested reverse transcription-polymerase chain reaction methods. We found that 34.95, 7.72, 25.81, 14.63, 66.86, 12.80 and 21.34% of raw milk samples were contaminated with norovirus GI, norovirus GII, hepatitis A virus, rotavirus, astrovirus, BLV and TBEV viruses, respectively. Interestingly, the samples collected from the city's south area revealed a higher prevalence of foodborne and zoonotic viruses. Astrovirus and its combination with norovirus GI were the most prevalent virus profiles. Also, the highest correlations were observed among the presence of rotavirus and hepatitis A viruses (0.36) and TBEV and norovirus GII (0.31). Considering the prevalence rate and virus profiles of different foodborne and zoonotic viruses in raw milk samples, hygiene practices and the pasteurization process are strongly suggested to be conducted throughout the cow milk production chain and in dairy industries to prevent infections with these pathogens.
Collapse
Affiliation(s)
- Babak Pakbin
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - John W A Rossen
- Laboratory of Clinical Microbiology and Infectious Diseases, Isala Hospital, 8025 AB Zwolle, the Netherlands.,Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland
| | - Naim Montazeri
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Samaneh Allahyari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | | | - Razieh Abdolvahabi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Rasoul Samimi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| |
Collapse
|
12
|
Kingsley DH, Chang SK, Annous BA, Pillai SD. Evaluation of Riboflavin as an enhancer for X-ray and EBeam irradiation treatment of Tulane virus. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Velebit B, Milojević L, Baltić T, Grković N, Gummalla S, Velebit M, Škoko I, Mojsova S, Putnik P. Efficacy of cold atmospheric plasma for inactivation of viruses on raspberries. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Lian Z, Yang D, Wang Y, Zhao L, Rao L, Liao X. Investigating the microbial inactivation effect of low temperature high pressure carbon dioxide and its application in frozen prawn (Penaeus vannamei). Food Control 2022; 145:109401. [PMID: 36186659 PMCID: PMC9512252 DOI: 10.1016/j.foodcont.2022.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
During the pandemic of coronavirus disease 2019, the fact that frozen foods can carry the relevant virus raises concerns about the microbial safety of cold-chain foods. As a non-thermal processing technology, high pressure carbon dioxide (HPCD) is a potential method to reduce microbial load on cold-chain foods. In this study, we explored the microbial inactivation of low temperature (5-10 °C) HPCD (LT-HPCD) and evaluated its effect on the quality of prawn during freeze-chilled and frozen storage. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min could effectively inactivate E. coli (99.45%) and S. aureus (94.6%) suspended in 0.85% NaCl, SARS-CoV-2 Spike pseudovirus (>99%) and human coronavirus 229E (hCoV-229E) (>1-log virus tilter reduction) suspended in DMEM medium. The inactivation effect of LT-HPCD was weakened but still significant when the microorganisms were inoculated on the surface of food or package. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min achieved about 60% inactivation of total aerobic count while could maintain frozen state and quality of prawn. Moreover, LT-HPCD treated prawn exhibited significant slower microbial proliferation and no occurrence of melanosis compared with the untreated samples during chilled storage. A comprehensive quality investigation indicated that LT-HPCD treatment could maintain the color, texture and sensory of prawn during chilled or frozen storage. Consequently, LT-HPCD could improve the microbial safety of frozen prawn while maintaining its original quality, and could be a potential method for food industry to improve the microbial safety of cold-chain foods.
Collapse
|
15
|
Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. J Food Saf 2022. [DOI: 10.1111/jfs.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology College of Food Science & Technology, PJTSAU Hyderabad Telangana India
| |
Collapse
|
16
|
Kulawik P, Rathod NB, Ozogul Y, Ozogul F, Zhang W. Recent developments in the use of cold plasma, high hydrostatic pressure, and pulsed electric fields on microorganisms and viruses in seafood. Crit Rev Food Sci Nutr 2022; 63:9716-9730. [PMID: 35603708 DOI: 10.1080/10408398.2022.2077298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-thermal processing methods, such as cold plasma (CP), high pressure processing (HPP) and pulsed electric fields (PEF), have been proposed for natural and fresh-like foods to inactivate microorganisms at nearly-ambient or moderate temperature. Since natural, safe, and healthy foods with longer shelf-life are increasingly demanded, these requests are challenging to fulfill by using current thermal processing technologies. Thus, novel preservation technologies based on non-thermal processing methods are required. The aim of this article is to provide recent developments in maintaining seafood safety via CP, HHP, and PEF technologies, as well as their mechanisms of action regarding contamination with food-borne microorganisms. Their application to control parasites, spores and the possibility to eradicate the hazard of SARS-CoV-2 transmission through seafood products are also discussed. CP, HHP, and PEF have been applied to inactivate food-borne microorganisms in the seafood industry. However, the drawbacks for each emerging technology have also been reported. To ensure safety and maintain quality of seafood products, the combination of these processing techniques with natural antimicrobial agents or existing thermal methods may be more applicable in the case of the seafood industry. Further studies are required to examine the effects of these methods on viruses, parasites, and SARS-CoV-2 in seafood.
Collapse
Affiliation(s)
- Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Nikheel Bhojraj Rathod
- Department of Post-Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Raigad, Maharashtra, India
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Abbasi A, Kafil HS, Ozma MA, Sangtarash N, Sabahi S. Can food matrices be considered as a potential carrier for COVID-19? LE INFEZIONI IN MEDICINA 2022; 30:59-72. [PMID: 35350257 PMCID: PMC8929742 DOI: 10.53854/liim-3001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Humanity is currently facing a life-threatening challenge from the infectious and epidemic disease SARS-CoV-2. To date, the various modes of transmission of the virus have not been fully elucidated. In this regard, there is a possibility of transmission of the virus through food products. The COVID-19 pandemic disease, like those associated with SARS and MERS, is transmitted mainly through the respiratory tract and airborne aerosol particles, but the presence of fragments of the genetic virus (RNA) in the feces of numerous patients proposes that their fecal-oral pathway may be expanded. In addition, people with gastrointestinal disorders such as atrophic gastritis and metaplasia may be susceptible to COVID-19 infection. Accordingly, food may act as a potential carrier of COVID-19 due to environmental or cross-contamination. According to the available evidence, the spread and possibility of transmission of COVID-19 contamination from humans to food products are possible. Beyond that, there is some evidence that some food sources of animal origin, such as pigs and rabbits, can be contaminated by COVID-19. Therefore, the transmission of the virus through some meat products may be conceivable. Due to the rapid release rate of COVID-19 and its stability in various milieus, especially food manufacturing circumstances, it may enter the matrix during different stages of traditional or industrial food processing. Therefore, preventive measures are recommended to be utilized in the food manufacturing sector. The present study explored the risk of different food matrices, including dairy products, bread, meat and meat products, vegetables, fruits, and processed foods, as potential carriers for the transmission of COVID-19.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Asghari Ozma
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Sangtarash
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Ezzatpanah H, Gómez‐López VM, Koutchma T, Lavafpour F, Moerman F, Mohammadi M, Raheem D. New food safety challenges of viral contamination from a global perspective: Conventional, emerging, and novel methods of viral control. Compr Rev Food Sci Food Saf 2022; 21:904-941. [DOI: 10.1111/1541-4337.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Hamid Ezzatpanah
- Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Tatiana Koutchma
- Guelph Research and Development Center Agriculture and Agri‐Food Canada Guelph Ontario Canada
| | | | - Frank Moerman
- Department of Chemistry Catholic University of Leuven ‐ KU Leuven Leuven Belgium
| | | | - Dele Raheem
- Arctic Centre (NIEM) University of Lapland Rovaniemi Finland
| |
Collapse
|
19
|
Jubinville E, Trudel-Ferland M, Amyot J, Jean J. Inactivation of hepatitis A virus and norovirus on berries by broad-spectrum pulsed light. Int J Food Microbiol 2022; 364:109529. [PMID: 35026446 DOI: 10.1016/j.ijfoodmicro.2021.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022]
Abstract
Foodborne diseases are still a major global health and economic burden, and are mainly caused by viral pathogens, such as human norovirus and hepatitis A virus, which may remain infective for long times on food contact surfaces and on produce. The strategies of viral inactivation applied in the industry are not generally suitable for delicate foods such as berries. Brief exposure to high-intensity white light (UV to IR) has been shown to inactivate many bacteria. The effectiveness of this treatment against foodborne viruses on fresh produce is largely unknown. We show that pulsed light treatment causes a moderate drop in the luminosity (L*, which ranges from bright (high) to dark (low)) of blueberries (to 36.31 ± 0.99 from 42.47 ± 1.17) and affects the luminosity of lettuce slightly but does not affect the appearance of strawberries, blackberries or raspberries. Hepatitis A virus and murine norovirus 1 are thus reduced by 2 log cycles. Viral inactivation on blackberries was less effective. These results will help food industries evaluate the suitability of pulsed light disinfecting technology for specific fruits and vegetables.
Collapse
Affiliation(s)
- Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec, Canada
| | - Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec, Canada
| | - Janie Amyot
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec, Canada
| | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec, Canada.
| |
Collapse
|
20
|
|
21
|
Gómez-López VM, Jubinville E, Rodríguez-López MI, Trudel-Ferland M, Bouchard S, Jean J. Inactivation of Foodborne Viruses by UV Light: A Review. Foods 2021; 10:foods10123141. [PMID: 34945692 PMCID: PMC8701782 DOI: 10.3390/foods10123141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses on some foods can be inactivated by exposure to ultraviolet (UV) light. This green technology has little impact on product quality and, thus, could be used to increase food safety. While its bactericidal effect has been studied extensively, little is known about the viricidal effect of UV on foods. The mechanism of viral inactivation by UV results mainly from an alteration of the genetic material (DNA or RNA) within the viral capsid and, to a lesser extent, by modifying major and minor viral proteins of the capsid. In this review, we examine the potential of UV treatment as a means of inactivating viruses on food processing surfaces and different foods. The most common foodborne viruses and their laboratory surrogates; further explanation on the inactivation mechanism and its efficacy in water, liquid foods, meat products, fruits, and vegetables; and the prospects for the commercial application of this technology are discussed. Lastly, we describe UV’s limitations and legislation surrounding its use. Based on our review of the literature, viral inactivation in water seems to be particularly effective. While consistent inactivation through turbid liquid food or the entire surface of irregular food matrices is more challenging, some treatments on different food matrices seem promising.
Collapse
Affiliation(s)
- Vicente M. Gómez-López
- Catedra Alimentos para la Salud, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain;
| | - Eric Jubinville
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - María Isabel Rodríguez-López
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain;
| | - Mathilde Trudel-Ferland
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - Simon Bouchard
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - Julie Jean
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 413849)
| |
Collapse
|
22
|
Filip R, Anchidin-Norocel L, Gheorghita R, Savage WK, Dimian M. Changes in Dietary Patterns and Clinical Health Outcomes in Different Countries during the SARS-CoV-2 Pandemic. Nutrients 2021; 13:3612. [PMID: 34684615 PMCID: PMC8539259 DOI: 10.3390/nu13103612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to an excess in community mortality across the globe. We review recent evidence on the clinical pathology of COVID-19, comorbidity factors, immune response to SARS-CoV-2 infection, and factors influencing infection outcomes. The latter specifically includes diet and lifestyle factors during pandemic restrictions. We also cover the possibility of SARS-CoV-2 transmission through food products and the food chain, as well as virus persistence on different surfaces and in different environmental conditions, which were major public concerns during the initial days of the pandemic, but have since waned in public attention. We discuss useful measures to avoid the risk of SARS-CoV-2 spread through food, and approaches that may reduce the risk of contamination with the highly contagious virus. While hygienic protocols are required in food supply sectors, cleaning, disinfection, avoidance of cross-contamination across food categories, and foodstuffs at different stages of the manufacturing process are still particularly relevant because the virus persists at length on inert materials such as food packaging. Moreover, personal hygiene (frequent washing and disinfection), wearing gloves, and proper use of masks, clothes, and footwear dedicated to maintaining hygiene, provide on-site protections for food sector employees as well as supply chain intermediates and consumers. Finally, we emphasize the importance of following a healthy diet and maintaining a lifestyle that promotes physical well-being and supports healthy immune system function, especially when government movement restrictions ("lockdowns") are implemented.
Collapse
Affiliation(s)
- Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.F.); (R.G.); (W.K.S.)
- Regional County Emergency Hospital, 720224 Suceava, Romania
| | - Liliana Anchidin-Norocel
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.F.); (R.G.); (W.K.S.)
| | - Roxana Gheorghita
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.F.); (R.G.); (W.K.S.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Wesley K. Savage
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.F.); (R.G.); (W.K.S.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
23
|
Sarowska J, Wojnicz D, Jama-Kmiecik A, Frej-Mądrzak M, Choroszy-Król I. Antiviral Potential of Plants against Noroviruses. Molecules 2021; 26:molecules26154669. [PMID: 34361822 PMCID: PMC8347075 DOI: 10.3390/molecules26154669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023] Open
Abstract
Human noroviruses, which belong to the enterovirus family, are one of the most common etiological agents of food-borne diseases. In recent years, intensive research has been carried out regarding the antiviral activity of plant metabolites that could be used for the preservation of fresh food, because they are safer for consumption when compared to synthetic chemicals. Plant preparations with proven antimicrobial activity differ in their chemical compositions, which significantly affects their biological activity. Our review aimed to present the results of research related to the characteristics, applicability, and mechanisms of the action of various plant-based preparations and metabolites against norovirus. New strategies to combat intestinal viruses are necessary, not only to ensure food safety and reduce infections in humans but also to lower the direct health costs associated with them.
Collapse
Affiliation(s)
- Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland
- Correspondence: ; Tel.: +48-717-841-512
| | - Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| |
Collapse
|
24
|
Bisht B, Bhatnagar P, Gururani P, Kumar V, Tomar MS, Sinhmar R, Rathi N, Kumar S. Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables– a review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Aman Mohammadi M, Ahangari H, Zabihzadeh Khajavi M, Yousefi M, Scholtz V, Hosseini SM. Inactivation of viruses using nonthermal plasma in viral suspensions and foodstuff: A short review of recent studies. J Food Saf 2021. [DOI: 10.1111/jfs.12919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Zabihzadeh Khajavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Yousefi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Vladimír Scholtz
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
26
|
González N, Marquès M, Domingo JL. Respiratory viruses in foods and their potential transmission through the diet: A review of the literature. ENVIRONMENTAL RESEARCH 2021; 195:110826. [PMID: 33529649 PMCID: PMC7963685 DOI: 10.1016/j.envres.2021.110826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 05/04/2023]
Abstract
Respiratory viruses are the main agents causing respiratory tract diseases. Nowadays, coronaviruses - and specifically, SARS-CoV-1, MERS-CoV and SARS-CoV-2 - are the principal responsible for the major epidemic outbreaks of the 21st century. The major routes of transmission for respiratory viruses - including coronaviruses - are via direct and indirect contacts. However, transmission through contaminated foods has not been extensively assessed. The present paper was aimed at reviewing scientific data on the transmission of respiratory viruses through potentially contaminated foods. While the current data seem to suggest that this route of transmission is not likely to occur, in order to increase the knowledge on this issue further investigations are still clearly necessary for a more complete prevention of the risks. Studies should include fresh produce and cooked foods. Anyway, prevention measures and good hygienic practices for both consumers and workers are mandatory when handling and cooking foods.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
27
|
Govaris A, Pexara A. Inactivation of Foodborne Viruses by High-Pressure Processing (HPP). Foods 2021; 10:215. [PMID: 33494224 PMCID: PMC7909798 DOI: 10.3390/foods10020215] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
High-pressure processing (HPP) is an innovative non-thermal food preservation method. HPP can inactivate microorganisms, including viruses, with minimal influence on the physicochemical and sensory properties of foods. The most significant foodborne viruses are human norovirus (HuNoV), hepatitis A virus (HAV), human rotavirus (HRV), hepatitis E virus (HEV), human astrovirus (HAstV), human adenovirus (HuAdV), Aichi virus (AiV), sapovirus (SaV), and enterovirus (EV), which have also been implicated in foodborne outbreaks in various countries. The HPP inactivation of foodborne viruses in foods depends on high-pressure processing parameters (pressure, temperature, and duration time) or non-processing parameters such as virus type, food matrix, water activity (aw), and the pH of foods. HPP was found to be effective for the inactivation of foodborne viruses such as HuNoV, HAV, HAstV, and HuAdV in foods. HPP treatments have been found to be effective at eliminating foodborne viruses in high-risk foods such as shellfish and vegetables. The present work reviews the published data on the effect of HPP processing on foodborne viruses in laboratory media and foods.
Collapse
Affiliation(s)
| | - Andreana Pexara
- Laboratory of Hygiene of Foods of Animal Origin, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Street, 43100 Karditsa, Greece;
| |
Collapse
|