1
|
Chen B, Fragal EH, Faudry E, Halila S. In Situ Growth of Silver Nanoparticles into Reducing-End Carbohydrate-Based Supramolecular Hydrogels for Antimicrobial Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39668523 DOI: 10.1021/acsami.4c17526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Hydrogels with antibacterial activities have the potential for many biomedical applications, such as wound healing, because of their capacity to maintain a moist environment and prevent infections. In this work, an ultrasound-induced supramolecular hydrogel consisting of easily accessible reducing-end-free glucosaminylbarbiturate-based hydrogelators that serve the in situ fabrication of silver nanoparticles (AgNPs), excluding the addition of any external reducing or stabilizing agents, has been developed. The innovative synthetic approach relied on the use of N,N'-disubstituted barbituric acid derivatives as a versatile chemical platform that site-selectively reacted with the amino function of glucosamine. A series of glucosaminylbarbiturate were synthesized, and we identified one carbohydrate-based hydrogelator that produced a thixotropic supramolecular hydrogel after ultrasound-mediated breaking of an intralocked hydrogen bond. AgNPs@hydrogels were prepared through in situ reduction of silver ions mediated by the reducing properties of carbohydrates. The AgNPs@hydrogel composite revealed good antimicrobial properties toward both Gram-positive and Gram-negative bacteria. These findings contribute to the development of carbohydrate-based supramolecular hydrogels and make them promising efficient and safe soft materials for antimicrobial therapy.
Collapse
Affiliation(s)
- Bing Chen
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | | | - Eric Faudry
- CEA, INSERM, CNRS, Univ. Grenoble Alpes, UMR 1036/ERL 5261, Grenoble 38054, France
| | - Sami Halila
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| |
Collapse
|
2
|
Ahmed Z, Xu B, Farooq U, Manzoor MF, Awad MF, Ashraf J, Tufail T, Abdi G. Impact of multi-frequency ultrasound processing with different treatment times on the structural quality of frozen wheat dough. ULTRASONICS SONOCHEMISTRY 2024; 111:107116. [PMID: 39461188 PMCID: PMC11544065 DOI: 10.1016/j.ultsonch.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
This study investigates the effects of multi-frequency ultrasound treatment on the quality of frozen dough. We analyzed frozen wheat dough comprehensively for texture, viscosity, rheology, and structural quality characteristics under multi-frequency ultrasound (20 kHz, 20/40 kHz, and 20/40/60 kHz) with different treatment times (10, 20, and 30 mins). The dough treated with multi-frequency ultrasound increased elasticity and reduced hardness. Scanning electron microscopy revealed that 20/40/60 kHz for 30 min minimized freezing-induced morphological damage, decreased the tan δ in rheological analysis, and led to higher pasting and gelatinization enthalpy in starch granules, resulting in a more cohesive structure and lower free water content. Frozen dough hardness decreased by 52.1 %, which is associated with the control frozen dough with ultrasound frequency and duration changes. The spectral peaks in wheat flour frozen dough treated with single, dual, and tri-frequency ultrasound had the same forms and positions as the control samples but were arranged in an orderly manner. This study demonstrates the potential of multi-frequency ultrasound to enhance the quality of wheat frozen dough by mitigating freezing-induced deteriorations, offering a promising approach to improving the processing of frozen dough.
Collapse
Affiliation(s)
- Zahoor Ahmed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Umar Farooq
- Department of Nutrition and Dietetics, National University of Medical Sciences Rawalpindi, Pakistan
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guanghzou, China
| | - Mohamed F Awad
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Jawad Ashraf
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169 Bushehr, Iran.
| |
Collapse
|
3
|
Zhang P, Yin Y, Tong X, Chen P, He Z, Li Z, Xu B, Wang C, Kang X, Han B. Bio-based hydrogels induced by salts. Chem Commun (Camb) 2024; 60:11960-11963. [PMID: 39352228 DOI: 10.1039/d4cc04162c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
In this study, we introduce a salt-responsive hydrogel system utilizing a sugar-derived surfactant featuring a polyhydroxy spacer in its headgroup. The inclusion of salts enhances and organizes the intermolecular hydrogen bonding within the hydrophilic region of the polyhydroxy spacer, promoting cross-linking among surfactant molecules.
Collapse
Affiliation(s)
- Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Tong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuosen He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
| | - Zhihong Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Baocai Xu
- Beijing Technology and Business University, School of Light Industry Science and Engineering, 100048, China
| | - Ce Wang
- Beijing Technology and Business University, School of Light Industry Science and Engineering, 100048, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai, 200062, China
| |
Collapse
|
4
|
Pandey SN, Pathak NP, Sengupta A, Yadav S. Understanding the gelation properties of the fluorophenyl glycosides of arabinoside gelators: experimental and theoretical studies. SOFT MATTER 2024; 20:7111-7121. [PMID: 39041286 DOI: 10.1039/d4sm00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In supramolecular gelation, fluorinated gelators are important due to the unique properties displayed by these compounds that arise out of the presence of fluorine atoms. Generally, incorporation of fluorine leads to higher mechanical strength of the gels compared to their non-fluorinated counterparts and this property is enhanced with increasing the number of fluorine atoms. Herein, we show that the incorporation of fluorine into the phenyl ring of phenyl arabinoside allows the molecule to act as a gelator, unlike the non-fluorinated compound. We also show that the mechanical strength and stiffness of the gels is not only dependent on the positions of the fluorine atoms but also guided by their number. Detailed experimental studies, supported by computational studies, allowed us to rationalize the observed supramolecular interactions and propose reasons based on the conformational preferences of these compounds that allow additional hydrogen bonds and π-π interactions which guide the self-assembly, in addition to the primary H-bonding interactions. This, in turn, affects the mechanical behavior of these gels.
Collapse
Affiliation(s)
- Sachchida N Pandey
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| | - Navendu P Pathak
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| | - Somnath Yadav
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
5
|
Vishnevetskii DV, Metlin FA, Andrianova YV, Polyakova EE, Ivanova AI, Averkin DV, Mekhtiev AR. Preparation of Composite Hydrogels Based on Cysteine-Silver Sol and Methylene Blue as Promising Systems for Anticancer Photodynamic Therapy. Gels 2024; 10:577. [PMID: 39330179 PMCID: PMC11431599 DOI: 10.3390/gels10090577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, a novel supramolecular composite, "photogels", was synthesized by mixing of cysteine-silver sol (CSS) and methylene blue (MB). A complex of modern physico-chemical methods of analysis such as viscosimetry, UV spectroscopy, dynamic and electrophoretic light scattering, scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that MB molecules are uniformly localized mainly in the space between fibers of the gel-network formed by CSS particles. Molecules of the dye also bind with the surface of CSS particles by non-covalent interactions. This fact is reflected in the appearance of a synergistic anticancer effect of gels against human squamous cell carcinoma even in the absence of light irradiation. A mild toxic influence of hydrogels was observed in normal keratinocyte cells. Photodynamic exposure significantly increased gel activity, and there remained a synergistic effect. The study of free-radical oxidation in cells has shown that gels are not only capable of generating reactive oxygen species, but also have other targets of action. Flow cytometric analysis allowed us to find out that obtained hydrogels caused cell cycle arrest both without irradiation and with light exposure. The obtained gels are of considerable interest both from the point of view of academics and applied science, for example, in the photodynamic therapy of superficial neoplasms.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Fedor A. Metlin
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Yana V. Andrianova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Alexandra I. Ivanova
- Department of Applied Physics, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| | - Dmitry V. Averkin
- Russian Metrological Institute of Technical Physics and Radio Engineering, Worker’s Settlement Mendeleevo, Building 11, Moscow 141570, Russia;
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| |
Collapse
|
6
|
Wang G, Chen A, Aryal P, Bietsch J. Synthetic approaches of carbohydrate based self-assembling systems. Org Biomol Chem 2024; 22:5470-5510. [PMID: 38904076 DOI: 10.1039/d4ob00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Pramod Aryal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
7
|
Holey S, Nayak RR. Harnessing Glycolipids for Supramolecular Gelation: A Contemporary Review. ACS OMEGA 2024; 9:25513-25538. [PMID: 38911776 PMCID: PMC11190938 DOI: 10.1021/acsomega.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Within the scope of this review, our exploration spans diverse facets of amphiphilic glycolipid-based low-molecular-weight gelators (LMWGs). This journey explores glycolipid synthesis, self-assembly, and gelation with tailorable properties. It begins by examining the design of glycolipids and their influence on gel formation. Following this, a brief exploration of several gel characterization techniques adds another layer to the understanding of these materials. The final section is dedicated to unraveling the various applications of these glycolipid-based supramolecular gels. A meticulous analysis of available glycolipid gelators and their correlations with desired properties for distinct applications is a pivotal aspect of their investigation. As of the present moment, there exists a notable absence of a review dedicated exclusively to glycolipid gelators. This study aims to bridge this critical gap by presenting an overview that provides novel insights into their unique properties and versatile applications. This holistic examination seeks to contribute to a deeper understanding of molecular design, structural characteristics, and functional applications of glycolipid gelators by offering insights that can propel advancements in these converging scientific disciplines. Overall, this review highlights the diverse classifications of glycolipid-derived gelators and particularly emphasizes their capacity to form gels.
Collapse
Affiliation(s)
- Snehal
Ashokrao Holey
- Department
of Oils, Lipid Science and Technology, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500 007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rati Ranjan Nayak
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| |
Collapse
|
8
|
Ivashchenko O. Layered complexity, reorganisational ability and self-healing mechanisms of heteropolysaccharide solutions. Sci Rep 2024; 14:13957. [PMID: 38886515 PMCID: PMC11183217 DOI: 10.1038/s41598-024-64873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Heteropolysaccharides are among the most widely distributed compounds in nature, acting as both tissue building blocks and as a source of nutrients. Their physicochemical and biological properties have been studied thoroughly; however, the microstructural properties of heteropolysaccharides are still poorly understood. This study aims to investigate the micro-structural peculiarities of agarose, gum arabic, hyaluronic and alginic acids by means of confocal laser scanning microscopy (CLSM) and cryogenic scanning electron microscopy (cryo-SEM). Herein, attention is paid to layered complexity of the microstructure differentiating surface, under surface, inner, and substrate interface layers. The scale and pattern of the polysaccharide's microstructure depend on the concentration, changing from lamellae to cell-like porous structures. This work provides the insight into micro- and nanoscale mechanisms of self-healing and substrate-induced reorganisation. Thus, investigation of the self-healing mechanism revealed that this diffusion-based process starts from the fibres, turning into lamellae, following by cell-like structures with smaller dimensions. Investigation of the substrate-induced reorganisation ability showed that nano-to-micro (scale) porous substrate causes reorganisation in the interface layer of the studied heteropolysaccharides. This work contributes to understanding the structural peculiarities of heteropolysaccharides by looking at them through a supramolecular, micro-level prism.
Collapse
Affiliation(s)
- Olena Ivashchenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61614, Poznań, Poland.
| |
Collapse
|
9
|
Ohsedo Y, Takagi C. Development of Low-Molecular-Weight Gelator/Polymer Composite Materials Utilizing the Gelation and Swelling Process of Polymeric Materials. Gels 2024; 10:298. [PMID: 38786215 PMCID: PMC11121615 DOI: 10.3390/gels10050298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The creation of polymer composite materials by compositing fillers into polymer materials is an effective method of improving the properties of polymer materials, and the development of new fillers and their novel composite methods is expected to lead to the creation of new polymer composite materials. In this study, we develop a new filler material made of low-molecular-weight gelators by applying a gelation process that simultaneously performs the swelling (gelation) of crosslinked polymer materials and the self-assembly of low-molecular-weight gelators into low-dimensional crystals in organic solvents within polymer materials. The gelation process of crosslinking rubber-based polymers using alkylhydrazides/toluene as the low-molecular-weight gelator allowed us to composite self-assembled sheet-like crystals of alkylhydrazides as fillers in polymeric materials, as suggested by various microscopic observations, including infrared absorption measurements, small-angle X-ray diffraction measurements and thermal analysis, microscopy, and infrared absorption measurements. Furthermore, tensile tests of the composite materials demonstrated that the presence of fillers improved both the Young's modulus and the tensile strength, as well as the elongation at yield. Additionally, heat treatment was shown to facilitate filler dispersion and enhance the mechanical properties. The findings demonstrate the potential of self-assembled sheet-like crystals of low-molecular-weight gelators as novel filler materials for polymers. The study's composite method utilizing gelators via gelation proved effective.
Collapse
Affiliation(s)
- Yutaka Ohsedo
- Division of Engineering, Faculty of Engineering, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| | - Chinatsu Takagi
- Faculty of Human Life and Environment, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| |
Collapse
|
10
|
Proietti G, Axelsson A, Capezza AJ, Todarwal Y, Kuzmin J, Linares M, Norman P, Szabó Z, Lendel C, Olsson RT, Dinér P. Ultralight aerogels via supramolecular polymerization of a new chiral perfluoropyridine-based sulfonimidamide organogelator. NANOSCALE 2024; 16:7603-7611. [PMID: 38512219 DOI: 10.1039/d3nr06460c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Chiral and enantiopure perfluorinated sulfonimidamides act as low-molecular weight gelators at low critical gelation concentration (<1 mg mL-1) via supramolecular polymerization in nonpolar organic solvents and more heterogenic mixtures, such as biodiesel and oil. Freeze-drying of the organogel leads to ultralight aerogel with extremely low density (1 mg mL-1). The gelation is driven by hydrogen bonding resulting in a helical molecular ordering and unique fibre assemblies as confirmed by scanning electron microscopy, CD spectroscopy, and computational modeling of the supramolecular structure.
Collapse
Affiliation(s)
- Giampiero Proietti
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Anton Axelsson
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Antonio J Capezza
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Yogesh Todarwal
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Julius Kuzmin
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Mathieu Linares
- PDC Center for High Performance Computing, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Patrick Norman
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Zoltán Szabó
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | - Richard T Olsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Peter Dinér
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| |
Collapse
|
11
|
Vasanthan RJ, Pradhan S, Thangamuthu MD. Emerging Aspects of Triazole in Organic Synthesis: Exploring its Potential as a Gelator. Curr Org Synth 2024; 21:456-512. [PMID: 36221871 DOI: 10.2174/1570179420666221010094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) - commonly known as the "click reaction" - serves as the most effective and highly reliable tool for facile construction of simple to complex designs at the molecular level. It relates to the formation of carbon heteroatomic systems by joining or clicking small molecular pieces together with the help of various organic reactions such as cycloaddition, conjugate addition, ring-opening, etc. Such dynamic strategy results in the generation of triazole and its derivatives from azides and alkynes with three nitrogen atoms in the five-membered aromatic azole ring that often forms gel-assembled structures having gelating properties. These scaffolds have led to prominent applications in designing advanced soft materials, 3D printing, ion sensing, drug delivery, photonics, separation, and purification. In this review, we mainly emphasize the different mechanistic aspects of triazole formation, which includes the synthesis of sugar-based and non-sugar-based triazoles, and their gel applications reported in the literature for the past ten years, as well as the upcoming scope in different branches of applied sciences.
Collapse
Affiliation(s)
- Rabecca Jenifer Vasanthan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Sheersha Pradhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Mohan Das Thangamuthu
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| |
Collapse
|
12
|
Peña García VL, Di Chenna PH, Uhrig ML. Amphiphilic Low-Molecular-Weight Gelators Bearing β- S- N-Acetylglucosamine Linked to a Tartaric Acid Scaffold: Synthesis, Self-Assembly and Wheat Germ Agglutinin Binding. Gels 2023; 10:5. [PMID: 38275843 PMCID: PMC10815405 DOI: 10.3390/gels10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The self-assembly of carbohydrate-based amphiphiles can lead to colloidal soft materials such as supramolecular gels featuring highly desirable characteristics like biodegradability and biocompatibility. The report herein presents the synthesis, characterization and supramolecular self-assembly, physical gelation and wheat lectin binding of two structurally related amphiphilic compounds having β-S-N-acetylglucosamine residues linked to a 2,3-diacyl-N,N'-dipropargylated-l-tartaric diamide. A 1-thio-β-N-acetyl-d-glucosamine precursor attached to a conveniently functionalized linker with an azido group was synthesized by means of a one-pot procedure followed by deprotection. A click reaction successfully led to the two amphiphiles, which differed in length of the fatty acid attached to the tartaric acid scaffold. Although both compounds are poorly soluble in water and organic solvents, the difference in terms of hydrophilic moieties provided them with distinct supramolecular gelation properties. While the presence of an octadecyl chain produced a hydrogelator, the dodecadecyl homologue would only form weak gels in DMSO. SEM and rheology experiments confirmed the characteristic fibrillar morphology and viscoelastic properties, in agreement with the presence of physical gels. Both amphiphiles were able to interact reversibly with wheat germ agglutinin (WGA), a lectin that specifically recognizes GlcNAc residues, indicating a potential use in the food industry, as a gluten sensitivity manager, as well as in health-related industries, for example, for drug delivery systems.
Collapse
Affiliation(s)
- Vicente Leafar Peña García
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, 3er piso, Pabellón 2, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Pablo Héctor Di Chenna
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, 3er piso, Pabellón 2, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
- Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, 3er piso, Pabellón 2, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
13
|
Pal I, Majumdar S, Lepcha G, Ahmed KT, Yatirajula SK, Bhattacharya S, Chakravarti R, Bhattacharya B, Biswas SR, Dey B. Exploration of Variable Solvent Directed Self-Healable Supramolecular M(II)-Metallogels (M = Co, Ni, Zn) of Azelaic Acid: Investigating Temperature-Dependent Ion Conductivity and Antibacterial Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:5442-5457. [PMID: 37997919 DOI: 10.1021/acsabm.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Molecular self-assembly assisted self-healing supramolecular metallogels of azelaic acid with cobalt(II)-, nickel(II)-, and zinc(II)-based metal acetate salts were successfully fabricated. Individually, N,N'-dimethylformamide and dimethyl sulfoxide were immobilized within these distinctly synthesized soft-scaffolds of metallogels to attain their semisolid viscoelastic nature. Rheological experiments such as amplitude sweep, frequency sweep, and thixotropic measurements were executed for these metallogels to ratify their gel features. The different extents of supramolecular interactions operating within these solvent-directed metallogels were clearly reflected in terms of their distinct morphological patterns as investigated through field emission scanning electron microscopy. Comparative infrared (IR) spectral properties of metallogels along with individual metal salts and azelaic acid were analyzed. These experimental data clearly depict the significant shifting of Fourier transform (FT)-IR peaks of xerogel samples of different metallogels from the gel-forming precursors. The networks present within the soft-scaffold are evidently illustrated by the electrospray ionization-mass experimental data. The temperature-dependent ionic conductivity studies with these solvent-directed versatile metallogel systems were investigated through impedance spectroscopy. The temperature-dependent impedance spectroscopic studies clearly demonstrate that the ion-transportation within the gel matrix depends not only on the types of cations but also on the dielectric properties of the immobilized solvents. The antipathogenic effect of these metallogel systems has also been explored by testing their effectiveness against human pathogenic Gram-negative bacteria Klebsiella pneumoniae (MTCC 109) and Vibrio parahemolyticus, and Gram-positive bacteria like Bacillus cereus (MTCC 1272). These gel soft-scaffolds show no significant cytotoxicity against both the human neuroblastoma cell line-SH-SY5Y and the human embryonic kidney cell line-HEK 293.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Kazi Tawsif Ahmed
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | | | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Bireswar Bhattacharya
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
14
|
Tanaka F. Thermoreversible Gelation with Supramolecularly Polymerized Cross-Link Junctions. Gels 2023; 9:820. [PMID: 37888393 PMCID: PMC10606410 DOI: 10.3390/gels9100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Structure and reversibility of cross-link junctions play pivotal roles in determining the nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer networks. We attempt to theoretically explore new types of sol-gel transitions with mechanical sharpness by allowing cross-links to grow without upper bound. We consider thermoreversible gelation of the primary molecules R{Af} carrying the number f of low molecular weight functional groups (gelators) A. Gelators A are assumed to form supramolecular assemblies. Some examples are: telechelic polymers (f=2) carrying π-π stacking benzene derivatives at their both ends, and trifunctional star molecules (f=3) bearing multiple hydrogen-bonding gelators. The sol-gel transition of the primary molecules becomes sharper with the cooperativity parameter of the stepwise linear growth of the cross-links. There is a polymerization transition (crossover without singularity) of the junctions in the postgel region after the gel point is passed. If the gelator A tends to form supramolecular rings competitively with linear chains, there is another phase transition in the deep postgel region where the average molecular weight of the rings becomes infinite (Bose-Einstein condensation of rings). As a typical example of binary cross-links where gelators A and B form mixed junctions, we specifically consider metal-coordinated binding of ligands A by metal ions B. Two types of multi-nuclear supramolecular complexes are studied: (i) linear stacking (ladder) of the sandwich A2B units, and (ii) linear train of egg-box A4B units. To find the strategy towards experimental realization of supramolecular cross-links, the average molecular weight, the gel fraction, the average length of the cross-link junctions are numerically calculated for all of these models as functions of the functionality f, the concentration of the solute molecules, and the temperature. Potential candidates for the realization of these new types of thermoreversible gelation are discussed.
Collapse
Affiliation(s)
- Fumihiko Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Bansode N, Verget J, Barthélémy P. Light-modulation of gel stiffness: a glyconucleoside based bolaamphiphile as a photo-cleavable low molecular weight gelator. SOFT MATTER 2023; 19:6867-6870. [PMID: 37646228 DOI: 10.1039/d3sm00766a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Photo-cleavable glyconucleoside bolaamphiphiles containing a nitrophenyl unit feature gelation abilities in aqueous media. The stiffness of the resulting gels can be modulated upon light irradiation thanks to the photocleavage reaction of nitrophenyl moieties.
Collapse
Affiliation(s)
- Nitin Bansode
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | - Julien Verget
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | - Philippe Barthélémy
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| |
Collapse
|
16
|
Aryal P, Morris J, Adhikari SB, Bietsch J, Wang G. Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators. Molecules 2023; 28:6228. [PMID: 37687056 PMCID: PMC10488493 DOI: 10.3390/molecules28176228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Carbohydrate-based low-molecular-weight gelators are interesting new materials with many potential applications. These compounds can be designed to include multiple stimuli-responsive functional groups. In this study, we designed and synthesized several chemically responsive bola-glycolipids and dimeric carbohydrate- and diarylethene-based photoswitchable derivatives. The dimeric glycolipids formed stable gels in a variety of solvent systems. The best performing gelators in this series contained decanedioic and dithienylethene (DTE) spacers, which formed gels in eight and nine of the tested solvents, respectively. The two new DTE-containing esters possessed interesting photoswitching properties and DTE derivative 7 was found to have versatile gelation properties in many solvents, including DMSO solutions at low concentrations. The gels formed by these compounds were stable under acidic conditions and tended to hydrolyze under basic conditions. Several gels were used to absorb rhodamine B and Toluidine blue from aqueous solutions. In this study, we demonstrated the rational design of molecular gelators which incorporated photoresponsive and pH responsive functions, leading to the discovery of multiple effective stimuli-responsive gelators.
Collapse
Affiliation(s)
| | | | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Avenue, Norfolk, VA 23529-0126, USA; (P.A.); (J.M.); (S.B.A.); (J.B.)
| |
Collapse
|
17
|
Bietsch J, Chen A, Wang D, Wang G. Synthesis of a Series of Trimeric Branched Glycoconjugates and Their Applications for Supramolecular Gels and Catalysis. Molecules 2023; 28:6056. [PMID: 37630308 PMCID: PMC10459207 DOI: 10.3390/molecules28166056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Carbohydrate-derived molecular gelators have found many practical applications as soft materials. To better understand the structure and molecular gelation relationship and further explore the applications of sugar-based gelators, we designed and synthesized eight trimeric branched sugar triazole derivatives and studied their self-assembling properties. These included glucose, glucosamine, galactose, and maltose derivatives. Interestingly, the gelation properties of these compounds exhibited correlations with the peripheral sugar structures. The maltose derivative did not form gels in the tested solvents, but all other compounds exhibited gelation properties in at least one of the solvents. Glucose derivatives showed superior performance, followed by glucosamine derivatives. They typically formed gels in toluene and alcohols; some formed gels in ethanol-water mixtures or DMSO water mixtures. The glycoclusters 9 and 10 demonstrated rate acceleration for the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. These were further studied for their metallogels formation properties, and the copper metallogels from compound 9 were successfully utilized to catalyze click reactions. These metallogels were able to form a gel column, which was effective in converting the reactants into the triazole products in multiple cycles. Moreover, the same gel column was used to transform a second click reaction using different reactants. The synthesis and characterization of these compounds and their applications for catalytic reactions were discussed.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.B.); (A.C.); (D.W.)
| |
Collapse
|
18
|
Liu J, Zhang Y, van Dongen K, Kennedy C, Schotman MJG, Marín San Román PP, Storm C, Dankers PYW, Sijbesma RP. Hepatic Spheroid Formation on Carbohydrate-Functionalized Supramolecular Hydrogels. Biomacromolecules 2023. [PMID: 37246400 DOI: 10.1021/acs.biomac.2c01390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two synthetic supramolecular hydrogels, formed from bis-urea amphiphiles containing lactobionic acid (LBA) and maltobionic acid (MBA) bioactive ligands, are applied as cell culture matrices in vitro. Their fibrillary and dynamic nature mimics essential features of the extracellular matrix (ECM). The carbohydrate amphiphiles self-assemble into long supramolecular fibers in water, and hydrogels are formed by physical entanglement of fibers through bundling. Gels of both amphiphiles exhibit good self-healing behavior, but remarkably different stiffnesses. They display excellent bioactive properties in hepatic cell cultures. Both carbohydrate ligands used are proposed to bind to asialoglycoprotein receptors (ASGPRs) in hepatic cells, thus inducing spheroid formation when seeding hepatic HepG2 cells on both supramolecular hydrogels. Ligand nature, ligand density, and hydrogel stiffness influence cell migration and spheroid size and number. The results illustrate the potential of self-assembled, carbohydrate-functionalized hydrogels as matrices for liver tissue engineering.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ying Zhang
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kim van Dongen
- CytoSMART Technologies B.V., Vrijstraat 9B, Eindhoven 5611 AT, The Netherlands
| | - Chris Kennedy
- Institute for Complex Molecular Systems, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Maaike J G Schotman
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Patricia P Marín San Román
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Cornelis Storm
- Institute for Complex Molecular Systems, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Rint P Sijbesma
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
19
|
Bietsch J, Baker L, Duffney A, Mao A, Foutz M, Ackermann C, Wang G. Para-Methoxybenzylidene Acetal-Protected D-Glucosamine Derivatives as pH-Responsive Gelators and Their Applications for Drug Delivery. Gels 2023; 9:445. [PMID: 37367116 DOI: 10.3390/gels9060445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Carbohydrate-based low molecular weight gelators (LMWGs) are compounds with the capability to self-assemble into complex molecular networks within a solvent, leading to solvent immobilization. This process of gel formation depends on noncovalent interactions, including Van der Waals, hydrogen bonding, and π-π stacking. Due to their potential applications in environmental remediation, drug delivery, and tissue engineering, these molecules have emerged as an important area of research. In particular, various 4,6-O-benzylidene acetal-protected D-glucosamine derivatives have shown promising gelation abilities. In this study, a series of C-2-carbamate derivatives containing a para-methoxy benzylidene acetal functional group were synthesized and characterized. These compounds exhibited good gelation properties in several organic solvents and aqueous mixtures. Upon removal of the acetal functional group under acidic conditions, a number of deprotected free sugar derivatives were also synthesized. Analysis of these free sugar derivatives revealed two compounds were hydrogelators while their precursors did not form hydrogels. For those protected carbamates that are hydrogelators, removal of the 4,6-protection will result in a more water-soluble compound that produces a transition from gel to solution. Given the ability of these compounds to form gels from solution or solution from gels in situ in response to acidic environments, these compounds may have practical applications as stimuli-responsive gelators in an aqueous medium. In turn, one hydrogelator was studied for the encapsulation and release of naproxen and chloroquine. The hydrogel exhibited sustained drug release over a period of several days, with the release of chloroquine being faster at lower pH due to the acid lability of the gelator molecule. The synthesis, characterization, gelation properties, and studies on drug diffusion are discussed.
Collapse
Affiliation(s)
- Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Logan Baker
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Anna Duffney
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Alice Mao
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Mary Foutz
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Cheandri Ackermann
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
20
|
Tanaka F. Gelation Time of Network-Forming Polymer Solutions with Reversible Cross-Link Junctions of Variable Multiplicity. Gels 2023; 9:gels9050379. [PMID: 37232971 DOI: 10.3390/gels9050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
The gelation time tg necessary for a solution of functional (associating) molecules to reach its gel point after a temperature jump, or a sudden concentration change, is theoretically calculated on the basis of the kinetic equation for the stepwise cross-linking reaction as a function of the concentration, temperature, functionality f of the molecules, and multiplicity k of the cross-link junctions. It is shown that quite generally tg can be decomposed into the product of the relaxation time tR and a thermodynamic factor Q. They are functions of a single scaled concentration x≡λ(T)ϕ, where λ(T) is the association constant and ϕ is the concentration. Therefore, the superposition principle holds with λ(T) as a shift factor of the concentration. Additionally, they all depend on the rate constants of the cross-link reaction, and hence it is possible to estimate these microscopic parameters from macroscopic measurements of tg. The thermodynamic factor Q is shown to depend on the quench depth. It generates a singularity of logarithmic divergence as the temperature (concentration) approaches the equilibrium gel point, while the relaxation time tR changes continuously across it. Gelation time tg obeys a power law tg-1∼xn in the high concentration region, whose power index n is related to the multiplicity of the cross-links. The retardation effect on the gelation time due to the reversibility of the cross-linking is explicitly calculated for some specific models of cross-linking to find the rate-controlling steps in order for the minimization of the gelation time to be easier in the gel processing. For a micellar cross-linking covering a wide range of the multiplicity, as seen in hydrophobically-modified water-soluble polymers, tR is shown to obey a formula similar to the Aniansson-Wall law.
Collapse
Affiliation(s)
- Fumihiko Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
21
|
Ludwig AD, Gorbunova V, Saint‐Jalmes A, Berrée F, Lemiègre L. Alkylboronate β‐Phenylglucoside versus Phenylboronate β‐Alkylglucoside Organogelators. ChemistrySelect 2023. [DOI: 10.1002/slct.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Andreas D. Ludwig
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS ISCR – UMR6226 F-35000 Rennes France
| | - Viktoriia Gorbunova
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS ISCR – UMR6226 F-35000 Rennes France
| | - Arnaud Saint‐Jalmes
- Univ Rennes CNRS IPR (Institut de Physique de Rennes) – UMR 6251 F-35000 Rennes France
| | - Fabienne Berrée
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS ISCR – UMR6226 F-35000 Rennes France
| | - Loïc Lemiègre
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS ISCR – UMR6226 F-35000 Rennes France
| |
Collapse
|
22
|
Ludwig AD, Ourvois-Maloisel N, Saint-Jalmes A, Artzner F, Guégan JP, Tasseau O, Berrée F, Lemiègre L. Adjusting the water-sensitivity of sugar/boronate-based organogels. SOFT MATTER 2022; 18:9026-9036. [PMID: 36408633 DOI: 10.1039/d2sm01305c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
During the investigation of the water-sensitivity of (arylboronate alkylglucoside)-based organogels, we evaluated a series of twelve potential organogelators. They were synthesised in a single step from the corresponding arylboronic acids and alkylglucosides. Eight of them showed organogelation abilities in three solvents (toluene, cyclohexane, and ethyl myristate). Conformational minimisations of the potential organogelators permitted a clear relationship between the arylboronate orientation and the gelation effectiveness to be established. These gels were characterised by rheometry and SEM which revealed a gel-state originating from the self-assembly of the organogelators into long entangled fibres. SAXS confirmed the mode of packing in a hexagonal phase. Gels in toluene were found to be water-sensitive both after addition of a small amount of water and immersion into water. This study demonstrated that the main parameter impacting the water-sensitivity was the length of the alkyl chain at the anomeric position of the glucoside unit, much more than the functionalisation of an arylboronate moiety.
Collapse
Affiliation(s)
- Andreas D Ludwig
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
| | | | - Arnaud Saint-Jalmes
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Franck Artzner
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Jean-Paul Guégan
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
| | - Olivier Tasseau
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
| | - Fabienne Berrée
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
| | - Loïc Lemiègre
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
| |
Collapse
|
23
|
Mirzamani M, Dawn A, Garvey CJ, He L, Koerner H, Kumari H. Structural insights into self-assembly of a slow-evolving and mechanically robust supramolecular gel via time-resolved small-angle neutron scattering. Phys Chem Chem Phys 2022; 25:131-141. [PMID: 36475500 DOI: 10.1039/d2cp01826h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The supramolecular assembly process is a widespread phenomenon found in both synthetically engineered and naturally occurring systems, such as colloids, liquid crystals and micelles. However, a basic understanding of the evolution of self-assembly processes over time remains elusive, primarily owing to the fast kinetics involved in these processes and the complex nature of the various non-covalent interactions operating simultaneously. With the help of a slow-evolving supramolecular gel derived from a urea-based gelator, we aim to capture the different stages of the self-assembly process commencing from nucleation. In particular, we are able to study the self-assembly in real time using time-resolved small-angle neutron scattering (SANS) at length scales ranging from approximately 30 Å to 250 Å. Systems with and without sonication are compared simultaneously, to follow the different kinetic paths involved in these two cases. Time-dependent NMR, morphological and rheological studies act complementarily to the SANS data at sub-micron and bulk length scales. A hollow columnar formation comprising of gelator monomers arranged radially along the long axis of the fiber and solvent in the core is detected at the very early stage of the self-assembly process. While sonication promotes uniform growth of fibers and fiber entanglement, the absence of such a stimulus helps extensive bundle formation at a later stage and at the microscopic domain, making the gel system mechanically robust. The results of the present work provide a thorough understanding of the self-assembly process and reveal a path for fine-tuning such growth processes for applications such as the cosmetics industry, 3D printing ink development and paint industry.
Collapse
Affiliation(s)
- Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0004, USA.
| | - Arnab Dawn
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0004, USA.
| | - Christopher J Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, Garching 85748, Germany
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831, USA
| | - Hilmar Koerner
- Materials & Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, USA
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0004, USA.
| |
Collapse
|
24
|
Su M, Zhang J, Li Z, Wei Y, Zhang J, Pang Z, Gao Y, Qian S, Heng W. Recent advances on small molecular gels: formation mechanism and their application in pharmaceutical fields. Expert Opin Drug Deliv 2022; 19:1597-1617. [PMID: 36259939 DOI: 10.1080/17425247.2022.2138329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION As an essential complement to chemically cross-linked macromolecular gels, drug delivery systems based on small molecular gels formed under the driving forces of non-covalent interactions are attracting considerable research interest due to their potential advantages of high structural functionality, lower biological toxicity, reversible stimulus-response, and so on. AREA COVERED The present review summarizes recent advances in small molecular gels and provides their updates as a comprehensive overview in terms of gelation mechanism, gel properties, and physicochemical characterizations. In particular, this manuscript reviews the effects of drug-based small molecular gels on the drug development and their potential applications in the pharmaceutical fields. EXPERT OPINION Small molecular-based gel systems, constructed by inactive compounds or active pharmaceutical ingredients, have been extensively studied as carriers for drug delivery in pharmaceutical field, such as oral formulations, injectable formulations, and transdermal formulations. However, the construction of such gel systems yet faces several challenges such as rational and efficient design of functional gelators and the great occasionality of drug-based gel formation. Thus, a deeper understanding of the gelation mechanism and its relationship with gel properties will be conducive to the construction of small molecular gels systems and their future application.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zudi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Cao BP, Shi XW, Ding H, Wu YM, Matsumoto K, Okamoto H, Xiao Q. Multi-response gelation based on the molecular assembly of Sudan I dye derivatives for phase selective gelators and chemosensors. RSC Adv 2022; 12:33589-33597. [PMID: 36505691 PMCID: PMC9682489 DOI: 10.1039/d2ra05545g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Sudan I dye-based smart low molecular weight gelators with/without a perfluoroalkyl group have been successfully synthesized and characterized by rheological measurements, scanning electron microscopy (SEM), IR, and NMR spectroscopies. The gelation behaviors in response to temperature, pH changes, metal cations, and UV-vis light irradiation are investigated. Compounds 1 and 2 could selectively sense the Cu2+ cation in the presence of other metal cations. Moreover, compound 2 with a perfluoroalkyl group shows phase selective gelation ability. This work also provides a valuable reference for exploiting photosensitive materials as chemosensors.
Collapse
Affiliation(s)
- Ban-Peng Cao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal UniversityNanchang 330013China
| | - Xue-Wen Shi
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal UniversityNanchang 330013China
| | - Haixin Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal UniversityNanchang 330013China
| | - Ya-Min Wu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal UniversityNanchang 330013China
| | - Kenta Matsumoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University2-16-1 TokiwadaiUbe 755-8611Japan
| | - Hiroaki Okamoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University2-16-1 TokiwadaiUbe 755-8611Japan
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal UniversityNanchang 330013China
| |
Collapse
|
26
|
Verma C, Quraishi M. Carbohydrate Polymers-Modified Carbon Allotropes for Enhanced Anticorrosive Activity: State-of-Arts and Perspective. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Bhavya P, Soundarajan K, Malecki JG, Mohan Das T. Sugar-Based Phase-Selective Supramolecular Self-Assembly System for Dye Removal and Selective Detection of Cu 2+ Ions. ACS OMEGA 2022; 7:39310-39324. [PMID: 36340083 PMCID: PMC9631723 DOI: 10.1021/acsomega.2c05466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Simple, effective, and eco-friendly sugar-based phase-selective gelators were synthesized at a low cost. They showed high gelling ability toward a wide range of solvents at lower concentrations (minimum gelation concentration ∼0.3%). Preliminary tests reveal that these low molecular weight organogelators can immediately and phase-selectively gel benzene, toluene, petrol, and kerosene in water at room temperature. We also identified G13 in toluene as the good gelator, and the corresponding organogel proficiently removes water-soluble dyes from their concentrated aqueous solutions. This efficient removal of toxic organic solvents and dyes from water suggests promising applications in removing organic substances from contaminated water resources. The thermoreversible gel exhibits effective rechargeability up to five cycles of burning and gelation, which imply the flame stability of the gel. Interestingly, these compounds had a high detection ability toward Cu2+ ions with a state change from gel to the solution. The physical justification for gelation mechanisms and the molecular interaction with metal ions were further confirmed by computational studies.
Collapse
Affiliation(s)
- Panichiyil
Valiyaveetil Bhavya
- Department
of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 005, India
| | - Kamalakannan Soundarajan
- Department
of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 005, India
| | - Jan Grzegorz Malecki
- Institute
of Chemistry, University of Silesia, Ninth Szkolna Street, 40-006 Katowice, Poland
| | - Thangamuthu Mohan Das
- Department
of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 005, India
| |
Collapse
|
28
|
Damavandi F, Soares JBP. Facile and Efficient Phase-Selective Powder Polymer Organogelator for Oil Spill Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12666-12673. [PMID: 36194557 DOI: 10.1021/acs.langmuir.2c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phase-selective organogelators that gel oils from oil/water mixtures are useful to remediate oil spills on water. We designed and synthesized polymer organogelators, poly(styrene-co-10-undecenoic acid) with five different 10-undecenoic acid contents that could be added as powders at room temperature to gel oils with different viscosities. The morphologies and mechanical strengths of the gels were investigated using field-emission electron microscopy and rheological measurements, respectively. The gels formed porous fibrillar structures and had high stiffness. Fourier transformm infrared (FTIR) spectroscopy studies of these gels showed that hydrogen bonding and van der Waals forces helped create three-dimensional networks. The straightforward synthesis procedure, room-temperature conditions, and easy powder delivery make poly(styrene-co-10-undecenoic acid) an attractive alternative to existing oil spill response methods.
Collapse
Affiliation(s)
- Fereshte Damavandi
- Department of Chemical and Material Engineering, University of Alberta, 9211 116 St., Edmonton, AlbertaT6G 1H9, Canada
| | - João B P Soares
- Department of Chemical and Material Engineering, University of Alberta, 9211 116 St., Edmonton, AlbertaT6G 1H9, Canada
| |
Collapse
|
29
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Das P, Bhowmick A, Sarkar K, Mukherjee S, Saha R, Bhattacharjee S. Solvent‐ and Substrate‐Induced Chiroptical Inversion in Amphiphilic, Biocompatible Glycoconjugate Supramolecules: Shape‐Persistent Gelation, Self‐Healing, and Antibacterial Activity. Chemistry 2022; 28:e202201621. [DOI: 10.1002/chem.202201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN Sector V Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur 732103 West Bengal India
| | - Priyanka Das
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Arpita Bhowmick
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Keka Sarkar
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Suprabhat Mukherjee
- Department of Animal Science Kazi Nazrul University Asansol 713340 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
30
|
Tanaka F. Comparative Study on the Models of Thermoreversible Gelation. Int J Mol Sci 2022; 23:ijms231810325. [PMID: 36142229 PMCID: PMC9499641 DOI: 10.3390/ijms231810325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
A critical survey on the various theoretical models of thermoreversible gelation, such as the droplet model of condensation, associated-particle model, site–bond percolation model, and adhesive hard sphere model, is presented, with a focus on the nature of the phase transition predicted by them. On the basis of the classical tree statistics of gelation, combined with a thermodynamic theory of associating polymer solutions, it is shown that, within the mean-field description, the thermoreversible gelation of polyfunctional molecules is a third-order phase transition analogous to the Bose–Einstein condensation of an ideal Bose gas. It is condensation without surface tension. The osmotic compressibility is continuous, but its derivative with respect to the concentration of the functional molecule reveals a discontinuity at the sol–gel transition point. The width of the discontinuity is directly related to the amplitude of the divergent term in the weight-average molecular weight of the cross-linked three-dimensional polymers. The solution remains homogeneous in the position space, but separates into two phases in the momentum space; particles with finite translational momentum (sol) and a network with zero translational momentum (gel) coexist in a spatially homogeneous state. Experimental methods used to detect the singularity at the sol–gel transition point are suggested.
Collapse
Affiliation(s)
- Fumihiko Tanaka
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
31
|
Ikeda N, Aramaki K. Hydrogel Formation by Glutamic-acid-based Organogelator Using Surfactant-mediated Gelation. J Oleo Sci 2022; 71:1169-1180. [PMID: 35793975 DOI: 10.5650/jos.ess22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrogels formed by low-molecular-weight gelators have reversible sol-gel transition and responsiveness to various stimuli, and are used in cosmetics and drug applications. It is challenging to obtain hydrogels using novel gelators because subtle differences in their molecular architecture affect gelation. Organogelators (which form organogels) are insoluble in water, and their use as hydrogelators has not previously been considered. However, a surfactant-mediated gelation method was reported in which organogelators were solubilized in water by surfactants to form hydrogels using 12-hydroxyoctadecanoic acid. To investigate whether this method can be applied with other organogelators, the formation of hydrogel using a glutamic-acid-based organogelator was studied here. Hydrogels were formed by solubilizing 1:1 mixtures of glutamate-based organogelators, N-lauroyl-L-glutamic acid dibuthylamide, and N-2-ethylhexanoyl-L-glutamic acid dibutylamide in aqueous micellar solutions of anionic surfactant (sodium lauroyl glutamate) and cationic surfactant (cetyltrimethylammonium chloride). The minimum gelation concentration of the hydrogel was ~0.2-0.6 wt%. By changing the molar fraction of cetyltrimethylammonium chloride in the mixed surfactant, either spherical or wormlike micelles were formed. The hydrogel with wormlike micelles had a higher sol-gel transition temperature than that with spherical micelles and formed fine self-assembled fibrillar networks. Additionally, the hydrogel with the spherical micelles was elastic, whereas that with wormlike micelles was viscoelastic, suggesting that networks of the organogelators and wormlike micelles coexisted in the hydrogel from the wormlike micellar solution. Moreover, the hydrogel suppressed the reduction in the storage modulus at higher temperatures compared with the micellar aqueous solution, indicating that the elastic properties of the organogelator networks were maintained at high temperatures. The gel fibers of the hydrogel partially formed a loosely aggregated structure as the temperature increased, the fibers bundled via hydrophobic interactions, and new cross-linking points formed spontaneously. This phenomenon corresponded with an inflection point in the temperature-dependent storage modulus of the hydrogel.
Collapse
Affiliation(s)
- Naoaki Ikeda
- Graduate School of Environment and Information Sciences, Yokohama National University.,Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc
| | - Kenji Aramaki
- Graduate School of Environment and Information Sciences, Yokohama National University
| |
Collapse
|
32
|
Su L, Hendrikse SIS, Meijer EW. Supramolecular glycopolymers: How carbohydrates matter in structure, dynamics, and function. Curr Opin Chem Biol 2022; 69:102171. [PMID: 35749930 DOI: 10.1016/j.cbpa.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Supramolecular glycopolymers exhibiting inherent dynamicity, tunability, and adaptivity allow us to arrive at a deeper understanding of multivalent carbohydrate-carbohydrate interactions and carbohydrate-protein interactions, both being essential to key biological events. The impacts of the carbohydrate segments in these supramolecular glycopolymers towards their structure, dynamics, and function as biomaterials are addressed in this minireview. Bottlenecks and challenges are discussed, and we speculate about possible future directions.
Collapse
Affiliation(s)
- Lu Su
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Simone I S Hendrikse
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; School of Chemistry and UNSW RNA Institute, The University of New South Wales Sydney, NSW 2052, Australia.
| |
Collapse
|
33
|
Al-Qahtani SD, Snari RM, Bayazeed A, Alnoman RB, Hossan A, Alsoliemy A, El-Metwaly NM. Synthesis, characterization and self-assembly of novel fluorescent alkoxy-substituted 1, 4-diarylated 1, 2, 3-triazoles organogelators. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Gelation–based visual detection of fluoride ion: Strategic use of silyl protection–deprotection chemistry. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Biswakarma D, Dey N, Bhattacharya S. Molecular design of amphiphiles for Microenvironment-Sensitive kinetically controlled gelation and their utility in probing alcohol contents. J Colloid Interface Sci 2022; 615:335-345. [DOI: 10.1016/j.jcis.2021.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
|
36
|
Wang G, Wang D, Chen A, Okafor IS, Samankumara LP. Design and Synthesis of α-Anomeric Diacetylene-Containing Glycosides as Photopolymerizable Molecular Gelators. ACS OMEGA 2022; 7:11330-11342. [PMID: 35415357 PMCID: PMC8992281 DOI: 10.1021/acsomega.2c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Glycolipids with diacetylene functional groups are fascinating compounds with many practical uses. Among these, diacetylene-containing gelators are especially important because they can form photopolymerizable gels, which are useful stimuli-responsive materials. Inspired by the unique properties of diacetylene-containing gelators and to understand the structural influences especially the location of the diacetylene functional groups on the self-assembling properties, a series of 15 novel N-acetyl-d-glucosamine derivatives with the diacetylene functional group introduced at the anomeric position were designed and synthesized. The diacetylene function is attached to the sugar through α-glycosylation with the distance from the anomeric oxygen being varied from one, two, and three methylene groups, and the other side contains hydroxyl, carboxyl, phenyl, and alkyl substituents. Remarkably, all compounds can form self-assembled gels in one or more selected solvents. A majority of these synthesized diacetylene glycosides are effective gelators for ethanol/water (v/v 1:1), dimethyl sulfoxide/water (v/v 1:1), and toluene, and one compound also formed a hydrogel at 1.0 wt %. Typically, these glycosides form gels that are photopolymerizable to afford red-colored gels. Scanning electronic microscopy indicated that the gelators formed helices, fibers, and planar sheet-like morphologies. The chemical structures of the derivatives affected their gelation properties and responses to UV treatment. The carboxylic acid-functionalized derivative 17 was able to immobilize basic solutions and form transparent gels. We expect that these diacetylene glycosides especially the hydroxyl and carboxylic acid derivatives will be useful as stimuli-responsive glycolipids for biomedical research.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Dan Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Ifeanyi S. Okafor
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Lalith Palitha Samankumara
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
37
|
Sharma P, Wang G. 4,6- O-Phenylethylidene Acetal Protected D-Glucosamine Carbamate-Based Gelators and Their Applications for Multi-Component Gels. Gels 2022; 8:191. [PMID: 35323304 PMCID: PMC8953293 DOI: 10.3390/gels8030191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of carbohydrate-based low molecular weight gelators has led to useful advanced soft materials. The interactions of the gelators with various cations and anions are important in creating novel molecular architectures and expanding the scope of the small molecular gelators. In this study, a series of thirteen new C-2 carbamates of the 4,6-O-phenylethylidene acetal-protected D-glucosamine derivatives has been synthesized and characterized. These compounds are rationally designed from a common sugar template. All carbamates synthesized were found to be efficient gelators and three compounds are also hydrogelators. The resulting gels were characterized using optical microscopy, atomic force microscopy, and rheology. The gelation mechanisms were further elucidated using 1H NMR spectroscopy at different temperatures. The isopropyl carbamate hydrogelator 7 formed hydrogels at 0.2 wt% and also formed gels with several tetra alkyl ammonium salts, and showed effectiveness in the creation of gel electrolytes. The formation of metallogels using earth-abundant metal ions such as copper, nickel, iron, zinc, as well as silver and lead salts was evaluated for a few gelators. Using chemiluminescence spectroscopy, the metal-organic xerogels showed enzyme-like properties and enhanced luminescence for luminol. In addition, we also studied the applications of several gels for drug immobilizations and the gels showed sustained release of naproxen from the gel matrices. This robust sugar carbamate-derived gelator system can be used as the scaffold for the design of other functional materials with various types of applications.
Collapse
Affiliation(s)
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
38
|
3D printing of biocompatible low molecular weight gels: Imbricated structures with sacrificial and persistent N-alkyl-d-galactonamides. J Colloid Interface Sci 2022; 617:156-170. [PMID: 35276518 DOI: 10.1016/j.jcis.2022.02.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022]
Abstract
HYPOTHESIS We have shown earlier that low molecular weight gels based on N-heptyl-d-galactonamide hydrogels can be 3D printed by solvent exchange, but they tend to dissolve in the printing bath. We wanted to explore the printing of less soluble N-alkyl-d-galactonamides with longer alkyl chains. Less soluble hydrogels could be good candidates as cell culture scaffolds. EXPERIMENTS N-hexyl, N-octyl and N-nonyl-d-galactonamide solutions in dimethylsulfoxide are injected in a bath of water following patterns driven by a 2D drawing robot coupled to a z-platform. Solubilization of the gels with time has been determined and solubility of the gelators has been measured by NMR. Imbricated structures have been built with N-nonyl-d-galactonamide as a persistent ink and N-hexyl or N-heptyl-d-galactonamide as sacrificial inks. Human mesenchymal stem cells have been cultured on N-nonyl-d-galactonamide hydrogels prepared by cooling or by 3D printing. FINDINGS The conditions for printing well-resolved 3D patterns have been determined for the three gelators. In imbricated structures, the solubilization of N-hexyl or N-heptyl-d-galactonamide occurred after a few hours or days and gave channels. Human mesenchymal stem cells grown on N-nonyl-d-galactonamide hydrogels prepared by heating-cooling, which are stable and have a fibrillar microstructure, developed properly. 3D printed hydrogels, which microstructure is made of micrometric flakes, appeared too fragile to withstand cell growth.
Collapse
|
39
|
Ghosh S, Ghosh S, Baildya N, Ghosh K. Dehydroabietylamine-decorated imino-phenols: supramolecular gelation and gel phase selective detection of Fe 3+, Cu 2+ and Hg 2+ ions under different experimental conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00830k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dehydroabietylamine-linked Schiff bases 1–3 have been synthesized, characterized and employed in metal ion sensing in a sol–gel medium. The compounds have a propensity for gel formation from aqueous organic solvents.
Collapse
Affiliation(s)
- Subhasis Ghosh
- Department of Chemistry, University of Kalyani, Kalyani-741235, India
| | - Sumit Ghosh
- Department of Chemistry, University of Kalyani, Kalyani-741235, India
| | - Nabajyoti Baildya
- Department of Chemistry, University of Kalyani, Kalyani-741235, India
| | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani-741235, India
| |
Collapse
|
40
|
Panja S. Dosimetric gelator probes and their application as sensors. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Cross ER, Coulter SM, Pentlavalli S, Laverty G. Unravelling the antimicrobial activity of peptide hydrogel systems: current and future perspectives. SOFT MATTER 2021; 17:8001-8021. [PMID: 34525154 PMCID: PMC8442837 DOI: 10.1039/d1sm00839k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 05/05/2023]
Abstract
The use of hydrogels has garnered significant interest as biomaterial and drug delivery platforms for anti-infective applications. For decades antimicrobial peptides have been heralded as a much needed new class of antimicrobial drugs. Self-assembling peptide hydrogels with inherent antimicrobial ability have recently come to the fore. However, their fundamental antimicrobial properties, selectivity and mechanism of action are relatively undefined. This review attempts to establish a link between antimicrobial efficacy; the self-assembly process; peptide-membrane interactions and mechanical properties by studying several reported peptide systems: β-hairpin/β-loop peptides; multidomain peptides; amphiphilic surfactant-like peptides and ultrashort/low molecular weight peptides. We also explore their role in the formation of amyloid plaques and the potential for an infection etiology in diseases such as Alzheimer's. We look briefly at innovative methods of gel characterization. These may provide useful tools for future studies within this increasingly important field.
Collapse
Affiliation(s)
- Emily R Cross
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Sophie M Coulter
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Sreekanth Pentlavalli
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Garry Laverty
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| |
Collapse
|
42
|
Gim S, Fittolani G, Yu Y, Zhu Y, Seeberger PH, Ogawa Y, Delbianco M. Targeted Chemical Modifications Identify Key Features of Carbohydrate Assemblies and Generate Tailored Carbohydrate Materials. Chemistry 2021; 27:13139-13143. [PMID: 34251709 PMCID: PMC8518775 DOI: 10.1002/chem.202102164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/11/2022]
Abstract
The molecular level description of carbohydrate assemblies is hampered by their structural complexity and the lack of suitable analytical methods. Here, we employed systematic chemical modifications to identify key non-covalent interactions that triggered the supramolecular assembly of a disaccharide model. While some modifications disrupted the supramolecular organization, others were tolerated, delivering important information on the aggregation process. The screening identified new geometries, including nanotubes, and twisted ribbons that were characterized with electron tomography and electron diffraction (ED) methods. This work demonstrates that the combination of synthetic chemistry and ED methods is a powerful tool to draw correlations between the molecular structure and the nanoscale architecture of carbohydrate assemblies.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Yang Yu
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Simpson Querrey InstituteNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Yuntao Zhu
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Yu Ogawa
- Univ. Grenoble AlpesCNRS, CERMAV38000GrenobleFrance
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
43
|
Bietsch J, Olson M, Wang G. Fine-Tuning of Molecular Structures to Generate Carbohydrate Based Super Gelators and Their Applications for Drug Delivery and Dye Absorption. Gels 2021; 7:134. [PMID: 34563020 PMCID: PMC8482264 DOI: 10.3390/gels7030134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Carbohydrate-based low molecular weight gelators (LMWGs) exhibit many desirable properties making them useful in various fields including applications as drug delivery carriers. In order to further understand the structural connection to gelation properties, especially the influence of halide substitutions, we have designed and synthesized a series of para-chlorobenzylidene acetal protected D-glucosamine amide derivatives. Fifteen different amides were synthesized, and their self-assembling properties were assessed in multiple organic solvents, as well as mixtures of organic solvents with water. All derivatives were found to be gelators for at least one solvent and majority formed gels in multiple solvents at concentrations lower than 2 wt%. A few derivatives rendered remarkably stable gels in aqueous solutions at concentrations below 0.1 wt%. The benzamide 13 formed gels in water and in EtOH/H2O (v/v 1:2) at 0.36 mg/mL. The gels were characterized using optical microscopy and atomic force microscopy, and the self-assembly mechanism was probed using variable temperature 1H-NMR spectroscopy. Gel extrusion studies using H2O/DMSO gels successfully printed lines of gels on glass slides, which retained viscoelasticity based on rheology. Gels formed by the benzamide 13 were used for encapsulation and the controlled release of chloramphenicol and naproxen, as well as for dye removal for toluidine blue aqueous solutions.
Collapse
Affiliation(s)
| | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.B.); (M.O.)
| |
Collapse
|
44
|
Synthesis and Self-Assembling Properties of Peracetylated β-1-Triazolyl Alkyl D-Glucosides and D-Galactosides. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate-based low-molecular-weight gelators (LMWGs) are useful classes of compounds due to their numerous applications. Among sugar-based LMWGs, certain peracetylated sugar beta-triazole derivatives were found to be effective organogelators and showed interesting self-assembling properties. To further understand the structural influence towards molecular assemblies and obtain new functional materials with interesting properties, we designed and synthesized a library of tetraacetyl beta-1-triazolyl alkyl-D-glucosides and D-galactosides, in which a two or three carbon spacer is inserted between the anomeric position and the triazole moiety. A series of 16 glucose derivatives and 14 galactose derivatives were synthesized and analyzed. The self-assembling properties of these new triazole containing glycoconjugates in different solvents were analyzed. Several glucose derivatives were found to be effective LMWGs, with compound 7a forming gels in a variety of organic solvents as well as in the presence of metal ions in aqueous solutions. The organogels formed by several compounds were characterized using optical microscopy, atomic force microscopy (AFM) and UV-vis spectroscopy, etc. The co-gels formed by compound 7a with the Fmoc derivative 7i showed interesting fluorescence enhancement upon gelation. Several gelators were also characterized using powder X-ray diffraction and FT-IR spectroscopy. The potential applications of these sugar-based gelators for drug delivery and dye removal were also studied.
Collapse
|
45
|
Bordignon D, Lonetti B, Coudret C, Roblin P, Joseph P, Malaquin L, Chalard A, Fitremann J. Wet spinning of a library of carbohydrate low molecular weight gels. J Colloid Interface Sci 2021; 603:333-343. [PMID: 34197983 DOI: 10.1016/j.jcis.2021.06.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Recently, a low molecular weight hydrogel based on a carbohydrate alkyl amide has been successfully used as biomaterial for neuron cell culture and for 3D printing. Varying the molecular structure should make it possible to extend the library of carbohydrate low molecular weight hydrogels available for these applications and to improve their performances. EXPERIMENTS Thirteen molecules easy to synthetize and designed to be potentially biocompatible were prepared. They are based on gluconamide, glucoheptonamide, galactonamide, glucamide, aliphatic chains and glycine. Their gelation in water was investigated in thermal conditions and wet spinning conditions, namely by dimethylsulfoxide-water exchange under injection. FINDINGS Nine molecules give hydrogels in thermal conditions. By wet spinning, six molecules self-assemble fast enough, within few seconds, to form continous hydrogel filaments. Therefore, the method enables to shape by injection these mechanically fragile hydrogels, notably in the perspective of 3D printing. Depending on the molecular structure, persistent or soluble gel filaments are obtained. The microstructures are varied, featuring entangled ribbons, platelets or particles. In thermal gelation, molecules with a symmetrical polar head (galacto, glucoheptono) give flat ribbons and molecules with an asymmetrical polar head (gluco) give helical ribbons. The introduction of an extra glycine linker disturbs this trend.
Collapse
Affiliation(s)
- Delphine Bordignon
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Christophe Coudret
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Pierre Roblin
- Laboratoire de Génie Chimique (LGC), Université de Toulouse, CNRS UMR 5503, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | | - Anaïs Chalard
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| | - Juliette Fitremann
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France.
| |
Collapse
|
46
|
Ortuño RM. Carbocycle-Based Organogelators: Influence of Chirality and Structural Features on Their Supramolecular Arrangements and Properties. Gels 2021; 7:gels7020054. [PMID: 34062755 PMCID: PMC8162357 DOI: 10.3390/gels7020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
The rational design and engineer of organogel-based smart materials and stimuli-responsive materials with tuned properties requires the control of the non-covalent forces driving the hierarchical self-assembly. Chirality, as well as cis/trans relative configuration, also plays a crucial role promoting the morphology and characteristics of the aggregates. Cycloalkane derivatives can provide chiral chemical platforms allowing the incorporation of functional groups and hydrophobic structural units able for a convenient molecular stacking leading to gels. Restriction of the conformational freedom imposed by the ring strain is also a contributing issue that can be modulated by the inclusion of flexible segments. In addition, donor/acceptor moieties can also be incorporated favoring the interactions with light or with charged species. This review offers a perspective on the abilities and properties of carbocycle-based organogelators starting from simple cycloalkane derivatives, which were the key to establish the basis for an effective self-assembling, to sophisticated polycyclic compounds with manifold properties and applications.
Collapse
Affiliation(s)
- Rosa M Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|